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Introduction: Accurate plots distribution mapping of the renowned Chinese
medicinal plant, Ligusticum chuanxiong Hort. (LC) is crucial for its field
management and yield estimation. However, due to the high fragmentation of
LC cultivation plots, accurate classification using UAV-based RGB remote
sensing images is challenging.

Methods: This study utilized unmanned aerial vehicle RGB images to investigate
the high-precision extraction of LC cultivation plots based on feature variable
combinations across four representative sites: Site 1 (S1, traditional LC cultivation
area in Dujiangyan City), Site 2 (S2, concentrated LC plots in Dujiangyan City), Site
3 (S3, traditional LC cultivation area in Pengzhou City), and Site 4 (S4, newly-
developed LC cultivation area in Mianzhu City). Initially, appropriate color indices,
texture features, color spaces, and digital elevation models were extracted from
RGB images to form feature variable combinations. Subsequently, pixel-based
classification and object-oriented classification methods were employed to
construct LC cultivation plot extraction models.

Results: The results showed that compared with classification results based on
RGB images, the object-oriented classification method (k-nearest neighbor,
KNN) based on feature variable combinations showed the highest overall
classification accuracy and Kappa coefficient. The average Kappa coefficients
for the classification of S1, S2, S3, and S4 were 0.86, 0.94, 0.93, and 0.90,
respectively, while the overall accuracy rates were 89.16%, 95.72%, 94.55%, and
92.25%, respectively. The F1 scores averaged 99.62%, 98.11%, 96.11%, and
97.75%, respectively. Across all four sites, the mean Kappa coefficient, overall
accuracy, and F1 score were 0.92, 92.92%, and 97.90%, respectively, showing an
increase of 0.14, 14.17%, and 4.9% compared to the RGB images.
Conclusions: The results indicate that the feature variable combination
constructed based on UAV-based RGB remote sensing images can enhance
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the extraction accuracy of LC's cultivation plots without incurring additional data
acquisition costs. The research findings can provide theoretical and technical
references for remote sensing measurement of similar medicinal plant

cultivation varieties.

KEYWORDS

Ligusticum chuanxiong Hort., unmanned aerial vehicle (UAV), machine learning, remote
sensing, plot extraction

1 Introduction

Ligusticum chuanxiong Hort. (LC) is one of the oldest and most
popular herbal plants in the world, its dried rhizome has been
widely used for centuries to promote blood circulation, regulate qi,
dispel cold, and relieve pain (Wagner et al., 2011; Yuan et al., 2020).
Since the Song Dynasty, the cultivation area of LC has been
confined to Dujiangyan City in the Chengdu Plain of Sichuan
Province (Kang et al., 2021). However, analogous to other medicinal
plants of high economic value in China, the cultivation scale of LC
has undergone rapid expansion in the past decade, leading to the
emergence of new strip-shaped planting areas along the Minjiang
River Basin (Fang et al., 2020). Farmers in Dujiangyan City usually
manage an area of no more than 1 ha, but farmers in emerging
planting areas, such as Mianzhu City, Meishan City, and Qionglai
City, typically cultivate LC on areas spanning 10 to 100 ha (Peng
et al,, 2020). The significant expansion in planting scale presents
considerable challenges for farmers to maintain detailed
management. For example, if traditional manual field inspection
is employed, where each inspector examines 1 ha per day, it would
necessitate hiring 10 individuals to complete an inspection of 10 ha,
resulting in high labor costs and the inability to ensure
comprehensive coverage of the entire area. Moreover, farming
system diversification, limited plot sizes, and crop variability
contribute to the fragmentation of extensive LC cultivation areas,
increasing the complexity for farmers to evaluate scattered LC fields
on the ground. Therefore, the key challenge lies in how to efficiently
aggregate data from extensive and scattered LC cultivation areas
and utilize this data for growth status analysis, which is crucial for
ensuring the high quality of medicinal materials.

The advancement of remote sensing technology has
significantly transcended terrain limitations, offering hope for
precise, repeatable, and swift identification of LC cultivation plots
from an aerial perspective. Since the past decade, remote sensing
technology has been widely used for extracting various crop
cultivation plots, such as rice and corn (Guo and Ren, 2023; Li
et al,, 2024). Currently, satellite remote sensing technology is the
mainstream method for studying crop spatial distribution
(Khosravi, 2025; Rehman et al., 2025). Joel Segarra and colleagues
utilized Sentinel-2 data to map wheat areas in the Burgos and
Palencia regions of northern Spain (Segarra et al, 2023).
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Furthermore, Fan et al. explored the ability to classify crop types
using Sentinel 2, Landsat 8, and GaoFen-1 data in a flat irrigation
area in northwestern China, proving that classification accuracy will
increase with the increase of input features (Fan et al, 2021).
Satellite remote sensing provides advantages including broad
spatial coverage and high information density, proving valuable
for large-scale crop mapping in countries with dominant large-scale
farming systems, flat terrains, and high mechanization levels such as
the United States, Brazil, and Argentina (Fritz et al, 2019;
Schwalbert et al,, 2020). Conversely, this technology encounters
limitations in southern China’s fragmented agricultural landscapes.

To effectively address the challenges of fragmented farmland
monitoring, unmanned aerial vehicle remote sensing (UAVRS)
technology demonstrates substantial potential. Current
mainstream approaches primarily enhance classification accuracy
through two pathways: sensor hardware upgrades and innovations
in data processing algorithms. In the realm of sensors, hyperspectral
imaging (HSI) and multispectral systems significantly improve
spectral discrimination capabilities for ground objects by
calculating various vegetation indices (e.g., NDVI, SAVI) (Wu
et al, 2025; Zidi et al, 2025). At the algorithmic level, the
development of object-based image analysis (OBIA) and deep
learning semantic segmentation techniques has effectively
overcome the salt-and-pepper noise problem inherent in
traditional pixel-level classification (Yuan et al., 2021; Ez-
zahouani et al., 2023). Research indicates that multidimensional
feature fusion constitutes a core strategy for accuracy enhancement:
The HSI-Trans U-Net model developed by Niu et al. (2022), which
fuses spatial-spectral features from hyperspectral images, achieved a
crop classification accuracy of 86.05%. Wei et al. (2019) integrated
spectral information, spatial context, and positional features within
a conditional random field framework, elevating accuracy to
98.07%. Xu et al. (2023)further validated the efficacy of fusing
spectral-textural features in time-series imagery for overcoming
the limitations of single-date classification. Notably, low-cost RGB
sensors also exhibit significant potential through innovative feature
engineering (Padua et al., 2022; Han et al., 2024). Wang et al. (2025)
demonstrated that solely utilizing UAV-based RGB imagery and
fusing color features, textural features, and lightweight
convolutional features, achieved a 99% classification accuracy for
rice-wheat rotation progress. This performance substantially
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surpassed the accuracy of single-color-feature models (85.3%), with
single-image processing requiring only 1.25 seconds. This reveals
that optimized feature combination strategies using RGB sensors
can rival or even outperform expensive hyperspectral systems.
However, it should be noted that existing high-accuracy methods
still possess significant limitations. These include high equipment
dependency (hyperspectral/multispectral sensors costing 5 to 10
times more than conventional RGB cameras (Tian et al., 2022),
considerable operational complexity (multi-temporal data
acquisition requiring precise phenological synchronization (Zhou
et al, 2023), and a narrow focus on specific research subjects.
Studies predominantly concentrate on major staple crops such as
rice, maize, and wheat, while research on medicinal plant parcel
identification remains scarce. Particularly, the identification of LC,
an important characteristic medicinal plant in Southwest China, has
yet to be reported. Given the absence of prior dedicated studies on
LC plots identification and building upon the established principle
that enhanced input features improve classification accuracy, this
study pioneers the extraction of LC planting plots using exclusively
low-cost UAV-based RGB imagery. Our primary objective is to
determine the optimal feature combination and classification
methodology through rigorous evaluation of accuracy metrics.
The findings are expected to serve as a reference for identifying
medicinal plant cultivation plots utilizing UAV-based RGB
imagery. The research goals consist of three parts: (1) comparing
the extraction outcomes of LC planting areas based on various
image feature variable combinations and selecting the most precise
one; (2) evaluating the extraction effectiveness using pixel
classification algorithms and object-oriented classification
algorithms and selecting the most accurate classification
algorithm; and (3) employing data from other LC regions and
examining the extraction results of LC planting areas using UAV-
based RGB imagery and combined feature variables to validate the
applicability of the proposed extraction method in this study.2.
Study area and data source.

