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productivity based on
improved CASA model
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Net Primary Productivity (NPP) is a vital indicator for evaluating the carbon source
and sink capacities of ecosystems, significantly influencing assessments of
agricultural productivity and carbon cycle studies. Accurately estimating NPP in
the agricultural sector, however, remains challenging. This research addresses
the challenge by refining the estimation of the Fraction of Photosynthetically
Active Radiation (FPAR) within the CASA model, introducing a novel
methodology that significantly improves the accuracy of NPP estimation and,
when applied to remote sensing imagery covering a broad region, demonstrates
strong potential for large-scale crop NPP monitoring. We employed high-
resolution Sentinel-2 satellite imagery and the Recursive Feature Elimination
algorithm to extract FPAR-related features from 15 vegetation indices. The FPAR
was subsequently estimated using a Convolutional Neural Network, leading to a
dramatic decrease in the Root Mean Square Error (RMSE) from 0.2040 to 0.0020.
The prediction errors for the improved model ranged from 0.0001 to 0.0092,
with a mean absolute error (MAE) below 0.01. These values reflect the
distribution of absolute residuals and indicate a substantial enhancement in
accuracy over traditional methods. This improved FPAR estimation method
was subsequently integrated into the CASA model. Compared to field-
measured NPP data, the optimized model reduced the Mean Absolute
Percentage Error (MAPE) from 28.92% to 20.31%. The MAPE values across the
test samples ranged between 15% and 25%, indicating a significant improvement
in model reliability. The optimized CASA model performs well in estimating net
primary productivity (NPP) of crops, providing strong support for agricultural
decision-making and future research on large-scale productivity and
carbon cycling.

KEYWORDS

CASA model, crop monitoring, net primary productivity (NPP), Fraction of
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1 Introduction

Vegetation productivity plays a vital role in supporting human
life by providing food, raw materials, and energy, with edible crops
serving as the primary source of nutrition (Running, 2012). Net
Primary Productivity (NPP) (Zhao and Running, 2010; Tian et al,
2016) is a key metric of vegetation productivity, reflecting the
production potential of plant communities within their natural
environments, and serving as a crucial indicator for assessing
carbon sources and sinks within ecosystems (Zeng et al., 2023).
Accurate monitoring and estimation of NPP of crop vegetation is
essential for optimizing crop cropping structure and improving
agricultural yields (Myneni et al., 2001; Heinsch et al,
2006).Traditionally, NPP is measured by in situ observation,
which is accurate at a local scale but is operationally
cumbersome, resource consuming, and not applicable to large-
scale monitoring (Veroustraete et al., 2002; Wang et al, 2010;
Yang et al., 2017). Advances in remote sensing and data
processing have provided three main approaches for estimating
NPP: statistical models, process-based models, and light use
efficiency (LUE) models (Feng et al, 2007). Statistical models
extrapolate measured data based on climate correlations, but lack
stability and scalability (Net primary productivity in the terrestrial
biosphere: The application of a global model, 1994). Process-based
models incorporate plant physiological and ecological mechanisms
and can provide reliable estimates, but require a large number of
parameters and are therefore limited in spatial applicability
(Running et al,, 2004). The LUE model, which estimates NPP
based on the absorption of solar radiation by vegetation as well as
moderating factors, combines simplicity, adaptability, and
applicability, and is well suited for long-term and large-scale
remote sensing applications (Field et al., 1995).

The Carnegie-Ames-Stanford Approach (CASA) model is a
widely applied light-use efficiency model for estimating vegetation
NPP (Potter et al., 1993). The model suggests that NPP is influenced
by the quantity of photosynthetically active radiation (PAR) taken
in by vegetation and the effectiveness with which plants transform
this absorbed radiation into biomass. A key parameter within the
CASA model is the Fraction of Absorbed Photosynthetically Active
Radiation (FPAR) absorbed by vegetation (Cheng et al, 2014).
When incident PAR (400-700nm) reaches the top of the vegetation
canopy, a portion is reflected, a portion is absorbed by the
vegetation, and another portion is transmitted to the ground.
Only the PAR absorbed by the vegetation canopy contributes to
biomass accumulation. FPAR represents the ratio of PAR absorbed
by the canopy to the incident PAR (Gitelson et al., 2015). Accurate
estimation of FPAR is crucial for assessing NPP, as it directly affects
the amount of energy available for photosynthesis, thereby
influencing the overall productivity of the ecosystem.

