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Introduction: Accurate plots distribution mapping of the renowned Chinese

medicinal plant, Ligusticum chuanxiong Hort. (LC) is crucial for its field

management and yield estimation. However, due to the high fragmentation of

LC cultivation plots, accurate classification using UAV-based RGB remote

sensing images is challenging.

Methods: This study utilized unmanned aerial vehicle RGB images to investigate

the high-precision extraction of LC cultivation plots based on feature variable

combinations across four representative sites: Site 1 (S1, traditional LC cultivation

area in Dujiangyan City), Site 2 (S2, concentrated LC plots in Dujiangyan City), Site

3 (S3, traditional LC cultivation area in Pengzhou City), and Site 4 (S4, newly-

developed LC cultivation area in Mianzhu City). Initially, appropriate color indices,

texture features, color spaces, and digital elevation models were extracted from

RGB images to form feature variable combinations. Subsequently, pixel-based

classification and object-oriented classification methods were employed to

construct LC cultivation plot extraction models.

Results: The results showed that compared with classification results based on

RGB images, the object-oriented classification method (k-nearest neighbor,

KNN) based on feature variable combinations showed the highest overall

classification accuracy and Kappa coefficient. The average Kappa coefficients

for the classification of S1, S2, S3, and S4 were 0.86, 0.94, 0.93, and 0.90,

respectively, while the overall accuracy rates were 89.16%, 95.72%, 94.55%, and

92.25%, respectively. The F1 scores averaged 99.62%, 98.11%, 96.11%, and

97.75%, respectively. Across all four sites, the mean Kappa coefficient, overall

accuracy, and F1 score were 0.92, 92.92%, and 97.90%, respectively, showing an

increase of 0.14, 14.17%, and 4.9% compared to the RGB images.

Conclusions: The results indicate that the feature variable combination

constructed based on UAV-based RGB remote sensing images can enhance
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the extraction accuracy of LC’s cultivation plots without incurring additional data

acquisition costs. The research findings can provide theoretical and technical

references for remote sensing measurement of similar medicinal plant

cultivation varieties.
KEYWORDS

Ligusticum chuanxiong Hort., unmanned aerial vehicle (UAV), machine learning, remote
sensing, plot extraction
1 Introduction

Ligusticum chuanxiong Hort. (LC) is one of the oldest and most

popular herbal plants in the world, its dried rhizome has been

widely used for centuries to promote blood circulation, regulate qi,

dispel cold, and relieve pain (Wagner et al., 2011; Yuan et al., 2020).

Since the Song Dynasty, the cultivation area of LC has been

confined to Dujiangyan City in the Chengdu Plain of Sichuan

Province (Kang et al., 2021). However, analogous to other medicinal

plants of high economic value in China, the cultivation scale of LC

has undergone rapid expansion in the past decade, leading to the

emergence of new strip-shaped planting areas along the Minjiang

River Basin (Fang et al., 2020). Farmers in Dujiangyan City usually

manage an area of no more than 1 ha, but farmers in emerging

planting areas, such as Mianzhu City, Meishan City, and Qionglai

City, typically cultivate LC on areas spanning 10 to 100 ha (Peng

et al., 2020). The significant expansion in planting scale presents

considerable challenges for farmers to maintain detailed

management. For example, if traditional manual field inspection

is employed, where each inspector examines 1 ha per day, it would

necessitate hiring 10 individuals to complete an inspection of 10 ha,

resulting in high labor costs and the inability to ensure

comprehensive coverage of the entire area. Moreover, farming

system diversification, limited plot sizes, and crop variability

contribute to the fragmentation of extensive LC cultivation areas,

increasing the complexity for farmers to evaluate scattered LC fields

on the ground. Therefore, the key challenge lies in how to efficiently

aggregate data from extensive and scattered LC cultivation areas

and utilize this data for growth status analysis, which is crucial for

ensuring the high quality of medicinal materials.

The advancement of remote sensing technology has

significantly transcended terrain limitations, offering hope for

precise, repeatable, and swift identification of LC cultivation plots

from an aerial perspective. Since the past decade, remote sensing

technology has been widely used for extracting various crop

cultivation plots, such as rice and corn (Guo and Ren, 2023; Li

et al., 2024). Currently, satellite remote sensing technology is the

mainstream method for studying crop spatial distribution

(Khosravi, 2025; Rehman et al., 2025). Joel Segarra and colleagues

utilized Sentinel-2 data to map wheat areas in the Burgos and

Palencia regions of northern Spain (Segarra et al., 2023).
02
Furthermore, Fan et al. explored the ability to classify crop types

using Sentinel 2, Landsat 8, and GaoFen-1 data in a flat irrigation

area in northwestern China, proving that classification accuracy will

increase with the increase of input features (Fan et al., 2021).

Satellite remote sensing provides advantages including broad

spatial coverage and high information density, proving valuable

for large-scale crop mapping in countries with dominant large-scale

farming systems, flat terrains, and high mechanization levels such as

the United States, Brazil, and Argentina (Fritz et al., 2019;

Schwalbert et al., 2020). Conversely, this technology encounters

limitations in southern China’s fragmented agricultural landscapes.

To effectively address the challenges of fragmented farmland

monitoring, unmanned aerial vehicle remote sensing (UAVRS)

technology demonstrates substantial potential. Current

mainstream approaches primarily enhance classification accuracy

through two pathways: sensor hardware upgrades and innovations

in data processing algorithms. In the realm of sensors, hyperspectral

imaging (HSI) and multispectral systems significantly improve

spectral discrimination capabilities for ground objects by

calculating various vegetation indices (e.g., NDVI, SAVI) (Wu

et al., 2025; Zidi et al., 2025). At the algorithmic level, the

development of object-based image analysis (OBIA) and deep

learning semantic segmentation techniques has effectively

overcome the salt-and-pepper noise problem inherent in

traditional pixel-level classification (Yuan et al., 2021; Ez-

zahouani et al., 2023). Research indicates that multidimensional

feature fusion constitutes a core strategy for accuracy enhancement:

The HSI-Trans U-Net model developed by Niu et al. (2022), which

fuses spatial-spectral features from hyperspectral images, achieved a

crop classification accuracy of 86.05%. Wei et al. (2019) integrated

spectral information, spatial context, and positional features within

a conditional random field framework, elevating accuracy to

98.07%. Xu et al. (2023)further validated the efficacy of fusing

spectral-textural features in time-series imagery for overcoming

the limitations of single-date classification. Notably, low-cost RGB

sensors also exhibit significant potential through innovative feature

engineering (Pádua et al., 2022; Han et al., 2024). Wang et al. (2025)

demonstrated that solely utilizing UAV-based RGB imagery and

fusing color features, textural features, and lightweight

convolutional features, achieved a 99% classification accuracy for

rice-wheat rotation progress. This performance substantially
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surpassed the accuracy of single-color-feature models (85.3%), with

single-image processing requiring only 1.25 seconds. This reveals

that optimized feature combination strategies using RGB sensors

can rival or even outperform expensive hyperspectral systems.

However, it should be noted that existing high-accuracy methods

still possess significant limitations. These include high equipment

dependency (hyperspectral/multispectral sensors costing 5 to 10

times more than conventional RGB cameras (Tian et al., 2022),

considerable operational complexity (multi-temporal data

acquisition requiring precise phenological synchronization (Zhou

et al., 2023), and a narrow focus on specific research subjects.

Studies predominantly concentrate on major staple crops such as

rice, maize, and wheat, while research on medicinal plant parcel

identification remains scarce. Particularly, the identification of LC,

an important characteristic medicinal plant in Southwest China, has

yet to be reported. Given the absence of prior dedicated studies on

LC plots identification and building upon the established principle

that enhanced input features improve classification accuracy, this

study pioneers the extraction of LC planting plots using exclusively

low-cost UAV-based RGB imagery. Our primary objective is to

determine the optimal feature combination and classification

methodology through rigorous evaluation of accuracy metrics.

The findings are expected to serve as a reference for identifying

medicinal plant cultivation plots utilizing UAV-based RGB

imagery. The research goals consist of three parts: (1) comparing

the extraction outcomes of LC planting areas based on various

image feature variable combinations and selecting the most precise

one; (2) evaluating the extraction effectiveness using pixel

classification algorithms and object-oriented classification

algorithms and selecting the most accurate classification

algorithm; and (3) employing data from other LC regions and

examining the extraction results of LC planting areas using UAV-

based RGB imagery and combined feature variables to validate the

applicability of the proposed extraction method in this study.2.

