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Research on the estimation
method of crop net primary
productivity based on
improved CASA model
Wanning Li1, Zhuo Wang1, Chunling Chen1, Ying Yin1,
Yuanji Cai1, Hao Han1, Minghuan Liu2* and Ziyi Feng1*

1College of Information and Electrical Engineering, Shenyang Agricultural University, Shenyang, China,
2Henan Provincial Key Lab of Hydrosphere and Watershed Water Security, North China University of
Water Resources and Electric Power, Zhengzhou, China
Net Primary Productivity (NPP) is a vital indicator for evaluating the carbon source

and sink capacities of ecosystems, significantly influencing assessments of

agricultural productivity and carbon cycle studies. Accurately estimating NPP in

the agricultural sector, however, remains challenging. This research addresses

the challenge by refining the estimation of the Fraction of Photosynthetically

Active Radiation (FPAR) within the CASA model, introducing a novel

methodology that significantly improves the accuracy of NPP estimation and,

when applied to remote sensing imagery covering a broad region, demonstrates

strong potential for large-scale crop NPP monitoring. We employed high-

resolution Sentinel-2 satellite imagery and the Recursive Feature Elimination

algorithm to extract FPAR-related features from 15 vegetation indices. The FPAR

was subsequently estimated using a Convolutional Neural Network, leading to a

dramatic decrease in the Root Mean Square Error (RMSE) from 0.2040 to 0.0020.

The prediction errors for the improved model ranged from 0.0001 to 0.0092,

with a mean absolute error (MAE) below 0.01. These values reflect the

distribution of absolute residuals and indicate a substantial enhancement in

accuracy over traditional methods. This improved FPAR estimation method

was subsequently integrated into the CASA model. Compared to field-

measured NPP data, the optimized model reduced the Mean Absolute

Percentage Error (MAPE) from 28.92% to 20.31%. The MAPE values across the

test samples ranged between 15% and 25%, indicating a significant improvement

in model reliability. The optimized CASA model performs well in estimating net

primary productivity (NPP) of crops, providing strong support for agricultural

decision-making and future research on large-scale productivity and

carbon cycling.
KEYWORDS

CASA model, crop monitoring, net primary productivity (NPP), Fraction of
Photosynthetically Active Radiation (FRAR), vegetation index
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1 Introduction

Vegetation productivity plays a vital role in supporting human

life by providing food, raw materials, and energy, with edible crops

serving as the primary source of nutrition (Running, 2012). Net

Primary Productivity (NPP) (Zhao and Running, 2010; Tian et al.,

2016) is a key metric of vegetation productivity, reflecting the

production potential of plant communities within their natural

environments, and serving as a crucial indicator for assessing

carbon sources and sinks within ecosystems (Zeng et al., 2023).

Accurate monitoring and estimation of NPP of crop vegetation is

essential for optimizing crop cropping structure and improving

agricultural yields (Myneni et al., 2001; Heinsch et al.,

2006).Traditionally, NPP is measured by in situ observation,

which is accurate at a local scale but is operationally

cumbersome, resource consuming, and not applicable to large-

scale monitoring (Veroustraete et al., 2002; Wang et al., 2010;

Yang et al., 2017). Advances in remote sensing and data

processing have provided three main approaches for estimating

NPP: statistical models, process-based models, and light use

efficiency (LUE) models (Feng et al., 2007). Statistical models

extrapolate measured data based on climate correlations, but lack

stability and scalability (Net primary productivity in the terrestrial

biosphere: The application of a global model, 1994). Process-based

models incorporate plant physiological and ecological mechanisms

and can provide reliable estimates, but require a large number of

parameters and are therefore limited in spatial applicability

(Running et al., 2004). The LUE model, which estimates NPP

based on the absorption of solar radiation by vegetation as well as

moderating factors, combines simplicity, adaptability, and

applicability, and is well suited for long-term and large-scale

remote sensing applications (Field et al., 1995).

The Carnegie-Ames-Stanford Approach (CASA) model is a

widely applied light-use efficiency model for estimating vegetation

NPP (Potter et al., 1993). The model suggests that NPP is influenced

by the quantity of photosynthetically active radiation (PAR) taken

in by vegetation and the effectiveness with which plants transform

this absorbed radiation into biomass. A key parameter within the

CASA model is the Fraction of Absorbed Photosynthetically Active

Radiation (FPAR) absorbed by vegetation (Cheng et al., 2014).

When incident PAR (400-700nm) reaches the top of the vegetation

canopy, a portion is reflected, a portion is absorbed by the

vegetation, and another portion is transmitted to the ground.

Only the PAR absorbed by the vegetation canopy contributes to

biomass accumulation. FPAR represents the ratio of PAR absorbed

by the canopy to the incident PAR (Gitelson et al., 2015). Accurate

estimation of FPAR is crucial for assessing NPP, as it directly affects

the amount of energy available for photosynthesis, thereby

influencing the overall productivity of the ecosystem.

Traditional methods estimate FPAR by leveraging the statistical

correlation between FPAR and spectral vegetation indices,

calibrating these indices with field-measured FPAR data.

However, these methods have limited spatiotemporal scalability,

and their accuracy depends on data from specific times and

locations. Another approach involves FPAR retrieval based on
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canopy radiative transfer models, but the computational demand

is significant, limiting its application on a large scale (Peng et al.,

2018; Liang et al., 2023). Wang et al. developed a 10-meter FPAR

algorithm for Sentinel-2 data by analyzing the correlation between

MODIS FPAR and surface reflectance from Sentinel-2 (Wang et al.,

2022). Fang et al. improved FPAR retrieval accuracy by analyzing

differences between red-edge and non-red-edge indices. Their

results demonstrated that the red-edge normalized difference

vegetation index and red-edge simple ratio vegetation index

achieved higher FPAR retrieval accuracy than the original CASA

model (Fang et al., 2021). Similarly, Gao et al. proposed a deep

learning-based algorithm for retrieving FPAR from MODIS visible-

band surface reflectance. The model, trained on simulated data,

enhances the inversion process while maintaining accuracy.