Traditional methods estimate FPAR by leveraging the statistical
correlation between FPAR and spectral vegetation indices,
calibrating these indices with field-measured FPAR data.
However, these methods have limited spatiotemporal scalability,
and their accuracy depends on data from specific times and
locations. Another approach involves FPAR retrieval based on
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canopy radiative transfer models, but the computational demand
is significant, limiting its application on a large scale (Peng et al.,
2018; Liang et al., 2023). Wang et al. developed a 10-meter FPAR
algorithm for Sentinel-2 data by analyzing the correlation between
MODIS FPAR and surface reflectance from Sentinel-2 (Wang et al.,
2022). Fang et al. improved FPAR retrieval accuracy by analyzing
differences between red-edge and non-red-edge indices. Their
results demonstrated that the red-edge normalized difference
vegetation index and red-edge simple ratio vegetation index
achieved higher FPAR retrieval accuracy than the original CASA
model (Fang et al., 2021). Similarly, Gao et al. proposed a deep
learning-based algorithm for retrieving FPAR from MODIS visible-
band surface reflectance. The model, trained on simulated data,
enhances the inversion process while maintaining accuracy.
Validation against MODIS FPAR products and ground-based
measurements demonstrates its effectiveness, particularly in
regions lacking vegetation classification (Gao et al., 2020a).
Within the CASA model, FPAR estimation commonly relies on
statistical relationships with vegetation indices, such as NDVI and
RVI (Yang, 2022). However, these simple regression models fail to
fully exploit the rich information available in satellite data. Current
FPAR inversion methods face several challenges, such as regional
specificity and variability across different vegetation types, limiting
their general applicability. To address these limitations, this study
trains convolutional neural networks (CNNs) using a variety of
vegetation indices and FPAR data. The inclusion of multiple
vegetation indices, which encompass diverse information such as
soil background and moisture conditions, enhances the model’s
adaptability. CNNs, as a deep learning framework, excel at
automatically learning complex features from high-dimensional
data, making them well-suited for estimating FPAR from
vegetation indices derived from remote sensing imagery (Wang
et al, 2023). Compared to traditional methods, CNNs can more
effectively utilize the wealth of information in satellite data,
improving both the accuracy and efficiency of FPAR estimation
(Gao et al., 2020b; Alzubaidi et al., 2021; Wang et al., 2023).

This study seeks to accomplish the following primary objectives:
(1) To develop a deep learning model that enhances the accuracy of
FPAR estimation using high-resolution satellite imagery and
vegetation indices from different growth stages; (2) To integrate
the deep learning framework with the CASA model for evaluating
NPP estimation accuracy and validating the enhanced model’s
reliability; (3) To analyze the characteristics and driving factors of
NPP results. Through these efforts, we seek to improve the precision
and applicability of NPP estimation, advance large-scale monitoring
of crop NPP, and provide a scientific basis for agricultural
management and policy-making.

2 Materials and methods
Haicheng City in Liaoning Province, located at 122°39'18”E and
40°58'58"N, experiences a warm temperate climate with an annual

average temperature of 9.3 °C and total precipitation of 710.2 mm
per year (Li et al., 2020). The study area is located at the Shenyang
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Agricultural University experimental base in Gengzhuang Town,
Haicheng City. This region is characterized by high soil organic
matter content, with surface soil pH values ranging from 6.5 to 7.2
(Lal, 2004), indicating moderate soil fertility and suitability for plant
growth. The primary cereal crops in the study area are corn and
rice, with the cropping structure shown in Figure 1. The local
cropping system consists of a single annual crop cycle, where the
growing season lasts from April to October.

In 2022, we conducted field measurements of NPP in the study
area. The measurements were conducted at the Shenyang
Agricultural University experimental base in Haicheng City,
where we selected five rice fields and seven corn fields, with
specific latitude and longitude coordinates provided in Table 1.
Before crop harvest, plant samples were collected using sampling
plots measuring 1 meter by 1 meter. Within each plot, plants were
cut at ground level and sectioned into approximately 25 cm
segments. These samples were first heated in an oven at 105 °C
for 30 minutes to halt biological activity. The oven temperature was
then reduced to 65 °C and the samples were dried to a constant
weight. We then measured the dry weight of the plants in each plot
using a high-precision balance and ground the samples into a fine
powder for carbon content analysis. By multiplying the average
carbon content of the plants in each plot by their dry weight, we
calculated the organic matter content associated with plant growth
and reproduction, which represents the NPP (Ni, 2004). The
average NPP value for each experimental field was obtained by
averaging the NPP values from all plots within that field. Ultimately,
we calculated the average NPP values for 12 experimental fields,

10.3389/fpls.2025.1659047

offering data support for assessing the performance of the improved
CASA model.

Meteorological data for this study were sourced from the
Xiaomaiya Agricultural Meteorological Big Data System platform
(https://wheata.cn/). We downloaded monthly records of
temperature, precipitation and solar radiation for the study area
for the year 2022. Temperature was recorded in degrees Celsius (°
C), precipitation was measured in millimeters (mm), and solar
radiation data were initially provided in joules per square meter per
day (J/m?/day). For ease of analysis, the solar radiation data were
converted to megajoules per square meter per month (MJ/m?*/
month). The organized data for each month, including total
monthly radiation, average monthly temperature, and monthly
precipitation, along with the corresponding latitude and longitude
information, were imported into the ArcGIS platform in tabular
format. Kriging interpolation, a geostatistical method that accounts
for spatial correlation, was employed to process the data, generating
more scientifically accurate and realistic interpolation results (Li
et al., 2023). This approach generated monthly aggregates of solar
radiation, average temperatures, and precipitation data for each
pixel within the study area.

This study employs Sentinel-2 satellite imagery as the main
source of remote sensing data (Drusch et al, 2012). Sentinel-2
provides high-resolution multispectral images across 13 spectral
bands with spatial resolutions of 10 meters, 20 meters, and 60
meters (Immitzer et al., 2012). Sentinel-2 imagery can be accessed
via the Copernicus Open Access Hub (https://browser.dataspace.
copernicus.eu). The mission comprises two satellites, Sentinel-2A
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FIGURE 1

Overview of the Study Area.(The cropping structure is shown, where green diagonal hatching represents rice fields and brown diagonal hatching

represents corn fields).
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TABLE 1 Latitude and longitude coordinates of corn and rice sampling
points.