Study area and data source.
2 Study area and data source

2.1 Study area

Site 1 (S1) is located in Dujiangyan City, Chengdu, Sichuan

Province, China. The site lies in the central part of Sichuan

Province, at the intersection of the upper and middle reaches of

the Minjiang River, between 103°37′–103°42′E and 30°46′–30°
52′ N. This area belongs to the subtropical humid monsoon

climate zone of the Sichuan Basin and features low temperatures,

ample rainfall, and limited sunlight. The area is particularly suited

for the growth of LC, which has been a genuine producing area

since the Song Dynasty and produces the optimal quality of LC. The

research area covers 142,157.86 m2, with a relatively concentrated

cultivation area of LC measuring 30,161.97 m2.

To investigate the adaptability of various methods, three

additional LC cultivation areas were selected as verification sites:

Site 2 (S2) is located in Dujiangyan City with an area size of
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176,508.36 m2 and a cultivation area of LC measuring 31,841.85 m2.

The cultivation plots here are relatively concentrated, with minimal

occurrences of intermingling with forest land. Site 3 (S3) is found in

Pengzhou City, with an area size of 298,678.20 m2 and a cultivation

area of LC measuring 81,284.51 m2. The plots are well defined and

exhibit few instances of blending with forest land. Site 4 (S4) is

situated in Mianzhu City with an area size of 263,629.88 m2, within

which the cultivation area of LC measures 46,252.38 m2. The plots

are irregularly shaped and experience greater encroachment by

forest land. The geographical location of the four study areas in this

research is depicted in Figure 1.
2.2 UAV image acquisition and
preprocessing

The aerial platform utilized in this study was the DJI Mavic 2 Pro,

which is battery-powered and has a take-off weight of 907 g. The

endurance of the UAV lasts for approximately 30 min. The camera

model employed is the Hasselblad L1D-20c, boasting a pixel count of

20 million. At an altitude of 100 m, the ground resolution reaches 2.38

cm/pixel, effectively meeting the demands of this project for capturing

RGB images. DJI GS PRO was applied to plan the aerial survey and

create a flight itinerary based on the actual conditions of the site. Flying

at an altitude of 100 m and a speed of 8.6 m/s, along with headings and

lateral overlap percentages of 75% and 65%, respectively, ensured

efficient coverage of the surveyed area. Data collection occurred on

April 25, between 11:48 am and 12:22 pm, and again on April 27, from

13:18 pm to 13:34 pm and from 17:00 pm to 17:22 pm, as S1, S2, S3,

and S4 datasets, respectively.

To process the collected UAV images, Agisoft Metashape Pro

(Agisoft LLC, St. Petersburg, Russia) was employed to implement

the Structure from Motion workflow. After cropping out the parts

with poor edge quality in the software, the coordinate system was

converted to World Geodetic System 84-Universal Transverse

Mercator coordinate system Zone 48N (WGS 84/UTM zone

48N), and the spatial resolution was resampled to 0.10 m/pixel.

Digital orthophoto map and digital elevation model (DEM) images

were output separately.
2.3 Reference data

In the course of conducting a survey of land cover types in the

study area, concurrent UAV image acquisition was employed. This

methodology involved combining field observations with UAV

imagery to visually interpret various land cover types and establish

sampling datasets based on these classifications. Through field

investigations, the primary land cover types detected in each research

area were categorized as follows: LC, forest, other plants, bare land, and

construction land. Consequently, this study meticulously considered

the spectral characteristics of UAV images and field investigation

findings and bifurcated the land cover types within the study area

into five categories. To facilitate analysis, we processed drone imagery

from four study areas (S1–S4) using ENVI 5.3 and ArcGIS Pro 10.1 to
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generate samples representing five distinct land cover types for

classification model training and validation through the following

workflow: first, distribution polygons for each land cover class were

delineated across S1–S4 imagery using ENVI 5.3’s Region of Interest

(ROI) Tool and exported as Shapefiles; subsequently, these vectors

were imported into ArcGIS Pro 10.1 where a random point generation

tool applied a spatial separation criterion (>3 meters with 0.2m point

radius) to create initial sample points; finally, manual refinement

eliminated incomplete boundary points and low-quality samples to

derive valid sample points, with per-area totals (S1: 3200, S2: 3500, S3:

4540, S4: 2260) summarized in Table 1, after which these points were

partitioned into training/validation sets implementing 5-fold cross-

validation during model training to enable comprehensive evaluation.
3 Methods

This study evaluated the effectiveness of various combinations of

feature variables in conjunction with pixel-based and object-oriented

classification models for the classification of LC cultivation plots. The

main steps include the following: (1) constructing multisource features
Frontiers in Plant Science 04
based on UAV images. These features were obtained from color indices,

texture features, and color components extracted from the images. (2)

Selecting representative image feature variables from color indices,

texture features, and color components and constructing feature

variable combinations. These variable combinations were then

classified using pixel-based and object-oriented machine learning

algorithms, and their performance was compared against those

obtained using RGB images alone. This step aimed to identify the

most effective feature variable combinations for classification. (3)

Applying the optimal feature variable combination method identified

in step (2) to RGB images acquired from S2, S3, and S4. The resulting

classifications were then compared against those obtained using RGB

images to assess the stability of the proposed approach across different

scenes and conditions. Theworkflow of this study is depicted in Figure 2.
3.1 Image feature variable screening

3.1.1 Image feature variable construction
To enhance the separability of different objects by amplifying

the spectral information difference of different objects, a series of
FIGURE 1

Geographic location of the study area.
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color indices were constructed based on RGB remote sensing

images (Woebbecke et al., 1995). Although there are few studies

on color index construction based on RGB images, 12 color indices

were selected for this study after reviewing relevant literature in

recent years (Table 2).

Texture features are one of the most commonly used features

for image classification because different ground objects have

different texture information (Ma and Manjunath, 1996). This

study selects the Gray-level Co-occurrence Matrix (GLCM) (Soh

and Tsatsoulis, 1999) as a widely used texture feature to calculate

the spatial correlation of image gray sets. GLCM includes eight

kinds of features: Mean (MEA), Variance (VAR), Homogeneity

(HOM), Contrast (CON), Dissimilarity (DIS), Entropy (ENT),

Second Moment (SEM), and Correlation (COR) (Equations 1–8).

A total of 24 GLCM features were extracted based on 3 bands (R, G,

and B) of RGB images, of which the parameters were used in the

default setting, such as the window size of 3 × 3, the angle of 0°, and

the quantization level of 64. GLCM textural features obtained for

this study are as follows:

Mean =o
Ng

i=1
o
Ng

j=1
i*P   (i, j) (1)

Variance =o
Ng

i=1
o
Ng

j=1
  (i − m)2P   (i, j) (2)

Homogeneity =o
Ng

i=1
o
Ng

j=1

1

1 +   (i − j)2
P   (i, j) (3)

Contrast =o
Ng

i=1
o
Ng

j=1
  (i − j)2P   (i, j) (4)
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Dissimilarity =o
Ng

i=1
o
Ng

j=1
i − jj jP   (i, j) (5)

Entropy =o
Ng

i=1
o
Ng

j=1
P   (i, j) log   (P   (i, j)) (6)

Second  Moment =o
Ng

i=1
o
Ng

j=1
P   (i, j)f g2 (7)

Correlation = oioj   (i, j)P   (i, j) − mxmy

sxsy
(8)

During aerial photography of UAVs in outdoor fields, changes

in light intensity are inevitable and different for different types of

objects. The HSV and HLS color space models can offset the color

differences of the same object caused by differences in light intensity

by independently adjusting brightness, chroma, and color (Demarty

and Beucher, 1998; Sural et al., 2002). This makes them useful for

vegetation type classification and extraction. The HLS color space

simulates colors by combining the three color channels of Hue,

Lightness (LIT), and Saturation (SAT), while the HSV color space

simulates colors by combining the three color channels of Hue,

Saturation, and Value (VAL). After converting the RGB image to

obtain two types of color spaces, the four obtained color

components are used as image feature variables to participate in

the image feature variable screening process.

