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Straw strip mulching boosts
potato yields by enhancing
soil moisture and water
use efficiency
Qian Chen1,2, Lei Chang1,2*, Fanxiang Han3*,
Khuram Shehzad Khan1,2, Yuwei Chai1,2, Shouxi Chai1,2,
Linlin Wang1,2 and Jiantao Ma1,2

1Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou, China, 2College of Agronomy,
Gansu Agricultural University, Lanzhou, China, 3College of Geography and Environmental Engineering,
Lanzhou City University, Lanzhou, China
Introduction: Water scarcity is a critical constraint limiting potato production in

semi-arid rainfed areas. Mulching practices are recognized as effective water

conservation strategies; Here, we investigated the effects of mulching practices

on soil moisture and their impact on potato yield.

Methods: A two-year field experiment (2018 – 2019) was conducted with five

treatments, traditional bare-land planting without mulching (CK); large ridges

and small furrows with only ridges mulched with black plastic film in fall (FPM); a

partial-field mulching using whole cornstalks in straw mulching strips that

alternate with planting strips without mulch in fall (FSM); large ridges and small

furrows with only ridges mulched with black plastic film in spring (SPM); a partial-

field mulching using whole cornstalks in straw mulching strips that alternate with

planting strips without mulch in spring (SSM). We measured soil water storage

(0–200 cm), yield, water-use efficiency (WUE), and stage-specific water

consumption (WC).

Results: Study results demonstrated that SSM and SPM significantly increased soil

water storage (0–200 cm) by 6.7% and 8.4%, yield by 14.7% and 25.1%, and water-

use efficiency (WUE) by 9.2% and 14.3%, respectively, compared to CK.

Compared to spring mulching, the fall mulching outperformed in improving

soil water retention and yield, increasing soil water storage by an average of

10.2% vs. 4.9%, and fresh potato yield by 17.8% vs. 11.8%. SSM and SPM reduced

water consumption (WC) during the early growth stage (planting-to-budding) by

8.2–9.8%, conserving water for later use. This conserved water was then available

during the critical yield-forming period, leading to increasedWC during budding-

to-tuber expansion by 10.3–11.3%. SSM increased WC more than FSM (12.3% vs.

10.2%), while FPM increased WC more than SPM (20.3% vs. 13.1%).

Discussion: The findings indicated that both the straw strip mulching (SM) and

plastic film mulching (PM) optimized the water consumption structure. Fall

mulching generally outperformed spring mulching because it captured and

conserved autumn and winter precipitation more effectively, resulting in higher
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soil water storage at planting. Both straw and plastic filmmulching improve water

use and potato yields, with fall application were most effective. However, for

sustainable production, straw strip mulching is recommended, as it offers both

high crop yields and significant environmental benefits.
KEYWORDS

straw strip mulching, plastic film mulching, water consumption characteristics,
yield, potato
1 Introduction

In the arid and semi-arid areas of China, dryland agricultural

production faces significant challenges due to scarce and

unpredictable precipitation, high evaporation rates, and low

rainwater utilization efficiency, leading to low and unstable

farmland productivity (Gan et al., 2013; Peng et al., 2020; Yang

et al., 2023). Potato (Solanum tuberosum L.), a major economically

important crop in the semi-arid areas of Northwest China, plays a

critical role in ensuring national food security (Li et al., 2022a; Zou

et al., 2020). This region contributes approximately 36% of China’s

total potato production, highlighting its importance in the

agricultural sector (Hou and Li, 2019; Hou et al., 2020; Qin et al.,

2022). However, persistent drought conditions and soil water

deficits severely limit the achievement of and a stable potato yield

as well as the sustainable development of the potato industry (Li

et al., 2021). To address these challenges, it is imperative to develop

efficient mulching cultivation techniques and water-saving

measures that can effectively reduce soil water evaporation,

optimize soil water allocation, and enhance water use efficiency

(WUE). Implementing such strategies is essential for improving

potato yields and ensuring sustainable agricultural production in

this water-scarce region.

Mulching has been widely recognized for its ability to promote

plant growth and development, enhance drought tolerance, improve

crop yield, and increase WUE (Billman and Campbell, 2023; Fang

et al., 2021; Qin et al., 2015; Verhulst et al., 2011; Wang et al., 2018;

Zhang et al., 2022). Plastic film mulching and straw mulching have

become the main cultivation techniques in Northwest China due to

their effectiveness in conserving soil moisture and enhancing soil water

storage (Sabet et al., 2022; Singh et al., 2015). Numerous studies have

demonstrated the significant benefits of plastic film mulching,

including reducing soil water evaporation by 14.5%–29.8% (Gu et al.,

2017; Li et al., 2022b; Yang et al., 2023), increasing soil water storage

capacity by 13-21% (Zhang et al., 2020a), and optimizing soil water

content across different crop growth stages. These improvements have

led to substantial increases in potato yield (19.7%–51.6%) and WUE

(16.4%–111.7%) (Obour et al., 2022; Xiong et al., 2020; Zhou et al.,

2011). Despite these agronomic benefits, long-term reliance on plastic

film mulching has been linked to adverse environmental impacts. For

instance, residual plastic film in the soil is difficult to reclaim, which can
02
hinder water and nutrient absorption, reduce crop transpiration, and

lower the efficiency of soil moisture utilization (Chen et al., 2015; Zhao

et al., 2022). Meta-analyses by Zhang et al. (2020a) revealed that

prolonged plastic film use decreased soil moisture evapotranspiration

capacity by 2%, reduced soil moisture infiltration by 8%, and lowered

soil organic matter by 0.8%. In some polluted areas, cotton yields were

estimated to decline by 6%-10%, highlighting the adverse impacts on

crop productivity and the sustainable development of agriculture

(Chen et al., 2015; Zhao et al., 2022). Additionally, for potato

cultivation, the high temperature and humidity conditions under

black plastic film mulching (PM) can exacerbate the occurrence of

late blight, negatively affect tuber expansion and ultimately reduce

potato yields. These limitations highlight the urgent need for alternative

mulching practices that sustain productivity while minimizing

environmental risks.