ID Crop type Longitude (°E) = Latitude (°N)
1 corn 122.726279 40.973931
2 corn 122.726421 40.969247
3 corn 122.726750 40.968754
4 corn 122.727033 40.967275
5 corn 122.727174 40.969740
6 corn 122.726892 40.970726
7 corn 122.726609 40.966289
8 rice 122.725007 40.974670
9 rice 122.725290 40.973684
10 rice 122.725479 40.975656
11 rice 122.725667 40.972698
12 rice 122.725102 40.972205

and Sentinel-2B, which together ensure a 10-day revisit period.
When operating in tandem, the revisit period is reduced to 5 days,
providing enhanced temporal resolution. Additionally, Sentinel-2
includes three bands in the red-edge spectrum, which enhances its
utility for agricultural monitoring (d’Andrimont et al., 2020). Due
to its excellent spatiotemporal resolution and extensive spectral
coverage, Sentinel-2 data are used as the primary input for the
CASA model in this study, facilitating high-precision crop
monitoring and comprehensive analysis of NPP (Wulder
et al., 2012).

This study aims to enhance the accuracy of FPAR and NPP
estimations by refining the FPAR parameter estimation method

15 Vegetation
1 indexs
I

[N
Sentinel-2 |y ||

data ; FPAR dataset

Solar APAR
radiation

data
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Temperature
data

Rainfall
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Input Datasets

FIGURE 2
Workflow of this study’s methodology.
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within the CASA model. The technical workflow is illustrated in
Figure 2. To achieve this, we first utilized Sentinel-2 satellite
imagery, along with data on solar radiation, temperature, and
precipitation. We then compiled a dataset consisting of 15
vegetation indices related to crops and their corresponding FPAR
values for training a CNN regression model. A feature selection
method based on recursive feature elimination was used to identify
the optimal set of indices, which was then applied to train the CNN
model. The trained model was subsequently applied to estimate
FPAR. We integrated the model-predicted FPAR results with solar
radiation, precipitation, and temperature data, which were then
input into the CASA model to obtain optimized NPP results.
Finally, we validated the CNN model’s FPAR estimates and
compared the improved CASA model’s NPP results with field-
measured NPP data. Further analysis was conducted on the NPP
estimation results for rice and corn.

To identify vegetation indices relevant to crop FPAR
estimation, this study selected 15 variables for FPAR inversion.
These include the Atmospherically Resistant Vegetation Index
(ARVI), Difference Vegetation Index (DVI), Enhanced Vegetation
Index (EVI), Global Environment Monitoring Index (GEMI),
Green Normalized Difference Vegetation Index (GNDVI),
Modified Soil Adjusted Vegetation Index (MSAVI), Normalized
Difference Index (NDI45), Normalized Difference Vegetation Index
(NDVI), Perpendicular Vegetation Index (PVI), Ratio Vegetation
Index (RVI), Red-Edge Inflection Point Index (REIP), Soil Adjusted
Vegetation Index (SAVI), Transformed Normalized Difference
Vegetation Index (TNDVI), Transformed Soil Adjusted
Vegetation Index (TSAVI), and Weighted Difference Vegetation
Index (WDVI). Among them, EVI and GEMI are notable for their
proven significant advantages in reducing background effects and
improving the accuracy of FPAR estimates. The EVI was developed
by Dai Liang Peng to improve upon traditional vegetation indices
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like NDVI by minimizing atmospheric influences and surface
reflectance variations. This index has demonstrated enhanced
sensitivity in capturing vegetation dynamics, leading to more
accurate estimates of the FPAR. Additionally, the GEMI, based on
research by Leolini, demonstrated optimal performance in
estimating FPAR for olive trees during arid periods with low
grass cover (Leolini et al., 2022).

To obtain the 15 vegetation indices, this study first resampled
Sentinel-2 Level-2A data from the Copernicus Open Access Hub
(https://dataspace.copernicus.ceu/), covering the crop growing season
from April to October 2022 with minimal cloud cover. These data
were subsequently resampled on the SNAP platform by bilinear
sexual interpolation to obtain a uniform 10 m spatial resolution.
This resampling process standardized the spatial resolution of the
various bands to 10 meters. Next, the Band Math tool in ENVI was
employed to compute the 15 commonly used vegetation indices,
with their calculation formulas provided in Table 2 (Srivastava et al.,
2014; Sonobe et al., 2018; Kumar et al., 2022).

Meanwhile, a biophysical processor tool was used in the
Sentinel Application Platform (SNAP) to generate FPAR data at
10 m resolution. The processor uses a neural network trained on a
synthetic database generated by the radiative transfer model to
estimate three key biophysical variables: leaf area index (LAI),
photosynthetically active radiation absorption ratio (FPAR), and
vegetation cover ratio. The database accurately modelled canopy
reflectance within the Sentinel-2 spectral band and was trained
separately for the S2A and S2B sensors to account for their unique
spectral response characteristics. According to the SNAP
documentation, the FPAR neural network achieved high accuracy,
with R-squared (R?) values of 0.92 and 0.91 for S2A and S2B,
respectively, and an Root Mean Square Error (RMSE) value of 0.072
for each (Weiss and Jay). These results indicate that the processor is
capable of generating reliable and high-quality FPAR estimates. In
this study, the FPAR derived from SNAP is used as the reference
data for training CNN model.

In order to build a robust FPAR inversion model, we calculated
15 vegetation indices from the resampled Sentinel-2 data. To reduce
redundancy and improve model performance, we used the recursive
feature elimination (RFE) algorithm to rank and select the most
relevant indices (Jeon and Oh, 2020). RFE iteratively removes
features that contribute the least to model performance and
retains only those features that significantly improve prediction
accuracy. The formulas for these indices are listed in Table 2.

To estimate FPAR, three machine learning models (CNN,
GBDT, and XGBoost) were constructed. The performance of each
model was evaluated using four metrics: R?>, MSE, EVS, and MAE.