2 Study area and data source

2.1 Study area

Site 1 (S1) is located in Dujiangyan City, Chengdu, Sichuan
Province, China. The site lies in the central part of Sichuan
Province, at the intersection of the upper and middle reaches of
the Minjiang River, between 103°37'-103°42’E and 30°46'-30°
52" N. This area belongs to the subtropical humid monsoon
climate zone of the Sichuan Basin and features low temperatures,
ample rainfall, and limited sunlight. The area is particularly suited
for the growth of LC, which has been a genuine producing area
since the Song Dynasty and produces the optimal quality of LC. The
research area covers 142,157.86 m?, with a relatively concentrated
cultivation area of LC measuring 30,161.97 m?.

To investigate the adaptability of various methods, three
additional LC cultivation areas were selected as verification sites:
Site 2 (S2) is located in Dujiangyan City with an area size of
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176,508.36 m? and a cultivation area of LC measuring 31,841.85 m>.
The cultivation plots here are relatively concentrated, with minimal
occurrences of intermingling with forest land. Site 3 (S3) is found in
Pengzhou City, with an area size of 298,678.20 m? and a cultivation
area of LC measuring 81,284.51 m?. The plots are well defined and
exhibit few instances of blending with forest land. Site 4 (S4) is
situated in Mianzhu City with an area size of 263,629.88 m?, within
which the cultivation area of LC measures 46,252.38 m>. The plots
are irregularly shaped and experience greater encroachment by
forest land. The geographical location of the four study areas in this
research is depicted in Figure 1.

2.2 UAV image acquisition and
preprocessing

The aerial platform utilized in this study was the DJI Mavic 2 Pro,
which is battery-powered and has a take-off weight of 907 g. The
endurance of the UAV lasts for approximately 30 min. The camera
model employed is the Hasselblad L1D-20c, boasting a pixel count of
20 million. At an altitude of 100 m, the ground resolution reaches 2.38
cm/pixel, effectively meeting the demands of this project for capturing
RGB images. DJI GS PRO was applied to plan the aerial survey and
create a flight itinerary based on the actual conditions of the site. Flying
at an altitude of 100 m and a speed of 8.6 m/s, along with headings and
lateral overlap percentages of 75% and 65%, respectively, ensured
efficient coverage of the surveyed area. Data collection occurred on
April 25, between 11:48 am and 12:22 pm, and again on April 27, from
13:18 pm to 13:34 pm and from 17:00 pm to 17:22 pm, as S1, S2, S3,
and $4 datasets, respectively.

To process the collected UAV images, Agisoft Metashape Pro
(Agisoft LLC, St. Petersburg, Russia) was employed to implement
the Structure from Motion workflow. After cropping out the parts
with poor edge quality in the software, the coordinate system was
converted to World Geodetic System 84-Universal Transverse
Mercator coordinate system Zone 48N (WGS 84/UTM zone
48N), and the spatial resolution was resampled to 0.10 m/pixel.
Digital orthophoto map and digital elevation model (DEM) images
were output separately.

2.3 Reference data

In the course of conducting a survey of land cover types in the
study area, concurrent UAV image acquisition was employed. This
methodology involved combining field observations with UAV
imagery to visually interpret various land cover types and establish
sampling datasets based on these classifications. Through field
investigations, the primary land cover types detected in each research
area were categorized as follows: LC, forest, other plants, bare land, and
construction land. Consequently, this study meticulously considered
the spectral characteristics of UAV images and field investigation
findings and bifurcated the land cover types within the study area
into five categories. To facilitate analysis, we processed drone imagery
from four study areas (S1-S4) using ENVI 5.3 and ArcGIS Pro 10.1 to
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FIGURE 1

Geographic location of the study area.

generate samples representing five distinct land cover types for
classification model training and validation through the following
workflow: first, distribution polygons for each land cover class were
delineated across S1-S4 imagery using ENVI 5.3’s Region of Interest
(ROI) Tool and exported as Shapefiles; subsequently, these vectors
were imported into ArcGIS Pro 10.1 where a random point generation
tool applied a spatial separation criterion (>3 meters with 0.2m point
radius) to create initial sample points; finally, manual refinement
eliminated incomplete boundary points and low-quality samples to
derive valid sample points, with per-area totals (S1: 3200, S2: 3500, S3:
4540, $4: 2260) summarized in Table 1, after which these points were
partitioned into training/validation sets implementing 5-fold cross-
validation during model training to enable comprehensive evaluation.

3 Methods

This study evaluated the effectiveness of various combinations of
feature variables in conjunction with pixel-based and object-oriented
classification models for the classification of LC cultivation plots. The
main steps include the following: (1) constructing multisource features
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based on UAV images. These features were obtained from color indices,
texture features, and color components extracted from the images. (2)
Selecting representative image feature variables from color indices,
texture features, and color components and constructing feature
variable combinations. These variable combinations were then
classified using pixel-based and object-oriented machine learning
algorithms, and their performance was compared against those
obtained using RGB images alone. This step aimed to identify the
most effective feature variable combinations for classification. (3)
Applying the optimal feature variable combination method identified
in step (2) to RGB images acquired from S2, S3, and $4. The resulting
classifications were then compared against those obtained using RGB
images to assess the stability of the proposed approach across different
scenes and conditions. The workflow of this study is depicted in Figure 2.

3.1 Image feature variable screening
3.1.1 Image feature variable construction

To enhance the separability of different objects by amplifying
the spectral information difference of different objects, a series of
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TABLE 1 The number of training and validation samples in this study.

10.3389/fpls.2025.1659442

Sample types LC Forest Other Plants Bare land Construction land
Training (S1) 100 100 100 100 100
Validation (S1) 600 600 600 450 450
Total (S1) 700 700 700 550 550
Training (S2) 140 120 100 40 50
Validation (S2) 900 500 750 450 450
Total (S2) 1040 620 850 490 500
Training (S3) 150 30 30 150 130
Validation (S3) 1050 600 900 750 750
Total ($3) 1200 630 930 900 880
Training(S4) 160 150 130 60 80
Validation(S4) 450 450 360 180 240
Total(S4) 610 600 490 240 320

color indices were constructed based on RGB remote sensing
images (Woebbecke et al., 1995). Although there are few studies
on color index construction based on RGB images, 12 color indices
were selected for this study after reviewing relevant literature in
recent years (Table 2).