Validation against MODIS FPAR products and ground-based

measurements demonstrates its effectiveness, particularly in

regions lacking vegetation classification (Gao et al., 2020a).

Within the CASA model, FPAR estimation commonly relies on

statistical relationships with vegetation indices, such as NDVI and

RVI (Yang, 2022). However, these simple regression models fail to

fully exploit the rich information available in satellite data. Current

FPAR inversion methods face several challenges, such as regional

specificity and variability across different vegetation types, limiting

their general applicability. To address these limitations, this study

trains convolutional neural networks (CNNs) using a variety of

vegetation indices and FPAR data. The inclusion of multiple

vegetation indices, which encompass diverse information such as

soil background and moisture conditions, enhances the model’s

adaptability. CNNs, as a deep learning framework, excel at

automatically learning complex features from high-dimensional

data, making them well-suited for estimating FPAR from

vegetation indices derived from remote sensing imagery (Wang

et al., 2023). Compared to traditional methods, CNNs can more

effectively utilize the wealth of information in satellite data,

improving both the accuracy and efficiency of FPAR estimation

(Gao et al., 2020b; Alzubaidi et al., 2021; Wang et al., 2023).

This study seeks to accomplish the following primary objectives:

(1) To develop a deep learning model that enhances the accuracy of

FPAR estimation using high-resolution satellite imagery and

vegetation indices from different growth stages; (2) To integrate

the deep learning framework with the CASA model for evaluating

NPP estimation accuracy and validating the enhanced model’s

reliability; (3) To analyze the characteristics and driving factors of

NPP results. Through these efforts, we seek to improve the precision

and applicability of NPP estimation, advance large-scale monitoring

of crop NPP, and provide a scientific basis for agricultural

management and policy-making.
2 Materials and methods

Haicheng City in Liaoning Province, located at 122°39′18″E and

40°58′58″N, experiences a warm temperate climate with an annual

average temperature of 9.3 °C and total precipitation of 710.2 mm

per year (Li et al., 2020). The study area is located at the Shenyang
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Agricultural University experimental base in Gengzhuang Town,

Haicheng City. This region is characterized by high soil organic

matter content, with surface soil pH values ranging from 6.5 to 7.2

(Lal, 2004), indicating moderate soil fertility and suitability for plant

growth. The primary cereal crops in the study area are corn and

rice, with the cropping structure shown in Figure 1. The local

cropping system consists of a single annual crop cycle, where the

growing season lasts from April to October.

In 2022, we conducted field measurements of NPP in the study

area. The measurements were conducted at the Shenyang

Agricultural University experimental base in Haicheng City,

where we selected five rice fields and seven corn fields, with

specific latitude and longitude coordinates provided in Table 1.

Before crop harvest, plant samples were collected using sampling

plots measuring 1 meter by 1 meter. Within each plot, plants were

cut at ground level and sectioned into approximately 25 cm

segments. These samples were first heated in an oven at 105 °C

for 30 minutes to halt biological activity. The oven temperature was

then reduced to 65 °C and the samples were dried to a constant

weight. We then measured the dry weight of the plants in each plot

using a high-precision balance and ground the samples into a fine

powder for carbon content analysis. By multiplying the average

carbon content of the plants in each plot by their dry weight, we

calculated the organic matter content associated with plant growth

and reproduction, which represents the NPP (Ni, 2004). The

average NPP value for each experimental field was obtained by

averaging the NPP values from all plots within that field. Ultimately,

we calculated the average NPP values for 12 experimental fields,
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offering data support for assessing the performance of the improved

CASA model.

Meteorological data for this study were sourced from the

Xiaomaiya Agricultural Meteorological Big Data System platform

(https://wheata.cn/). We downloaded monthly records of

temperature, precipitation and solar radiation for the study area

for the year 2022. Temperature was recorded in degrees Celsius (°

C), precipitation was measured in millimeters (mm), and solar

radiation data were initially provided in joules per square meter per

day (J/m²/day). For ease of analysis, the solar radiation data were

converted to megajoules per square meter per month (MJ/m²/

month). The organized data for each month, including total

monthly radiation, average monthly temperature, and monthly

precipitation, along with the corresponding latitude and longitude

information, were imported into the ArcGIS platform in tabular

format. Kriging interpolation, a geostatistical method that accounts

for spatial correlation, was employed to process the data, generating

more scientifically accurate and realistic interpolation results (Li

et al., 2023). This approach generated monthly aggregates of solar

radiation, average temperatures, and precipitation data for each

pixel within the study area.

This study employs Sentinel-2 satellite imagery as the main

source of remote sensing data (Drusch et al., 2012). Sentinel-2

provides high-resolution multispectral images across 13 spectral

bands with spatial resolutions of 10 meters, 20 meters, and 60

meters (Immitzer et al., 2012). Sentinel-2 imagery can be accessed

via the Copernicus Open Access Hub (https://browser.dataspace.

copernicus.eu). The mission comprises two satellites, Sentinel-2A
FIGURE 1

Overview of the Study Area.(The cropping structure is shown, where green diagonal hatching represents rice fields and brown diagonal hatching
represents corn fields).
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and Sentinel-2B, which together ensure a 10-day revisit period.