Compared to tree-based models, which are good at dealing with
structured data and feature interactions, convolutional neural
networks show superior ability in capturing spatial-style and non-
linear relationships, making them more suitable for processing
high-dimensional remote sensing data (Sagi and Rokach, 2021).

The CNN architecture shown in Figure 3 contains an input
layer, three convolutional layers, three pooling layers, a Dropout
layer, three fully connected layers, and finally a softmax activation
function. The data fed into the CNN consisted of 2,756 vegetation
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TABLE 2 Formulas for standard vegetation Indices (where B2, B4, B5,
B7, B8, and B8A refer to Sentinel bands; a denotes the soil line intercept;
b indicates the soil line slope; X is the factor used to reduce soil noise;
and L is the calibration factor).

Index name Definition of indices

ARVI (Huete et al., B8 — B4 -2 x (B4 - B2)
1997) BS +B4—2 x (B4 - B2)

DVI (Gunathilaka, 2021) B8 - B4

B8 — B4

EVI (Huete et al., 1997) 2.5 %
B8+6xB4-75xB2+1

B4 -0.125

GEMI (Pinty and (nx(1-0.25xn) 1 Ba )n =
Verstraete, 1992) 2 x (B8A® — B4%) + 1.5 x B8A +0.5 x B4
B8A +B4+0.5
GNDVI (Lobell and B7 - B3
Asner, 2003) B7 + B3

MSAVI (Chen et al., 2% B8+1— \/(2 X BS+1)’ -8 x (B8 B4)

2010) 2
NDI45 (Delegido et al., B5 - B4
2011) B5 + B4
NDVI (Tucker, 1979) B8 - B4
B8 + B4
PVI (Richardson and BS—axB4-b
Wiegand, 1977) e /a2 + 1
RVI (Gupta, 1993) B8
B4
REIP (Delegido et al., 205435 (34 + B7 B5
2011) 2 B6 - B5
SAVI (Baret and Guyot, (+1) B8 — B4
1991) T RSy Bt L
TNDVI (Baret et al., BS — B4 05
1989) BS+B4

TSAVI (Baret et al.,
1989)

sX (B8 —sx B4—a)
axB8+Bd—axs+Xx(l+s?)

WDVI (Clevers, 1989) B8 —a x B4

index samples selected by the RFE, which had been normalized
according to the FPAR values (Alzubaidi et al., 2021).The dataset
was divided into training and test sets in a ratio of 7:3 and was
subjected to 10 training cycles to ensure model convergence.

In order to improve the accuracy and efficiency of FPAR
estimation, a convolutional neural network (CNN) model was
constructed and optimized with a combination of grid search and
Bayesian optimization techniques. The optimized CNN architecture
consists of three convolutional layers, each with 16, 32 and 64 filters
respectively, each with a kernel size of 2. Training was performed
using an Adam optimizer with a learning rate of 0.001. The mean
squared error (MSE) was used as the loss function. To reduce
overfitting, a Dropout layer (ratio = 0.3) was added before the fully
connected layer, and 30% of the neurons were randomly deactivated
during training. Table 3 shows the detailed configuration of the
CNN model and hyperparameters. The final model achieves high
predictive performance on the validation and test sets while
maintaining computational efficiency.
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CNN model architecture.

The CASA model estimates NPP based on two key variables:
absorbed photosynthetically active radiation (APAR) and actual light
use efficiency (LUE) (Equation 1) (Yu et al,, 2009). In the modified
CASA model, FPAR is predicted by the method described in Section
2.3.2, whereas the original CASA model derives FPAR based on the
empirical relationship between NDVI and RVI vegetation indices.
APAR represents the absorbed photosynthetically active radiation per
unit area, and is determined by surface solar radiation and vegetation
FPAR (Equation 2).

NPP(x,t) = APAR(x,t) X £(x,1) (1)

TABLE 3 Configuration and optimized parameters of the CNN model.

Parameter Value

Input Features

Conv Layers & Filters

15 Vegetation Indices

3 layers (16, 32, 64 filters)

Kernel Size
Dropout Rate
Optimizer
Loss Function

Evaluation Metrics

2
0.3
Adam (Ir = 0.001)
MSE

R?, MSE, MAE, EVS

Optimization Method

Grid Search + Bayesian Tuning

Frontiers in Plant Science

APAR(x,t) = SOL(x,t) x FPAR(x,t) x 0.5 (2)

Changes in actual LUE were mainly influenced by temperature
and water stress Equation 3). The temperature stress factors Tel and
Te2 correspond to the effects of low and high temperatures,
respectively, while Werep represents the effect of water availability.
The maximum light use efficiency (Emax) reflects the optimum
growing conditions and varies with vegetation type; in this study, it
was set at 0.389 g C/M]J for the crop in the study area (Yu et al., 2009).

e(x,t) = Te(x, 1) X Tep(x, 1) X W (X, T) X € 3)

To ensure that the NPP estimates reflect the crop growing
season, data from April to October were used and vegetation data
outside this period were excluded. As a result, the CASA model
combines factors such as light, temperature and humidity to
simulate vegetation productivity. The proposed improvements
improve the accuracy of the model under variable environmental
conditions and support ecosystem productivity studies by
combining remotely sensed data and ground-based observations.