Moreover, taking into account that the variation in vegetation

height between LC and forest land, as well as other vegetative types,

might contribute to classification, the DEM generated during the

orthogonalization process was employed to combine feature

variables with additional variables.
TABLE 1 The number of training and validation samples in this study.

Sample types LC Forest Other Plants Bare land Construction land

Training (S1) 100 100 100 100 100

Validation (S1) 600 600 600 450 450

Total (S1) 700 700 700 550 550

Training (S2) 140 120 100 40 50

Validation (S2) 900 500 750 450 450

Total (S2) 1040 620 850 490 500

Training (S3) 150 30 30 150 130

Validation (S3) 1050 600 900 750 750

Total (S3) 1200 630 930 900 880

Training(S4) 160 150 130 60 80

Validation(S4) 450 450 360 180 240

Total(S4) 610 600 490 240 320
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3.1.2 Image feature variable selection
If there is a high correlation between various features in the

multidimensional image, it can lead to poor classification results.

Additionally, having an excessive number of features involved in the

classification process can greatly increase the demand for

computing resources, thereby reducing the classification

efficiency. To mitigate this challenge, we performed a Pearson

correlation coefficient analysis on the 12 calculated color indices,

24 texture features, and 4 color components, as shown in Figure 3.

The analysis revealed a high correlation between different color

indices, which may be because they are all used to represent the

degree of reflectivity of the surface of the object. Similarly, different

texture features and color components show high correlation,

suggesting that there is redundant information among similar

variables. Consequently, we suggest selecting only one feature

variable from each of the three categories of feature variables for

integration to enhance classification precision while minimizing the

time needed for classification.

To assess the contribution of the 12 computed color indices, 24

texture features, and 4 color components in promoting the
Frontiers in Plant Science 06
separability of different land types and LC fields and to select the

most suitable feature variables for classification, we statistically

analyzed the average values of different image feature variables in

each land type based on sample data. Subsequently, we calculated

the interclass difference scores Dw between samples of each type of

land and samples of LC fields using the following formula

(Equation 9):

Dw = ABS(
Mc −Mn

Mc
)*100% (9)

where Dw is the interclass difference score of the spectral mean

of other land samples and LC samples, Mc is the spectral mean of

LC samples, and Mn is the spectral mean of other land samples.

To assess the effectiveness of various combinations of image

features in classifying LC cultivation plots and identify the optimal

combination of variable features, this study implemented four

classification scenarios, as follows: (1) Scenario 1: Utilizing only

one of the four category feature variables; (2) Scenario 2:

Combining two feature variables; (3) Scenario 3: Combining three

feature variables; (4) Scenario 4: Integrating all four feature
FIGURE 2

Workflow of this study: VDVI, B-MEA, Hue, and DEM denote the Visible-band Difference Vegetation Index, the Mean texture feature extracted from
the blue channel of RGB imagery, the Hue component in the HSV or HLS color space, and the Digital Elevation Model, respectively; while ML, KNN,
and SVM represent the machine learning classifiers: Maximum Likelihood, k-nearest neighbor, and Support Vector Machine.
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variables (CI, CC, TF, and DEM). The specific groupings are

presented in Table 3.
3.2 Feature variable combination selection

To assess the viability of incorporating various feature variables

into enhancing the accuracy of LC classification, we compared the

performance of three widely adopted machine learning classifiers:

maximum likelihood (ML) (Lillesand et al., 2015), k-nearest

neighbor (KNN) (eCognition, 2013), and support vector machine

(SVM) (Vapnik, 1999). These classifiers are typically utilized in the

literature for remote sensing image classification. By evaluating the

performance of these classifiers on differently combined feature

variable images, we measured the performance of different image-

variable feature combinations in improving classification accuracy.

The strengths of KNN and ML consist of their simplicity and

capacity to execute high classification efficiency on low-

performance computing devices. Conversely, SVM demonstrates

outstanding performance in high-dimensional spaces, making it an

appropriate choice for classification tasks in intricate scenarios.

Therefore, we selected KNN and SVM for object-oriented

classification tasks, whereas ML and SVM served as classification
Frontiers in Plant Science 07
models for pixel-based classification tasks. All classifiers adhered to

their default specifications throughout usage, and all models

underwent 5-fold cross-validation during the training process to

evaluate their generalization abilities.

3.2.1 Pixel-based classification
Pixel-based classification is a fundamental concept in

traditional remote sensing (Whiteside et al., 2011). After

identifying the types of land objects in the research area via the

interpretation of the research area image and field survey data,

representative pixels of each type of land object were selected as

training samples, and the ML classifier and SVM classifier were used

for land object classification, respectively. Since the classification

results obtained from supervised classification are preliminary

results, frequently featuring small patches, it is crucial to refine

these results from a practical application viewpoint. Thus, we utilize

the majority/minority analysis tool to eliminate small patches,

obtain post classification processing results, and export the

classification outcomes in TIF format. Finally, we calculate the

proportion and area attributes of each type of land object within

each classification result. The pixel-based classification tasks

conducted in this study were executed using ENVI 5.6.3.

3.2.2 Object-oriented classification
Object-oriented classification is a method of image classification

that differs from traditional pixel-based classification (Yan et al.,

2006). This method segments the image into coherent pixel groups

characterized by similar features such as spectrum, texture, and

shape, i.e., image objects. Subsequently, the method performs

supervised classification based on the spectral, texture, shape, and

other feature differences of different land-type objects. Since it

classifies block-like pixel sets, object-oriented classification offers

significant computational efficiency improvements while effectively

avoiding salt and pepper artifacts (Bhaskaran et al., 2010; Tassi and

Vizzari, 2020). The implementation of object-oriented classification

mainly includes two core steps: multiscale segmentation and

classification. Optimal segmentation outcomes prevent the

formation of objects containing solely a single land type,

minimizing fragmentation and more accurately reflecting the

shape features of individual lands, such as farmland areas.

The crucial parameters of the multiscale segmentation

algorithm include segmentation scale, shape factor, compactness

factor, and image layer weight. Given the flat terrain and

interconnected crops within the research area, the shape factor

was set to 0.3, the compactness factor was set to 0.5, and all image

layer weights were set to 1. Based on optimizing these initial three

parameters, we employed the ESP2 evaluation tool (Drăgut ̧ et al.,
2014) to determine the optimal segmentation scale based on the

RGB images of S1 with a smaller coverage area and S3 with a

broader scope. The optimal segmentation scale was determined to

be 300, and the results were compared with those obtained using

segmentation scales of 200 and 400. The outcomes indicated that
TABLE 2 Color indices selected in this study.

Color Index Formula Reference

green chromatic coordinate
(GCC)

G/(R+G+B)
Richardson et al.
(2007)

red chromatic coordinate
(RCC)

R/(R+G+B)
Richardson et al.
(2009)

blue chromatic coordinate
(BCC)

B/(R+G+B)
Richardson et al.
(2007)

green–red vegetation index
(GRVI)

(G−R)/(G+R)
Kawashima and
Nakatani (1998)

woebbecke index (WI) (G−B)/(R−G)
Woebbecke et al.
(1995)

green leaf index (GLI)
(2×G−R−B)/(2×G+R
+B)

Booth et al. (2006)

visible atmospherically
resistance index (VARI)

(G−R)/(G+R−B)
Gitelson et al.
(2002)

excess red vegetation index
(EXR)

1.4×RCC−GCC
Meyer and Neto
(2008)

excess green vegetation index
(EXG)

2×GCC−RCC−BCC
Guijarro et al.
(2011)

excess blue vegetation index
(EXB)

1.4×BCC−GCC
Guijarro et al.
(2011)

color index of vegetation
(CIVE)

0.441×R−0.881×G
+0.385×B+18.78745

Kataoka et al.
(2003)

visible-band difference
vegetation index (VDVI)

(G-B-R)/(G+B+R) Wang et al. (2015)
frontiersin.org

https://doi.org/10.3389/fpls.2025.1659442
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhong et al. 10.3389/fpls.2025.1659442
when the segmentation scale is set to 300, the pixels affiliated with

the same land object category via multiscale segmentation exhibit

spectrum similarities in spectrum, texture, shape, and space,

whereas dissimilar land objects demonstrate heterogeneity

(Figure 4). Finally, each feature combination image is classified

separately using the KNN classifier and SVM classifier. The

boundaries of contiguous, same-type land in the classification

results are eliminated and outputted in TIF format. The object-

oriented classification endeavors undertaken in this study were

executed utilizing eCognition 9.0.
3.3 Method validation

To assess whether the feature variable combination obtained

can maintain the accuracy advantage in LC cultivation plot

extraction across different regions, we developed the most

effective feature variable combination based on RGB images

from S2, S3, and S4. Subsequently, we implemented pixel-based

classification and object-oriented classification algorithms to

classify land use and compared their outcomes with those

obtained using RGB images to validate the potential of

transferring the optimal feature variable combination to

other areas.
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3.4 Evaluation indicators

