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Phytostabilization has been widely applied to remediate mining soils

contaminated with heavy metals, but the high soil toxicity often restricts plant

growth and remediation efficiency. In this experiment, we investigated the effect

of mercapto-based palygorskite (MPAL, applied at 2% and 4% w/w) on cadmium

(Cd) and lead (Pb) phytostabilization by Chrysopogon zizanioides in soils

contaminated with Cd and Pb. The results showed that soil pH did not vary

under the application of MPAL but decreased during the cultivation of C.

zizanioides. Compared with planting C. zizanioides alone, the application of

MPAL significantly promoted the growth of C. zizanioides, enhanced its

antioxidant enzyme activities, and decreased Cd and Pb concentrations in

roots and shoots. Compared with CK, the addition of 4% MPAL, cultivated with

C. zizanioides, reduced DTPA-extracted Cd and Pb in soils by 89.22% and 51.18%,

respectively, at the highest level (p < 0.05). Moreover, urease, cellulase, and

sucrase activities in soils treated with MPAL and cultivated with C. zizanioides

were enhanced, with maximum increases of 37.70%, 110.22%, and 42.99%,

respectively (p < 0.05). The interaction of MPAL and C. zizanioides increased

bacterial richness and diversity but did not alter the bacterial community. This

study demonstrated that the use of MPAL in combination with C. zizanioides

could serve as a potential strategy for Cd and Pb immobilization and

improvement of soil microecological properties.
KEYWORDS
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GRAPHICAL ABSTRACT
1 Introduction

Soil heavy metal pollution has become a worldwide

environmental concern (Alam et al., 2024). Heavy metals in soils

pose significant ecological risks, resulting in soil fertility decline and

plant damage and ultimately transferring into the human body

through the food chain (Azeez et al., 2019; Gravand et al., 2020; El-

Sharkawy et al., 2023; Kama et al., 2024). Mining and smelting

activities are among the major sources of heavy metal

contamination, where metals frequently accumulate in soils at

concentrations far exceeding regulatory thresholds (Cuypers et al.,

2010; Antoniadis et al., 2019). Among these metals, cadmium (Cd)

and lead (Pb) are particularly problematic due to their high toxicity

and mobility, which have caused severe harm to both human health

and the environment. While numerous studies have investigated

remediation approaches for single-metal contamination (e.g., Cd or

Pb), most mine-affected soils are simultaneously contaminated with

Cd and Pb. Remediation strategies effective for individual metals

often prove inadequate in multi-metal scenarios (Liu et al., 2000;

Huang et al., 2009). More importantly, the immobilization

mechanisms of Cd and Pb differ (Yang et al., 2022b), making it

especially challenging to simultaneously stabilize both metals.

Therefore, there is an urgent need to develop cost-effective and

eco-friendly remediation strategies suitable for Cd and Pb

co-contamination.

Phytostabilization has been recognized as a gentle remediation

option that employs heavy metal-tolerant plants, often assisted by
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soil amendments, to reduce the mobility and bioavailability of toxic

metals in soils. The main mechanisms include metal adsorption and

precipitation in the rhizosphere, complexation with root exudates

and cell walls, and sequestration into root vacuoles, which together

limit their translocation to shoots. Through these processes,

phytostabilization minimizes heavy metal entry into the food

chain and groundwater, while improving soil quality and stability

(Madrid et al., 2008; Shackira and Puthur, 2019; Zhan et al., 2020).

It has been widely considered in soil remediation due to its

economic, eco-friendly, and sustainable nature (Baker et al., 1994;

Ali et al., 2013; Zheng et al., 2024). However, conventional heavy

metal-tolerant plants are limited by biomass and growth conditions,

resulting in low remediation efficiency (Shen et al., 2022).

Chrysopogon zizanioides is a widespread perennial herb with a

well-developed root system, high germination rates and substantial

biomass production (George et al., 2017; Pandey and Praveen,

2020). In addition, C. zizanioides is highly adaptable to saline,

calcareous, and nutrient-deficient soils, and can even tolerate high

concentrations of heavy metals (Edelstein et al., 2009; Masinire

et al., 2021). Recent studies have demonstrated that C. zizanioides

has significant potential for Cd and Pb phytostabilization in soils

(Ai et al., 2023). Pidatala et al. (2018) observed that the Pb uptake by

C. zizanioides root reached 3.86 × 103, 9.83 × 103, 1.85 × 104 mg·kg-¹

dry weight in Pb solutions at concentrations of 400 mg·L-¹, 800

mg·L-¹ and 1200 mg·L-¹, respectively. Previously, we also found that

the concentration of Cd in C. zizanioides root was 18.4-fold higher

than that found in the soil. In addition, it was reported that the
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ability of C. zizanioides to absorb Cd and Pb was greater under

combined contamination conditions than under single-metal

contamination (Ai et al., 2023).