Straw mulching has been widely adopted in potato production

across the semi-arid regions of Northern China due to its

effectiveness in optimizing water utilization throughout all growth

stages (Dong et al., 2018). By covering the soil surface, straw mulch

reduces direct evaporation, promotes greater rainfall infiltration,

and enhances soil water storage, thereby ensuring more stable water

availability during critical growth stages. Previous studies have

shown that straw mulching can enhance maize (Zea mays L.) and

wheat (Triticum aestivum L.) yield and WUE (Feng et al., 2019; Li

et al., 2013, 2019; Zhang et al., 2020b). The water-saving effects arise

primarily from suppressed soil evaporation, which shifts water use

toward crop transpiration, thereby improving water-use efficiency.

Additionally, it moderates soil temperature by blocking excessive

solar radiation (Ma et al., 2022), creating a more favorable

environment for potato tuber formation and expansion. As a

result, straw mulching has been reported to increase potato yields

by 4.5%–34.0% andWUE by 6.8%–21.5% (Hou and Li, 2019; Shafiq

and Kaur, 2021). These advantages make straw mulching a

sustainable and effective practice for boosting potato productivity

in water-scarce regions.

Northwest China is rich in maize straw resources, but most of

them are not fully used. Traditional full straw mulching is regarded

as one of the best ways to conserve soil moisture in Northern China

by increasing the rainwater infiltration capacity and improving the

utilization efficiency of corn straw (Qin et al., 2021). However,

traditional straw mulching practices have been shown to not only
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delay crop by reducing soil temperature growth (Zhao et al., 2019b),

particularly in cooler climates, but also to increase mechanical

difficulties and farming costs. This highlights the need to develop

innovative straw mulching techniques that balance the dual

objectives of conserving soil moisture and mitigating the negative

impact of reduced soil temperature. Additionally, these new

methods must be compatible with mechanized tillage systems to

ensure practicality and scalability in the semi-arid areas of Northern

China (Gao et al., 2022a).

To address these challenges, the straw strip mulching system

(SM) technique is introduced as an alternative to straw-mulched

strips with bare planting strips. This innovative approach has

demonstrated several advantages: it significantly reduces total water

consumption during the potato reproductive period by 6.1%-13.2%,

increases potato yield by 10.5%–34.2%, and enhancesWUE by 8.9%–

29.8% (Chen et al., 2019a). In addition, SM promotes nutrient return

through straw decomposition, improves soil fertility, and enhances

soil water storage (Chang et al., 2020; Song et al., 2024). While straw

degradation can initially increase nitrogen demand and lead to

temporary competition with the crop, this effect is mitigated over

time as decomposed straw contributes to soil organic matter and

nutrient release, maintaining nutrient balance in the longer term

(Ninkuu et al., 2025). Previous studies have also shown that straw

mulching enhances soil enzyme activity (Song et al., 2024) and

improves soil structure in potato farmlands (Ma et al., 2024),

creating favorable conditions for potato growth and development,

as a result, and thus increases potato yield. The straw strip mulching

system is considered a promising and sustainable approach for

enhancing agroecosystem productivity in the arid and semi-arid

agricultural areas of Northwest China (Chai et al., 2022b).

Although both plastic film and straw strip mulching have been

studied, limited knowledge exists on how straw strip mulching (SM)

regulates water consumption dynamics across different potato

growth stages in semi-arid environments. Most existing research

has focused on either full plastic film or whole-field straw mulching,

with few studies systematically comparing the stage-specific soil

water partitioning and water-saving mechanisms between straw

strip mulching systems and conventional plastic film mulching

(PM). Moreover, the optimal timing for mulching application (fall

vs. spring) remains unexplored for potato production under water-

limited conditions. To address this gap, we conducted a two-year

field experiment (2018–2019) in the semi-arid area of Northwest

China to investigate the effects of various mulching practices and

stages on potato water consumption and yield. The study compared

SM applied in fall and spring, large ridges and small furrows, with

only ridges covered by PM in fall and spring, and traditional bare-

land planting without mulching. The objectives were to: (a) quantify

the effects of SM on soil water partitioning during key potato

growth phases; (b) compare water-saving mechanisms between SM

and PM systems; and (c) determine the optimal mulching timing

for maximizing water-use efficiency and yield. This research aims to

provide valuable insights into optimizing mulching techniques to

enhance water conservation, crop productivity, and agricultural

sustainability in water-scarce environments.
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2 Materials and methods

2.1 Experimental site description

The field experiment was conducted in 2018 and 2019 at the

Tongwei Modern Dryland Circular Farming Experiment Station in

Dingxi City, Gansu Province, China (35°11′ N, 105°19′ E). The
study area is characterized by a typical arid inland climate of

Northwest China, where crops ripen once a year. With an average

annual temperature of 7.2 °C and altitude of 1740m. The region

receives an annual sunshine duration ranging between 2100 and

2340h, with a frost-free period lasting between 120 and 170d. The

average annual rainfall is 390.7mm, with over 60% of the rainfall

occurring between July and September. The amount of precipitation

and atmospheric temperature in the area during the test are shown

in Figure 1. The average atmospheric temperatures were 16.0 °C and

16.0 °C. The precipitation during the potato growth period (from

planting to harvest) was 442mm in 2018 and 439mm in 2019, while

the effective rainfall (≥5 mm) were 365mm and 424mm,

respectively (Figure 1). Effective rainfall accounted for 95.8% and

83.1%of the total rainfall during the potato growth periods in 2018

and 2019, respectively.