Model performance was assessed using five metrics: R* (Equation
4), Mean Squared Error (MSE, Equation 6) Explained Variance Score
(EVS, Equation 5), Mean Absolute Error (MAE, Equation 7), and
Mean Absolute Percentage Error (MAPE, Equation 8). R’ (Equation 4)
measures the proportion of the variance in the dependent variable that
is explained by the independent variable, and ranges from 0 to 1, with
higher values indicating a better fit. Higher values indicate a better fit.
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EVS (Equation 5) assesses the consistency of the predictions, also
ranging from 0 to 1 Higher values indicate greater explanatory power.
These metrics complement each other, with R* (Equation 4) reflecting
the total explained variability and EVS (Equation 5) reflecting the
consistency of the predictions with the observations.

R2=1- 2,-(}7#;"1)2

S Gon? )
_ Var(yi=y i)
EVS=1- Var(y) (5)

MSE (Equation 6) and MAE (Equation 7) quantify prediction error
in different ways. MSE (Equation 6) calculates the mean of the squared
difference between the predicted and observed values, and is therefore
more sensitive to large deviations, and is expressed in squared units. In
contrast, MAE (Equation 7) calculates the mean of the absolute errors,
maintaining the same units as the observations and thus providing a
more intuitive interpretation. MAPE (Equation 8) expresses the
prediction errors as a percentage, allowing for comparisons that are
not scale-dependent. A value of 0%for MAPE (Equation 8) indicates a
perfect prediction, whereas a value greater than 100 per cent suggests
that the prediction is performing poorly. Together, these metrics provide
a comprehensive assessment of the predictive accuracy of the model.

MSE = > (y; -5 6)
MAE:%ZD’:“?:“ 7)
MAPE=1% y—";y"' ®)

3 Results

3.1 FPAR estimation results based on the
CNN learning model

This study performed a correlation analysis between vegetation
indices and FPAR for different months, with the results presented in
Table 4. The results of the study showed that the highest and most
stable correlation was found between SAVI and FPAR, which was
old enough to adjust soil brightness and reduce background eftects
(McDonald et al., 1998; Zhu et al., 2014). However, further feature
selection analyses showed that metrics such as GEMI, NDI45 and
RVI contributed more significantly to model performance,
highlighting that correlation does not necessarily equate to the
greatest predictive importance during training.

The prediction results of the CNN regression model for FPAR are
presented in Table 5. The FPAR simulated by the model matches very
well with the test set data. It is worth noting that the MAE and MSE
were higher in July compared to other months (Figure 4). This is
mainly due to the localized cloud cover in the Sentinel-2 imagery in
July, which introduces noise into the vegetation index calculation and
reduces the prediction accuracy. Overfitting was ruled out as the

Frontiers in Plant Science

07

10.3389/fpls.2025.1659047

TABLE 4 Correlation analysis between FPAR and vegetation indices for
different months.

Veiggitg;ison May June July August September
ARVI 097 093 0.96 0.79 0.97
DVI 0.94 0.95 0.97 0.89 0.93
EVI 0.97 0.98 0.09 0.63 0.94
GEMI 091 091 0.65 0.84 0.89
GNDVI 0.81 0.92 0.96 0.86 0.80
MSAVI 097 0.98 0.98 0.98 0.95
NDI45 0.79 0.65 0.80 0.79 0.80
NDVI 0.99 0.98 0.97 0.86 0.97
PVI 0.98 0.96 073 0.92 0.94
REIP 0.01 0.41 -0.01 0.34 0.32
RVI 0.98 0.96 0.94 0.87 0.61
SAVI 097 0.99 0.98 0.98 0.97
TNDVI 0.98 0.98 0.96 0.86 0.97
TSAVI 0.99 1 0.55 0.84 -0.03
WDVI 0.98 0.97 073 0.92 0.94

difference in MSE between the training and test sets was less than
5%, while the addition of Dropout and L2 regularization only slightly
reduced the MAE by 2% in July, confirming that the elevated error was
mainly due to data noise. Overall, the CNN model demonstrated
significant reliability and superiority in FPAR estimation.

Analysis of the best feature combinations identified by the
Recursive Feature Elimination (RFE) algorithm shows that DVI,
GEMI, NDI45 and RVI are consistently included in the best set of
features, suggesting that their importance extends beyond simple
correlation ranking. To further validate these results, this study
compares the CNN regression model’s FPAR predictions with those
from the original CASA model. In the original CASA model, FPAR
is estimated using the statistical relationships between NDVI and
RVI. We compare FPAR results obtained from these statistical
relationships with those calculated using radiative transfer models,

TABLE 5 CNN model training results for different months.

Month R? RMSE EVS MAE
April 0.84 0.0009 0.84 0.0057
May 0.95 0.0003 0.98 0.0137
June 0.98 0.0003 0.99 0.0127
July 0.74 0.0092 0.90 0.0830
August 0.98 0.0009 0.98 0.0229
September 0.99 0.0001 0.99 0.0058
October 0.90 0.0020 0.94 0.0315
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Monthly MAE and MSE of CNN model predictions for FPAR from April to October.

and compute four evaluation indices, as shown in Table 6.
According to the analysis in Table 5, the CNN model yields an
average RMSE of 0.0020 and an average MAE of 0.0250, whereas
the original CASA model shows an average RMSE of 0.2040 and an
average MAE of 0.1984. The comparison of FPAR results between
the CNN model and the original CASA model is illustrated in
Figure 5. Except for a few months, the CNN model demonstrates a
significant reduction in both RMSE and MAE. Specifically, the
MAE for July from the CNN model is higher than that of the
original CASA model, which may be due to spectral information
errors caused by cloud cover. These results indicate that the CNN
model developed in this study provides high accuracy and reliability
in FPAR predictions (Ju and Roy, 2008; Zhu et al., 2010).