Texture features are one of the most commonly used features
for image classification because different ground objects have
different texture information (Ma and Manjunath, 1996). This
study selects the Gray-level Co-occurrence Matrix (GLCM) (Soh
and Tsatsoulis, 1999) as a widely used texture feature to calculate
the spatial correlation of image gray sets. GLCM includes eight
kinds of features: Mean (MEA), Variance (VAR), Homogeneity
(HOM), Contrast (CON), Dissimilarity (DIS), Entropy (ENT),
Second Moment (SEM), and Correlation (COR) (Equations 1-8).
A total of 24 GLCM features were extracted based on 3 bands (R, G,
and B) of RGB images, of which the parameters were used in the
default setting, such as the window size of 3 x 3, the angle of 0°, and
the quantization level of 64. GLCM textural features obtained for
this study are as follows:

Ng NX
Mean = >3 ixP (i) (1)
i=1j=1
Ng Ng
Variance = > > (i - u?*P (4,7) (2)
i=1j=1
Homogeneity =SS — L p (i) )
omogeneity = T . o I,
¢ ) -1 L+ (i-j)? /
Ng NZ
Contrast = 3> (i—j)*P (i,f) (4)
i=1j=1
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Ng Ng
Dissimilarity = > > |i = j|P (i, )

(5)
11
Ng Ng
Entropy = >>'P (i,j)log (P (i) (6)
=11
Ng Ng
Second Moment =SSP (i,j)}’ (7)
=11
Correlation = 22y P )=tk ®)

0,0,

During aerial photography of UAVs in outdoor fields, changes
in light intensity are inevitable and different for different types of
objects. The HSV and HLS color space models can offset the color
differences of the same object caused by differences in light intensity
by independently adjusting brightness, chroma, and color (Demarty
and Beucher, 1998; Sural et al., 2002). This makes them useful for
vegetation type classification and extraction. The HLS color space
simulates colors by combining the three color channels of Hue,
Lightness (LIT), and Saturation (SAT), while the HSV color space
simulates colors by combining the three color channels of Hue,
Saturation, and Value (VAL). After converting the RGB image to
obtain two types of color spaces, the four obtained color
components are used as image feature variables to participate in
the image feature variable screening process.

Moreover, taking into account that the variation in vegetation
height between LC and forest land, as well as other vegetative types,
might contribute to classification, the DEM generated during the
orthogonalization process was employed to combine feature
variables with additional variables.
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FIGURE 2

Workflow of this study: VDVI, B-MEA, Hue, and DEM denote the Visible-band Difference Vegetation Index, the Mean texture feature extracted from
the blue channel of RGB imagery, the Hue component in the HSV or HLS color space, and the Digital Elevation Model, respectively; while ML, KNN,
and SVM represent the machine learning classifiers: Maximum Likelihood, k-nearest neighbor, and Support Vector Machine.

3.1.2 Image feature variable selection

If there is a high correlation between various features in the
multidimensional image, it can lead to poor classification results.
Additionally, having an excessive number of features involved in the
classification process can greatly increase the demand for
computing resources, thereby reducing the classification
efficiency. To mitigate this challenge, we performed a Pearson
correlation coefficient analysis on the 12 calculated color indices,
24 texture features, and 4 color components, as shown in Figure 3.
The analysis revealed a high correlation between different color
indices, which may be because they are all used to represent the
degree of reflectivity of the surface of the object. Similarly, different
texture features and color components show high correlation,
suggesting that there is redundant information among similar
variables. Consequently, we suggest selecting only one feature
variable from each of the three categories of feature variables for
integration to enhance classification precision while minimizing the
time needed for classification.

To assess the contribution of the 12 computed color indices, 24
texture features, and 4 color components in promoting the
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separability of different land types and LC fields and to select the
most suitable feature variables for classification, we statistically
analyzed the average values of different image feature variables in
each land type based on sample data. Subsequently, we calculated
the interclass difference scores D,, between samples of each type of
land and samples of LC fields using the following formula
(Equation 9):

D, = ABS(M)AOO % )
M,

where D,, is the interclass difference score of the spectral mean
of other land samples and LC samples, Mc is the spectral mean of

LC samples, and Mn is the spectral mean of other land samples.
To assess the effectiveness of various combinations of image
features in classifying LC cultivation plots and identify the optimal
combination of variable features, this study implemented four
classification scenarios, as follows: (1) Scenario 1: Utilizing only
one of the four category feature variables; (2) Scenario 2:
Combining two feature variables; (3) Scenario 3: Combining three
feature variables; (4) Scenario 4: Integrating all four feature
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TABLE 2 Color indices selected in this study.

Color Index Formula Reference
green chromatic coordinate Richardson et al.
B
(GCC) G/(R+G+B) (2007)
red chromatic coordinate Richardson et al.
R B
(RCC) R/(R+G+B) (2009)
blue chromatic coordinate Richardson et al.
B/(R+G+B)

(BCC) (2007)

Kawashima and
Nakatani (1998)

reen-red vegetation index
f’GRVI) 8 (G-R)/(G+R)
Woebbecke et al.

woebbecke index (WT) (1995)
o]

(G-B)/(R-G)
(2xG-R-B)/(2xG+R

green leaf index (GLI) +B)

Booth et al. (2006)

Gitelson et al.
(2002)

visible atmospherically

G-R)/(G+R-B
resistance index (VARI) ( MG+ )

excess red vegetation index
(EXR)

Meyer and Neto

1.4xRCC-GCC
(2008)

excess green vegetation index Guijarro et al.

2xGCC-RCC-BCC

(EXG) (2011)

excess blue vegetation index Guijarro et al.
1.4xBCC-GCC .

(EXB) (2011)

color index of vegetation 0.441xR-0.881xG Kataoka et al.

(CIVE) +0.385xB+18.78745 (2003)

visible-band difference

G-B-R)/(G+B+R|
vegetation index (VDVI) ( J(G+B+R)

Wang et al. (2015)

variables (CI, CC, TF, and DEM). The specific groupings are
presented in Table 3.

3.2 Feature variable combination selection

To assess the viability of incorporating various feature variables
into enhancing the accuracy of LC classification, we compared the
performance of three widely adopted machine learning classifiers:
maximum likelihood (ML) (Lillesand et al., 2015), k-nearest
neighbor (KNN) (eCognition, 2013), and support vector machine
(SVM) (Vapnik, 1999). These classifiers are typically utilized in the
literature for remote sensing image classification. By evaluating the
performance of these classifiers on differently combined feature
variable images, we measured the performance of different image-
variable feature combinations in improving classification accuracy.
The strengths of KNN and ML consist of their simplicity and
capacity to execute high classification efficiency on low-
performance computing devices. Conversely, SVM demonstrates
outstanding performance in high-dimensional spaces, making it an
appropriate choice for classification tasks in intricate scenarios.
Therefore, we selected KNN and SVM for object-oriented
classification tasks, whereas ML and SVM served as classification
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models for pixel-based classification tasks. All classifiers adhered to
their default specifications throughout usage, and all models
underwent 5-fold cross-validation during the training process to
evaluate their generalization abilities.

3.2.1 Pixel-based classification

Pixel-based classification is a fundamental concept in
traditional remote sensing (Whiteside et al., 2011). After
identifying the types of land objects in the research area via the
interpretation of the research area image and field survey data,
representative pixels of each type of land object were selected as
training samples, and the ML classifier and SVM classifier were used
for land object classification, respectively. Since the classification
results obtained from supervised classification are preliminary
results, frequently featuring small patches, it is crucial to refine
these results from a practical application viewpoint. Thus, we utilize
the majority/minority analysis tool to eliminate small patches,
obtain post classification processing results, and export the
classification outcomes in TIF format. Finally, we calculate the
proportion and area attributes of each type of land object within
each classification result. The pixel-based classification tasks
conducted in this study were executed using ENVI 5.6.3.

3.2.2 Object-oriented classification

Object-oriented classification is a method of image classification
that differs from traditional pixel-based classification (Yan et al.,
2006). This method segments the image into coherent pixel groups
characterized by similar features such as spectrum, texture, and
shape, i.e., image objects. Subsequently, the method performs
supervised classification based on the spectral, texture, shape, and
other feature differences of different land-type objects. Since it
classifies block-like pixel sets, object-oriented classification offers
significant computational efficiency improvements while effectively
avoiding salt and pepper artifacts (Bhaskaran et al., 2010; Tassi and
Vizzari, 2020). The implementation of object-oriented classification
mainly includes two core steps: multiscale segmentation and
classification. Optimal segmentation outcomes prevent the
formation of objects containing solely a single land type,
minimizing fragmentation and more accurately reflecting the
shape features of individual lands, such as farmland areas.