To assess the performance of the land-use classification results,

we employed the confusion matrix (Congalton and Green, 2019) to

compare our classifications with the corresponding verification

samples of land-use categories. Based on the computed confusion

matrix, overall accuracy and Kappa coefficient were used to evaluate

the overall accuracy of the classification, while LC’s producer

accuracy, user accuracy, and F1 score were calculated to evaluate

the classification accuracy of LC (Equations 10–14). To objectively

compare the performance of different feature combinations and

identify the optimal solution, we established a composite scoring

system with equal weighting: 0.2×OA + 0.2×Kappa + 0.2×PA (LC)

+ 0.2×UA (LC) + 0.2×F1 (LC), ensuring balanced consideration of

all metrics. Furthermore, one-way analysis of variance (ANOVA)

was implemented to determine whether there are any significant

differences in classification accuracy among various feature

combinations. Subsequently, Tukey’s Honestly Significant

Difference (HSD) test was applied to perform pairwise

comparisons between the composite scores of each feature

combination and the baseline RGB feature combination. The

analysis results are presented in a ranking table sorted in

descending order of composite score. Feature combinations

demonstrating statistically significant superiority over the RGB
FIGURE 3

Heatmap for the Pearson’s correlation analysis of multi-source features.
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baseline (p< 0.05) are marked with an asterisk (*). Complete

ranking results are provided in Supplementary Tables S1-S4.

overall   accuracy =
1
no

r

i=1
xij     (10)

kappa   coefficient =
n*or

i=1xij −or
i=1   (xi*xj)

n2 −or
i=1   (xi*xj)

(11)

producer   accuracy =
xij
xj

*100% (12)

user   accuracy =
xij
xi

*100% (13)

F1   score =
2*PAi*UAi

PAi + UAi
*100% (14)

Where n is the total number of samples, r is the number of

confusion matrix rows and columns, xij is the value of row i and

column j in the confusion matrix, xi is the sum of row i in the

confusion matrix , xj   i s the sum of column j in the

confusion matrix.
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4 Results

4.1 Image feature variable selection

Table 4 shows the interclass difference scores Dw of the spectral

mean of each land class sample compared with LC across the 12

color index features. In the GCC, RCC, GLI, EXG, and CIVE

images, the difference scores between each type of land use and

LC were relatively small, all less than 100%, with some instances

where the pixel mean of construction land was comparable with

other plants, which was not conducive to land classification. In the

RCC, GRVI, WI, VARI, EXR, EXB, and VDVI images, the means of

the WI feature were similar for all three classes: other plants, bare

land, and construction land; the BCC, EXG, and EXB features

exhibited similar means for forest and other plants; the GRVI

feature had similar means for other plants and bare land; and the

VARI feature displayed similar means for construction land and

forests. These similarities did not contribute positively to land

classification accuracy. By analyzing the mean differences between

each type of land-use sample in the EXR and VDVI images, we

found that the difference between construction land and other

plants in the EXR image was not significant, whereas the
FIGURE 4

Visual comparison of multiscale segmentation results. The blue lines are the boundaries of multiscale segmentation.
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separation among various types of land-use in the VDVI image was

higher. Consequently, VDVI was selected as the feature color index

to participate in the study of feature combinations for

land classification.

In Table 5, the interclass difference scores  Dw of each land class

sample and LC were presented for the 24 texture feature variables.

Notably, in the R-MEA, R-ENT, R-SEM, G-MEA, G-ENT, G-SEM,

B-HOM, B-CON, B-DIS, B-ENT, and B-SEM images, there were

instances where the interclass difference scores between land-use

types and LC were less than 10%, rendering them unsuitable for

land classification. Additionally, in the R-VAR, R-HOM, R-CON,

R-DIS, R-COR, G-HOM, G-DIS, G-COR, B-VAR, and B-COR

images, the means of other plant samples were found to be closely

aligned with those of forest samples, whereas the means of

construction land samples were comparable with those of other

plant samples. These situations were unhelpful for effective land

classification. Conversely, only in the G-VAR, G-CON, and B-MEA

images did the means of each type of land-use sample exhibit

distinguishable differences. Combining the interclass difference
Frontiers in Plant Science 10
scores between the means of each type of land-use sample in each

feature image and the mean of LC samples, B-MEA was selected as

the texture feature for feature combination research in land-

use classification.

Table 6 shows the interclass difference scores Dw between

various land-use types and LC in the four color component

feature variables. In the Light and Value images, some instances

exhibited minimal differences between land-use classes, making it

challenging for accurate land-use classification. Additionally, while

the sample mean of bare land in the Saturation image closely

resembled that of construction land and the mean of forest lands

was similar to that of other plants, this lack of differentiation was

unfavorable for land classification purposes. Conversely, only in the

Hue image does each land-use type exhibit distinct sample means;

hence, Hue was selected as the color space feature for feature

combination research in land-use classification.
4.2 Classification results of feature variable
combinations

Figures 5 and 6 show that as the number and diversity of

features participating increased, the classification accuracy of land

objects and the extraction accuracy of the LC cultivation area

demonstrated a consistent improvement under both pixel-based

classification methods.

Specifically, it showed that it is difficult to effectively distinguish

land objects based solely on one of the four feature variables. For

example, since FC 4 only contained elevation information,

classification errors for other land objects were apparent except

for forest recognition, which performed well, and a large area of

pixels being misclassified as LC. Integrating two features for

classification notably enhanced the classification outcomes when

compared with using only one variable, with the exception of FC 9

and 10. Furthermore, the combination of three features led to even

better classification results for FC 11 through 14, with FC 13

demonstrating the greatest reduction in classification errors and

salt and pepper effects within the extracted LC cultivation area.

Finally, incorporating all four features into FC 15 produced

satisfactory outcomes in land classification and LC cultivation

area extraction.

Furthermore, Figure 7 shows that the average overall accuracies

of FC 1–4 classified using a single feature were all below 70.00%, and

their average Kappa coefficients were all lower than 0.60. Among

these, the accuracies and Kappa coefficients of feature combination

4 based on the DEM were the lowest. For FC 5–10 combined using

two features, except for FC 7 classified using SVM, the average

overall accuracies ranged from 60.00% to 80.00%, and their average

Kappa coefficients lay between 0.50 and 0.75, showing limited

improvement over the classification accuracy of a single feature.

For FC 11–14 combined using three types of features, except for

feature combination 11, the average overall accuracies were all

above 80.00%, and their average Kappa coefficients exceeded 0.80.

Among them, the highest average overall accuracies and Kappa

coefficient values were achieved by feature combination 14 with
TABLE 3 Feature combinations designed in this study.

Name
Feature
combination

Feature
Contented

Feature combination 1
(FC 1)

CI 1

Feature combination 2
(FC 2)

CS 1

Feature combination 3
(FC 3)

GLCM 1

Feature combination 4
(FC 4)

DEM 1

Feature combination 5
(FC 5)

CI+CS 2

Feature combination 6
(FC 6)

CI+GLCM 2

Feature combination 7
(FC 7)

CI+DEM 2

Feature combination 8
(FC 8)

CS+GLCM 2

Feature combination 9
(FC 9)

CS+DEM 2

Feature combination 10
(FC 10)

GLCM+DEM 2

Feature combination 11
(FC 11)

CI+CS+GLCM 3

Feature combination 12
(FC 12)

CI+CS+DEM 3

Feature combination 13
(FC 13)

CI+GLCM+DEM 3

Feature combination 14
(FC 14)

CS+GLCM+DEM 3

Feature combination 15
(FC 15)

CI+CS+GLCM+DEM 4
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average overall accuracies of 82.70% (ML) and 83.07% (SVM) and

average Kappa coefficients of 0.78 (ML) and 0.79 (SVM),

respectively, second only to FC 15 involving four features. The

composite scoring system ranked FC15 as the optimal combination

in both classifiers (ML composite score: 0.91; SVM composite score:

0.93; see Supplementary Table S1, S2 for composite scores and full

rankings of all feature combinations). The average overall accuracy

and Kappa coefficient of FC 15 reached 90.00% (ML), 90.43%

(SVM), 0.87 (ML), and 0.88 (SVM), respectively, demonstrating a

significant improvement of 14.26% (ML), 17.44% (SVM), 0.18

(ML), and 0.22 (SVM) compared with the results based on RGB

image accuracy. These findings suggest that the increase in the

number and types of features involved can significantly enhance

land classification accuracy.

