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Introduction: Understanding the complex associative pathways linking urban
green spaces to resident health is crucial for sustainable urban development and
public health.

Methods: This study aimed to investigate the indirect associations between
residential vegetation cover (VC) and cardiovascular health, exploring the
sequential roles of particulate matter (PM) and key physiological biomarkers in
a large patient cohort. Using partial least squares structural equation modeling on
32,667 patient records from Nanjing, China, we constructed a series of path
models to analyze these relationships.

Results: Our findings reveal a significant indirect association between residential
VC and cardiovascular health outcomes. Specifically, our path analysis reveals
that higher VC is linked to lower concentrations of PM, with PM10 (particles
<10mm) emerging as the dominant intermediary over PM2.5. In turn, lower PM10
levels are associated with healthier metabolic profiles—particularly lower total
cholesterol and blood glucose levels —which were subsequently linked to better
cardiovascular outcomes. Notably, total cholesterol was a key factor for reduced
hospitalization frequency, while blood glucose was more strongly associated
with lower incidence of heart failure. Among various vegetation metrics, Leaf
Area Index demonstrated the strongest association within these pathways.
Discussion: Our analysis provides evidence for a specific environmental health
pathway (Vegetation — PM10 — Metabolic Biomarkers — Cardiovascular
Outcomes) and highlights that vegetation quality, particularly Leaf Area Index,
is a key factor. These findings offer valuable insights for urban planners and public
health officials aiming to design healthier cities by leveraging the air-purifying
benefits of urban green spaces.
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1 Introduction

Cardiovascular diseases (CVDs) encompass a range of
conditions affecting the heart and blood vessels and are the
leading cause of mortality worldwide (Colantonio and Muntner,
2019; Li et al, 2023). With increasing prevalence, earlier onset,
numerous complications, and high morbidity, mortality, disability,
and recurrence rates, CVDs represent a significant global public
health challenge (Joseph et al., 2017; Roth et al., 2020).
Concurrently, substantial evidence demonstrates that urban
natural environments, particularly green spaces, play a crucial
role in improving human physiological health through various
pathways (Liang et al., 2024¢; Liang et al., 2024d). These natural
elements are indispensable for sustainable urban development and
enhancing the wellbeing of residents (Liang et al., 2024a; Liang et al.,
2024b). Notably, several large-scale epidemiological studies have
consistently revealed a robust negative correlation between the level
of greenery in residential areas and CVD risk (Wang et al., 2019; Liu
etal., 2022; Hajna et al., 2023). Residents in urban areas with higher
vegetation cover (VC) exhibit a lower incidence and mortality rates
of CVDs (Group et al,, 2024), underscoring the potential of urban
green spaces to promote cardiovascular health.

Extensive evidence demonstrates that urban green spaces
contribute to cardiovascular health through multiple pathways.
These natural environments provide opportunities for physical
activity, stress reduction, and improved air quality by filtering
harmful pollutants (Diener and Mudu, 2021; Jia et al., 2021; Qiu
etal, 2021; Remme et al,, 2021). Additionally, green spaces mitigate
noise pollution (Dzhambov and Dimitrova, 2014; Browning et al.,
2022), alleviate urban heat island effects (Sun and Chen, 2017; van
den Bosch and Sang, 2017), and enhance immune function through
exposure to beneficial microbes (Rook, 2013; Sandifer et al., 2015).
Recognizing these benefits, healthcare professionals increasingly
offer so-called green prescriptions, encouraging patients to engage
with nature as part of lifestyle interventions (Shanahan et al., 2019;
Adewuyi et al,, 2023). This approach positions urban greenery as a
promising strategy for CVD prevention. Consequently, there is a
growing need to integrate epidemiological and urban
environmental research to explore the complex relationships and
potential pathways linking urban natural environments to
cardiovascular health. Such understanding is crucial for
incorporating health considerations into urban green space
planning, guiding urban development strategies, and maximizing
the potential of urban natural environments to promote
cardiovascular wellbeing. While existing research consistently
demonstrates a protective association between residential
greenness and cardiovascular health (Yitshak-Sade et al., 2017;
Jennings et al., 2019; Wang et al., 2019; Donovan et al.,, 2022;
Hajna et al,, 2023), these studies have predominantly relied on
correlation or regression analyses. Consequently, the complex,
multi-step pathways through which green spaces are linked to
these cardiovascular benefits remain insufficiently understood,
representing a critical gap in the literature.