When operating in tandem, the revisit period is reduced to 5 days,

providing enhanced temporal resolution. Additionally, Sentinel-2

includes three bands in the red-edge spectrum, which enhances its

utility for agricultural monitoring (d’Andrimont et al., 2020). Due

to its excellent spatiotemporal resolution and extensive spectral

coverage, Sentinel-2 data are used as the primary input for the

CASA model in this study, facilitating high-precision crop

monitoring and comprehensive analysis of NPP (Wulder

et al., 2012).

This study aims to enhance the accuracy of FPAR and NPP

estimations by refining the FPAR parameter estimation method
Frontiers in Plant Science 04
within the CASA model. The technical workflow is illustrated in

Figure 2. To achieve this, we first utilized Sentinel-2 satellite

imagery, along with data on solar radiation, temperature, and

precipitation. We then compiled a dataset consisting of 15

vegetation indices related to crops and their corresponding FPAR

values for training a CNN regression model. A feature selection

method based on recursive feature elimination was used to identify

the optimal set of indices, which was then applied to train the CNN

model. The trained model was subsequently applied to estimate

FPAR. We integrated the model-predicted FPAR results with solar

radiation, precipitation, and temperature data, which were then

input into the CASA model to obtain optimized NPP results.

Finally, we validated the CNN model’s FPAR estimates and

compared the improved CASA model’s NPP results with field-

measured NPP data. Further analysis was conducted on the NPP

estimation results for rice and corn.

To identify vegetation indices relevant to crop FPAR

estimation, this study selected 15 variables for FPAR inversion.

These include the Atmospherically Resistant Vegetation Index

(ARVI), Difference Vegetation Index (DVI), Enhanced Vegetation

Index (EVI), Global Environment Monitoring Index (GEMI),

Green Normalized Difference Vegetation Index (GNDVI),

Modified Soil Adjusted Vegetation Index (MSAVI), Normalized

Difference Index (NDI45), Normalized Difference Vegetation Index

(NDVI), Perpendicular Vegetation Index (PVI), Ratio Vegetation

Index (RVI), Red-Edge Inflection Point Index (REIP), Soil Adjusted

Vegetation Index (SAVI), Transformed Normalized Difference

Vegetation Index (TNDVI), Transformed Soil Adjusted

Vegetation Index (TSAVI), and Weighted Difference Vegetation

Index (WDVI). Among them, EVI and GEMI are notable for their

proven significant advantages in reducing background effects and

improving the accuracy of FPAR estimates. The EVI was developed

by Dai Liang Peng to improve upon traditional vegetation indices
FIGURE 2

Workflow of this study’s methodology.
TABLE 1 Latitude and longitude coordinates of corn and rice sampling
points.

ID Crop type Longitude (°E) Latitude (°N)

1 corn 122.726279 40.973931

2 corn 122.726421 40.969247

3 corn 122.726750 40.968754

4 corn 122.727033 40.967275

5 corn 122.727174 40.969740

6 corn 122.726892 40.970726

7 corn 122.726609 40.966289

8 rice 122.725007 40.974670

9 rice 122.725290 40.973684

10 rice 122.725479 40.975656

11 rice 122.725667 40.972698

12 rice 122.725102 40.972205
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like NDVI by minimizing atmospheric influences and surface

reflectance variations. This index has demonstrated enhanced

sensitivity in capturing vegetation dynamics, leading to more

accurate estimates of the FPAR. Additionally, the GEMI, based on

research by Leolini, demonstrated optimal performance in

estimating FPAR for olive trees during arid periods with low

grass cover (Leolini et al., 2022).

To obtain the 15 vegetation indices, this study first resampled

Sentinel-2 Level-2A data from the Copernicus Open Access Hub

(https://dataspace.copernicus.eu/), covering the crop growing season

from April to October 2022 with minimal cloud cover. These data

were subsequently resampled on the SNAP platform by bilinear

sexual interpolation to obtain a uniform 10 m spatial resolution.

This resampling process standardized the spatial resolution of the

various bands to 10 meters. Next, the Band Math tool in ENVI was

employed to compute the 15 commonly used vegetation indices,

with their calculation formulas provided in Table 2 (Srivastava et al.,

2014; Sonobe et al., 2018; Kumar et al., 2022).

Meanwhile, a biophysical processor tool was used in the

Sentinel Application Platform (SNAP) to generate FPAR data at

10 m resolution. The processor uses a neural network trained on a

synthetic database generated by the radiative transfer model to

estimate three key biophysical variables: leaf area index (LAI),

photosynthetically active radiation absorption ratio (FPAR), and

vegetation cover ratio. The database accurately modelled canopy

reflectance within the Sentinel-2 spectral band and was trained

separately for the S2A and S2B sensors to account for their unique

spectral response characteristics. According to the SNAP

documentation, the FPAR neural network achieved high accuracy,

with R-squared (R2) values of 0.92 and 0.91 for S2A and S2B,

respectively, and an Root Mean Square Error (RMSE) value of 0.072

for each (Weiss and Jay). These results indicate that the processor is

capable of generating reliable and high-quality FPAR estimates. In

this study, the FPAR derived from SNAP is used as the reference

data for training CNN model.

In order to build a robust FPAR inversion model, we calculated

15 vegetation indices from the resampled Sentinel-2 data. To reduce

redundancy and improve model performance, we used the recursive

feature elimination (RFE) algorithm to rank and select the most

relevant indices (Jeon and Oh, 2020). RFE iteratively removes

features that contribute the least to model performance and

retains only those features that significantly improve prediction

accuracy. The formulas for these indices are listed in Table 2.

To estimate FPAR, three machine learning models (CNN,

GBDT, and XGBoost) were constructed. The performance of each

model was evaluated using four metrics: R², MSE, EVS, and MAE.