3.2 FPAR NPP estimation results based on
the improved CASA model

This study gathered 12 sets of actual NPP data with estimates
from the improved CASA model, the original CASA model, the

TABLE 6 Comparison of original FPAR estimates and actual FPAR for
different months.

Month R2 RMSE EVS MAE
April 0.52 0.5239 0.85 0.5237
May 0.68 0.2262 0.92 0.2255
June 0.80 0.1404 0.93 0.1378
July 0.90 0.0458 0.96 0.0338
August 0.95 0.0709 0.95 0.0615
September 0.72 0.0982 0.55 0.0869
October 0.73 0.3233 0.76 0.3198
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Geographic Remote Sensing Ecological Network (http://
www.gisrs.cn), and the model enhanced by Professor Wenquan
Zhu (Zhu et al, 2007). As shown in Figure 5, Table 7, and the
accompanying analysis, the improved CASA model has a MAPE of
20.31%, which is lower than the original CASA model’s 28.92%, and
significantly better than the 68% and 70.55% of the other two
sources. Therefore, the MAPE of the improved CASA model is
8.61% lower than that of the original model, which indicates that
the estimation error is smaller and the precision and reliability are
higher. The higher error observed in the geo-remote sensing
ecological network dataset and Zhu augmented model may be
due to the fact that these data sources are less suitable for
estimating crop NPP in the study area.

Using the improved CASA model for the study area produced
the NPP results displayed in Figure 6 (a). The distribution of NPP
values within the study area is broad, ranging from a minimum of
237.2 gC/m’/year to a maximum of 891.1 gC/m?/year, with an
average of 535.3 gC/m?/year. Higher NPP values are generally
found in the wooded areas adjacent to farmland, ranging from
680 to 890 gC/m*/year, while crop NPP ranges from 360 to 680 gC/
m?/year. This difference is mainly attributed to the well-developed
root systems of trees and their ability to store large amounts of
carbon in their trunks, branches, and roots, whereas crop biomass is
mainly concentrated in the harvested parts. These characteristics
enable forests to accumulate more organic matter each year,
resulting in higher NPP values (Myneni et al., 2001).

3.3 Analysis of NPP results for different
crops

In this study, carbon content data for corn and rice samples
were obtained through field NPP experiments. The average carbon
content of corn samples was 46.09%, while that of rice samples was
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Comparison of original FPAR calculation methods and CNN model results: (a) R?, (b) Explained Variation Score, (c) Mean Absolute Error, (d) Root

Mean Squared Error.

41.37%. These data provide a solid foundation for calculating and
analyzing vegetation NPP.

Comparisons between the measured NPP results and those
estimated by the improved model revealed that the average absolute
error for corn NPP estimates decreased by 29% with the improved
model. This substantial reduction in error indicates that the revised
model more accurately captures the growth characteristics and
productivity changes of corn. For rice, the average error was
reduced by 5.79% with the improved model. Although this

TABLE 7 Comparison of NPP estimation accuracy (MAPE) of different
models.

Model MAPE (%)

Improved CASA model 20.31
Original CASA model 28.92
Geographic RS Ecological Network 70.55
Zhu’s enhanced CASA model 68.00

Frontiers in Plant Science

improvement is relatively modest, it still demonstrates the
model’s adaptability and effectiveness in handling different
crop types.

In order to improve the regression accuracy of FPAR estimation
in general, this study developed a CNN-based model and compared
its performance with that of Snot Boosted Decision Tree (GBDT)
and Extreme Gradient Boosting (XGBoost). These models were
evaluated by metrics such as R? mean square error (MSE),
explained variance score (EVS) and mean absolute error (MAE).
The comparison results are summarized in Table 8 and show that
the CNN model achieves the highest accuracy (R? = 0.98) and the
least prediction error (MSE = 0.0003, MAE = 0.0127),
outperforming GBDT and XGBoost.

Further analysis of the NPP data for corn and rice showed that
in the study area, rice NPP ranged from 376.3 to 644.1 gC/m?/year,
with an average of 503.9 gC/m*/year. In contrast, corn NPP ranged
from 413.3 to 668.5 gC/m?/year, with an average of 526.0 gC/m?*/
year. However, based on the measured NPP results, the average
NPP for corn was 723.8 gC/m*/year, and for rice, it was 577.1 gC/
m?*/year. This discrepancy may be attributed to corn’s higher
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(a) Improved CASA model NPP result, (b) CASA model NPP result, (c) Zhu NPP model NPP result, (d) Geographic remote sensing ecological network

NPP result.

photosynthetic efficiency, leading to greater carbon content and,
consequently, higher NPP for corn compared to rice (Myneni et al.,
2001; Ni, 2004; Wang et al., 2010).

4 Discussion

FPAR is strongly correlated with vegetation biomass, health and
environmental conditions. Among the vegetation indices, SAVI,
MSAVI and TSAVI showed strong and stable correlations with
FPAR due to their ability to reduce soil background effects
(Richardson and Wiegand, 1977; Tucker, 1979; Huete et al, 1997;
Delegido et al., 2011). Furthermore, the feature selection results indicate
that indicators such as DVI, GEMI, NDI45, and RVT are consistently
included in the optimal feature set, highlighting their critical role in
improving the accuracy of FPAR estimation. Specifically, DVI
quantifies vegetation growth by calculating the difference between the
near-infrared (NIR) band and the red light band, making it an
important indicator for assessing vegetation biomass and

TABLE 8 Comparison of the CNN model with GBDT and XGBoost
models.