Recognizing the multifaceted pathways through which green
spaces influence population health, recent studies have

Frontiers in Plant Science

10.3389/fpls.2025.1659005

incorporated mediating factors such as physical activity
(Richardson et al., 2013; Jia et al., 2018), air temperature (Shen
and Lung, 2016), and traffic noise (Orioli et al, 2019) to better
understand the pathways underlying the relationship between green
spaces and cardiovascular health. Notably, air pollution has
emerged as a prominent mediator, with research demonstrating
the ecological benefits of green spaces for reducing air particulate
matter (APM) (Diener and Mudu, 2021). For instance, cohort
studies in China identified PM2.5 as a partial mediator in the
beneficial association between green spaces and atherosclerosis (Hu
etal, 2022; Lietal., 2022). Furthermore, a comprehensive literature
review and meta-analysis confirmed that green spaces can promote
cardiovascular health by reducing air pollution through ecosystem
regulation services (Qiu et al., 2021). However, the association
between air pollution and cardiovascular health is complex. It
involves various physiological factors such as lipid abnormalities
(Cesaroni et al., 2014), hypertension (Lei et al., 2022),
hyperglycemia (Yang et al., 2018), and inflammatory responses
(Burkart et al, 2022). Additionally, physiological health risks
(PHRs) have been recognized as potential mediators, with studies
revealing protective associations between residential greenness and
allostatic load (Lai et al., 2024), and the mediating role of
cardiometabolic disorders in the relationship between green
spaces and CVD (Yang et al., 2020). Therefore, simultaneously
considering air quality and PHR as mediating factors can offer a
more comprehensive and scientifically robust approach to
understanding the complex mechanisms linking green spaces to
cardiovascular health outcomes (CHOs).

Current research on the relationship between green spaces and
cardiovascular health predominantly focuses on single-factor
mediation analyses. Even studies incorporating multiple
potentially interrelated mediators often conduct independent
analyses or examine parallel mediation effects. In doing so, they
neglect the potential for chain-mediated interactions between these
factors, that is, a sequential pathway where green space is associated
with air quality, which in turn is associated with physiological risk,
ultimately linking to health outcomes (Shen and Lung, 2016;
Dzhambov et al.,, 2020; Dong et al, 2021). While investigations
into serial mediators in the relationship between green spaces and
health are limited, some studies have made notable contributions.
For instance, one study demonstrated a partial chain-mediated
effect of air pollutants (PM2.5, NO,) and perceived air pollution
in the beneficial impact of urban street tree exposure on mental
health (Wang et al, 2020). Another study of middle-aged and
elderly Chinese found that the pathway between PM2.5
concentrations and physical activity partially mediated the
association between residential greenness and hypertension in
rural areas (Huang et al., 2021). These findings provide support
and inspiration for further exploring the complex mechanisms
underlying the impact of green spaces on physiological health.
Therefore, this study aimed to address these gaps by: (1)
Investigating the association between residential VC and CHOs in
a large patient cohort from Nanjing, China; (2) Exploring the
potential indirect pathways of association linking VC and CHOs
via particulate matter (PM) and PHR biomarkers using structural

frontiersin.org


https://doi.org/10.3389/fpls.2025.1659005
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Wang et al.

equation modeling; and (3) Comparing the relative strength of
association for different indicators of VC, PM, and PHR within
these associative pathways.