Compared to tree-based models, which are good at dealing with

structured data and feature interactions, convolutional neural

networks show superior ability in capturing spatial-style and non-

linear relationships, making them more suitable for processing

high-dimensional remote sensing data (Sagi and Rokach, 2021).

The CNN architecture shown in Figure 3 contains an input

layer, three convolutional layers, three pooling layers, a Dropout

layer, three fully connected layers, and finally a softmax activation

function. The data fed into the CNN consisted of 2,756 vegetation
Frontiers in Plant Science 05
index samples selected by the RFE, which had been normalized

according to the FPAR values (Alzubaidi et al., 2021).The dataset

was divided into training and test sets in a ratio of 7:3 and was

subjected to 10 training cycles to ensure model convergence.

In order to improve the accuracy and efficiency of FPAR

estimation, a convolutional neural network (CNN) model was

constructed and optimized with a combination of grid search and

Bayesian optimization techniques. The optimized CNN architecture

consists of three convolutional layers, each with 16, 32 and 64 filters

respectively, each with a kernel size of 2. Training was performed

using an Adam optimizer with a learning rate of 0.001. The mean

squared error (MSE) was used as the loss function. To reduce

overfitting, a Dropout layer (ratio = 0.3) was added before the fully

connected layer, and 30% of the neurons were randomly deactivated

during training. Table 3 shows the detailed configuration of the

CNN model and hyperparameters. The final model achieves high

predictive performance on the validation and test sets while

maintaining computational efficiency.
TABLE 2 Formulas for standard vegetation Indices (where B2, B4, B5,
B7, B8, and B8A refer to Sentinel bands; a denotes the soil line intercept;
b indicates the soil line slope; X is the factor used to reduce soil noise;
and L is the calibration factor).

Index name Definition of indices

ARVI (Huete et al.,
1997)

B8 − B4 − 2� (B4 − B2)
B8 + B4 − 2� (B4 − B2)

DVI (Gunathilaka, 2021) B8 − B4

EVI (Huete et al., 1997) 2:5� B8 − B4
B8 + 6� B4 − 7:5� B2 + 1

GEMI (Pinty and
Verstraete, 1992)

(n� (1 − 0:25� n) −
B4 − 0:125
1 − B4

)n =

2� (B8A2 �B42) + 1:5� B8A + 0:5� B4
B8A + B4 + 0:5

GNDVI (Lobell and
Asner, 2003)

B7 − B3
B7 + B3

MSAVI (Chen et al.,
2010)

2� B8 + 1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(2� B8 + 1)2 − 8� (B8 − B4)

p
2

NDI45 (Delegido et al.,
2011)

B5 − B4
B5 + B4

NDVI (Tucker, 1979) B8 − B4
B8 + B4

PVI (Richardson and
Wiegand, 1977)

B8 − a� B4 − bffiffiffiffiffiffiffiffiffiffiffiffi
a2 + 1

p

RVI (Gupta, 1993) B8
B4

REIP (Delegido et al.,
2011) 705 + 35� (

B4 + B7
2

−
B5

B6 − B5
)

SAVI (Baret and Guyot,
1991) (1 + L)� B8 − B4

B8 + B4 + L

TNDVI (Baret et al.,
1989)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B8 − B4
B8 + B4

+ 0:5

r

TSAVI (Baret et al.,
1989)

s� (B8 − s� B4 − a)
a� B8 + B4 − a� s + X � (1 + s2)

WDVI (Clevers, 1989) B8 − a� B4
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The CASA model estimates NPP based on two key variables:

absorbed photosynthetically active radiation (APAR) and actual light

use efficiency (LUE) (Equation 1) (Yu et al., 2009). In the modified

CASA model, FPAR is predicted by the method described in Section

2.3.2, whereas the original CASA model derives FPAR based on the

empirical relationship between NDVI and RVI vegetation indices.

APAR represents the absorbed photosynthetically active radiation per

unit area, and is determined by surface solar radiation and vegetation

FPAR (Equation 2).

NPP(x, t) = APAR(x, t)� e(x, t) (1)
Frontiers in Plant Science 06
APAR(x, t) = SOL(x, t)� FPAR(x, t)� 0:5 (2)

Changes in actual LUE were mainly influenced by temperature

and water stress Equation 3). The temperature stress factors Te1 and

Te2 correspond to the effects of low and high temperatures,

respectively, while Werep represents the effect of water availability.

The maximum light use efficiency (Emax) reflects the optimum

growing conditions and varies with vegetation type; in this study, it

was set at 0.389 g C/MJ for the crop in the study area (Yu et al., 2009).

e(x, t) = Te1(x, t)� Te2(x, t)�We(X,T)� emax (3)

To ensure that the NPP estimates reflect the crop growing

season, data from April to October were used and vegetation data

outside this period were excluded. As a result, the CASA model

combines factors such as light, temperature and humidity to

simulate vegetation productivity. The proposed improvements

improve the accuracy of the model under variable environmental

conditions and support ecosystem productivity studies by

combining remotely sensed data and ground-based observations.

Model performance was assessed using five metrics: R2 (Equation

4), Mean Squared Error (MSE, Equation 6) Explained Variance Score

(EVS, Equation 5), Mean Absolute Error (MAE, Equation 7), and

Mean Absolute Percentage Error (MAPE, Equation 8). R2 (Equation 4)

measures the proportion of the variance in the dependent variable that

is explained by the independent variable, and ranges from 0 to 1, with

higher values indicating a better fit. Higher values indicate a better fit.
FIGURE 3

CNN model architecture.
TABLE 3 Configuration and optimized parameters of the CNN model.