The crucial parameters of the multiscale segmentation
algorithm include segmentation scale, shape factor, compactness
factor, and image layer weight. Given the flat terrain and
interconnected crops within the research area, the shape factor
was set to 0.3, the compactness factor was set to 0.5, and all image
layer weights were set to 1. Based on optimizing these initial three
parameters, we employed the ESP2 evaluation tool (Dragut et al,
2014) to determine the optimal segmentation scale based on the
RGB images of S1 with a smaller coverage area and S3 with a
broader scope. The optimal segmentation scale was determined to
be 300, and the results were compared with those obtained using
segmentation scales of 200 and 400. The outcomes indicated that

frontiersin.org


https://doi.org/10.3389/fpls.2025.1659442
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Zhong et al.

10.3389/fpls.2025.1659442

Correlation
coefficient

1.00

0.75

0.50

- 0.25

~ 0.00

- -0.25

-0.50

-0.75

FIGURE 3
Heatmap for the Pearson’s correlation analysis of multi-source features.

when the segmentation scale is set to 300, the pixels affiliated with
the same land object category via multiscale segmentation exhibit
spectrum similarities in spectrum, texture, shape, and space,
whereas dissimilar land objects demonstrate heterogeneity
(Figure 4). Finally, each feature combination image is classified
separately using the KNN classifier and SVM classifier. The
boundaries of contiguous, same-type land in the classification
results are eliminated and outputted in TIF format. The object-
oriented classification endeavors undertaken in this study were
executed utilizing eCognition 9.0.

3.3 Method validation

To assess whether the feature variable combination obtained
can maintain the accuracy advantage in LC cultivation plot
extraction across different regions, we developed the most
effective feature variable combination based on RGB images
from S2, $3, and S4. Subsequently, we implemented pixel-based
classification and object-oriented classification algorithms to
classify land use and compared their outcomes with those
obtained using RGB images to validate the potential of
transferring the optimal feature variable combination to
other areas.
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3.4 Evaluation indicators

To assess the performance of the land-use classification results,
we employed the confusion matrix (Congalton and Green, 2019) to
compare our classifications with the corresponding verification
samples of land-use categories. Based on the computed confusion
matrix, overall accuracy and Kappa coefficient were used to evaluate
the overall accuracy of the classification, while LC’s producer
accuracy, user accuracy, and F1 score were calculated to evaluate
the classification accuracy of LC (Equations 10-14). To objectively
compare the performance of different feature combinations and
identify the optimal solution, we established a composite scoring
system with equal weighting: 0.2xOA + 0.2xKappa + 0.2xPA (LC)
+ 0.2xUA (LC) + 0.2xF1 (LC), ensuring balanced consideration of
all metrics. Furthermore, one-way analysis of variance (ANOVA)
was implemented to determine whether there are any significant
differences in classification accuracy among various feature
combinations. Subsequently, Tukey’s Honestly Significant
Difference (HSD) test was applied to perform pairwise
comparisons between the composite scores of each feature
combination and the baseline RGB feature combination. The
analysis results are presented in a ranking table sorted in
descending order of composite score. Feature combinations
demonstrating statistically significant superiority over the RGB
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Visual comparison of multiscale segmentation results. The blue lines are the boundaries of multiscale segmentation.

baseline (p< 0.05) are marked with an asterisk (*). Complete
ranking results are provided in Supplementary Tables S1-54.
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Where 7 is the total number of samples, r is the number of
confusion matrix rows and columns, x;; is the value of row i and
column j in the confusion matrix, x; is the sum of row i in the

confusion matrix, x;

; is the sum of column j in the

confusion matrix.
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4 Results
4.1 Image feature variable selection

Table 4 shows the interclass difference scores D,, of the spectral
mean of each land class sample compared with LC across the 12
color index features. In the GCC, RCC, GLI, EXG, and CIVE
images, the difference scores between each type of land use and
LC were relatively small, all less than 100%, with some instances
where the pixel mean of construction land was comparable with
other plants, which was not conducive to land classification. In the
RCC, GRVI, WI, VAR EXR, EXB, and VDVI images, the means of
the WI feature were similar for all three classes: other plants, bare
land, and construction land; the BCC, EXG, and EXB features
exhibited similar means for forest and other plants; the GRVI
feature had similar means for other plants and bare land; and the
VARI feature displayed similar means for construction land and
forests. These similarities did not contribute positively to land
classification accuracy. By analyzing the mean differences between
each type of land-use sample in the EXR and VDVI images, we
found that the difference between construction land and other
plants in the EXR image was not significant, whereas the
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TABLE 3 Feature combinations designed in this study.

Feature
Contented

Feature

combination

Feature combination 1

CI 1
(FC1)
Feat bination 2
eature combination cs 1
(FC2)
Feature combination 3 GLCM 1
(FC 3)
Feature combination 4 DEM 1
(FC 4)
Feat inati
eature combination 5 CLCS )
(FC5)
Feature combination 6
CI+GLCM 2
(FC 6) "
Feature combination 7 CL+DEM )
(FC7)
Feature combination 8
CS+GLCM 2
(FC 8)
Feature combination 9
CS+DEM 2
(FC 9) *
Feature combination 10
GLCM+DEM 2
(FC 10)
Feat bination 11
eature combination CL+CS+GLCM 5
(FC 11)
Feature combination 12 CL+CS+DEM 3
(FC 12)
F ination 1
eature combination 13 CL+GLCM+DEM 5
(FC 13)
Feat bination 14
eature combination CS+GLCM+DEM 3
(FC 14)
Feat bination 15
cature combination CI+C$+GLCM+DEM 4

(FC 15)

separation among various types of land-use in the VDVT image was
higher. Consequently, VDVI was selected as the feature color index
to participate in the study of feature combinations for
land classification.

In Table 5, the interclass difference scores D,, of each land class
sample and LC were presented for the 24 texture feature variables.
Notably, in the R-MEA, R-ENT, R-SEM, G-MEA, G-ENT, G-SEM,
B-HOM, B-CON, B-DIS, B-ENT, and B-SEM images, there were
instances where the interclass difference scores between land-use
types and LC were less than 10%, rendering them unsuitable for
land classification. Additionally, in the R-VAR, R-HOM, R-CON,
R-DIS, R-COR, G-HOM, G-DIS, G-COR, B-VAR, and B-COR
images, the means of other plant samples were found to be closely
aligned with those of forest samples, whereas the means of
construction land samples were comparable with those of other
plant samples. These situations were unhelpful for effective land
classification. Conversely, only in the G-VAR, G-CON, and B-MEA
images did the means of each type of land-use sample exhibit
distinguishable differences. Combining the interclass difference
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scores between the means of each type of land-use sample in each
feature image and the mean of LC samples, B-MEA was selected as
the texture feature for feature combination research in land-
use classification.

Table 6 shows the interclass difference scores D,, between
various land-use types and LC in the four color component
feature variables. In the Light and Value images, some instances
exhibited minimal differences between land-use classes, making it
challenging for accurate land-use classification. Additionally, while
the sample mean of bare land in the Saturation image closely
resembled that of construction land and the mean of forest lands
was similar to that of other plants, this lack of differentiation was
unfavorable for land classification purposes. Conversely, only in the
Hue image does each land-use type exhibit distinct sample means;
hence, Hue was selected as the color space feature for feature
combination research in land-use classification.

4.2 Classification results of feature variable
combinations

Figures 5 and 6 show that as the number and diversity of
features participating increased, the classification accuracy of land
objects and the extraction accuracy of the LC cultivation area
demonstrated a consistent improvement under both pixel-based
classification methods.

Specifically, it showed that it is difficult to effectively distinguish
land objects based solely on one of the four feature variables. For
example, since FC 4 only contained elevation information,
classification errors for other land objects were apparent except
for forest recognition, which performed well, and a large area of
pixels being misclassified as LC. Integrating two features for
classification notably enhanced the classification outcomes when
compared with using only one variable, with the exception of FC 9
and 10. Furthermore, the combination of three features led to even
better classification results for FC 11 through 14, with FC 13
demonstrating the greatest reduction in classification errors and
salt and pepper effects within the extracted LC cultivation area.
Finally, incorporating all four features into FC 15 produced
satisfactory outcomes in land classification and LC cultivation
area extraction.