The annual mean soil evaporation is 1500mm, making the

region highly susceptible to spring droughts. According to the

USDA texture classification system, the soil at the experimental

site is classified as loess soil (Corral-Pazos-de-Provens, 2022). The

average bulk density of 0–20 cm soil was 1.25g cm−3. The physical

and chemical properties of the soil in the experimental area are

detailed in Table 1. The dryness conditions during potato growth

periods were characterized by analyzing both rainfall amounts and

derived drought indices (DI) across experimental years. DI > 0.35 as

a wet year, DI < −0.35 as a drought year, and −0.35 ≤ DI ≤ 0.35 as a

normal year, in which the DI in 2018 and 2019 were 1.1 and 1.6,

respectively, as a result, 2018 and 2019 were categorized as

wet years.
2.2 Experimental design and field
management

In this experiment, a completely randomized block design with

three replicates was employed, comprising five treatments. A total

of 15 plots were established in both 2018 and 2019, with each plot

measuring 18m length and 6m width. The specific treatments were

as follows: (1) FSM (straw strip mulching in fall): a partial-field

mulching using whole cornstalks in straw mulching strips that

alternate with planting strips without mulch. Alternating straw

mulch strips (0.6m width) and bare plots without mulching (0.6m

width) in the fall (Figure 2A). In mid-October 2017, following the

harvest of the previous crop and subsequent rototilling and

harrowing of the field, a straw mulch composed of whole corn

stalks (5–10 cm thick) was applied. Each planting strip was sown

with two rows of potatoes, with 33cm plant spacing and 60cm row

spacing; (2) SSM (straw strip mulching in spring): Similar to FSM,
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but straw mulch strips were applied in the spring using whole corn

stalks. The planting method was identical to that of FSM; (3) FPM

(large ridges and small furrows with only ridges mulched with black

plastic film in fall): Alternating large ridges (0.7m width, 0.1m

height) and small furrows (0.5m width, 0.05m depth) in the fall

(Figure 2B), only the ridges were mulched with black plastic film

(1.2m width, 0.01mm thickness (Lanzhou Xinyinhuan Rubber and

Plastic Products Co., Ltd, China). Two rows per ridge, row spacing

60cm. The FPM treatment followed an identical procedure in both

years: rotary tillage was conducted after the harvest of the respective

previous crop (i.e., 2017 for the 2018 season, and 2018 for the 2019

season), followed by mulching in mid-October. (4) SPM (large

ridges and small furrows with only ridges mulched with black

plastic film in spring): Similar to FPM, The planting method was

identical to that in FPM (5) CK: Traditional bare-land planting with

no mulching. The row spacing was 60cm, consistent with the other

treatments (Figure 2C). In this experiment, the ground film mulch

adopts the design of 0.7m for the width of the ridge and 0.5m for the

width of the furrow, which is not only in line with the local

conventional farming pattern, but also can effectively promote

rainwater enrichment and match with the mainstream

agricultural machinery. The straw strip cover adopts the equal
Frontiers in Plant Science 04
width configuration of 0.6m for the planting belt and the cover

belt, which is designed to meet the requirements of mechanized

operation and ensure crop ventilation and light transmission. The

choice of these dimensions is based on actual local production

conditions. This experimental design allowed for a comprehensive

comparison of the effects of different mulching stages (fall vs.

spring) and methods (straw vs. plastic film) on soil water

conservation, potato growth, and yield in the semi-arid region of

Northwest China.

For the SM treatments, whole maize straw was collected from

harvested fields, air-dried, and uniformly applied at a rate of 9,000

kg·ha-1 (equivalent to approximately 52,500 plants·ha-1) by hand

onto the mulching strips in each experimental year. The straw was

stabilized against winter winds by soil compaction at 2m intervals.

Before planting in each season, systematic field preparation was

carried out: the field was first cleared of weeds, followed by the

application of a basal fertilizer (120kg N ha-1 + 90kg P2O5 ha-1)

according to conventional local fertilization standards. After

fertilization, the fertilizer was evenly mixed into the 0–30 cm

layer of soil by tillage. The amount of fertilizer applied and the

method of application (one-time basal application before planting)

used in this experiment were in line with the general practice of dry
FIGURE 1

Daily average temperature and daily effective rainfall during the potato growing season in experimental site during 2018–2019.
TABLE 1 Basic physical and chemical properties of the soil in experimental site.

Index
Bulk density

g·cm-3
Organic matter

g·kg-1
Total nitrogen

g·kg-1
Available phosphorus

mg·kg-1
Available potassium

mg·kg-1
pH

Physicochemical
properties

1.3 11.7 0.8 11.6 122.7 8.5
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farming in the region. The potato cultivar “Longshu No. 7” (the

medium–late maturing variety) was planted at a density of 52,500

plants·ha-1, with an interplant spacing of 33cm on 12 April 2018

and 16 April 2019. All plants were harvested in October, and after

harvesting, any plastic film residue was completely removed by

hand from plots mulched with plastic film. The plots for each

treatment remained unchanged throughout the two-year trial. To

maintain consistency, the maize straw used in the first year was

reused in the second year without adding newmaize straw, ensuring

an equal amount of straw mulch across both years for all straw

mulching treatments.
2.3 Plant materials and agronomic
practices

We confirm that the use of plant materials in this study

complies with all relevant institutional, national, and international

guidelines and legislation. The potato cultivar used in this research,

‘Longshu No. 7’ is widely cultivated in the first cropping area of

Northwest China, including the eastern part of Qinghai Province,

the central and eastern regions of Gansu Province, the central and

southern areas of Ningxia Hui Autonomous Region, and the

eastern, central, and western regions of Guangdong Province. All

seed tubers were sourced from the Potato Research Institute of

Gansu Academy of Agricultural Sciences, ensuring the quality and

authenticity of the plant materials used in this study.
2.4 Measurements and methods

2.4.1 Determination of soil water storage
The first measurement of soil water content (SWC, %) was

conducted one day before planting. Subsequent measurements were

taken at five key growth stages of potato: seedling stage (day 35 after

planting), budding stage (day 60 after planting), tuber expansion
Frontiers in Plant Science 05
stage (day 100 after planting), starch accumulation stage (day 130

after planting), and maturity stage (day 165 after planting) (Ma

et al., 2024). SWC was measured in eight soil layers (0–20, 20–40,

40–60, 60–90, 90–120, 120–150, 150–180, and 180–200 cm). Deep

sampling employed a 5-centimeter-diameter auger equipped with a

full set of interlocking extension rods, enabling us to reach the target

depth of 200cm. If rainfall occurred on the scheduled sampling day,

sampling was delayed for 2–3 days to avoid interference. At each

growth stage, three soil points were randomly selected for sampling

in each plot in each growth stage of potato, and a new borehole was

excavated at each point for each sampling event. Each sampling

point was located in the middle of two potato plants. Plastic Film

Mulching sampling focused on taking three random soil samples

between two potato plants using a 5cm diameter handheld soil

auger. For plastic film mulching treatments, three soil samples were

randomly taken between two plants. For straw strip mulching

treatments, three soil samples were collected from the planting

strip and three from the mulching strip. Specifically, three samples

were taken between two plants in the planting strip, and three

samples were taken from the middle of the mulching strip beneath

the straw. The SWC for straw strip mulching was calculated as the

weighted average of the values from the mulching strip and the

planting strip. Soil samples (M1) were oven-dried at 105 °C for 48

hours until a constant weight (M2) was achieved. The average SWC

for the 0–2 m soil depth was calculated as the weighted average of

the eight soil layers (Zhang et al., 2017).