Nevertheless, the biotoxicity of high concentrations of Cd and

Pb in mining soils can hinder plant growth and reduce the

phytostabilization efficiency of C. zizanioides in contaminated

soils, and it has limited the application on mine rehabilitation. In-

situ immobilization by applying active amendments to reduce the

bioavailability of heavy metals has been proven to be an effective

strategy to promote plant growth (Zheng et al., 2021; Lu et al.,

2025). Common amendments, including biochar, liming, and

phosphate mineral, reduce the bioavailability of Cd and Pb

primarily by increasing soil pH (Song et al., 2022), but these

amendments have little efficiency in alkaline soils (Yong et al.,

2022). In this context, mercapto-modified palygorskite (MPAL)

exhibits unique advantages in alkaline soils, where its surface

mercapto groups can strongly bind Cd and Pb, effectively

reducing metal bioavailability while maintaining soil chemical

stability (Yong et al., 2024). Yang et al. (2022a) found that MPAL

could significantly reduce the bioavailability of Cd in alkaline soils.

The mercapto groups in the surface of MPAL have a strong affinity

for Cd (Ksp of CdS = 8 × 10-27) and Pb (Ksp of PbS = 3.4 × 10-28).

Our previous studies have demonstrated that MPAL application

enhanced the microecology of Cd contaminated soils by improving

the diversified sulfur metabolism biomarkers and decreasing the Cd

resistance genes (Li et al., 2022). In addition to reducing Cd and Pb

bioavailability, MPAL application could increase the abundance of

plant growth-promoting bacteria thereby promoting plant growth.

The evidence indicated that MPAL-assisted phytostabilization

could provide an innovative approach to achieve Cd and Pb

immobilization within a short time, especially in alkaline soils.

Herein, we hypothesize that MPAL application could provide a

novel approach that simultaneously promotes C. zizanioides

growth, immobilizes Cd and Pb, and improves rhizospheric

microecology, thereby facilitating Cd and Pb phytostabilization in

contaminated alkaline soils. The primary objectives of this study

were to evaluate the effects of varying MPAL concentrations on Cd

and Pb phytostabilization by analyzing plant biomass, antioxidant

enzyme activities, Cd and Pb contents in plants, and soil Cd and Pb

bioavailability and species distribution. Meanwhile, the effects of

MPAL and C. zizanioides on rhizospheric microecology, including

soil pH, enzyme activities, and microbial diversity and composition,

were also examined.
2 Materials and methods

2.1 Soil and materials

The soil used in the experiment was collected from farmland in

Chengdu, Sichuan Province, China. The collected soil samples were

air-dried then sieved through a 2 mm mesh. After that, CdCl2 and

Pb(NO3)2 solution were added, and the final Cd and Pb

concentrations were 3 mg·kg-¹ and 700 mg·kg-¹, respectively,

which represent typical levels of Cd and Pb contamination in
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mining soils and have been reported in previous studies (Zhou

et al., 2024; Setu and Strezov, 2025). The spiked soils were incubated

for a period to allow the metals to equilibrate with the soil matrix.

This “aging” process ensured that the bioavailability and

environmental behavior of Cd and Pb were similar to those in

naturally contaminated soils, providing a reliable basis for

subsequent remediation experiments. Pre-analytical assessments

were conducted to confirm that the target concentrations of Cd

and Pb had been successfully achieved. The resulting artificially

contaminated soil was designated as the CK treatment (containing

added Cd and Pb, without any amendments or plants) and served as

the baseline control for all subsequent pot experiments.

The natural PAL was purchased from the Lingshou Qiangdong

Mineral Processing factory (Shijiazhuang, China). MPAL was

synthesized according to the method described by Fu et al.

(2021). The successful mercapto functionalization of palygorskite

(MPAL) was confirmed in our previous study (Li et al., 2022) by

EDS analysis, which revealed distinct sulfur peaks with uniform

distribution on the MPAL surface. FTIR and XRD analyses further

verified the incorporation of mercapto groups while preserving the

mineral framework. The Academy of agricultural science of Jiangsu

province offered C. zizanioides seeds. All reagents used in this study

were of analytical grade.
2.2 Pot experiment design

The pot experiment was conducted in the Chengdu University of

Technology greenhouse. Ten different treatments were designed as

follows: CK (Contaminated soil without treatment), 2% PAL

(Contaminated soil treated with 2% PAL), 4% PAL (Contaminated

soil treated with 4% PAL), 2%MPAL (Contaminated soil treated with

2% MPAL), 4% MPAL (Contaminated soil treated with 4% MPAL),

P (Contaminated soil treated with plant), 2% PAL + P (Contaminated

soil treated with 2% PAL and plant), 4% PAL + P(Contaminated soil

treated with 4% PAL and plant), 2% MPAL + P (Contaminated soil

treated with 2% MPAL and plant), 4% MPAL + P (Contaminated

soil treated with 4% MPAL and plant). Each treatment was

performed with three biological replicates, that is, three

independent pots per treatment. Each pot was filled with 3 kg of

aged soil, and the soil was thoroughly mixed with PAL and MPAL in

different mass percentages according to treatment conditions. Seeds

of C. zizanioides were germinated in a constant temperature

incubator at 25°C, and 20 of healthy and uniform sprouts were

transplanted into each pot.C. zizanioideswere grown in a greenhouse

at a temperature range of 25–28°C, watered daily with deionized (DI)