In assessing LC cultivation plot extraction using the ML

classifier, FC 4 (DEM) achieved the lowest producer accuracy

(69.67%). In contrast, all other features yielded accuracies ranging

from 91.68% to 99.77% with no significant differences observed.

Conversely, the user accuracy showed substantial fluctuations,

varying from 26.58% to 94.05%, with FC 4 obtaining the lowest

outcome and FC 15 achieving the highest, followed by FC 7, which

recorded a satisfactory level of 93.94%. In terms of F1 scores, the

range was from 38.42% to 96.67%, with FC 4 presenting the lowest

value. The top five feature combinations with the highest F1 score

were FC 7 (96.67%), FC 13 (95.14%), FC 12 (94.24%), FC 14

(93.43%), and FC 15 (92.75%); among these, FC 15 exhibited an

increase of 2.71% when compared with the RGB image. In terms of

composite score ranking (Supplementary Table S1), FC15 achieved

the highest (0.91), followed by FC13 (0.89), FC14 (0.88), and FC12

(0.88), while FC7, despite having the highest F1 score (96.67%) and

high UA, ranked fifth (0.86) due to its lower overall

accuracy (72.53%).

When analyzing the SVM classifier results, we found that the

producer accuracy fluctuated between 45.43% and 99.64%, with FC

4, FC 7, FC 3, FC 6, and FC 11 registering the lowest rates, which
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were 45.43%, 65.66%, 82.21%, 84.19, and 89.02%, respectively; their

low composite scores (0.37–0.77) reflected this poor PA

performance. Conversely, the user accuracy ranged from 32.7% to

92.68%, with FC 4 demonstrating the lowest outcome and FC 15

scoring the highest, followed by FC 14, which registered a

satisfactory level of 92.91%. In terms of F1 scores, the range was

observed to be between 37.78% and 95.97%, with FC 4 presenting

the lowest value. The five feature combinations with the highest F1

score were FC 15 (95.97%), FC 14 (92.91%), FC 9 (91.92%), FC 12

(91.77%), and FC 10 (88.56%); among these, FC 15 increased by

6.63% compared with the RGB image. The composite scoring

(Supplementary Table S2) confirmed FC15’s superiority (0.93)

and showed that the top-ranked combinations (FC15 followed by

FC14, FC9, FC12, and FC13, all with scores ≥0.85) aligned closely

with the top F1 performers.

In comparison with the outcomes of pixel-based classification,

Figures 8 and 9 show that, as the number and diversity of features

utilized in object-oriented classifications increased, the accuracy of

land object classifications and the precision of LC cultivation area

extractions displayed an upward tendency. Classifications involving

four single feature variables found it difficult to effectively

distinguish land objects. Specifically, a substantial number of

errors occurred in the extraction of LC cultivation areas in FC 3

and FC 4, which relied on features such as texture and the digital

surface model. Conversely, when two feature variables were

combined in FC 5–10, the classification effect was significantly

improved, the salt and pepper effect decreased, yet complete

recognition of LC plots remained elusive. The classification

outcomes for FC 11–14, which involved the combination of three

feature variables, were further improved compared with FC 5–10.

Notably, the misclassification and salt and pepper effects in the

extraction results of the LC cultivation area in FC 13 were

significantly improved compared with any other combinations.

Finally, FC 15, which incorporated all four features, demonstrated

the most effective result in land classification and LC cultivation
TABLE 4 Inter-class difference scores in different color index features of LC and other land-use types.

Feature Forest Other Plants Bare land Construction land

GCC 11.11% 22.22% 35.19% 37.04%

RCC 6.25% 15.63% 12.50% 3.13%

BCC 53.33% 40.00% 93.33% 133.33%

GRVI 11.54% 73.08% 103.85% 80.77%

WI 9.60% 122.03% 112.99% 114.12%

GLI 27.50% 52.50% 90.00% 97.50%

VARI 6.45% 67.74% 103.23% 0.00%

EXR 52.00% 209.76% 300.04% 238.32%

EXG 35.03% 52.59% 88.58% 96.04%

EXB 54.92% 58.75% 121.68% 171.65%

CIVE 5.55% 27.74% 55.59% 78.07%

VDVI 162.50% 287.50% 455.00% 500.00%
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area extraction, with complete recognition of all LC plots and only a

minor number of other vegetation objects being misclassified as LC.

As depicted in Figure 10, when classifying FC 1–4 based on a

single feature variable, the average overall accuracies were all below

70.00%, and the average Kappa coefficients were all lower than 0.60,

with correspondingly low composite scores (KNN: 0.17–0.75; SVM:

0.47–0.73), among which the average overall accuracy and average

Kappa coefficient of FC 4 were the lowest and its composite scores

ranked last in both classifiers (KNN: 0.17; SVM: 0.47). In FC 5–10

combined by two feature variables, except for FC 5, the average

overall accuracies were all between 55.88% and 79.33%, while the

average Kappa coefficients varied between 0.45 and 0.74, yielding

composite scores of 0.68–0.88 (KNN) and 0.60–0.86 (SVM). When

comparing FC 11 through 14 grouped by three feature variables, the

average overall accuracies and average Kappa coefficients were

further enhanced as compared with FC 5–10, respectively,

between 69.85 and 87.52% and 0.64 and 0.86, achieving

composite scores of 0.70–0.92 (KNN) and 0.62–0.90 (SVM).

Here, the average overall accuracy and average Kappa coefficient
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of FC 14 (KNN) reached 87.52% and 0.84, respectively, with

composite score of 0.92, second only to FC 15, which had four

features. For this group, FC15 consistently achieved optimal

composite scores across classifiers (KNN: 0.95; SVM: 0.95), with

the average overall accuracy and average Kappa coefficient reached

89.16% (KNN), 90.36% (SVM), 0.86 (KNN), and 0.88 (SVM).

When compared with the results of average overall accuracy and

average Kappa coefficient based on a RGB image, FC 15 exhibited

significant improvements of 17.03% (KNN), 19.20% (SVM), 0.21

(KNN), and 0.24 (SVM).

Similar to findings in pixel-based classification, our results from

object-oriented classification demonstrated that in the context of

LC cultivation plot extraction, the performance of the KNN

classifier varied widely across feature combinations, ranging from

16.54% to 99.86% in terms of producer accuracy, with the sole

exception of FC 4, whose accuracy was below 87.36%. The user

accuracy ranged from 11.94% to 99.39%, with FC 4 registering the

lowest result and FC 15 achieving the highest, followed by FC 11,

which recorded 97.82%. The composite scoring (Supplementary
TABLE 5 Inter-class difference scores in different texture features of LC and other land-use types.