The SWC (%) was determined using Equation 1:

SWC = (M1 −M2)=M2 � 100% (1)

The soil water storage (W, mm) was determined using Equation 2:

W = SWC� r � h� 10 (2)

where r is the soil bulk density (g·cm-3), the average soil bulk

density of each soil layer from 0–200 cm in this experiment was

1.25g cm-3, and h (mm) is the soil depth.
FIGURE 2

Schematic diagram of potato cultivation. (A) Alternating strip mulching with maize straw and bare plots with no mulching. (B) Alternating large ridges
with black plastic film mulching and small furrows. (C) Traditional bare-land planting without mulching.
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2.4.2 Determination of water consumption
The field experiments were conducted under rainfed conditions

without irrigation during the two growing seasons in 2018 and

2019. In the experimental plots, the water table was approximately

50m below the surface, making upward water flow into the root

zone negligible. Given the arid and flat terrain of the study area,

where local rainfall is generally low, surface runoff and seepage

drainage were also considered insignificant. As a result, drainage,

surface runoff, and seepage below the 200cm soil layer were

assumed to be negligible in both the straw strip mulching and

plastic film mulching treatments. Nearly all rainfall was retained

within the 0–200 cm profile, so soil water balance was primarily

governed by precipitation, evaporation, and crop water uptake. The

soil water balance equation was used to calculate soil water

consumption during the entire growth period, as well as the water

consumption and daily water consumption intensity (WCI) in each

growing stage (Wei et al., 2018).

Soil water consumption, also known as evapotranspiration. The

soil water consumption was determined by the equation of soil

water balance (Chen et al., 2019b; Li et al., 2004) as shown in

Equation 3:

WC = DW+ I + P + Q − F (3)

WC is the soil water consumption of the potato during the

growth stages of potato, where P (mm) is the effective precipitation

during the growth stages of potato, and DW (mm) is the change in

W (mm) during the growth stages of potato. I is the amount of

irrigation during the growth stages of potato (mm); Q is the amount

of soil water infiltration in the tillage layer or the amount of

groundwater recharge to the tillage layer in time period t (mm),

when the depth of the groundwater is greater than 2.5m, the value of

Q can be disregarded; F is the amount of surface runoff in time

period t (mm). In this experiment, there was no irrigation, no

runoff, and the groundwater was greater than 2.5m, so I, Q, and F

were all zero. Soil water consumption (WC, mm) was calculated

using the simplified Equation 4:

WC = DW+ P (4)
2.4.3 Determination of water consumption
intensity

The WCI (mm·d-1), also known as daily water consumption,

was determined using Equation 5 (Feng et al., 2019):

WCI = WC=T (5)

where T (d) is the number of days covered by the growth stages

of potato.

2.4.4 Determination of WUE
The WUE (kg ha-1·mm-1) was determined using Equation 6

(Wei et al., 2018):

WUE = DY=WC (6)

where DY (kg·ha-1) is the dry potato yield.
Frontiers in Plant Science 06
2.4.5 Determination of tuber yield
Before potato harvest, 15 plants were randomly selected from

each plot to evaluate key yield and quality parameters, including the

number of tubers per plant, weight of individual potatoes,

commercialization rate (CR) and tuber moisture content. Based

on the International Commercial Potato Quality Classification

Index (Chen et al., 2019a), potatoes were categorized into three

grades: grade 1, large potatoes (>150g); grade 2, medium potatoes

(75–150 g); grade 3, small potatoes (< 75g). Fresh tubers were dried

in an oven (105 ± 0.5 °C), and the water content of tubers was

calculated. The number of potatoes of each grade was counted and

weighed to calculate the commercialization potato rate (CR). which

was determined using the formula:

CR(% ) =≥ 75 g of tuber weight=the total output of tuber � 100%
2.5 Statistical analysis

W, WC, and daily WCI during each growing stage, tuber yield,

and WUE data were processed using the IBM SPSS Statistics

software package (Ver. 26.0, IBM SPSS Inc., Chicago, IL, USA).

The assumption of normality (Shapiro-Wilk test) and the

assumption of chi-square (Levene’s test) were verified (P > 0.05)

for all datasets prior to ANOVA. A one-way ANOVA was

conducted to assess the differences among treatments. After

confirming the significance of ANOVA, Duncan’s multiple range

test (DMRT) was used at P ≤ 0.05. Following statistical analysis,

Microsoft Excel (Ver. 2019, Microsoft, USA) was used for data

organization and prel iminary calculations. Graphical

representations of the results were created using Origin (Ver. 9.6,

Origin Lab, Northampton, MA, USA).
2.6 Economic analysis

All economic values are presented in US Dollars (USD) per

hectare. Conversions were made from original values in Chinese

Yuan (RMB) per mu using the average annual exchange rate for

2025 (1 USD=7.1 RMB) and the standard unit conversion (1 hectare

= 15 mu).

2.6.1 Plant guidelines
All the plant experiments were performed according to relevant

institutional, national, and international guidelines and legislations.
3 Results

3.1 Soil water storage in the 0–200 cm soil
layer

The mulching treatments significantly (P < 0.05) increased the

W in the 0–200 cm soil layer throughout the entire growth stage

(Figure 3). In the 2018 growing season, compared to the CK, the SM
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and PM treatments significantly (P < 0.05) increased the W by 5.3%

and 6.6%, respectively. Among the different mulching stages, the

increase in W followed the order: FSM (6.2%) > SSM (4.4%) and

FPM (7.3%) > SPM (5.8%). Similarly, in the 2019 growing season,

SM and PM significantly (P < 0.05) increased W by 8.1% and 10.2%

compared to CK, respectively. Compared with CK, the increase in

W during the different mulching stages was as follows: FSM (10.8%)

> SSM (4.3%) and FPM (15.3%) > SPM (5.0%).