water to 60% of the field water capacity, and harvested after 60 days.
2.3 Plant analysis

2.3.1 Plant growth response
The C. zizanioides were carefully harvested and rinsed with DI

water. The fresh and dry biomass were weighed. Then, 0.1 g of

leaves were ground in 2 mL of phosphate buffer solution (PBS,
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pH=7.8) with liquid nitrogen, and then the homogenate was

centrifuged at 4°C (10000 rpm, 10 min) to obtain enzyme

solution. After that, peroxidase (POD) activity was determined

using guaiacol as a substrate (Liao, 2015). Superoxide dismutase

(SOD) activity was determined using nitroblue tetrazolium (NBT)

(Durak et al., 1993). Catalase (CAT) activity was determined by

monitoring the decrease in absorbance at 240 nm caused by H2O2

consumption (Kolahi et al., 2020). Soluble protein content was

measured using the Coomassie brilliant blue method (Bradford,

1976). The hydrogen peroxide content was measured following the

method of Uchida (Uchida et al., 2002). The production rate of

superoxide anion radical was measured using the hydroxylamine

hydrochloride oxidation method.

2.3.2 Heavy metal analysis
0.1 g of dried plant powder was weighed and digested in a

mixture of HNO3, HF, and HClO4 (5:5:3, v/v/v) at 180°C using an

electric hot plate. Then, the digested solution was diluted to a final

volume of 10 mL with 1% HNO3 (Wu et al., 2018). The mixture was

centrifuged at 3000 rpm for 20 min, and the Cd and Pb

concentrations in supernatants were measured by atomic

absorption spectroscopy (AAS). Method blanks, duplicate

samples, and certified reference materials (CRMs) were included

to ensure reliability. Recoveries of CRMs ranged from 90% to 105%,

and relative standard deviations (RSDs) for replicates were

generally below 15%.
2.4 Soil analysis

2.4.1 Soil pH and heavy metals
Soil pH was measured using a pHmeter (METTLER-S220). The

available heavy metal was extracted by using diethylenetriamine

pentaacetic acid (DTPA). Metal fractions were extracted using the

BCR sequential extraction procedure to evaluate metal

bioavailability and transformation (Wu et al., 2018). Briefly: 1)

1 g of air-dried soil was mixed with 40 mL of 0.1 M CH3COOH and

shaken at 150 rpm at 25 °C for 16 hours. After centrifugation, the

supernatant was collected as the HOAc-extractable fraction, and the

remaining soil was retained for the next step. 2) The retained soil

was mixed with 40 mL of 0.5 M NH4OH·HCl (pH=2.0) and shaken

at 150 rpm, 25°C for 16 h. After centrifugation, the supernatant was

collected as the reducible fraction, and the residue was retained for

the next step. 3) The residue was heated with 10 mL of 30% H2O2

(pH 2–3, 85°C) in a water bath until the solution volume was

reduced to less than 1 mL. Then, 50 mL of 1 M NH4AC (pH=2) was

added and shaken at 150 rpm, 25°C for 16 hours. After

centrifugation, the supernatant was collected as the oxidizable

fraction, and the residue was retained for the final step. 4) Finally,

the remaining residue was digested in the same way as plant

samples to obtain the residual fraction.

2.4.2 Soil enzyme activity analysis
In this study, the activities of urease, catalase, sucrase and

cellulase were determined. The activity of urease was determined
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by sodium phenol-sodium hypochlorite colorimetric method, the

activity of catalase was measured by potassium permanganate

titration, the activities of sucrase and cellulase were determined

by the chromogenic reaction of 3, 5-dinitrosalicylic acid at 540 nm

(Jiang et al., 2022).

2.4.3 Microbial diversity analysis
The DNA from the soil sample was extracted with soil DNA

extraction kit (Omega, Norcross, GA, U.S.), PCR amplification of

16S rRNA gene was performed with using universal primer pairs

(343F: 5′-TACGGRAGGCAGCAG-3’; 798R: 5′-AGGGTATCT
AATCCT-3′). QIIME2 was employed to analyze microbial

sequencing data. The data of microbial community composition

and alpha diversity were processed and analyzed through in the

MajorBio cloud platform and then visualized by Origin 2021

software. Functional genes associated with sulfur metabolism was

predicted from 16S rRNA gene data using the PICRUSt2 program,

with functional annotations derived from the KEGG databases

(Supplementary Figure S1).
2.5 Data analysis

In the experiment, each treatment was established with three

biological replicates. The bioaccumulation factor (BCF) and

translocation factor (TF) were calculated based on the methods of

Yong et al. (2022) using Equations 1–3.