Furthermore, Figure 7 shows that the average overall accuracies
of FC 1-4 classified using a single feature were all below 70.00%, and
their average Kappa coefficients were all lower than 0.60. Among
these, the accuracies and Kappa coefficients of feature combination
4 based on the DEM were the lowest. For FC 5-10 combined using
two features, except for FC 7 classified using SVM, the average
overall accuracies ranged from 60.00% to 80.00%, and their average
Kappa coefficients lay between 0.50 and 0.75, showing limited
improvement over the classification accuracy of a single feature.
For FC 11-14 combined using three types of features, except for
feature combination 11, the average overall accuracies were all
above 80.00%, and their average Kappa coefficients exceeded 0.80.
Among them, the highest average overall accuracies and Kappa
coefficient values were achieved by feature combination 14 with
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TABLE 4 Inter-class difference scores in different color index features of LC and other land-use types.

Feature Forest Other Plants Bare land Construction land
GCC 11.11% 22.22% 35.19% 37.04%
RCC 6.25% 15.63% 12.50% 3.13%
BCC 53.33% 40.00% 93.33% 133.33%
GRVI 11.54% 73.08% 103.85% 80.77%
WI 9.60% 122.03% 112.99% 114.12%
GLI 27.50% 52.50% 90.00% 97.50%
VARI 6.45% 67.74% 103.23% 0.00%
EXR 52.00% 209.76% 300.04% 238.32%
EXG 35.03% 52.59% 88.58% 96.04%
EXB 54.92% 58.75% 121.68% 171.65%
CIVE 5.55% 27.74% 55.59% 78.07%
VDVI 162.50% 287.50% 455.00% 500.00%

average overall accuracies of 82.70% (ML) and 83.07% (SVM) and
average Kappa coefficients of 0.78 (ML) and 0.79 (SVM),
respectively, second only to FC 15 involving four features. The
composite scoring system ranked FC15 as the optimal combination
in both classifiers (ML composite score: 0.91; SVM composite score:
0.93; see Supplementary Table S1, S2 for composite scores and full
rankings of all feature combinations). The average overall accuracy
and Kappa coefficient of FC 15 reached 90.00% (ML), 90.43%
(SVM), 0.87 (ML), and 0.88 (SVM), respectively, demonstrating a
significant improvement of 14.26% (ML), 17.44% (SVM), 0.18
(ML), and 0.22 (SVM) compared with the results based on RGB
image accuracy. These findings suggest that the increase in the
number and types of features involved can significantly enhance
land classification accuracy.

In assessing LC cultivation plot extraction using the ML
classifier, FC 4 (DEM) achieved the lowest producer accuracy
(69.67%). In contrast, all other features yielded accuracies ranging
from 91.68% to 99.77% with no significant differences observed.
Conversely, the user accuracy showed substantial fluctuations,
varying from 26.58% to 94.05%, with FC 4 obtaining the lowest
outcome and FC 15 achieving the highest, followed by FC 7, which
recorded a satisfactory level of 93.94%. In terms of F1 scores, the
range was from 38.42% to 96.67%, with FC 4 presenting the lowest
value. The top five feature combinations with the highest F1 score
were FC 7 (96.67%), FC 13 (95.14%), FC 12 (94.24%), FC 14
(93.43%), and FC 15 (92.75%); among these, FC 15 exhibited an
increase of 2.71% when compared with the RGB image. In terms of
composite score ranking (Supplementary Table S1), FC15 achieved
the highest (0.91), followed by FC13 (0.89), FC14 (0.88), and FC12
(0.88), while FC7, despite having the highest F1 score (96.67%) and
high UA, ranked fifth (0.86) due to its lower overall
accuracy (72.53%).

When analyzing the SVM classifier results, we found that the
producer accuracy fluctuated between 45.43% and 99.64%, with FC
4, FC 7, FC 3, FC 6, and FC 11 registering the lowest rates, which
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were 45.43%, 65.66%, 82.21%, 84.19, and 89.02%, respectively; their
low composite scores (0.37-0.77) reflected this poor PA
performance. Conversely, the user accuracy ranged from 32.7% to
92.68%, with FC 4 demonstrating the lowest outcome and FC 15
scoring the highest, followed by FC 14, which registered a
satisfactory level of 92.91%. In terms of F1 scores, the range was
observed to be between 37.78% and 95.97%, with FC 4 presenting
the lowest value. The five feature combinations with the highest F1
score were FC 15 (95.97%), FC 14 (92.91%), FC 9 (91.92%), FC 12
(91.77%), and FC 10 (88.56%); among these, FC 15 increased by
6.63% compared with the RGB image. The composite scoring
(Supplementary Table S2) confirmed FC15’s superiority (0.93)
and showed that the top-ranked combinations (FC15 followed by
FC14, FC9, FC12, and FC13, all with scores >0.85) aligned closely
with the top F1 performers.

In comparison with the outcomes of pixel-based classification,
Figures 8 and 9 show that, as the number and diversity of features
utilized in object-oriented classifications increased, the accuracy of
land object classifications and the precision of LC cultivation area
extractions displayed an upward tendency. Classifications involving
four single feature variables found it difficult to effectively
distinguish land objects. Specifically, a substantial number of
errors occurred in the extraction of LC cultivation areas in FC 3
and FC 4, which relied on features such as texture and the digital
surface model. Conversely, when two feature variables were
combined in FC 5-10, the classification effect was significantly
improved, the salt and pepper effect decreased, yet complete
recognition of LC plots remained elusive. The classification
outcomes for FC 11-14, which involved the combination of three
feature variables, were further improved compared with FC 5-10.
Notably, the misclassification and salt and pepper effects in the
extraction results of the LC cultivation area in FC 13 were
significantly improved compared with any other combinations.
Finally, FC 15, which incorporated all four features, demonstrated
the most effective result in land classification and LC cultivation
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TABLE 5 Inter-class difference scores in different texture features of LC and other land-use types.

Feature Forest Other Plants Bare land Construction land
R-MEA 8.50% 28.77% 44.14% 43.28%
R-VAR 93.06% 90.97% 13.54% 34.38%
R-HOM 10.53% 13.16% 18.42% 44.74%
R-CON 75.99% 77.63% 22.53% 36.02%
R-DIS 27.60% 30.73% 15.63% 33.33%
R-ENT 1.48% 1.97% 4.93% 18.23%
R-SEM 0.00% 7.14% 14.29% 64.29%
R-COR 93.75% 81.25% 100.00% 87.50%
G-MEA 16.18% 13.60% 16.97% 6.77%
G-VAR 142.28% 104.41% 13.24% 33.82%
G-HOM 20.00% 17.50% 15.00% 45.00%
G-CON 120.18% 93.81% 20.53% 34.34%
G-DIS 44.02% 37.50% 14.67% 34.24%
G-ENT 2.97% 2.97% 4.95% 22.28%
G-SEM 7.14% 7.14% 14.29% 85.71%
G-COR 100.00% 55.56% 66.67% 44.44%
B-MEA 4821% 82.53% 157.16% 267.68%
B-VAR 106.67% 116.67% 21.90% 15.71%
B-HOM 16.28% 20.93% 4.65% 34.88%
B-CON 89.62% 101.32% 6.40% 19.87%
B-DIS 34.55% 40.61% 0.61% 26.67%
B-ENT 3.03% 4.55% 2.53% 19.70%
B-SEM 6.67% 13.33% 6.67% 66.67%
B-COR 160.00% 140.00% 200.00% 160.00%

area extraction, with complete recognition of all LC plots and only a
minor number of other vegetation objects being misclassified as LC.