When averaged across the two growing seasons, the W under

FSM, SSM, FPM, and SPM treatments was significantly (P < 0.05)

higher than CK, with increases of 9.0%, 4.3%, 11.3%, and 5.4%,

respectively. Overall, SM and PM increased W by 6.7% and 8.4%,

respectively, while fall mulching and spring mulching increased W

by 10.2% and 4.9%, respectively. In summary, fall mulching

demonstrated a greater effect on W compared to spring

mulching, and PM outperformed SM in both the 2018 and 2019

growing seasons.
3.2 Water consumption at different potato
growth stages

The mulching treatments significantly influenced water

consumption at each growing stage of potato (P < 0.05)

(Figure 4). In the 2018 growing season, compared to CK, the

FSM and SSM treatments significantly increased water

consumption during the period from planting to budding stages

by 22.3% and 19.2% (P < 0.05), respectively. Among the PM
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treatments, only FPM significantly (P < 0.05) increased water

consumption compared to CK (17.6%). During the period from

budding to tuber expansion stages, FPM and the SPM significantly

(P < 0.05) improved water consumption by 62.9% and 32.6%,

respectively, compared to CK. Among the SM treatments, only FSM

significantly (P < 0.05) increased water consumption compared to

CK (32.6%). Additionally, FSM and SPM significantly (P < 0.05)

improved the water consumption during the period from tuber

expansion to maturity stages by 11.4% and 12.7%, respectively,

compared to CK.

In the 2019 growing season, compared to CK, the FSM, SSM,

FPM, and SPM treatments significantly (P < 0.05) reduced the water

consumption during the period from planting to budding stages by

12.9%, 36.3%, 7.5%, and 27.8% on average, respectively. The SSM

treatment significantly (P < 0.05) increased water consumption

during the period from budding to tuber expansion stages;

compared to CK (16.4%), while no significant differences (P >

0.05) were observed under other treatments. During the period

from tuber expansion to maturity stages, FSM and FPM

significantly (P < 0.05) increased water consumption compared to

CK, by 26.6% and 22.2%, respectively. However, no significant

differences (P > 0.05) were observed between the spring mulching

treatments and CK during these stages.

When comparing mulching stages across the two growing

seasons, water consumption under FPM (11.1%) was higher than

under SPM (3.1%) compared to CK. Additionally, SSM and SPM

significantly (P < 0.05) reduced water consumption between the

planting and budding stages by 8.2% and 9.8%, respectively,
FIGURE 3

Soil water storage capacity of 0–200 cm soil during the entire potato growth stage in 2018,2019 and averaged over both growing seasons. FSM,
maize straw strip mulching in fall; SSM, maize straw strip mulching in spring; FPM, large ridges with black plastic film mulching and small furrows in
fall; SPM, large ridges with black plastic film mulching and small furrows in spring; CK, traditional bare-land planting without mulching. Identical
lowercase letters indicate no significant differences (P > 0.05, duncan’s multiple range test) among potato treatments in a given year. Bars represent
the standard error.
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compared to CK. During the period from budding to tuber

expansion stages, water consumption under SSM (12.3%) was

higher than under FSM (3.1%), while water consumption under

FPM (20.3%) was higher than that under SPM (13.1%). However,

no significant differences (P > 0.05) were observed between the

mulching treatments and CK during the period from tuber

expansion to maturity stages.
3.3 Water consumption intensity at
different potato growth stages

Under the mulching treatments, the WCI of potato during the

entire growth stage exhibited a generally increasing trend (Figure 5). In

the 2018 growing season, during the period from planting to budding

stages, compared to CK, FSM, SSM and FPM significantly (P < 0.05)

increased the mean WCI by 0.3, 0.3, and 0.4 mm·d-1, respectively. In
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contrast, no significant (P > 0.05) difference was observed between

SPM and CK. During the period from budding to tuber expansion

stages, FSM and FPM significantly (P < 0.05) increased theWCI by 0.7

mm·d-1 and 0.8 mm·d-1, respectively, compared to CK, while no

significant (P > 0.05) differences were observed between SPM and

CK. During the period from tuber expansion to maturity stages, FSM

significantly (P < 0.05) reduced the WCI by 0.5 mm·d-1, compared to

CK, whereas SPM significantly (P < 0.05) increased it by 0.6 mm·d-1.

No significant (P > 0.05) differences were observed between SSM, FPM,

and CK during this stage.

In the 2019 growing season, during the period from planting to

budding stages, FSM, SSM and SPM significantly (P < 0.05) reduced

the mean WCI compared to CK, by 0.3, 0.7, and 0.5 mm·d-1,

respectively. The SSM treatment significantly (P < 0.05) increased

the WCI during the period from budding to tuber expansion stages

compared to CK (0.4 mm·d-1), while no significant (P > 0.05)

differences were observed between FSM, FPM, SPM, and CK.
FIGURE 4

Water consumption at different growth stages of potato in 2018, 2019 and average over both growing seasons. SW~BD, during the period from
planting to budding stages; BD~TE, during the period from budding to tuber expansion stages; TE~MT, during the period from tuber expansion to
mature stages. FSM, maize straw strip mulching in fall; SSM, maize straw strip mulching in spring; FPM, the large ridges with black plastic film
mulching and small furrows in fall; SPM, large ridges with black plastic film mulching and small furrows in spring; CK, traditional bare-land planting
without mulching. Identical lowercase letters indicate no significant differences (P > 0.05, duncan’s multiple range test) among potato treatments in
a given year. Bars represent the standard error.
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during the period from tuber expansion to maturity stages,

compared with CK, FSM and FPM significantly (P < 0.05)

increased the WCI by 0.5 mm·d-1 and 0.6 mm·d-1, respectively,

compared to CK, with no significant difference (P > 0.05) between

the spring mulching treatments and CK.