Model R? MSE EVS MAE
CNN 0.98 0.0003 0.98 0.0127
GBDT 0.85 0.0025 0.87 0.0528
XGBoost 0.89 0.0016 0.85 0.0432
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distinguishing vegetation types (Gunathilaka, 2021). GEMI enhances
the accuracy of vegetation information extraction by minimizing soil
and atmospheric effects (Pinty and Verstraete, 1992). NDI45, based on
the mid-infrared (MIR) and red light bands, better reflects vegetation
moisture content and health status (Khan et al., 2020). RVI, as the ratio
of the near-infrared and red light bands, can effectively identify areas
with high vegetation coverage (Gupta, 1993). These results indicate that
combining multiple indices can enhance the model’s adaptability to
different crop growth conditions.

This study mainly focused on corn and rice, which limits the
generalizability of the results. Different crop species, such as wheat or
soybean, may exhibit distinct photosynthetic pathways and growth
characteristics, which could influence the accuracy of NPP estimation.
Future research will extend the model to more crop species to enhance
its applicability across diverse agricultural systems.

In summary, FPAR is closely related to vegetation biomass,
health status, and environmental factors.

Crop growth relies on an optimal environment, where
temperature, moisture, sunlight, and soil nutrients are critical
factors. These elements influence the rates of photosynthesis and
plant respiration, ultimately regulating NPP (Hatfield et al., 2011;
Lobell and Gourdji, 2012). This study analyzes the monthly
cumulative NPP results to observe variations in crop NPP across
different growth stages. As shown in Figure 7 rops exhibit the
highest NPP in June, July, August, and September. It displays the
monthly NPP simulation results derived from the original CASA
model using empirical FPAR estimates. This peak is likely
associated with favorable temperatures, adequate rainfall, and
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Distribution of NPP from April to October in the study area.

high solar radiation during these months, which jointly promote
biomass accumulation by enhancing chlorophyll synthesis, stomatal
conductance, and light use efficiency (Xu et al., 2021).

In the study area, summer begins in June, a season typically
conducive to crop growth due to elevated temperatures, ample
rainfall, and extended daylight hours. These meteorological conditions
enhance photosynthetic efficiency, support nutrient uptake, and provide
sufficient energy for biomass accumulation (Lobell and Asner, 2003;
Hatfield and Prueger, 2015). June marks the start of the rapid growth
phase, during which crops reach their maximum leaf area and highest
photosynthesis rates, resulting in peak NPP. Although some crops may
enter the senescence phase by September, overall photosynthetic activity
and organic matter production remain high during this period.

Different crop species respond variably to temperature, rainfall,
and sunlight. For instance, corn and wheat demonstrate higher
photosynthetic efficiency under elevated temperatures, while rice
requires ample water. The high NPP observed during these months
corresponds with the growth characteristics of these crops.

In summary, temperature, rainfall, and solar radiation are
significant environmental factors affecting crop NPP. Particularly
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during June, July, August, and September, these factors contribute to
peak photosynthetic efficiency and monthly NPP. High temperatures
accelerated enzymatic activities associated with photosynthesis, while
adequate rainfall ensured the availability of water for nutrient transport
and biomass accumulation. At the same time, increased solar radiation
provided ample energy inputs, further increasing productivity. These
findings provide a scientific basis for optimizing crop planting and
management, potentially enhancing crop yield and quality.

Future research could further investigate the effects of other
environmental variables such as soil nutrients, topography, and pest
and disease pressure, which also affect carbon assimilation and
plant health. In addition, the integration of advanced modelling
techniques such as deep learning (e.g. CNN) can further improve
the accuracy and scalability of net productivity estimates by
capturing non-linear interactions between multiple sources of
remote sensing inputs. A more comprehensive understanding of
these factors will help refine precision agriculture practices to
support sustainable crop production in complex agroecosystems.

The CNN-based FPAR estimation method proposed in this study
outperforms the original CASA model in terms of accuracy.
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This improvement is primarily attributed to the CNN model’s ability to
capture complex nonlinear relationships and multi-scale features. The
original CASA model relies on the statistical relationships between
FPAR and vegetation indices such as NDVI and RV, which present
inherent limitations. In areas with high vegetation coverage, as biomass
and canopy density increase, the absorption and reflectance of light by
vegetation leaves reach a saturation point. Beyond this threshold,
NDVI and RVI values no longer exhibit significant changes with
increasing biomass, leading to an underestimation of FPAR when
relying solely on these indices. In this study, the RFE algorithm was
employed to select the optimal feature set, while the CNN model was
utilized to capture the nonlinear response between vegetation indices
and FPAR, significantly enhancing the accuracy of FPAR retrieval.
The improved CASA model demonstrates higher accuracy in
NPP estimation, primarily due to the enhanced precision of FPAR
retrieval. In the CASA framework, NPP estimation is closely linked
to FPAR, as NPP is computed based on the principle that vegetation
absorbs PAR and converts it into biomass. Since FPAR quantifies
the proportion of PAR absorbed by vegetation, its estimation
accuracy directly affects the precision of NPP calculations. With
the improved FPAR retrieval accuracy, the enhanced CASA model
can more accurately determine the actual amount of PAR absorbed
by vegetation, thereby achieving more precise NPP estimations.
Although this study focuses on Haicheng City, the proposed
model exhibits considerable potential for generalization. The core of
the model lies in the integration of satellite remote sensing data and
meteorological data, a widely adopted approach for studying NPP
and the FPAR. This methodology is inherently applicable across
various ecosystems. While the model has been calibrated and
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validated within the specific environmental conditions of
Haicheng City, its applicability extends beyond this region.