BCF =
heavy metal concentration in plant
heavy metal concentration in soil

(1)

TF1 =
heavy metal concentration in stem
heavy metal concentration in root

(2)

TF2 =
heavy metal concentration in leaf
heavy metal concentration in stem

(3)

The mean and standard deviation were calculated using IBM

SPSS Statistics 25, statistical significance was assessed using one-

way ANOVA and Duncan’s multiple range test, with a significance

level of 5%.
3 Results and discussion

3.1 Effect on soil pH

Soil pH is a crucial factor affecting the bio-availability of heavy

metals. Most amendments, such as lime, biochar, and manure have

been shown to enhance soil pH to reduce the bioavailable heavy

metals (Ruttens et al., 2010; Wang et al., 2014). However, the

significant variation in pH can markedly affect the soil micro-

ecology, including soil enzyme activities, microbial communities

and functions (Jiang et al., 2021; Naz et al., 2022). Figure 1

illustrated that the application of PAL and MPAL has no
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significant effect on soil pH. This suggested that MPAL met the

criteria for being environmentally friendly without changing soil

pH. However, the cultivation of C. zizanioides resulted in a decrease

in soil pH by 0.10 to 0.27. In general, plants can secrete low

molecular weight acid (LMWA) to mobilize insoluble minerals to

acquire essential nutrients, resulting in soil acidification (Marschner

et al., 1987). A reduction in soil pH can increase the bioavailability

of heavy metals, thus promoting the accumulation of heavy metals

by plants (Zeng et al., 2011).
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3.2 Effect on soil Cd and Pb availability and
geochemical fractions

As shown in Figure 2A, in the absence of C. zizanioides planting,

the content of DTPA-extracted Cd in CK was 1.10 mg·kg-¹, which

decreased by 5.73% - 10.96% and 73.54% - 86.93% in the PAL and

MPAL treatments, respectively. Following the planting of C.

zizanioides, the DTPA-extracted Cd further decreased by 4.63% -

17.48%. Most notably, the DTPA-extracted Cd showed the greatest
FIGURE 2

DTPA-extractable (bioavailable) Cd (a) and Pb (b) concentrations in soils under different treatments. Mean with different letters indicated significant
difference from each other according to one-way ANOVA and Duncan’s test (p < 0.05).
FIGURE 1

Soil pH under different treatments.
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decrease in the treatment of 4% MPAL with C. zizanioides planting,

which was 89.22% lower than CK. As shown in Figure 2B, the content

of DTPA-extracted Pb in CK was 293.26 mg·kg-¹, and the application

of PAL and MPAL resulted in a significant reduction in the DTPA-

extracted Pb content by 8.46% - 9.01% and 15.45% - 34.17%,

respectively. The planting of C. zizanioides further decreased DTPA-

extracted Pb by 13.31% - 38.18%.

The various geochemical fractions of Cd and Pb were measured,

and the results are presented in Figure 3. The application of MPAL

and C. zizanioides decreased the proportion of HOAc-extractable

Cd and increased the proportion of reducible Cd. Under the

treatment of 4% MPAL and C. zizanioides, the HOAc-extractable

Cd content decreased significantly by 53.71%, while the reducible

Cd content increased markedly by 111.55%. Similarly, MPAL-

assisted C. zizanioides incubation decreased the proportion of

HOAc-extractable Pb and increased the proportions of reducible

Pb and oxidizable Pb. Under the treatment of 4% MPAL and C.

zizanioides, the proportion of HOAc-extractable Pb decreased

significantly by 37.58%, while the proportion of oxidizable Pb

increased markedly by 207.43%. These results showed that the

application of MPAL assisted C. zizanioides can effectively

immobilize Cd and Pb in the co-contaminated soil.
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The potential immobilization mechanisms might be explained

through the following aspects. Firstly, previous studies have shown

that MPAL can effectively immobilize Cd and Pb by adsorption, ion

- exchange and co-precipitation (Wu et al., 2023). The surface of

MPAL contains plentiful functional groups, including -OH,

-COOH, and -CH, which can provide adsorption sites for Cd and

Pb (Kumpiene et al., 2008). The sulfhydryl groups of MPAL can

target bind Cd and Pb to form stable CdS and PbS complexes.