Parameter Value

Input Features 15 Vegetation Indices

Conv Layers & Filters 3 layers (16, 32, 64 filters)

Kernel Size 2

Dropout Rate 0.3

Optimizer Adam (lr = 0.001)

Loss Function MSE

Evaluation Metrics R², MSE, MAE, EVS

Optimization Method Grid Search + Bayesian Tuning
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EVS (Equation 5) assesses the consistency of the predictions, also

ranging from 0 to 1 Higher values indicate greater explanatory power.

These metrics complement each other, with R2 (Equation 4) reflecting

the total explained variability and EVS (Equation 5) reflecting the

consistency of the predictions with the observations.

R2 = 1 − oi
(ŷ i−yi)

2

oi
(yi−yi)

2 (4)

EVS = 1 − Var(yi−ŷ i)
Var(yi)

(5)

MSE (Equation 6) and MAE (Equation 7) quantify prediction error

in different ways. MSE (Equation 6) calculates the mean of the squared

difference between the predicted and observed values, and is therefore

more sensitive to large deviations, and is expressed in squared units. In

contrast, MAE (Equation 7) calculates the mean of the absolute errors,

maintaining the same units as the observations and thus providing a

more intuitive interpretation. MAPE (Equation 8) expresses the

prediction errors as a percentage, allowing for comparisons that are

not scale-dependent. A value of 0%for MAPE (Equation 8) indicates a

perfect prediction, whereas a value greater than 100 per cent suggests

that the prediction is performing poorly. Together, thesemetrics provide

a comprehensive assessment of the predictive accuracy of the model.

MSE = 1
no

i
(yi − ŷ i)

2
(6)

MAE = 1
no

i
yi − ŷ ij j (7)

MAPE = 1
no

i

yi − ŷ i

yi

����
���� (8)
3 Results

3.1 FPAR estimation results based on the
CNN learning model

This study performed a correlation analysis between vegetation

indices and FPAR for different months, with the results presented in

Table 4. The results of the study showed that the highest and most

stable correlation was found between SAVI and FPAR, which was

old enough to adjust soil brightness and reduce background effects

(McDonald et al., 1998; Zhu et al., 2014). However, further feature

selection analyses showed that metrics such as GEMI, NDI45 and

RVI contributed more significantly to model performance,

highlighting that correlation does not necessarily equate to the

greatest predictive importance during training.

The prediction results of the CNN regression model for FPAR are

presented in Table 5. The FPAR simulated by the model matches very

well with the test set data. It is worth noting that the MAE and MSE

were higher in July compared to other months (Figure 4). This is

mainly due to the localized cloud cover in the Sentinel-2 imagery in

July, which introduces noise into the vegetation index calculation and

reduces the prediction accuracy. Overfitting was ruled out as the
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difference in MSE between the training and test sets was less than

5%, while the addition of Dropout and L2 regularization only slightly

reduced the MAE by 2% in July, confirming that the elevated error was

mainly due to data noise. Overall, the CNN model demonstrated

significant reliability and superiority in FPAR estimation.

Analysis of the best feature combinations identified by the

Recursive Feature Elimination (RFE) algorithm shows that DVI,

GEMI, NDI45 and RVI are consistently included in the best set of

features, suggesting that their importance extends beyond simple

correlation ranking. To further validate these results, this study

compares the CNN regression model’s FPAR predictions with those

from the original CASA model. In the original CASA model, FPAR

is estimated using the statistical relationships between NDVI and

RVI. We compare FPAR results obtained from these statistical

relationships with those calculated using radiative transfer models,
TABLE 4 Correlation analysis between FPAR and vegetation indices for
different months.

Vegetation
indices

May June July August September

ARVI 0.97 0.93 0.96 0.79 0.97

DVI 0.94 0.95 0.97 0.89 0.93

EVI 0.97 0.98 0.09 0.63 0.94

GEMI 0.91 0.91 0.65 0.84 0.89

GNDVI 0.81 0.92 0.96 0.86 0.80

MSAVI 0.97 0.98 0.98 0.98 0.95

NDI45 0.79 0.65 0.80 0.79 0.80

NDVI 0.99 0.98 0.97 0.86 0.97

PVI 0.98 0.96 0.73 0.92 0.94

REIP 0.01 0.41 -0.01 0.34 0.32

RVI 0.98 0.96 0.94 0.87 0.61

SAVI 0.97 0.99 0.98 0.98 0.97

TNDVI 0.98 0.98 0.96 0.86 0.97

TSAVI 0.99 1 0.55 0.84 -0.03

WDVI 0.98 0.97 0.73 0.92 0.94
TABLE 5 CNN model training results for different months.

Month R2 RMSE EVS MAE

April 0.84 0.0009 0.84 0.0057

May 0.95 0.0003 0.98 0.0137

June 0.98 0.0003 0.99 0.0127

July 0.74 0.0092 0.90 0.0830

August 0.98 0.0009 0.98 0.0229

September 0.99 0.0001 0.99 0.0058

October 0.90 0.0020 0.94 0.0315
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and compute four evaluation indices, as shown in Table 6.