To adapt the model for other regions, several key steps must be
undertaken. First, high-quality satellite remote sensing data for the
target area must be collected over a sufficiently long temporal span,
alongside meteorological data—including temperature, precipitation,
and solar radiation—corresponding to the same time period. Second,
since vegetation types vary across regions, the model’s maximum
light-use efficiency parameter should be adjusted accordingly. This
adjustment should be based on existing research findings and tailored
to the specific vegetation characteristics of the target area. Third,
following the research framework established for Haicheng City,
FPAR and vegetation index data from the target region should be
gathered and input into the CNN model, with parameter tuning
performed to optimize simulation accuracy. Finally, the predicted
FPAR data, along with meteorological inputs, can be incorporated
into the CASA model to derive the NPP values for the target region.

This study employed the CASA model within the light use efficiency
framework to simulate crop NPP. Although significant progress has
been made in improving NPP estimation accuracy, several uncertainty
factors continue to affect the precision and reliability of the results.

The spatial and temporal resolution of remote sensing data directly
influences the accuracy of NPP estimation. High-resolution imagery
from the Sentinel-2 satellite captures detailed vegetation spectral
information, offering significant advantages. However, certain
conditions, such as cloud cover and atmospheric variations, can lead
to data loss or introduce errors in specific regions. While the high-
resolution imagery provides detailed spectral information, it is also
susceptible to potential error sources such as sensor noise and changes

July

September

Spatial distribution of monthly NPP estimated by the CNN model for June, July, August, and September.
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in illumination conditions. These errors may introduce noise into the
vegetation indices used for FPAR estimation, thereby impacting the
accuracy of NPP calculations. In this study, Sentinel-2 imagery of the
study area from July and August exhibited small-scale cloud cover.
Clouds obscure portions of the land surface, resulting in incomplete
spectral data for these areas. For FPAR estimation, cloud cover impedes
the accurate calculation of vegetation indices, which are critical for
deriving FPAR. Figure 8 compares FPAR values for the same region
from June to September, highlighting cloud-affected areas in July and
August. It presents the monthly NPP results obtained by inputting
CNN-estimated FPAR into the CASA model, thereby incorporating
improved FPAR accuracy. As shown in the figure, FPAR values in
cloud-affected regions are likely underestimated. The inaccuracies in
FPAR caused by cloud cover directly affect NPP estimation. Reduced
FPAR values lead to a decrease in APAR, ultimately resulting in lower
NPP estimates for cloud-covered regions. This underscores the
necessity of addressing cloud-induced data gaps to improve the
reliability of NPP calculations.

The current study was conducted within a relatively limited
region in Haicheng City. Although the framework integrating
CNN-derived FPAR with the CASA model shows promising
results, its robustness should be further validated across larger
and more heterogeneous agricultural landscapes. Future
applications will focus on expanding the spatial scope to evaluate
model transferability at regional and national scales.

Previous studies have improved CASA-based NPP estimation
by optimizing light use efficiency parameters or integrating
alternative vegetation indices (Ju and Roy, 2008; Yu et al., 2009).
Our approach complements these efforts by introducing CNN-
based FPAR retrieval, which captures nonlinear interactions among
indices. This positions our work within the broader literature on
CASA model enhancement and contributes to ongoing efforts to
reduce uncertainties in large-scale NPP modeling.

Additionally, despite the incorporation of actual NPP data for corn
and rice, the improved CASA model has certain limitations. Although
optimizing the estimation method for FPAR has enhanced NPP
accuracy, the estimation error for corn remains higher compared to
rice. This discrepancy may be attributed to the uniform setting of the
maximum light use efficiency parameter in the CASA model. In this
study, a single maximum light use efficiency parameter of 0.389 was
applied, which does not effectively differentiate between corn and rice.
C4 plants (e.g., corn) exhibit higher photosynthetic efficiency than C3
plants (e.g., rice), as C4 plants utilize light energy more effectively and
reduce respiration losses (Gowik and Westhoff, 2011). Consequently,
the uniform parameter setting leads to estimation errors. To further
improve NPP estimation accuracy, the CASA model’s maximum light
use efficiency parameter needs to be optimized to account for the
characteristics of different crops.

In summary, despite the significant advancements in refining
the CASA model, future research should address and mitigate the
aforementioned uncertainty factors to enhance the accuracy and
reliability of NPP estimations.

Despite its demonstrated advantages, the CNN-based FPAR
estimation framework also has certain limitations. First, it requires
large amounts of high-quality training data, which may not always
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be available for all regions or crop types. Second, CNN training and
inference are computationally intensive, potentially limiting large-
scale or real-time applications. Future work could address these
challenges through strategies such as transfer learning to reduce
dependence on local training data, model compression to improve
efficiency, or integrating CNN with process-based models to
balance accuracy and interpretability.

5 Conclusions

This study demonstrates that combining deep learning with the
CASA model can significantly improve the accuracy of estimating crop
net primary productivity (NPP) under different environmental
conditions. By integrating spectral reflectance (FPAR) estimated
using convolutional neural networks (CNN), the improved model
can more reliably represent spatial-temporal NPP patterns, providing
support for theoretical research and practical applications in fields such
as agricultural management, large-scale yield monitoring, and carbon
cycle studies. The research results highlight the potential of combining
advanced remote sensing technology with process-oriented models to
enhance ecosystem productivity assessment. Future studies will further
optimize model parameters, address data uncertainty issues (such as
cloud contamination), and expand the application scope of this method
to cover more crop types and geographical regions.
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