Secondly, C. zizanioides can immobilize abundant Cd and Pb irons

by its developed root system, thus decreasing the bioavailability of

Cd and Pb in soils (Rotkittikhun et al., 2007; Banerjee et al., 2016).

Thirdly, the application of MPAL reduced the metal toxicity, and

the enhancement of plant biomass further promoted the reduction

of bioavailable Cd and Pb (Li et al., 2022).
3.3 Effect on physiological characteristics
of C. zizanioides

The effects of soil amendments on the biomass of C. zizanioides

grown in Cd and Pb contaminated soils are shown in Table 1.

Compared to CK, the application of PAL and MPAL has positive
TABLE 1 The biomass of C. zizanioides under the PAL and MPAL treatments.

Treatments
Fresh weight Dry weight

Roots (g) Stems (g) Leaves (g) Roots (g) Stems (g) Leaves (g)

CK 0.20 ± 0.14 a 0.61 ± 0.21 a 2.31 ± 0.05 a 0.14 ± 0.07 a 0.14 ± 0.05 a 0.57 ± 0.13 a

2% PAL 0.21 ± 0.07 a 0.60 ± 0.22 a 2.66 ± 0.99 ab 0.16 ± 0.02 a 0.15 ± 0.04 a 0.72 ± 0.15 ab

4% PAL 0.27 ± 0.06 a 0.63 ± 0.22 a 3.37 ± 0.81 ab 0.18 ± 0.04 a 0.17 ± 0.02 a 0.83 ± 0.32 ab

2% MPAL 0.23 ± 0.01 a 0.64 ± 0.07 a 3.23 ± 0.38 ab 0.16 ± 0.00 a 0.16 ± 0.01 a 0.72 ± 0.11 ab

4% MPAL 0.31 ± 0.03 a 0.73 ± 0.07 a 3.57 ± 0.10 b 0.19 ± 0.02 a 0.24 ± 0.00 b 1.04 ± 0.20 b
Values within a column followed by different lowercase letters are significantly different at p < 0.05 according to Duncan’s test.
FIGURE 3

Speciation analysis of Cd (a) and Pb (b) under different treatments.
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effects on plant growth. Especially, in the 4% MPAL treatment, the

dry weight of root, stem and leaf observably increased by 35.71%,

71.43% and 82.46%, respectively. These results indicated that

MPAL could significantly promote C. zizanioides growth in the

Cd and Pb contaminated soil.

Heavy metals can induce plants to produce superoxide anion

radicals (O2·-) and hydrogen peroxide (H2O2), which are important

components of reactive oxygen species (ROS) in plants. Excessive

O2·- and H2O2 can lead to oxidative damage to plant tissues. In

response to oxidative stress caused by heavy metals, plants produce

various types of antioxidants to eliminate ROS, such as SOD, POD

and CAT (Ali et al., 2013; Ben et al., 2023). Therefore, the

antioxidant enzyme activities are critical protective mechanisms

under heavy metal stress in plants, and the degree of oxidative stress

in plants can be assessed by measuring the antioxidant enzyme

activities (Luna et al., 1994; Ahmad et al., 2011; Zulfiqar et al., 2019).

In this study, the production rate of O2-·, the H2O2 content, and

soluble protein content increased under PAL and MPAL treatments

(except for 2% PAL) (Table 2). In the 4% PAL treatment, the

production rate of O2·- was twice that of the CK group. The highest

soluble protein contents and H2O2 content were observed in the 2%

MPAL treatment, which were 15.88% and 633.33% higher than

those in the CK group. Correspondingly, the application of MPAL

significantly enhanced the SOD and POD activities by 8.55% -

9.12% and 29.85% - 70.14%, respectively, compared to the CK

group. In addition, the activity of CAT in the 4% PAL and 4%

MPAL was increased by 16.40% and 22.61%, respectively. This

phenomenon showed that the addition of MPAL enhanced the
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antioxidant capacity of C. zizanioides under the stress of

heavy metals.
3.4 Effect on the uptake of Cd and Pb by
C. zizanioides

The uptake and accumulation of Cd and Pb by the roots, stems,

and leaves of C. zizanioides are shown in Table 3. Compared to CK,

the application of PAL had no significant effect on the uptake of Cd

and Pb by C. zizanioides. However, the application of MPAL

observably reduced the uptake of Cd and Pb by C. zizanioides.

The Cd content of roots, stems and leaves under the MPAL

treatment mostly decreased by 95.06%, 54.54% and 37.55%,

respectively, compared to CK group. Meanwhile, the Pb content

of roots, stems and leaves decreased by 31.71% - 63.58%, 16.48% -

24.03%, and 22.35% - 23.87%, respectively.