Feature Forest Other Plants Bare land Construction land

R-MEA 8.50% 28.77% 44.14% 43.28%

R-VAR 93.06% 90.97% 13.54% 34.38%

R-HOM 10.53% 13.16% 18.42% 44.74%

R-CON 75.99% 77.63% 22.53% 36.02%

R-DIS 27.60% 30.73% 15.63% 33.33%

R-ENT 1.48% 1.97% 4.93% 18.23%

R-SEM 0.00% 7.14% 14.29% 64.29%

R-COR 93.75% 81.25% 100.00% 87.50%

G-MEA 16.18% 13.60% 16.97% 6.77%

G-VAR 142.28% 104.41% 13.24% 33.82%

G-HOM 20.00% 17.50% 15.00% 45.00%

G-CON 120.18% 93.81% 20.53% 34.34%

G-DIS 44.02% 37.50% 14.67% 34.24%

G-ENT 2.97% 2.97% 4.95% 22.28%

G-SEM 7.14% 7.14% 14.29% 85.71%

G-COR 100.00% 55.56% 66.67% 44.44%

B-MEA 48.21% 82.53% 157.16% 267.68%

B-VAR 106.67% 116.67% 21.90% 15.71%

B-HOM 16.28% 20.93% 4.65% 34.88%

B-CON 89.62% 101.32% 6.40% 19.87%

B-DIS 34.55% 40.61% 0.61% 26.67%

B-ENT 3.03% 4.55% 2.53% 19.70%

B-SEM 6.67% 13.33% 6.67% 66.67%

B-COR 160.00% 140.00% 200.00% 160.00%
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Table S3) revealed FC15 as the top performer (0.95), with FC14

close behind at 0.92, despite FC11 having higher PA/UA values. In

terms of F1 score, the top five feature combinations with the highest

F1 score were FC 15 (99.62%), FC 11 (98.44%), FC 1 (96.87%), FC

12 (96.77%), and FC 14 (96.71%), though composite scoring

prioritized FC15 (0.95), FC14 (0.92), FC12 (0.91), FC11 (0.90)

and FC8 (0.88) due to balanced metric performance, with FC 4

again displaying the lowest score. Notably, FC 15 increased by

5.29% compared with the RGB image.

For the SVM classifier, we observed a producer accuracy range

of 48.84% to 99.80%, with the vast majority of feature combinations

demonstrating accuracy levels above 81.15% without significant

differences. Nonetheless, the user accuracy varied from 39.27% to

99.54%, with FC 4 scoring the lowest and FC 7 and FC 13 recording

the highest scores, closely followed by FC 15, which achieved

99.14%. Composite scoring (Supplementary Table S4) confirmed

FC15’s dominance (0.95), with FC13 ranking second at 0.90, despite

having lower OA than FC14. In terms of F1 score, the top five

feature combinations with the highest scores were FC 15 (99.47%),

FC 13 (99.46%), FC 7 (98.78%), FC 12 (97.69%), and FC 6 (97.01%),

while composite scoring identified FC15 (0.95), FC13 (0.90), FC12

(0.86), RGB (0.84) and FC14 (0.82) as optimal, highlighting FC12’s

strong overall performance. Interestingly, FC 15 displayed an
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increase in its F1 score of 4.31% compared with the RGB

image results.
4.3 Method validation

In Figures 11 and 12, we observed the classification outcomes of

RGB images of S2, S3, and S4, along with their respective

combinations of all four feature variables, using pixel-based and

object-oriented classification approaches. In the pixel-based

classifications, the RGB images and feature combination images

demonstrated effective categorization of land objects. For instance,

in the image in S2, the salt and pepper effect in the classification

results based on feature combination images was the lightest,

whereas there were numerous instances where forest pixels were

incorrectly labeled as LC plot pixels within the RGB image

classification. The accuracy of the four sets of image classification

results in S3 was at a high level, but there were certain cases of

missed classification. Finally, due to the late image acquisition time

of images in S4, shadows dominated the visuals, leading to generally

low classification accuracy. forest pixels and other plant pixels were

sometimes misclassified as LC plot pixels, causing substantial salt

and pepper effects.
TABLE 6 Inter-class difference scores in different color space features of LC and other land-use types.

Feature Forest Other Plants Bare land Construction land

Hue 9.27% 19.78% 37.46% 73.87%

Light 2.78% 2.78% 22.22% 41.67%

Saturation 36.84% 40.35% 78.95% 78.95%

Value 16.07% 12.50% 12.50% 1.79%
FIGURE 5

Results of ML (pixel-based) classification on 15 kinds of feature combinations: (a–o) are classification results based on FC1~FC 15, while (p) is the
classification results based on RGB image.
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On the contrary, in the object-oriented classifications, the

presence of the salt and pepper effect was less pronounced in the

RGB and feature variable combination classifications for S2. Within

the RGB image classification for S2, there were cases where LC plots

were misclassified as other plants due to inadequate growth and

minimal vegetation coverage, whereas this plot was accurately

classified when employing the feature variable combination

approach. In the image classification results of S3, the extraction

results of the LC cultivation area were relatively accurate. Finally, in

the image classification results of S4, the classification accuracy

based on feature combination images was significantly improved

compared with pixel-based classification, accompanied by a

decrease in the misclassification of forests as LC plots.

Specifically, as shown in Figure 12, in the outcome of pixel-

based classifications, the average overall accuracies of classification

based on RGB images from S2, S3, and S4 were 89.46%, 88.38%

(ML), 87.96% (SVM), 87.53% (ML), 87.20% (SVM), and 78.20%

(ML), 78.40% (SVM), respectively; the average Kappa coefficients

were 0.85 (ML), 0.84 (SVM), 0.84 (ML), 0.84 (SVM), and 0.72 (ML),

0.72 (SVM). On the contrary, the average overall accuracies based

on feature combination images were 93.77% (ML), 95.01% (SVM),

92.34% (ML), 90.66% (SVM), and 84.22% (ML), 81.40% (SVM),

respectively, accompanied by Kappa coefficients of 0.92 (ML), 0.94

(SVM), 0.90 (ML), 0.88 (SVM), and 0.80 (ML), 0.77 (SVM),

respectively. The use of feature combination images leads to

statistically significant improvements in overall accuracy ranging

from 5.39% (ML), 7.05% (SVM), 4.81% (ML), 3.46% (SVM), and

6.02% (ML) to 2.99% (SVM) for each method, along with

improvements in the Kappa coefficient of 0.07 (ML), 0.09 (SVM),

0.06 (ML), 0.04 (SVM), and 0.08 (ML) to 0.05 (SVM) in the Kappa

coefficient (p< 0.05).

In the outcome of object-oriented classification, average overall

accuracies of classification based on RGB images from S2, S3, and

S4 were 83.78% (KNN), 84.84% (SVM), 83.31% (KNN), 86.70%
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(SVM), and 84.69% (KNN), 83.43% (SVM), respectively; the Kappa

coefficients were 0.79 (KNN), 0.80 (SVM), 0.79 (KNN), 0.83 (SVM),

and 0.80 (KNN), 0.79 (SVM), respectively. Alternatively, when

feature combination images were used, the overall accuracy

reached 95.72% (KNN), 93.58% (SVM), 94.55% (KNN), 94.70%

(SVM), and 92.25% (KNN), 90.35% (SVM), respectively, with

respective Kappa coefficients of 0.94 (KNN), 0.92 (SVM), 0.93

(KNN), 0.93 (SVM), and 0.90 (KNN), 0.88 (SVM). The

employment of feature combination images demonstrated

statistically significant enhancements in overall accuracy between

11.95% (KNN), 8.74% (SVM), 11.24% (KNN), 8.00% (SVM), and

7.56% (KNN), 6.93% (SVM) in overall accuracy, while the Kappa

coefficients improved by 0.15 (KNN), 0.11 (SVM), 0.14 (KNN), 0.10

(SVM), and 0.10 (KNN), 0.09 (SVM) (p< 0.05).
5 Discussion

5.1 Feasibility of extracting LC cultivation
plots using feature variable combination

The spectral similarity among various crops and vegetation

types presents a challenge for utilizing remote sensing technologies

in detecting crop cultivation regions (Karmakar et al., 2024).

Moreover, economic crops like LC are typically grown across

scattered and fragmented plots (Figure 11), often with cluttered

backgrounds, which contributes to their greater difficulty in

identification compared to food crops. In our study, accurately

classifying pixels of LC plots, forests, and other plants is a core issue.

Consistent with the findings of Yang et al (Yang et al., 2022), we

discovered that relying solely on RGB imagery makes it difficult to

distinguish between vegetation types (Figures 5, 6, 8, 9, and 11).

Consequently, incorporating appropriate feature variables to

enhance classification accuracy becomes crucial. Since vegetation
FIGURE 6

Results of SVM (pixel-based) classification on 15 kinds of feature combinations: (a–o) are classification results based on FC1~FC 15, while (p) is the
classification results based on RGB image.
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exhibits strong reflectivity in the near-infrared band and strong

absorption in the red band, vegetation indices based on infrared

wavelengths (e.g., NDVI) are widely used for extracting vegetation

information (Liu et al., 2021). However, low-cost RGB cameras,

lacking infrared bands, must utilize the strong reflectivity of

vegetation in the green wavelength band and weak reflectivity in

the red and blue wavelength bands to construct color indices such as

GCC (Krı̌ž́ová et al., 2022).