As depicted in Figure 10, when classifying FC 1-4 based on a
single feature variable, the average overall accuracies were all below
70.00%, and the average Kappa coefficients were all lower than 0.60,
with correspondingly low composite scores (KNN: 0.17-0.75; SVM:
0.47-0.73), among which the average overall accuracy and average
Kappa coefficient of FC 4 were the lowest and its composite scores
ranked last in both classifiers (KNN: 0.17; SVM: 0.47). In FC 5-10
combined by two feature variables, except for FC 5, the average
overall accuracies were all between 55.88% and 79.33%, while the
average Kappa coefficients varied between 0.45 and 0.74, yielding
composite scores of 0.68-0.88 (KNN) and 0.60-0.86 (SVM). When
comparing FC 11 through 14 grouped by three feature variables, the
average overall accuracies and average Kappa coefficients were
further enhanced as compared with FC 5-10, respectively,
between 69.85 and 87.52% and 0.64 and 0.86, achieving
composite scores of 0.70-0.92 (KNN) and 0.62-0.90 (SVM).
Here, the average overall accuracy and average Kappa coefficient
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of FC 14 (KNN) reached 87.52% and 0.84, respectively, with
composite score of 0.92, second only to FC 15, which had four
features. For this group, FC15 consistently achieved optimal
composite scores across classifiers (KNN: 0.95; SVM: 0.95), with
the average overall accuracy and average Kappa coefficient reached
89.16% (KNN), 90.36% (SVM), 0.86 (KNN), and 0.88 (SVM).
When compared with the results of average overall accuracy and
average Kappa coefficient based on a RGB image, FC 15 exhibited
significant improvements of 17.03% (KNN), 19.20% (SVM), 0.21
(KNN), and 0.24 (SVM).

Similar to findings in pixel-based classification, our results from
object-oriented classification demonstrated that in the context of
LC cultivation plot extraction, the performance of the KNN
classifier varied widely across feature combinations, ranging from
16.54% to 99.86% in terms of producer accuracy, with the sole
exception of FC 4, whose accuracy was below 87.36%. The user
accuracy ranged from 11.94% to 99.39%, with FC 4 registering the
lowest result and FC 15 achieving the highest, followed by FC 11,
which recorded 97.82%. The composite scoring (Supplementary
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TABLE 6 Inter-class difference scores in different color space features of LC and other land-use types.

Feature Forest Other Plants Bare land Construction land
Hue 9.27% 19.78% 37.46% 73.87%
Light 2.78% 2.78% 22.22% 41.67%
Saturation 36.84% 40.35% 78.95% 78.95%
Value 16.07% 12.50% 12.50% 1.79%

Table S3) revealed FC15 as the top performer (0.95), with FC14
close behind at 0.92, despite FC11 having higher PA/UA values. In
terms of F1 score, the top five feature combinations with the highest
F1 score were FC 15 (99.62%), FC 11 (98.44%), FC 1 (96.87%), FC
12 (96.77%), and FC 14 (96.71%), though composite scoring
prioritized FC15 (0.95), FC14 (0.92), FC12 (0.91), FCI1 (0.90)
and FC8 (0.88) due to balanced metric performance, with FC 4
again displaying the lowest score. Notably, FC 15 increased by
5.29% compared with the RGB image.

For the SVM classifier, we observed a producer accuracy range
of 48.84% to 99.80%, with the vast majority of feature combinations
demonstrating accuracy levels above 81.15% without significant
differences. Nonetheless, the user accuracy varied from 39.27% to
99.54%, with FC 4 scoring the lowest and FC 7 and FC 13 recording
the highest scores, closely followed by FC 15, which achieved
99.14%. Composite scoring (Supplementary Table S4) confirmed
FC15’s dominance (0.95), with FC13 ranking second at 0.90, despite
having lower OA than FCl14. In terms of F1 score, the top five
feature combinations with the highest scores were FC 15 (99.47%),
FC 13 (99.46%), FC 7 (98.78%), FC 12 (97.69%), and FC 6 (97.01%),
while composite scoring identified FC15 (0.95), FC13 (0.90), FC12
(0.86), RGB (0.84) and FC14 (0.82) as optimal, highlighting FC12’s
strong overall performance. Interestingly, FC 15 displayed an

increase in its F1 score of 4.31% compared with the RGB
image results.

4.3 Method validation

In Figures 11 and 12, we observed the classification outcomes of
RGB images of S2, S3, and S4, along with their respective
combinations of all four feature variables, using pixel-based and
object-oriented classification approaches. In the pixel-based
classifications, the RGB images and feature combination images
demonstrated effective categorization of land objects. For instance,
in the image in S2, the salt and pepper effect in the classification
results based on feature combination images was the lightest,
whereas there were numerous instances where forest pixels were
incorrectly labeled as LC plot pixels within the RGB image
classification. The accuracy of the four sets of image classification
results in S3 was at a high level, but there were certain cases of
missed classification. Finally, due to the late image acquisition time
of images in S4, shadows dominated the visuals, leading to generally
low classification accuracy. forest pixels and other plant pixels were
sometimes misclassified as LC plot pixels, causing substantial salt
and pepper effects.

FIGURE 5

Other Plants

Construction Land

M

Results of ML (pixel-based) classification on 15 kinds of feature combinations: (a—o0) are classification results based on FC1~FC 15, while (p) is the

classification results based on RGB image.
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Results of SVM (pixel-based) classification on 15 kinds of feature combinations: (a—o) are classification results based on FC1~FC 15, while (p) is the

classification results based on RGB image.

On the contrary, in the object-oriented classifications, the
presence of the salt and pepper effect was less pronounced in the
RGB and feature variable combination classifications for S2. Within
the RGB image classification for S2, there were cases where LC plots
were misclassified as other plants due to inadequate growth and
minimal vegetation coverage, whereas this plot was accurately
classified when employing the feature variable combination
approach. In the image classification results of S3, the extraction
results of the LC cultivation area were relatively accurate. Finally, in
the image classification results of S4, the classification accuracy
based on feature combination images was significantly improved
compared with pixel-based classification, accompanied by a
decrease in the misclassification of forests as LC plots.

Specifically, as shown in Figure 12, in the outcome of pixel-
based classifications, the average overall accuracies of classification
based on RGB images from S2, S3, and S4 were 89.46%, 88.38%
(ML), 87.96% (SVM), 87.53% (ML), 87.20% (SVM), and 78.20%
(ML), 78.40% (SVM), respectively; the average Kappa coefficients
were 0.85 (ML), 0.84 (SVM), 0.84 (ML), 0.84 (SVM), and 0.72 (ML),
0.72 (SVM). On the contrary, the average overall accuracies based
on feature combination images were 93.77% (ML), 95.01% (SVM),
92.34% (ML), 90.66% (SVM), and 84.22% (ML), 81.40% (SVM),
respectively, accompanied by Kappa coefficients of 0.92 (ML), 0.94
(SVM), 0.90 (ML), 0.88 (SVM), and 0.80 (ML), 0.77 (SVM),
respectively. The use of feature combination images leads to
statistically significant improvements in overall accuracy ranging
from 5.39% (ML), 7.05% (SVM), 4.81% (ML), 3.46% (SVM), and
6.02% (ML) to 2.99% (SVM) for each method, along with
improvements in the Kappa coefficient of 0.07 (ML), 0.09 (SVM),
0.06 (ML), 0.04 (SVM), and 0.08 (ML) to 0.05 (SVM) in the Kappa
coefficient (p< 0.05).