Averaged across the two growing seasons, compared to CK,

SSM and SPM significantly (P < 0.05) reduced the WCI between the

planting and budding stages by 0.2 mm·d-1 and 0.2 mm·d-1,

respectively. During the period from budding to tuber expansion

stages, SM and PM significantly (P < 0.05) improved the meanWCI

by 0.3 mm·d-1 and 0.4 mm·d-1, respectively. The increase in mean

WCI for the different mulching stages compared to CK followed the

order: FSM (0.4 mm·d-1) > SSM (0.3 mm·d-1) and FPM (0.50 mm·d-

1) > SPM (0.3 mm·d-1). Additionally, the PM significantly (P < 0.05)

increased the mean WCI by 0.3 mm·d-1 during the period from

tuber expansion to maturity stages compared to CK.

SW~BD, SW~BT, during the period from planting to budding

stages; BD~TE, during the period from budding to tuber expansion;

TE~MT, during the period from tuber expansion to mature. FSM,

maize straw strip mulching in fall; SSM, maize straw strip mulching in

spring; FPM, large ridges with black plastic film mulching and small

furrows in fall; SPM, large ridges with black plastic film mulching and

small furrows in spring; CK, traditional bare-land planting without

mulching. Identical lowercase letters indicate no significant differences

(P > 0.05, duncan’s multiple range test) among potato treatments in a

given year. Bars represent the standard error.
3.4 WUE and yield

Mulching treatments significantly (P < 0.05) increased the fresh

yield, dry yield, and WUE of potato (Table 2). In the 2018 growing

season, compared to the CK, SM and PM significantly (P < 0.05)

increased fresh potato yield by 15.8% and 33.3%, dry potato yield by

15.7% and 32.1%, and WUE by 9.3% and 18.7%, respectively. In

2019, the SM and the PM significantly (P < 0.05) increased fresh

potato yield by 13.7% and 18.3%, and WUE by 9.1% and 10.4%,
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respectively. When comparing the treatments, the increase in fresh

yield followed the order: FPM (35.3%) > SPM (31.2%) > FSM

(16.1%) > SSM (15.4%) in 2018, and FPM (27.1%) > FSM (19.5%) >

SPM (9.6%) > SSM (8.0%) in 2019.

The yield improvement under mulching was primarily attributed

to significant increases in tuber weight per plant and single tuber

weight. In the 2018 growing season, compared to CK, FPM and SPM

significantly (P < 0.05) increased single tuber weight by 36.2% and

38.3%, respectively. Similarly, SPM, FPM, FSM, and SSM significantly

(P < 0.05) increased tuber weight per plant by 16.1%, 15.4%, 35.4%,

and 31.3%, respectively, and improved the commodity rate by 15.4%,

12.8%, 6.7%, and 6.3%, respectively. In the 2019 growing season,

compared to CK, all mulching treatments significantly (P < 0.05)

increased single tuber weight and tuber weight per plant by 17.4% and

16.0%, respectively. Additionally, SPM, FPM, FSM, and SSM

significantly (P < 0.05) increased the commercialization potato rate

by 15.4%, 12.8%, 6.7%, and 6.3%, respectively.

Averaged across the two growing seasons, SM and PM

significantly (P < 0.05) increased fresh potato yield by 14.7% and

25.1%, dry potato yield by 12.0% and 22.3%, and WUE by 9.2% and

14.3%, respectively. The increase in fresh potato yield, dry potato

yield, and WUE under PM treatments was greater than under SM

treatments. Furthermore, fall mulching outperformed spring

mulching in enhancing these variables. The results indicated that

the increase in single tuber weight played a crucial role in improving

commercialization potato rate and overall yield of potato.
3.5 Correlation between stage water
consumption, water consumption intensity,
and potato yield

As illustrated in Figure 6, significant relationships were

observed between WC, WCI, WUE, and yield. Fresh potato yield

exhibited significant positive correlations withWC andWCI during

the period from budding to tuber expansion stages (r = 0.805–0.807,

P < 0.01) and during the period from the tuber expansion to
FIGURE 5

Water consumption intensity at different growth stages of potato in 2018, 2019 and averaged over both growing seasons. SW~BD, SW~BT, during
the period from planting to budding stages; BD~TE, during the period from budding to tuber expansion; TE~MT, during the period from tuber
expansion to mature. FSM, maize straw strip mulching in fall; SSM, maize straw strip mulching in spring; FPM, large ridges with black plastic film
mulching and small furrows in fall; SPM, large ridges with black plastic film mulching and small furrows in spring; CK, traditional bare-land planting
without mulching. Identical lowercase letters indicate no significant differences (P > 0.05, duncan's multiple range test) among potato treatments in
a given year. Bars represent the standard error.
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maturity stages (r = 0.550–0.618, P < 0.05). Similarly, WUE showed

significant positive correlations with the water consumption during

the period from budding to tuber expansion stages (r = 0.641, P <

0.05) and with WCI during the period from the tuber bulking to

maturity stages (r = 0.628, P < 0.05).

Furthermore, water consumption during the middle and late

growing stages (BD-TE and TE-MT) demonstrated significant

positive correlations with single tuber weight (r = 0.692–0.724, P

< 0.01), tuber weight per plant (r = 0.564–0.808, P < 0.01), and the

commercialization potato rate(r = 0.644–0.720, P < 0.01). These

results indicated that the higher water consumption during these

critical growth stages contributed to increased tuber yield and

WUE. Additionally, mulching treatment enhanced W by

effectively reducing ineffective water consumption during the

middle and late stages. This optimization of water use promoted

greater weight per fresh tuber, tuber weight per plant, and

commodity rate, ultimately improving potato yield and quality.
4 Discussion

In semi-arid rainfed areas of China, soil water and precipitation

are the primary sources of water for potato growth (Chang et al.,
Frontiers in Plant Science 10
2020). Mulching practices, such as straw mulch and plastic mulch,

play a crucial role in enhancing soil water retention and improving

the utilization efficiency of precipitation. These practices inhibit soil

evaporation, optimize the soil–water environment, and significantly

promote potato growth (Dong et al., 2022; Sabet et al., 2022; Singh

et al., 2015). In this study, In this study, both enhanced the soil

water supply capability and increased soil water storage in rainfed

agricultural areas. This improvement ensured more soil water was

available for potato growth throughout the root zone. The

effectiveness of mulching can be attributed to its ability to

enhance precipitation infiltration, prevent soil water evaporation,

and facilitate the utilization of water stored in deeper soil layers

(Chen et al., 2019b; Yang et al., 2019).