We observed abnormally high concentrations of Cd (32.41

mg·kg-¹) and Pb (1164.05 mg·kg-¹) in the roots of the CK

treatment. This phenomenon can be attributed to the relatively

high background levels of Cd (3 mg·kg-¹) and Pb (700 mg·kg-¹) in

the soil, together with the strong enrichment capacity of C.

zizanioides. Previous studies have similarly reported excessive

root accumulation of heavy metals by this species. For instance,

the study by Punamiya et al. (2010) showed that in Pb-

contaminated soil (800 mg·kg-¹), Pb concentration in C.

zizanioides roots reached nearly 2000 mg·kg-¹. Likewise, Zhang

et al. (2014) found that at a soil Cd concentration of 15 mg·kg-¹, Cd
TABLE 3 Heavy metal concentrations (mg·kg-¹) in plant tissues under the PAL and MPAL treatments.

Treatments

Cd Pb

Roots
(mg·kg-¹)

Stems
(mg·kg-¹)

Leaves
(mg·kg-¹)

Roots
(mg·kg-¹)

Stems
(mg·kg-¹)

Leaves
(mg·kg-¹)

CK 32.41 ± 5.59 b 11.02 ± 0.07 c 5.22 ± 0.19 b 1164.05± 0.00 c 59.63 ± 4.10 ab 76.69 ± 10.20 c

2% PAL 45.97 ± 3.38 c 10.92 ± 1.32 c 6.73 ± 0.15 c 1052.55± 136.35 c 66.34 ± 12.48 b 71.73 ± 5.48 ab

4% PAL 31.61 ± 1.47 b 9.16 ± 0.87 b 3.08 ± 0.12 a 886.69± 90.26 b 62.14 ± 13.87 ab 71.60 ± 7.57 ab

2% MPAL 1.60 ± 0.07 a 5.13 ± 0.33 a 5.65 ± 0.91 b 794.95± 35.95 b 49.80 ± 2.21 ab 58.38 ± 6.19 a

4% MPAL 1.72 ± 0.14 a 5.01 ± 0.11 a 3.26 ± 0.14 a 423.95± 2.56 a 45.30 ± 8.92 a 59.55 ± 4.26 a
Values within a column followed by different lowercase letters are significantly different at p < 0.05 according to Duncan’s test.
TABLE 2 The physiological characteristics of C. zizanioides under the PAL and MPAL treatments.

Treatments
SOD activity
(U·g-¹·FW)

POD activity
(U·g-¹·min-¹·FW)

CAT activity
(U·g-¹·min-¹·FW)

Soluble protein
(mg·g-¹·FW)

Production
rate of O2·-
(nmol·g-¹·
min-¹·FW)

H2O2
(mmol·g-¹·FW)

CK 2138.84 ± 40.45 a 63.81 ± 6.67 a 14510 ± 632 a 25.69 ± 2.10 ab 0.11 ± 0.02 a 1467 ± 652 a

2% PAL 2122.65 ± 4.86 a 57.14 ± 5.71 a 16620 ± 1242 b 21.86 ± 2.64 a 0.12 ± 0.01 a 2119 ± 978 a

4% PAL 2051.41 ± 95.22 a 62.86 ± 0.00 a 16890 ± 1301 b 27.76 ± 2.36 b 0.22 ± 0.03 c 6237 ± 432 b

2% MPAL 2321.80 ± 31.85 b 108.57 ± 3.81 c 14685 ± 75 a 29.77 ± 1.50 b 0.21 ± 0.02 c 10758 ± 489 c

4% MPAL 2333.94 ± 104.43 b 82.86 ± 2.86 b 17790 ± 1470 b 26.75 ± 2.24 b 0.16 ± 0.02 b 6765 ± 408 b
Values within a column followed by different lowercase letters are significantly different at p < 0.05 according to Duncan’s test.
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accumulation in the roots of C. zizanioides reached as high as 167

mg·kg-¹. These results consistently demonstrate the remarkable root

accumulation capacity of C. zizanioides, which often exceeds the

nominal soil concentrations. In our study, this characteristic

explains the unusually high Cd and Pb levels observed in CK

roots, confirming that the root system plays a dominant role in

metal sequestration and thereby contributes to phytostabilization.

Moreover, the BCF and TF values of Cd and Pb were calculated

to reveal the migration of Cd and Pb in the soil-plant system

(Table 4). It was observed that the BCF of Cd decreased significantly

from 10.80 to 0.57 and 0.53 with the addition of 2.0% and 4.0%

MPAL, respectively, and the BCF of Pb decreased from 1.66 to 0.70

with 4%MPAL addition. However, the addition of MPAL increased

the TF values of Cd, but had no obvious effect on the TF values of

Pb. The reduction of Cd and Pb in C. zizanioides can be explained

by the decrease in bioavailable Cd and Pb in soil (Figure 2). The

bioavailability of Cd and Pb in soil is a vital factor to affect the

uptake and translation of Cd and Pb by plants (Li et al., 2019). The

MPAL application reduced the DTPA-extracted Cd and Pb and

enhanced the proportion of reducible and oxidizable Cd and Pb,

thereby decreasing the Cd and Pb contents in C. zizanioides.