According to the analysis in Table 5, the CNN model yields an

average RMSE of 0.0020 and an average MAE of 0.0250, whereas

the original CASA model shows an average RMSE of 0.2040 and an

average MAE of 0.1984. The comparison of FPAR results between

the CNN model and the original CASA model is illustrated in

Figure 5. Except for a few months, the CNN model demonstrates a

significant reduction in both RMSE and MAE. Specifically, the

MAE for July from the CNN model is higher than that of the

original CASA model, which may be due to spectral information

errors caused by cloud cover. These results indicate that the CNN

model developed in this study provides high accuracy and reliability

in FPAR predictions (Ju and Roy, 2008; Zhu et al., 2010).
3.2 FPAR NPP estimation results based on
the improved CASA model

This study gathered 12 sets of actual NPP data with estimates

from the improved CASA model, the original CASA model, the
Frontiers in Plant Science 08
Geographic Remote Sensing Ecological Network (http://

www.gisrs.cn), and the model enhanced by Professor Wenquan

Zhu (Zhu et al., 2007). As shown in Figure 5, Table 7, and the

accompanying analysis, the improved CASA model has a MAPE of

20.31%, which is lower than the original CASA model’s 28.92%, and

significantly better than the 68% and 70.55% of the other two

sources. Therefore, the MAPE of the improved CASA model is

8.61% lower than that of the original model, which indicates that

the estimation error is smaller and the precision and reliability are

higher. The higher error observed in the geo-remote sensing

ecological network dataset and Zhu augmented model may be

due to the fact that these data sources are less suitable for

estimating crop NPP in the study area.

Using the improved CASA model for the study area produced

the NPP results displayed in Figure 6 (a). The distribution of NPP

values within the study area is broad, ranging from a minimum of

237.2 gC/m²/year to a maximum of 891.1 gC/m²/year, with an

average of 535.3 gC/m²/year. Higher NPP values are generally

found in the wooded areas adjacent to farmland, ranging from

680 to 890 gC/m²/year, while crop NPP ranges from 360 to 680 gC/

m²/year. This difference is mainly attributed to the well-developed

root systems of trees and their ability to store large amounts of

carbon in their trunks, branches, and roots, whereas crop biomass is

mainly concentrated in the harvested parts. These characteristics

enable forests to accumulate more organic matter each year,

resulting in higher NPP values (Myneni et al., 2001).
3.3 Analysis of NPP results for different
crops

In this study, carbon content data for corn and rice samples

were obtained through field NPP experiments. The average carbon

content of corn samples was 46.09%, while that of rice samples was
FIGURE 4

Monthly MAE and MSE of CNN model predictions for FPAR from April to October.
TABLE 6 Comparison of original FPAR estimates and actual FPAR for
different months.

Month R2 RMSE EVS MAE

April 0.52 0.5239 0.85 0.5237

May 0.68 0.2262 0.92 0.2255

June 0.80 0.1404 0.93 0.1378

July 0.90 0.0458 0.96 0.0338

August 0.95 0.0709 0.95 0.0615

September 0.72 0.0982 0.55 0.0869

October 0.73 0.3233 0.76 0.3198
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41.37%. These data provide a solid foundation for calculating and

analyzing vegetation NPP.

Comparisons between the measured NPP results and those

estimated by the improved model revealed that the average absolute

error for corn NPP estimates decreased by 29% with the improved

model. This substantial reduction in error indicates that the revised

model more accurately captures the growth characteristics and

productivity changes of corn. For rice, the average error was

reduced by 5.79% with the improved model. Although this
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improvement is relatively modest, it still demonstrates the

model’s adaptability and effectiveness in handling different

crop types.

In order to improve the regression accuracy of FPAR estimation

in general, this study developed a CNN-based model and compared

its performance with that of Snot Boosted Decision Tree (GBDT)

and Extreme Gradient Boosting (XGBoost). These models were

evaluated by metrics such as R2, mean square error (MSE),

explained variance score (EVS) and mean absolute error (MAE).

The comparison results are summarized in Table 8 and show that

the CNN model achieves the highest accuracy (R2 = 0.98) and the

least prediction error (MSE = 0.0003, MAE = 0.0127),

outperforming GBDT and XGBoost.

Further analysis of the NPP data for corn and rice showed that

in the study area, rice NPP ranged from 376.3 to 644.1 gC/m²/year,

with an average of 503.9 gC/m²/year. In contrast, corn NPP ranged

from 413.3 to 668.5 gC/m²/year, with an average of 526.0 gC/m²/

year. However, based on the measured NPP results, the average

NPP for corn was 723.8 gC/m²/year, and for rice, it was 577.1 gC/

m²/year. This discrepancy may be attributed to corn’s higher
FIGURE 5

Comparison of original FPAR calculation methods and CNN model results: (a) R2, (b) Explained Variation Score, (c) Mean Absolute Error, (d) Root
Mean Squared Error.
TABLE 7 Comparison of NPP estimation accuracy (MAPE) of different
models.

Model MAPE (%)

Improved CASA model 20.31

Original CASA model 28.92

Geographic RS Ecological Network 70.55

Zhu’s enhanced CASA model 68.00
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photosynthetic efficiency, leading to greater carbon content and,

consequently, higher NPP for corn compared to rice (Myneni et al.,

2001; Ni, 2004; Wang et al., 2010).
4 Discussion

FPAR is strongly correlated with vegetation biomass, health and

environmental conditions. Among the vegetation indices, SAVI,

MSAVI and TSAVI showed strong and stable correlations with

FPAR due to their ability to reduce soil background effects

(Richardson and Wiegand, 1977; Tucker, 1979; Huete et al., 1997;

Delegido et al., 2011). Furthermore, the feature selection results indicate

that indicators such as DVI, GEMI, NDI45, and RVI are consistently

included in the optimal feature set, highlighting their critical role in

improving the accuracy of FPAR estimation. Specifically, DVI

quantifies vegetation growth by calculating the difference between the

near-infrared (NIR) band and the red light band, making it an

important indicator for assessing vegetation biomass and
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distinguishing vegetation types (Gunathilaka, 2021). GEMI enhances

the accuracy of vegetation information extraction by minimizing soil

and atmospheric effects (Pinty and Verstraete, 1992). NDI45, based on

the mid-infrared (MIR) and red light bands, better reflects vegetation

moisture content and health status (Khan et al., 2020). RVI, as the ratio

of the near-infrared and red light bands, can effectively identify areas

with high vegetation coverage (Gupta, 1993). These results indicate that

combining multiple indices can enhance the model’s adaptability to

different crop growth conditions.