Under the ridge-furrow system with full plastic film mulching,

rainwater harvesting efficiency is significantly improved, soil

moisture consumption is reduced, and soil water storage is

substantially increased in the semi-arid areas of Northwest China

(Jiang and Li, 2015; Xie et al., 2020). In this study, both SM and PM

increased soil water storage in the 0–200 cm soil layer during both

growing seasons. However, fall mulching demonstrated greater

benefits compared to spring mulching. This is likely because the

fall mulching effectively increases the precipitation utilization

efficiency (the proportion of rainfall converted to plant-available
TABLE 2 Changes in potato yield and water use efficiency under different treatments (2018–2019).

Year Treatment

Fresh
potato yield

Dry potato
Yield

weight per
fresh tuber

tuber weight
per plant

Commercial
potato rate

Water use
efficiency

(kg·ha-1) (kg·ha-1) (g) (g) (%) (kg·ha-1·mm-1)

2018

FSM 31878.7c 7866.4b 87.1b 759.0c 80.6b 21.0b

SSM 31693.0c 7817.2b 87.1b 754.6c 80.4b 20.9b

FPM 37176.5a 9161.2a 115.7a 885.2a 86.0a 23.0a

SPM 36052.2b 8886.3a 117.6a 858.4b 87.5a 22.6a

CK 27459.2d 6777.2c 85.0b 653.8d 73.9c 19.2c

CV (%) 11.8 11.8 16.8 11.8 6.6 7.1

2019

FSM 40040.0b 9114.4b 103.5b 762.7b 80.5b 24.3ab

SSM 36167.2c 8114.3c 103.4b 688.9c 80.2b 23.3b

FPM 42569.2a 9813.2a 118.4a 810.8a 85.1a 24.7a

SPM 36714.8c 8069.0c 116.0a 699.3c 87.1a 23.4b

CK 33497.7d 7913.2c 93.9c 638.1d 75.5c 21.8c

CV (%) 9.4 9.6 9.4 9.4 5.6 4.8

Average

FSM 35959.3b 8490.4b 95.3b 760.8b 80.6c 22.6b

SSM 33930.1c 7965.7c 95.2b 721.7c 80.3c 22.1b

FPM 39872.8a 9487.2a 117.0a 848.0a 85.6b 23.8a

SPM 36383.5b 8477.7b 116.8a 778.9b 87.3a 23.0ab

CK 30478.4d 7345.2d 89.5c 645.9d 74.7d 20.5c

CV (%) 9.8 9.4 12.8 9.9 6.1 5.6
Different lower letters indicate significant differences between treatments (P < 0.05).
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soil water), reduces soil water evaporation during the fall and winter

resting stages, and ensures more adequate soil water availability for

potato emergence (Qin et al., 2022).

In the rainfed semi-arid regions of Northwest China, relying

solely on natural rainfall often fails to meet the water demands of

crops during critical growth stages. Therefore, optimizing water

consumption patterns through mulching practices is essential to

ensure sufficient soil moisture and mitigate the risks of extreme

drought (Chai et al., 2022a; Chen et al., 2019a). Numerous studies

have demonstrated that mulching significantly improves water

consumption structure effectively by reducing evaporation and

enhancing WUE (Hou and Li, 2019; Zhao et al., 2019b; Zhao

et al., 2014). In this study, both straw mulch and plastic mulch

significantly modulated the soil water consumption pattern across

the two growing seasons. A key finding was that spring-applied

mulches (SSM and SPM) consistently reduced soil water

consumption during the early growth stage, while fall-applied

mulches (FSM and FPM), which had already conserved winter

precipitation, sometimes led to higher early-season soil water

consumption due to more available water. Crucially, all mulching

treatments tended to support higher soil water consumption during

the critical middle and later stages compared to CK. Consistent with
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our results presented in section 3.1, the PM system generally led to a

greater increase in soil water storage than the SM system. However,

the improvements under SM were also significant and contributed

to the enhanced yield. Fall mulching outperformed spring mulching

overall. This is primarily because fall mulching effectively retains

precipitation and reduces soil evaporation during the spring,

leading to better soil moisture conservation compared to spring

mulching (Tao et al., 2015).

Mulching practices effectively modify the crop growth

environment in rainfed agriculture (Zheng et al., 2021). For

instance, while ridge and furrow mulching systems reduce water

consumption (WC) during the early growth stages, they increase it

in the mid-stage, with no clear pattern observed later. Study has also

shown that combining plastic film mulching on ridges with straw

mulching in furrows significantly restrained soil evaporation,

remarkably enhanced plant transpiration (Zhang et al., 2020c).

These practices improve effective soil water storage by 12.4-

34.1%, increase potato yields by 1.0-27.4%, and boost WUE by

12.9-207.5% compared to non-mulched treatments (Amare and

Desta, 2021; Chen et al., 2019a; Qi et al., 2020; Singh et al., 2021).

Similar results were observed in the present study, SM and PM

increased dry potato yield by 12.0% and 22.3%, and WUE by 9.2
FIGURE 6

Correlation indexes between water consumption and potato yield (2018–2019) under different treatments. WC I, Soil water consumption during the
period from planting to budding stages; WC II, Soil water consumption during the period from budding stages tuber expansion; WC III, Soil water
consumption during the period from tuber expansion to mature stages; TCA, total water consumption amount in the growth stage; WCI I, soil water
consumption intensity during the period from planting to budding; WCI II, soil water consumption intensity during the period from budding to tuber
bulking; WCI III, soil water consumption intensity during the period from tuber expansion to mature stages; FY, fresh potato yield; DY, dry potato
yield; CR, commercialization potato rate; WUE, water use efficiency. * and ** indicate significant correlation at P < 0.05 and P < 0.01, respectively.
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and 14.3%, respectively. These improvements were achieved by