The observed increase in Cd TF under MPAL treatments might

be attributed to two main mechanisms. First, although MPAL

significantly reduced Cd content in roots, plants may regulate the

activity of metal transport proteins, such as HMA2 and HMA4, to

preferentially translocate the remaining Cd from roots to shoots,

resulting in higher TF values. Second, MPAL may alter the

speciation or binding forms of Cd in roots, making the residual

Cd more readily available for xylem loading and long-distance

transport to aboveground tissues (Raza et al., 2020). Together, these

mechanisms explain why root Cd decreased markedly while shoot

Cd was only moderately reduced, leading to an apparent increase

in TF.
3.5 Effect on soil enzyme activities

Soil enzyme activities are widely used to reflect soil biochemical

properties and assess remediation efficiency (Pu and Liu, 2023). In

this study, urease, catalase, cellulase, and sucrase activities were

determined to estimate the biological properties of soil after the

remediation with amendments and C. zizanioides (Figure 4). It was

observed that both amendments and C. zizanioides increased urease
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activity. The application of PAL and MPAL increased the urease

activity by 16.71% - 19.06% and 19.32% - 31.33%, respectively,

compared to CK group. The maximum urease activity was observed

in the treatment of 4% MPAL with planting C. zizanioides, which

was 37.70% higher than CK. Previous studies have also shown that

sulfydryl modified materials application can enhance the soil urease

activity. As illustrated by Zhu et al, thiourea-modified biochar

significantly enhanced the urease activity (Zhu et al., 2022).

However, the application of PAL and MPAL alone had no

significant effects on the activities of catalase, cellulase and

sucrase, but the combined application of amendments and C.

zizanioides enhanced the catalase and cellulase activities. Under

the treatment of PAL and MPAL, planting C. zizanioides

significantly enhanced the cellulase activity by 29.03% - 110.22%

compared to CK. In addition, the application of 4% MPAL and C.

zizanioides significantly increased the sucrase activity by 42.99%.

The soil enzyme was secreted from plants and soil microorganisms.

The MPAL application reduced the soil Cd and Pb bioavailability,

and promoted C. zizanioides growth. The rhizosphere activity of C.

zizanioides might recruit more microorganisms and enhance the

enzyme activities.
3.6 Effects on soil bacterial community

In this study, the effects of soil amendments and the plant C.

zizanioides on bacterial community structure were analyzed using

16S rRNA gene sequencing. The richness and diversity of bacterial

communities at the OTU level under different treatments are shown

in Supplementary Table S1. The Ace and Chao indices reflect the

richness of bacterial communities, while the Shannon and Simpson

indices are used to evaluate their diversity (Wu et al., 2018). No

significant variation in all indices was observed after the application

of PAL and MPAL, indicating that their application has little

negative impact on bacterial diversity. However, the C. zizanioides

planting enhanced the bacterial Chao, Ace and Shannon indexes.

The growth of C. zizanioides can recruit more beneficial

microorganisms by root exudates.

Figures 5a, b shows that all treatments have a similar

community composition at the phylum level. The dominant

bacterial phyla were detected to be Actinobacteriota ,

Proteobacteria, Chloroflexi and Acidobacteriota, accounting for

78.62% - 85.56% of the total sequences. Actinobacteriota is an
TABLE 4 The bioaccumulation factors (BCF) and translocation factors (TF) of C. zizanioides under the PAL and MPAL treatments.

Treatments
Cd Pb

BCF TF1 TF2 BCF TF1 TF2

CK 10.80 ± 1.86 b 0.35 ± 0.05 a 0.47 ± 0.02 ab 1.66 ± 0.00 c 0.05 ± 0.00 a 1.28 ± 0.15 ab

2% PAL 15.32 ± 1.12 c 0.24 ± 0.03 a 0.62 ± 0.08 bc 1.50 ± 0.19 c 0.06 ± 0.01 a 0.93 ± 0.03 a

4% PAL 10.54 ± 0.49 b 0.29 ± 0.04 a 0.34 ± 0.04 a 1.27 ± 0.13 b 0.08 ± 0.00 b 1.18 ± 0.16 ab

2% MPAL 0.53 ± 0.02 a 3.22 ± 0.22 c 1.10 ± 0.18 d 1.14 ± 0.05 b 0.06 ± 0.00 a 1.17 ± 0.10 ab

4% MPAL 0.57 ± 0.05 a 2.93 ± 0.24 b 0.65 ± 0.04 c 0.70 ± 0.16 a 0.10 ± 0.02 c 1.37 ± 0.39 ab
Values within a column followed by different lowercase letters are significantly different at p < 0.05 according to Duncan’s test.
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important phylum for metal remediation due to its function of

metabolizing and promoting the absorption of heavy metals by

plants (Alvarez et al., 2017; Narendrula-Kotha and Nkongolo,

2017). Chloroflexi can better adapt to heavy metal stress and

participate in the metabolism of organic matter and the

transformation of pollutants (Gupta et al., 2023). In the treatment

of cultivation of C. zizanioides, the addition of PAL and MPAL

increased the abundance of Actinobacteriota and Chloroflexi.