In the outcome of object-oriented classification, average overall
accuracies of classification based on RGB images from S2, S3, and
S4 were 83.78% (KNN), 84.84% (SVM), 83.31% (KNN), 86.70%
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(SVM), and 84.69% (KNN), 83.43% (SVM), respectively; the Kappa
coefficients were 0.79 (KNN), 0.80 (SVM), 0.79 (KNN), 0.83 (SVM),
and 0.80 (KNN), 0.79 (SVM), respectively. Alternatively, when
feature combination images were used, the overall accuracy
reached 95.72% (KNN), 93.58% (SVM), 94.55% (KNN), 94.70%
(SVM), and 92.25% (KNN), 90.35% (SVM), respectively, with
respective Kappa coefficients of 0.94 (KNN), 0.92 (SVM), 0.93
(KNN), 0.93 (SVM), and 0.90 (KNN), 0.88 (SVM). The
employment of feature combination images demonstrated
statistically significant enhancements in overall accuracy between
11.95% (KNN), 8.74% (SVM), 11.24% (KNN), 8.00% (SVM), and
7.56% (KNN), 6.93% (SVM) in overall accuracy, while the Kappa
coefficients improved by 0.15 (KNN), 0.11 (SVM), 0.14 (KNN), 0.10
(SVM), and 0.10 (KNN), 0.09 (SVM) (p< 0.05).

5 Discussion

5.1 Feasibility of extracting LC cultivation
plots using feature variable combination

The spectral similarity among various crops and vegetation
types presents a challenge for utilizing remote sensing technologies
in detecting crop cultivation regions (Karmakar et al, 2024).
Moreover, economic crops like LC are typically grown across
scattered and fragmented plots (Figure 11), often with cluttered
backgrounds, which contributes to their greater difficulty in
identification compared to food crops. In our study, accurately
classifying pixels of LC plots, forests, and other plants is a core issue.
Consistent with the findings of Yang et al (Yang et al., 2022), we
discovered that relying solely on RGB imagery makes it difficult to
distinguish between vegetation types (Figures 5, 6, 8, 9, and 11).
Consequently, incorporating appropriate feature variables to
enhance classification accuracy becomes crucial. Since vegetation
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FIGURE 7

Accuracy evaluation of the results of pixel-based classification: the letters on the top of charts shows that the differences are significant.

exhibits strong reflectivity in the near-infrared band and strong
absorption in the red band, vegetation indices based on infrared
wavelengths (e.g., NDVI) are widely used for extracting vegetation
information (Liu et al., 2021). However, low-cost RGB cameras,
lacking infrared bands, must utilize the strong reflectivity of
vegetation in the green wavelength band and weak reflectivity in
the red and blue wavelength bands to construct color indices such as
GCC (Krizova et al., 2022).

Therefore, this study investigated the potential for synergistic
enhancement in LC plot identification through multidimensional
characterization enabled by combining diverse features. The
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mechanism by which the selected features facilitate extraction is
analyzed as follows: VDVT builds on the computational methodology
of the Normalized Difference Vegetation Index (NDVI) by integrating
visible band data from RGB imagery to generate enhanced composite
images. These synthesized outputs effectively enhance contrast between
vegetated and non-vegetated areas (Zang et al., 2024). Building upon
this foundation, Hue, distinguished by its strong robustness against
illumination variations, preferentially differentiates vegetation areas
from non-vegetated backgrounds (e.g., the brownish-yellow hue of
bare land, non-green tones of construction land). Its ability to capture
the unique chlorophyll reflectance characteristics of LC aids in the
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FIGURE 8
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Results of KNN (object-oriented) classification on 15 kinds of feature combinations: (a—o) are classification results based on FC1~FC 15, while (p) is

the classification results based on RGB image.

preliminary separation of other vegetation types (Majer et al,, 2010;
Lazarevic et al,, 2021). Concurrently, The discriminatory power of B-
MEA stems from their robust correlation with the Leaf Area Index
(LAI) (Xu et al., 2025). Manicured LC plots exhibit significantly greater
texture homogeneity than natural vegetation in this spectral region due
to their elevated vegetation coverage (corresponding to higher LAI),
effectively enabling discrimination from other vegetation types. The
introduction of DEM data further imposes vertical constraints. By
synergizing with spectral-textural features, it enhances the separability
between low-stature LC plots (~1m plant height) and forest while
aiding in differentiating other vegetation types of comparable height.
This multi-tiered discriminatory framework, integrating color
attributes, spectral responses, textural structures, and topographic

FIGURE 9

elevation, collectively forms the theoretical basis for distinguishing
LC plots from four typical land cover types.

Fortunately, the shortcomings of spectral features are
significantly improved after adding texture features, color space
elements, and DEM data (Figures 7, 10, and 12). The discovery
that different combinations of features lead to increased classification
accuracy also validates the consistency of previous studies (Fu et al,,
2021, 2022). Ultimately, the average overall accuracy of FC 15,
calculated using all four machine learning algorithms—ML, SVMs
(pixel-based), KNNs, and SVMs (object-oriented)—was 90.00%,
90.43%, 89.16%, and 90.36%, respectively. This result was
significantly higher (by 14.26%-19.20%) than the classification
accuracy achieved using only RGB images. The validation

Other Plants 9

100 200
M

Construction Land

Results of SVM (object-oriented) classification on 15 kinds of feature combinations: (a—0) are classification results based on FC1~FC 15, while (p) is

the classification results based on RGB image.
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FIGURE 10

Accuracy evaluation of the results of object-oriented classification: the letters on the top of charts shows that the differences are significant.

experiments executed on images captured from S2, S3, and S4
demonstrate that the feature variable combination images
developed within this study exhibit consistent precision
improvements across diverse regions. Notably, while the pixel-level
classification precision of S4 images stands at 84.22% and 81.40%,
respectively, the average overall accuracy of land object classification
employing feature combination images surpasses 90.00%.
Furthermore, except for the pixel classification precision of S4
images being recorded at 89.71% and 89.51%, the average F1 score
of all other images transcends 90.00%. A comparison between pixel
classification and object-oriented classification approaches divulges
negligible differences in their precision for categorizing land objects;

Frontiers in Plant Science

however, the latter technique demonstrates superior precision in
detecting grassland farmland areas and greater steadiness in
its performance.

5.2 Application of LC cultivation plot
extraction

Traditional LC cultivation methods rely on manual ground
inspections to assess the growth status and health of crops. Such
methods are susceptible to observer subjectivity and experience,
leading to diagnostic errors, especially when the cultivated area is
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neighbor classifier; (D) stands for the results of support vector machine classifier (object-oriented).

expanding. Human labor alone struggles to meet the demand for
timely and accurate inspections over large areas. In contrast, the use
of a UAV greatly reduces inspection time—it takes only
approximately 1 hour to complete an examination of 10 ha of
land (typically involving far more than 100 LC cultivation plots).
With the aid of the classification algorithm proposed in this article
and the integration of image feature variables, it is possible to
efficiently locate and identify all LC fields within only 2 hours. The
resulting UAV images and videos can be safely stored on electronic
media for future retrieval and analysis. Moreover, new algorithms
can be easily applied to existing databases to reduce redundant data
collection, thereby lowering cost inputs.

Based on the image information captured by RGB UAV in LC
fields, we can preliminarily understand the planting overview of
each block through the comparison of RGB colors and make simple
judgments. Furthermore, we can precisely calculate the vegetation
coverage rate of each plot using threshold segmentation or
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supervised classification methods to quantitatively analyze the
density of the aboveground parts and their growth trends.
Furthermore, analyzing images of LC plots from varying periods
allows us to assess phenotypic indicators such as emergence
uniformity, leaf area index, leaf chlorophyll and nitrogen content,
aboveground biomass, and vegetation coverage under different
fertilization and irrigation regimes. Indicators above usually
precisely mirror the growth conditions of crop (Maimaitijiang
et al,, 2020; Wan et al,, 2020; Zhang et al., 2024). Consequently,
our objective is to formulate high-resolution, plot-level models for
LC yield prediction and management strategy recommendations.

5.3 Limitations, challenges, and future steps

It is noteworthy that while exploring feature combinations
(color indices, texture features, color spaces, DEM) significantly
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Accuracy evaluation of the results of pixel-based classification and object-oriented classification.

enhanced the accuracy of LC plot cultivation parcel extraction from
UAV-based RGB imagery, inherent limitations of RGB data and
methodological constraints remain core challenges requiring
further attention.