enhancing water consumption during the critical period from tuber

bulking to starch accumulation stages (by 7.7% and 16.7% for SM

and PM, respectively), which was supported by an overall increase

in seasonal soil water storage. Additionally, mulching significantly

reduced WCI before the budding and increased it after the tuber

expansion stage, easing water demand during the late growth stage

(Li et al., 2018). Similar results were observed in this study, probably

because in arid and semi-arid areas, mulching helps to reduce soil

surface evaporation and conserve soil moisture resulting in a lower

water consumption intensity in the early stages of growth. As the

crop grows, its water demand increases. However, mulch can

moderate the increase in water consumption intensity during the

later stages by regulating soil condition in the two growing seasons,

specifically, SSM and SPM increased the WCI 0.3 mm·d-1 and 0.4

mm·d-1 during the period from budding to tuber expansion stages

respectively, while decreased WCI by 0.2 mm·d-1 and 0.2 mm·d-1

during the period from planting to budding stages. The mechanism

behind this yield improvement is clearly explained by our

correlation analysis (Figure 6). We found that potato yield and

WUE were most strongly and positively correlated with water

consumption during the period from budding to tuber expansion

stages (BD-TE) and the tuber expansion to maturity stages (TE-

MT). This indicates that the primary benefit of both SM and PM

systems was not just in saving water, but in shifting the water supply

to these most critical growth phases, thereby promoting tuber

bulking and increasing single tuber weight and commodity rate

(Chen et al., 2019a), as shown in our results (Section 3.4).

Mulching cultivation is a widely adopted practice in the rainfed

semi-arid regions of Northwest China, proven to enhance crop

yields and water use efficiency (WUE) by improving soil moisture

conservation and utilization under limited rainfall (Dong et al.,

2018; Duan et al., 2021; Xiao et al., 2019). Consistent with previous

findings on ridge and furrow systems (Qin et al., 2014; Liang et al.,

2018), our study confirmed that both plastic film (PM) and straw

strip mulching (SM) create stable moisture conditions, promoting

seedling emergence, growth, and ultimately increasing tuber weight

and yield. This demonstrates that mulching facilitates the effective

collection and utilization of precipitation, raises soil moisture

content, and ensures water supply during key reproductive

periods, thereby supporting potato growth and yield

enhancement. Long-term research on maize aligns with this,

showing that mulching boosts yield and WUE by improving soil

water retention and precipitation use efficiency (Zhang et al., 2022).

Similarly, studies on potato confirm that PM and SM enhance total

water consumption by reducing soil evaporation and promoting

crop transpiration, ultimately improving yield and WUE in semi-

arid areas (Chang et al., 2020). However, some studies have

reported that SM has a greater effect than PM on increasing

potato tuber yield and WUE under dry conditions, particularly

when combined with fall ploughing after the autumn harvest (Hou

et al., 2020). This contrasts with the findings of this study, likely

because PM offers greater advantages in soil water conservation,

evaporation reduction, and rainwater harvesting under conditions
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of relatively sufficient rainfall. Mulching periods and mulching

methods together determine potato yield and WUE. The

generally superior performance of the PM system over the SM

system in this study can be attributed to the integrated ridge-furrow

design, which more effectively harvests rainwater and the

impermeable film that provides a robust physical barrier against

evaporation. The increase in fresh potato yield, dry potato yield, and

WUE under PM treatments was higher than that under SM

treatments. It is worth noting that the effectiveness of straw strip

mulching (SM) in this study may be affected by the continuous use

of the same batch of straw. It has been shown that repeated use of

the previous year’s straw can lead to a decrease in the mulching

effect (e.g., weakened moisture retention capacity, reduced stability

of the mulch layer, etc.) due to its partial decay and decomposition

(Zhao et al., 2019a). This factor may partly explain why the SM

treatment was less effective than the PM treatment in increasing

yields. In contrast, PM does not suffer from material degradation

and can maintain a more stable cover. Although PM performed

better in this trial, the sustainability advantage of SM should not be

overlooked. By returning straw to the field, SM can release soil

nutrients, thus saving fertilizer costs (Gao et al., 2022b); at the same

time, it avoids mulch contamination, and replacing mulch also

saves mulch costs, which is expected to save about 214 USD per

hectare. Although SM temporarily lagged behind PM in terms of

yield increase in the specific data of this study, its comprehensive

benefits in terms of environmental friendliness and resource

recycling were significant. In addition, some studies have found

that straw mulching may increase the occurrence of pests and

diseases (McNee et al., 2022), which was not confirmed in this

experiment, and straw strip mulching did not cause pest and disease

problems in Northwest China. Therefore, the choice between these

twomulching systems represents a trade-off. The PM system offered

higher immediate yield benefits, whereas the SM system provides a

sustainable and cost-effective alternative with significant

environmental benefits. Taken together, fall straw strip mulching

is expected to be an alternative to mulching with the potential to be

economical, green, and yield-enhancing at the same time.
5 Conclusion

Both straw strip mulching and plastic film mulching can

optimize the water consumption structure by reducing the water

consumption during the early growth stages of potato and

increasing it during the middle and later stages. Additionally, fall

mulching is more advantageous in improving potato yield and

water use efficiency. However, compared with plastic film mulching,

straw strip mulching not only reduces production costs, but also

avoids the problem of plastic film residue pollution. Straw strip

mulching did not significantly increase the risk of pests, diseases

and weeds in the practice of rainfed agriculture in the Northwest.

Therefore, considering yield, cost and environmental sustainability,

straw strip mulching is a productive, practical and environmentally

friendly mulching method for potato production in this region.
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CK traditional bare-land planting without mulching
Frontiers in Plant Scie
CR the commercialization potato rate
DY dry potato yield
WC Soil water consumption
FPM large ridges and small furrows with only ridges mulched with

black plastic film in fall
FSM straw strip mulching in fall
FY fresh potato yield
P precipitation
PM black plastic film mulching
PW per plant potato weight
h soil depth
nce 16
SM straw strip mulching
SPM large ridges and small furrows with only ridges mulched with

black plastic film in spring
SPW single potato weight
SSM straw strip mulching in spring
ΔW change in soil water storage
SWC soil water content
W soil water storage
WC water consumption
WCI water consumption intensity
WUE water use efficiency
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