Moreover, the abundance of Actinobacteriota and Chloroflexi is

negatively correlated with the concentrations of heavy metals (Li

et al., 2022; Wu et al., 2023), indicating that the incorporation of

amendment reduces the toxicity of heavy metals and enhances soil

microecology. Acidobacteriota was adapted to low pH condition

(Qin et al., 2020), and it might be the reason why cultivation of C.

zizanioides significantly increased the abundance of Acidobacteriota

compared to the control. Other phyla were relatively stable in

all treatments.

Figures 5c, d showed that the community composition at the

genus level is significantly different. In the cultivation of C.

zizanioides alone, Vicinamibacterales, Vicinamibacteraceae and
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Gemmatimonadaceae were dominant in the soil. As illustrated by

Kou et al, Vicinamibacterales and Vicinamibacteraceae may be

resistant to heavy metals, which may be the reason for this

phenomenon (Kou et al., 2023). The addition of PAL and MPAL

significantly decreased the abundance of Vicinamibacteraceae and

Gemmatimonadaceae. We speculated that the application of

amendments decreased the bioavailability of heavy metals in the

soil could potentially account for this result. Sphingomonas is a

gram-negative bacteria, which was sensitive to metal contamination

stress (Wang et al., 2023). Without C. zizanioides planting,

Sphingomonas was the dominant bacterial genus, after C.

zizanioides planting, the abundance of Sphingomonas decreased

slightly, indicating that the application of C. zizanioides reduces the

bioavailability of heavy metals in soil.

The Structural Equation Model (SEM) was constructed to

examine the causal relationships among DTPA-extractable Cd

and Pb, soil enzyme activities (urease, catalase, cellulase), and

bacterial richness (Sobs) (Figure 5e). The results indicated that

heavy metals directly suppressed bacterial richness and indirectly

influenced it through negative effects on soil enzyme activities. The
FIGURE 4

Soil urease activity (a), sucrase activity (b), cellulase activity (c) and catalase activity (d) under different treatments. Mean with different letters
indicated significant difference from each other according to one-way ANOVA and Duncan’s test (p < 0.05).
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SEM showed excellent fit (c²/df = 0.58, CFI = 1.00, RMSEA = 0.00),

confirming that the proposed pathways accurately reflect the

observed relationships. Compared with simple correlation

analysis, SEM provides a powerful tool that can distinguish the

direct and indirect effects of multiple factors on contaminated soil

(Li et al., 2025). Our research results indicate that the toxicity of Cd

and Pb reduces the activity of soil enzymes, thereby restricting the

turnover of organic matter and the cycling of nutrients, and

ultimately inhibiting the diversity of microorganisms.

Importantly, the MPAL treatment alleviates these negative effects

by reducing the bioavailability of metals, demonstrating its direct

and indirect benefits for the soil microecology. These findings
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emphasize that MPAL-assisted plant stabilization not only can fix

metals but also can help maintain the functional connection

between soil enzymes and microbial communities.
4 Conclusions

This study demonstrates that the application of mercapto-

functionalized palygorskite (MPAL) effectively enhances the

phytostabilization capacity of Chrysopogon zizanioides for Cd and

Pb. The addition of MPAL significantly reduced the bioavailable

fractions of Cd and Pb in the soil, with the 4% MPAL treatment
FIGURE 5

Community abundance on phylum level (a, b) and genus level (c, d) under different treatments. The structural equation model analysis between
environmental factors and bacterial richness, numbers next to the arrows indicate standardized path coefficients and asterisks mark their
significance: *<0.05; **<0.01; or ***<0.001 (e).
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cultivated with C. zizanioides decreasing DTPA-extractable Cd and

Pb by 89.22% and 51.18%, respectively. Meanwhile, MPAL markedly

promoted plant growth and improved soil biological properties,

including enhanced soil enzyme activities and microbial richness.

These findings indicate that MPAL-assisted phytostabilization is a

promising strategy for the remediation of soils co-contaminated with

Cd and Pb. However, this study was conducted under pot-scale

conditions with artificially contaminated soils, which may not fully

represent the complexity of field environments in mining areas.

Future research should focus on field-scale validation to assess the

long-term stability and remediation efficiency of MPAL-assisted

phytostabilization, as well as its applicability under multi-metal co-

contamination conditions.
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