This study mainly focused on corn and rice, which limits the

generalizability of the results. Different crop species, such as wheat or

soybean, may exhibit distinct photosynthetic pathways and growth

characteristics, which could influence the accuracy of NPP estimation.

Future research will extend the model to more crop species to enhance

its applicability across diverse agricultural systems.

In summary, FPAR is closely related to vegetation biomass,

health status, and environmental factors.

Crop growth relies on an optimal environment, where

temperature, moisture, sunlight, and soil nutrients are critical

factors. These elements influence the rates of photosynthesis and

plant respiration, ultimately regulating NPP (Hatfield et al., 2011;

Lobell and Gourdji, 2012). This study analyzes the monthly

cumulative NPP results to observe variations in crop NPP across

different growth stages. As shown in Figure 7 rops exhibit the

highest NPP in June, July, August, and September. It displays the

monthly NPP simulation results derived from the original CASA

model using empirical FPAR estimates. This peak is likely

associated with favorable temperatures, adequate rainfall, and
FIGURE 6

(a) Improved CASA model NPP result, (b) CASA model NPP result, (c) Zhu NPP model NPP result, (d) Geographic remote sensing ecological network
NPP result.
TABLE 8 Comparison of the CNN model with GBDT and XGBoost
models.

Model R2 MSE EVS MAE

CNN 0.98 0.0003 0.98 0.0127

GBDT 0.85 0.0025 0.87 0.0528

XGBoost 0.89 0.0016 0.85 0.0432
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high solar radiation during these months, which jointly promote

biomass accumulation by enhancing chlorophyll synthesis, stomatal

conductance, and light use efficiency (Xu et al., 2021).

In the study area, summer begins in June, a season typically

conducive to crop growth due to elevated temperatures, ample

rainfall, and extended daylight hours. These meteorological conditions

enhance photosynthetic efficiency, support nutrient uptake, and provide

sufficient energy for biomass accumulation (Lobell and Asner, 2003;

Hatfield and Prueger, 2015). June marks the start of the rapid growth

phase, during which crops reach their maximum leaf area and highest

photosynthesis rates, resulting in peak NPP. Although some crops may

enter the senescence phase by September, overall photosynthetic activity

and organic matter production remain high during this period.

Different crop species respond variably to temperature, rainfall,

and sunlight. For instance, corn and wheat demonstrate higher

photosynthetic efficiency under elevated temperatures, while rice

requires ample water. The high NPP observed during these months

corresponds with the growth characteristics of these crops.

In summary, temperature, rainfall, and solar radiation are

significant environmental factors affecting crop NPP. Particularly
Frontiers in Plant Science 11
during June, July, August, and September, these factors contribute to

peak photosynthetic efficiency and monthly NPP. High temperatures

accelerated enzymatic activities associated with photosynthesis, while

adequate rainfall ensured the availability of water for nutrient transport

and biomass accumulation. At the same time, increased solar radiation

provided ample energy inputs, further increasing productivity. These

findings provide a scientific basis for optimizing crop planting and

management, potentially enhancing crop yield and quality.

Future research could further investigate the effects of other

environmental variables such as soil nutrients, topography, and pest

and disease pressure, which also affect carbon assimilation and

plant health. In addition, the integration of advanced modelling

techniques such as deep learning (e.g. CNN) can further improve

the accuracy and scalability of net productivity estimates by

capturing non-linear interactions between multiple sources of

remote sensing inputs. A more comprehensive understanding of

these factors will help refine precision agriculture practices to

support sustainable crop production in complex agroecosystems.

The CNN-based FPAR estimation method proposed in this study

outperforms the original CASA model in terms of accuracy.
FIGURE 7

Distribution of NPP from April to October in the study area.
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This improvement is primarily attributed to the CNNmodel’s ability to

capture complex nonlinear relationships and multi-scale features. The

original CASA model relies on the statistical relationships between

FPAR and vegetation indices such as NDVI and RVI, which present

inherent limitations. In areas with high vegetation coverage, as biomass

and canopy density increase, the absorption and reflectance of light by

vegetation leaves reach a saturation point. Beyond this threshold,

NDVI and RVI values no longer exhibit significant changes with

increasing biomass, leading to an underestimation of FPAR when

relying solely on these indices. In this study, the RFE algorithm was

employed to select the optimal feature set, while the CNN model was

utilized to capture the nonlinear response between vegetation indices

and FPAR, significantly enhancing the accuracy of FPAR retrieval.

The improved CASA model demonstrates higher accuracy in

NPP estimation, primarily due to the enhanced precision of FPAR

retrieval. In the CASA framework, NPP estimation is closely linked

to FPAR, as NPP is computed based on the principle that vegetation

absorbs PAR and converts it into biomass. Since FPAR quantifies

the proportion of PAR absorbed by vegetation, its estimation

accuracy directly affects the precision of NPP calculations. With

the improved FPAR retrieval accuracy, the enhanced CASA model

can more accurately determine the actual amount of PAR absorbed

by vegetation, thereby achieving more precise NPP estimations.

Although this study focuses on Haicheng City, the proposed

model exhibits considerable potential for generalization. The core of

the model lies in the integration of satellite remote sensing data and

meteorological data, a widely adopted approach for studying NPP

and the FPAR. This methodology is inherently applicable across

various ecosystems. While the model has been calibrated and
Frontiers in Plant Science 12
validated within the specific environmental conditions of

Haicheng City, its applicability extends beyond this region.