Therefore, this study investigated the potential for synergistic

enhancement in LC plot identification through multidimensional

characterization enabled by combining diverse features. The
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mechanism by which the selected features facilitate extraction is

analyzed as follows: VDVI builds on the computational methodology

of the Normalized Difference Vegetation Index (NDVI) by integrating

visible band data from RGB imagery to generate enhanced composite

images. These synthesized outputs effectively enhance contrast between

vegetated and non-vegetated areas (Zang et al., 2024). Building upon

this foundation, Hue, distinguished by its strong robustness against

illumination variations, preferentially differentiates vegetation areas

from non-vegetated backgrounds (e.g., the brownish-yellow hue of

bare land, non-green tones of construction land). Its ability to capture

the unique chlorophyll reflectance characteristics of LC aids in the
FIGURE 7

Accuracy evaluation of the results of pixel-based classification: the letters on the top of charts shows that the differences are significant.
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preliminary separation of other vegetation types (Majer et al., 2010;

Lazarević et al., 2021). Concurrently, The discriminatory power of B-

MEA stems from their robust correlation with the Leaf Area Index

(LAI) (Xu et al., 2025). Manicured LC plots exhibit significantly greater

texture homogeneity than natural vegetation in this spectral region due

to their elevated vegetation coverage (corresponding to higher LAI),

effectively enabling discrimination from other vegetation types. The

introduction of DEM data further imposes vertical constraints. By

synergizing with spectral-textural features, it enhances the separability

between low-stature LC plots (~1m plant height) and forest while

aiding in differentiating other vegetation types of comparable height.

This multi-tiered discriminatory framework, integrating color

attributes, spectral responses, textural structures, and topographic
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elevation, collectively forms the theoretical basis for distinguishing

LC plots from four typical land cover types.

Fortunately, the shortcomings of spectral features are

significantly improved after adding texture features, color space

elements, and DEM data (Figures 7, 10, and 12). The discovery

that different combinations of features lead to increased classification

accuracy also validates the consistency of previous studies (Fu et al.,

2021, 2022). Ultimately, the average overall accuracy of FC 15,

calculated using all four machine learning algorithms—ML, SVMs

(pixel-based), KNNs, and SVMs (object-oriented)—was 90.00%,

90.43%, 89.16%, and 90.36%, respectively. This result was

significantly higher (by 14.26%–19.20%) than the classification

accuracy achieved using only RGB images. The validation
FIGURE 8

Results of KNN (object-oriented) classification on 15 kinds of feature combinations: (a–o) are classification results based on FC1~FC 15, while (p) is
the classification results based on RGB image.
FIGURE 9

Results of SVM (object-oriented) classification on 15 kinds of feature combinations: (a–o) are classification results based on FC1~FC 15, while (p) is
the classification results based on RGB image.
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experiments executed on images captured from S2, S3, and S4

demonstrate that the feature variable combination images

developed within this study exhibit consistent precision

improvements across diverse regions. Notably, while the pixel-level

classification precision of S4 images stands at 84.22% and 81.40%,

respectively, the average overall accuracy of land object classification

employing feature combination images surpasses 90.00%.

Furthermore, except for the pixel classification precision of S4

images being recorded at 89.71% and 89.51%, the average F1 score

of all other images transcends 90.00%. A comparison between pixel

classification and object-oriented classification approaches divulges

negligible differences in their precision for categorizing land objects;
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however, the latter technique demonstrates superior precision in

detecting grassland farmland areas and greater steadiness in

its performance.
5.2 Application of LC cultivation plot
extraction

Traditional LC cultivation methods rely on manual ground

inspections to assess the growth status and health of crops. Such

methods are susceptible to observer subjectivity and experience,

leading to diagnostic errors, especially when the cultivated area is
FIGURE 10

Accuracy evaluation of the results of object-oriented classification: the letters on the top of charts shows that the differences are significant.
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expanding. Human labor alone struggles to meet the demand for

timely and accurate inspections over large areas. In contrast, the use

of a UAV greatly reduces inspection time—it takes only

approximately 1 hour to complete an examination of 10 ha of

land (typically involving far more than 100 LC cultivation plots).

With the aid of the classification algorithm proposed in this article

and the integration of image feature variables, it is possible to

efficiently locate and identify all LC fields within only 2 hours. The

resulting UAV images and videos can be safely stored on electronic

media for future retrieval and analysis. Moreover, new algorithms

can be easily applied to existing databases to reduce redundant data

collection, thereby lowering cost inputs.

Based on the image information captured by RGB UAV in LC

fields, we can preliminarily understand the planting overview of

each block through the comparison of RGB colors and make simple

judgments. Furthermore, we can precisely calculate the vegetation

coverage rate of each plot using threshold segmentation or
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supervised classification methods to quantitatively analyze the

density of the aboveground parts and their growth trends.

Furthermore, analyzing images of LC plots from varying periods

allows us to assess phenotypic indicators such as emergence

uniformity, leaf area index, leaf chlorophyll and nitrogen content,

aboveground biomass, and vegetation coverage under different

fertilization and irrigation regimes. Indicators above usually

precisely mirror the growth conditions of crop (Maimaitijiang

et al., 2020; Wan et al., 2020; Zhang et al., 2024). Consequently,

our objective is to formulate high-resolution, plot-level models for

LC yield prediction and management strategy recommendations.
5.3 Limitations, challenges, and future steps

It is noteworthy that while exploring feature combinations

(color indices, texture features, color spaces, DEM) significantly
FIGURE 11

Comparison of classification results based on RGB images and feature variable combination images on S2, S3 and S4: (A) stands for the results of
maximum likelihood classifier; (B) stands for the results of support vector machine classifier (pixel-based); (C) stands for the results of k-nearest
neighbor classifier; (D) stands for the results of support vector machine classifier (object-oriented).
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enhanced the accuracy of LC plot cultivation parcel extraction from

UAV-based RGB imagery, inherent limitations of RGB data and

methodological constraints remain core challenges requiring

further attention.

5.3.1 RGB data constraints
5.3.1.1 Illumination sensitivity

The primary challenge lies in its extreme sensitivity to

illumination variations. The significant accuracy declines in S4

(7.47% and 6.01% lower mean overall accuracy than S2 and S3,

respectively) directly demonstrates the strong negative impact of

shadows on classification outcomes. This area was imaged at 5:00

PM, generating extensive shadows within forested regions.

Therefore, for practical implementation, image acquisition during

periods of sufficient illumination and minimal shadows is strongly

recommended to optimize accuracy.
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5.3.1.2 Seasonal variation

Furthermore, this study needs to further evaluate the potential

influence of seasonal variations. Dynamic changes in canopy color,

coverage, and background conditions (e.g., proportion of bare soil)

of LC, other plants, and forest across phenological stages may

significantly affect the stability of key discriminative features such

as the VDVI and Hue. Future work should incorporate multi-

temporal data spanning complete growing seasons to systematically

assess seasonal robustness.

5.3.2 Georeferencing and geometric constraints
Absolute positioning accuracy limitation: This study did not

utilize Ground Control Points (GCPs) during data processing. The

SfM 3D reconstruction relied solely on the GNSS positioning data

from the UAV (DJI Mavic 2 Pro). Consequently, the absolute

georeferencing accuracy of the final DOM and DEM products is
FIGURE 12

Accuracy evaluation of the results of pixel-based classification and object-oriented classification.
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inherently constrained to an estimated horizontal accuracy of 2–5

meters (Elkhrachy, 2021), with an associated risk of geometric

distortions during processing. This limitation hinders the direct

applicability of the classification results in scenarios demanding

high geospatial precision, such as precise co-registration with high-

accuracy base maps, sub-meter-level area calculation, or accurate

multi-temporal change detection. However, all study sites (S1–S4)

are situated within the gently undulating terrain of the Chengdu

Plain, where minimal topographic relief significantly reduces the

risk of elevation distortion artifacts in SfM-derived products. Visual

inspection confirmed that the generated DOM/DEM effectively

preserved the relative geometric relationships of key landscape

features (e.g., field boundaries, roads). Critically, the classification

methodology fundamentally exploits discriminative features—

including spectral reflectance, textural patterns, color space

components, and local topography (DEM)—between target LC

plots and background features. The separability of these features

is maintained as long as internal geometric consistency (i.e., absence

of destructive warping of object outlines) is preserved within the

DOM/DEM across the study area. Furthermore, training and

validation samples were annotated directly on the DOM imagery,

ensuring perfect spatial alignment between reference data and

classification inputs. Therefore, evaluation metrics (overall

accuracy, Kappa coefficient, F1-score) reflect the model’s

performance within this consistent geometric framework, not its

absolute geospatial positioning accuracy. Synthesizing these

considerations, we contend that the geolocation accuracy

limitation exerts a minimal impact on the study’s primary

objective: identifying L. chuanxiong cultivation plots using UAV

RGB-derived feature combinations.