5.3.1 RGB data constraints
5.3.1.1 lllumination sensitivity

The primary challenge lies in its extreme sensitivity to
illumination variations. The significant accuracy declines in S4
(7.47% and 6.01% lower mean overall accuracy than S2 and S3,
respectively) directly demonstrates the strong negative impact of
shadows on classification outcomes. This area was imaged at 5:00
PM, generating extensive shadows within forested regions.
Therefore, for practical implementation, image acquisition during
periods of sufficient illumination and minimal shadows is strongly

recommended to optimize accuracy.
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5.3.1.2 Seasonal variation

Furthermore, this study needs to further evaluate the potential
influence of seasonal variations. Dynamic changes in canopy color,
coverage, and background conditions (e.g., proportion of bare soil)
of LC, other plants, and forest across phenological stages may
significantly affect the stability of key discriminative features such
as the VDVI and Hue. Future work should incorporate multi-
temporal data spanning complete growing seasons to systematically
assess seasonal robustness.

5.3.2 Georeferencing and geometric constraints
Absolute positioning accuracy limitation: This study did not
utilize Ground Control Points (GCPs) during data processing. The
SfM 3D reconstruction relied solely on the GNSS positioning data
from the UAV (DJI Mavic 2 Pro). Consequently, the absolute
georeferencing accuracy of the final DOM and DEM products is
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inherently constrained to an estimated horizontal accuracy of 2-5
meters (Elkhrachy, 2021), with an associated risk of geometric
distortions during processing. This limitation hinders the direct
applicability of the classification results in scenarios demanding
high geospatial precision, such as precise co-registration with high-
accuracy base maps, sub-meter-level area calculation, or accurate
multi-temporal change detection. However, all study sites (S1-S4)
are situated within the gently undulating terrain of the Chengdu
Plain, where minimal topographic relief significantly reduces the
risk of elevation distortion artifacts in SfM-derived products. Visual
inspection confirmed that the generated DOM/DEM effectively
preserved the relative geometric relationships of key landscape
features (e.g., field boundaries, roads). Critically, the classification
methodology fundamentally exploits discriminative features—
including spectral reflectance, textural patterns, color space
components, and local topography (DEM)—between target LC
plots and background features. The separability of these features
is maintained as long as internal geometric consistency (i.e., absence
of destructive warping of object outlines) is preserved within the
DOM/DEM across the study area. Furthermore, training and
validation samples were annotated directly on the DOM imagery,
ensuring perfect spatial alignment between reference data and
classification inputs. Therefore, evaluation metrics (overall
accuracy, Kappa coefficient, Fl-score) reflect the model’s
performance within this consistent geometric framework, not its
absolute geospatial positioning accuracy. Synthesizing these
considerations, we contend that the geolocation accuracy
limitation exerts a minimal impact on the study’s primary
objective: identifying L. chuanxiong cultivation plots using UAV
RGB-derived feature combinations.

5.3.3 Challenges from high spatial resolution
5.3.3.1 Intra-class variation & background heterogeneity

Another challenge amplified by high spatial resolution is
intensified intra-class spectral variation and background
heterogeneity. While centimeter-scale resolution greatly mitigates the
mixed-pixel problem, it also accentuates spectral differences among
identical objects (e.g., LC plots under varying health statuses or micro-
environments) and highlights intricate background details like weeds,
crop residues, and uneven soil moisture within plots. This complexity
introduces additional noise for fine-grained classification.

5.3.3.2 Processing efficiency

Moreover, the massive data volume from high resolution
imposes higher demands on processing efficiency. Future studies
need comprehensive evaluation of flight altitudes (corresponding to
varying resolutions) to balance interlinked effects on spectral
variation, classification accuracy, and computational efficiency.

5.3.4 Feature selection strategy limitations
5.3.4.1 Potential geographic bias

Regarding feature selection strategy, the identification of core
features (VDVI, B-MEA, Hue) and the optimal combination FC15
relied solely on S1 data. Though validated across S2-S4, these
region-specific results may exhibit geographical bias, and their
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generalizability warrants large-scale verification across broader
geographic settings, soil types, and cultivation practices.

5.3.4.2 Lack of quantifiable validation

Critically, the current interpretation of feature roles relies on
speculative physiological reasoning (e.g., canopy chlorophyll
differences) rather than quantifying their actual contribution to
model decisions, limiting understanding of the model’s internal
mechanisms and validation of feature selection efficacy.

To address these challenges, future research should focus on:

5.3.4.2.1 Enhancing robustness to RGB & geometric limitations

Develop preprocessing techniques (e.g., shadow detection/
correction) or feature extraction methods less sensitive to
illumination/shadow; systematically study temporal feature dynamics
across LC growing seasons; evaluate resolution trade-offs; explore
fusion with complementary data (e.g., near-infrared, multi-temporal/
multi-angle imagery) or employ deep learning models (e.g, CNN,
Transformer) to automatically learn discriminative and noise-robust
features. For applications requiring high geospatial precision (e.g.,
precision agriculture management, high-accuracy area statistics,
fusion with multi-source high-precision GIS data), future studies
should incorporate Ground Control Points (GCPs) with RTK-
corrected references or utilize UAVs equipped with RTK/PPK
positioning systems during data acquisition. This will significantly
enhance georeferencing accuracy and the practical utility of the
outputs. The feature combinations and classification methods
proposed in this study hold greater application potential when
combined with high-precision spatial data.

5.3.4.2.2 Deepening feature understanding & optimizing feature
engineering

Prioritize integrating eXplainable AI (XAI) methods (e.g.,
SHAP values, LIME, model-inherent feature importance)
(Gevaert, 2022) to quantify the contribution magnitude and
direction of each input feature (including VDVI, B-MEA, Hue,
and potential alternatives). This provides data-driven, quantifiable
validation for feature selection, clarifies feature roles, and may
reveal novel critical information. Concurrently, expand the initial
feature library by incorporating more diverse texture features (e.g.,
Tamura texture, autoregressive models, wavelet features (Humeau-
Heurtier, 2019)) and color spaces (e.g., CMY, LAB, YUV
(Tokarczyk et al., 2014; Kamiyama and Taguchi, 2017)). Employ
systematic feature reduction and selection strategies, such as
synthesizing all potential features into multi-band imagery
followed by reverse analysis using Principal Component Analysis
(PCA), Minimum Redundancy Maximum Relevance (mRMR), or
Recursive Feature Elimination (RFE) (Ram et al., 2024) to identify
more generalizable and discriminative combinations.

6 Conclusion

This study successfully achieved high extraction accuracy for LC
cultivation plots utilizing cost-effective UAV-based RGB imagery, thus
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addressing a gap in the existing literature. Prior research has
predominantly focused on identifying cultivation areas for food crops
while paying minimal attention to the accurate extraction of medicinal
plant cultivation plots employing UAVRS technologies. This study filled
this gap by extracting color indices, textural features, color spatial
components, and DEM from UAV-based RGB imagery. Unlike
earlier studies that explored intricate processes for feature
dimensionality reduction, which might potentially result in inadequate
generalization performance, this study employed Pearson correlation
coefficient analysis to assess multicollinearity issues among different
variables. Subsequently, the study compared the interclass difference
scores of diverse land cover types with LC cultivation plots under
various feature variables to select the most promising features in three
characteristics combined with DEM for feature combination mode
screening. This approach not only simplified the feature selection
process but also reduced the dimensions of the feature combination,
effectively improving classification efficiency. The results demonstrated
robust stability in validation experiments across different production
regions, suggesting its potential for large-scale application. Accurate LC
cultivation plot identification provides a strong foundation for effective
LC management in Sichuan Province, significantly contributing to the
progression of LC precision agriculture implementation levels. This
technique is expected to play a crucial role in the execution of
quantitative management strategies such as nutrient status
monitoring, precision irrigation, and quantitative fertilization.
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