To adapt the model for other regions, several key steps must be

undertaken. First, high-quality satellite remote sensing data for the

target area must be collected over a sufficiently long temporal span,

alongside meteorological data—including temperature, precipitation,

and solar radiation—corresponding to the same time period. Second,

since vegetation types vary across regions, the model’s maximum

light-use efficiency parameter should be adjusted accordingly. This

adjustment should be based on existing research findings and tailored

to the specific vegetation characteristics of the target area. Third,

following the research framework established for Haicheng City,

FPAR and vegetation index data from the target region should be

gathered and input into the CNN model, with parameter tuning

performed to optimize simulation accuracy. Finally, the predicted

FPAR data, along with meteorological inputs, can be incorporated

into the CASA model to derive the NPP values for the target region.

This study employed the CASAmodel within the light use efficiency

framework to simulate crop NPP. Although significant progress has

been made in improving NPP estimation accuracy, several uncertainty

factors continue to affect the precision and reliability of the results.

The spatial and temporal resolution of remote sensing data directly

influences the accuracy of NPP estimation. High-resolution imagery

from the Sentinel-2 satellite captures detailed vegetation spectral

information, offering significant advantages. However, certain

conditions, such as cloud cover and atmospheric variations, can lead

to data loss or introduce errors in specific regions. While the high-

resolution imagery provides detailed spectral information, it is also

susceptible to potential error sources such as sensor noise and changes
FIGURE 8

Spatial distribution of monthly NPP estimated by the CNN model for June, July, August, and September.
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in illumination conditions. These errors may introduce noise into the

vegetation indices used for FPAR estimation, thereby impacting the

accuracy of NPP calculations. In this study, Sentinel-2 imagery of the

study area from July and August exhibited small-scale cloud cover.

Clouds obscure portions of the land surface, resulting in incomplete

spectral data for these areas. For FPAR estimation, cloud cover impedes

the accurate calculation of vegetation indices, which are critical for

deriving FPAR. Figure 8 compares FPAR values for the same region

from June to September, highlighting cloud-affected areas in July and

August. It presents the monthly NPP results obtained by inputting

CNN-estimated FPAR into the CASA model, thereby incorporating

improved FPAR accuracy. As shown in the figure, FPAR values in

cloud-affected regions are likely underestimated. The inaccuracies in

FPAR caused by cloud cover directly affect NPP estimation. Reduced

FPAR values lead to a decrease in APAR, ultimately resulting in lower

NPP estimates for cloud-covered regions. This underscores the

necessity of addressing cloud-induced data gaps to improve the

reliability of NPP calculations.

The current study was conducted within a relatively limited

region in Haicheng City. Although the framework integrating

CNN-derived FPAR with the CASA model shows promising

results, its robustness should be further validated across larger

and more heterogeneous agricultural landscapes. Future

applications will focus on expanding the spatial scope to evaluate

model transferability at regional and national scales.

Previous studies have improved CASA-based NPP estimation

by optimizing light use efficiency parameters or integrating

alternative vegetation indices (Ju and Roy, 2008; Yu et al., 2009).

Our approach complements these efforts by introducing CNN-

based FPAR retrieval, which captures nonlinear interactions among

indices. This positions our work within the broader literature on

CASA model enhancement and contributes to ongoing efforts to

reduce uncertainties in large-scale NPP modeling.

Additionally, despite the incorporation of actual NPP data for corn

and rice, the improved CASA model has certain limitations. Although

optimizing the estimation method for FPAR has enhanced NPP

accuracy, the estimation error for corn remains higher compared to

rice. This discrepancy may be attributed to the uniform setting of the

maximum light use efficiency parameter in the CASA model. In this

study, a single maximum light use efficiency parameter of 0.389 was

applied, which does not effectively differentiate between corn and rice.

C4 plants (e.g., corn) exhibit higher photosynthetic efficiency than C3

plants (e.g., rice), as C4 plants utilize light energy more effectively and

reduce respiration losses (Gowik and Westhoff, 2011). Consequently,

the uniform parameter setting leads to estimation errors. To further

improve NPP estimation accuracy, the CASA model’s maximum light

use efficiency parameter needs to be optimized to account for the

characteristics of different crops.

In summary, despite the significant advancements in refining

the CASA model, future research should address and mitigate the

aforementioned uncertainty factors to enhance the accuracy and

reliability of NPP estimations.

Despite its demonstrated advantages, the CNN-based FPAR

estimation framework also has certain limitations. First, it requires

large amounts of high-quality training data, which may not always
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be available for all regions or crop types. Second, CNN training and

inference are computationally intensive, potentially limiting large-

scale or real-time applications. Future work could address these

challenges through strategies such as transfer learning to reduce

dependence on local training data, model compression to improve

efficiency, or integrating CNN with process-based models to

balance accuracy and interpretability.
5 Conclusions

This study demonstrates that combining deep learning with the

CASAmodel can significantly improve the accuracy of estimating crop

net primary productivity (NPP) under different environmental

conditions. By integrating spectral reflectance (FPAR) estimated

using convolutional neural networks (CNN), the improved model

can more reliably represent spatial-temporal NPP patterns, providing

support for theoretical research and practical applications in fields such

as agricultural management, large-scale yield monitoring, and carbon

cycle studies. The research results highlight the potential of combining

advanced remote sensing technology with process-oriented models to

enhance ecosystem productivity assessment. Future studies will further

optimize model parameters, address data uncertainty issues (such as

cloud contamination), and expand the application scope of this method

to cover more crop types and geographical regions.
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