5.3.3 Challenges from high spatial resolution
5.3.3.1 Intra-class variation & background heterogeneity

Another challenge amplified by high spatial resolution is

intensified intra-class spectral variation and background

heterogeneity. While centimeter-scale resolution greatly mitigates the

mixed-pixel problem, it also accentuates spectral differences among

identical objects (e.g., LC plots under varying health statuses or micro-

environments) and highlights intricate background details like weeds,

crop residues, and uneven soil moisture within plots. This complexity

introduces additional noise for fine-grained classification.

5.3.3.2 Processing efficiency

Moreover, the massive data volume from high resolution

imposes higher demands on processing efficiency. Future studies

need comprehensive evaluation of flight altitudes (corresponding to

varying resolutions) to balance interlinked effects on spectral

variation, classification accuracy, and computational efficiency.

5.3.4 Feature selection strategy limitations
5.3.4.1 Potential geographic bias

Regarding feature selection strategy, the identification of core

features (VDVI, B-MEA, Hue) and the optimal combination FC15

relied solely on S1 data. Though validated across S2-S4, these

region-specific results may exhibit geographical bias, and their
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generalizability warrants large-scale verification across broader

geographic settings, soil types, and cultivation practices.

5.3.4.2 Lack of quantifiable validation

Critically, the current interpretation of feature roles relies on

speculative physiological reasoning (e.g., canopy chlorophyll

differences) rather than quantifying their actual contribution to

model decisions, limiting understanding of the model’s internal

mechanisms and validation of feature selection efficacy.

To address these challenges, future research should focus on:

5.3.4.2.1 Enhancing robustness to RGB & geometric limitations

Develop preprocessing techniques (e.g., shadow detection/

correction) or feature extraction methods less sensitive to

illumination/shadow; systematically study temporal feature dynamics

across LC growing seasons; evaluate resolution trade-offs; explore

fusion with complementary data (e.g., near-infrared, multi-temporal/

multi-angle imagery) or employ deep learning models (e.g., CNN,

Transformer) to automatically learn discriminative and noise-robust

features. For applications requiring high geospatial precision (e.g.,

precision agriculture management, high-accuracy area statistics,

fusion with multi-source high-precision GIS data), future studies

should incorporate Ground Control Points (GCPs) with RTK-

corrected references or utilize UAVs equipped with RTK/PPK

positioning systems during data acquisition. This will significantly

enhance georeferencing accuracy and the practical utility of the

outputs. The feature combinations and classification methods

proposed in this study hold greater application potential when

combined with high-precision spatial data.

5.3.4.2.2 Deepening feature understanding & optimizing feature
engineering

Prioritize integrating eXplainable AI (XAI) methods (e.g.,

SHAP values, LIME, model-inherent feature importance)

(Gevaert, 2022) to quantify the contribution magnitude and

direction of each input feature (including VDVI, B-MEA, Hue,

and potential alternatives). This provides data-driven, quantifiable

validation for feature selection, clarifies feature roles, and may

reveal novel critical information. Concurrently, expand the initial

feature library by incorporating more diverse texture features (e.g.,

Tamura texture, autoregressive models, wavelet features (Humeau-

Heurtier, 2019)) and color spaces (e.g., CMY, LAB, YUV

(Tokarczyk et al., 2014; Kamiyama and Taguchi, 2017)). Employ

systematic feature reduction and selection strategies, such as

synthesizing all potential features into multi-band imagery

followed by reverse analysis using Principal Component Analysis

(PCA), Minimum Redundancy Maximum Relevance (mRMR), or

Recursive Feature Elimination (RFE) (Ram et al., 2024) to identify

more generalizable and discriminative combinations.
6 Conclusion

This study successfully achieved high extraction accuracy for LC

cultivation plots utilizing cost-effective UAV-based RGB imagery, thus
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addressing a gap in the existing literature. Prior research has

predominantly focused on identifying cultivation areas for food crops

while paying minimal attention to the accurate extraction of medicinal

plant cultivation plots employing UAVRS technologies. This study filled

this gap by extracting color indices, textural features, color spatial

components, and DEM from UAV-based RGB imagery. Unlike

earlier studies that explored intricate processes for feature

dimensionality reduction, which might potentially result in inadequate

generalization performance, this study employed Pearson correlation

coefficient analysis to assess multicollinearity issues among different

variables. Subsequently, the study compared the interclass difference

scores of diverse land cover types with LC cultivation plots under

various feature variables to select the most promising features in three

characteristics combined with DEM for feature combination mode

screening. This approach not only simplified the feature selection

process but also reduced the dimensions of the feature combination,

effectively improving classification efficiency. The results demonstrated

robust stability in validation experiments across different production

regions, suggesting its potential for large-scale application. Accurate LC

cultivation plot identification provides a strong foundation for effective

LC management in Sichuan Province, significantly contributing to the

progression of LC precision agriculture implementation levels. This

technique is expected to play a crucial role in the execution of

quantitative management strategies such as nutrient status

monitoring, precision irrigation, and quantitative fertilization.
Data availability statement

The raw data supporting the conclusions of this article will be

made available by the authors, without undue reservation.
Author contributions

SZ: Project administration, Supervision, Writing – review &

editing. RG: Funding acquisition, Resources, Writing – review &

editing. RD: Methodology, Validation, Visualization, Writing –

review & editing. YL: Validation, Writing – review & editing.

GJ: Writing – review & editing. CW: Conceptualization, Formal

Analysis, Investigation, Software, Writing – original draft.
Funding

The author(s) declare financial support was received for the

research and/or publication of this article. This research was funded
Frontiers in Plant Science 21
by National Natural Science Foundation of China, grant number

82073964, Key R&D Projects of Sichuan Science and Technology

Department, grant number 20ZDYF2376, Nationalities Introduces

Talented Research Start-up Project of Southwest Minzu University,

grant number RQD2021055.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Generative AI statement

The author(s) declare that Generative AI was used in the

creation of this manuscript. The authors verify and take full

responsibility for the use of generative AI in the preparation of

this manuscript. Generative AI was used solely to refine the

language fluency and naturalness of the English text following

manual translation from Chinese. All scientific content, data

interpretation, and conclusions remain entirely human-generated

and validated by the authors.

Any alternative text (alt text) provided alongside figures in this

article has been generated by Frontiers with the support of artificial

intelligence and reasonable efforts have been made to ensure

accuracy, including review by the authors wherever possible. If

you identify any issues, please contact us.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fpls.2025.1659442/

full#supplementary-material
References
Bhaskaran, S., Paramananda, S., and Ramnarayan, M. (2010). Per-pixel and object-
oriented classification methods for mapping urban features using Ikonos satellite data.
Appl. Geogr. 30, 650–665. doi: 10.1016/j.apgeog.2010.01.009
Booth, D. T., Cox, S. E., Meikle, T. W., and Fitzgerald, C. (2006). The accuracy of
ground-cover measurements. Rangeland. Ecol. Manage. 59, 179–188. doi: 10.2111/05-
069R1.1
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fpls.2025.1659442/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fpls.2025.1659442/full#supplementary-material
https://doi.org/10.1016/j.apgeog.2010.01.009
https://doi.org/10.2111/05-069R1.1
https://doi.org/10.2111/05-069R1.1
https://doi.org/10.3389/fpls.2025.1659442
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhong et al. 10.3389/fpls.2025.1659442
Congalton, R., and Green, K. (2019). Assessing the Accuracy of Remotely Sensed Data:
Principles and Practices (Boca Raton, Southeastern Florida: Chemical & Rubber &
Company Press (CRC Press)), 3rd ed.

Demarty, C.-H., and Beucher, S. (1998). Color segmentation algorithm using an HLS
transformation. Comput. Imaging Vision 12, 231–238. doi: 10.5555/295095.295175
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