Our study aimed to elucidate the pathways of association
linking urban green space VC to the cardiovascular health of
residents. Specifically, we explored the indirect associations
between residential green space VC and CHOs through a
sequential pathway involving air quality and PHR. Recognizing
that single indicators may lead to bias, we employed a multi-
indicator approach to comprehensively characterize each factor.
This method facilitates a more in-depth exploration of the indirect
pathways associating green spaces with cardiovascular health via air
quality and PHR. By comparing the roles of different indicators
within the path model, we aimed to clarify the relative strength of
association for each. This research can provide a reference and
evidence-based support for urban green space planning,
cardiovascular disease prevention strategies, and patient recovery
interventions. Furthermore, our findings can contribute to the
development of more effective urban planning and public health
policies that leverage the health benefits of urban green spaces.

2 Study site and sample

Nanjing, a major metropolis in eastern China, comprises 11
administrative districts covering a total area of 6,587.04 km?, with
an urban built-up area of 868.28 km”. As of late 2023, Nanjing’s
permanent resident population was 9.547 million. Over the past
decade, the city has intensively implemented its Green Nanjing
strategy to improve the urban park system and greenway network
while strengthening ecological environmental construction and
protection. By the end of 2022, the city’s forest coverage area
exceeded 297 million mu, with a tree coverage rate of 31.96%, an
urban green coverage rate of 44.96%, and a green space rate of
40.82% (Statistics, N.B.o, 2023). Nanjing faces significant
challenges related to population aging and cardiovascular health.
The policy Key Tasks for Healthy Nanjing Construction in 2023
explicitly outlines strategic guidelines for the prevention and
treatment of cardiovascular and cerebrovascular diseases,
underscoring the practical and strategic importance of research
in this region.

We conducted a retrospective analysis of electronic medical
records from 81,306 patients with cardiovascular department
hospitalization records at all campuses of Nanjing Drum Tower
Hospital (including the Gulou and Jiangbei campuses) from
January 2013 to December 2023. After screening, 32,667 patient
records from December 2014 to December 2023 were selected for
the study, based on criteria including detailed and accurate address
information, complete key physiological indicator test data, and
residence within Nanjing city limits. For each selected patient,
environmental exposures (i.e., VC and air PM) were assessed
within a 1000-meter buffer zone around their registered residence.
The participant selection process is detailed in Supplementary
Figure S1.

Frontiers in Plant Science

10.3389/fpls.2025.1659005

3 Materials and methods
3.1 Data collection and pretreatment

To investigate the complex pathways of association by which
VC in green spaces is linked with cardiovascular health, involving
the intermediate roles of air quality and various PHRs, we employed
four latent variables: VC, APM, PHR, and CHOs. Each latent
variable encompassed multiple observed variables (Table 1). The
bivariate correlations between all observed variables are presented
in Supplementary Figure S2 in the Supplementary Material. For a
comprehensive assessment of VC around patients’ residences, six
vegetation indices were used as observed variables for VC. Given the
known effects of VC on air quality, particularly APM (Diener and
Mudu, 2021), PM2.5 and PM10 were selected as observed variables
for APM. Based on PHRs leading to adverse cardiovascular
outcomes (Hu, 2023), and to avoid potential temporal
confounding from acute-phase reactants, we excluded
inflammatory markers. Consequently, three second-level latent
variables were chosen for PHR: blood lipid risk (BLR), blood
glucose risk (BGR), and blood pressure risk (BPR).
Corresponding biomarkers were selected as observed variables for
these risks (Table 1). For CHOs, hospitalization utilization (HU)
and cardiovascular disease diagnosis (CVDD) were chosen as latent
variables. Data for these variables were collected from various
sources, including satellite imagery for vegetation indices, air
quality monitoring networks for APM, and electronic medical
records for PHR and CHOs. For each patient, environmental
exposure data (VC and PM) were calculated as annual averages
for the calendar year preceding their hospital admission date.
Appendix A provides the rationale for indicator selection, detailed
data collection procedures, and data processing methods.

3.2 Chain mediation models

To explore the complex pathways of association linking VC to
CHOs, we employed a pre-specified, four-stage analytical strategy
using a series of path models. This hierarchical approach was
designed to move progressively from broad, composite constructs
to more specific, granular indicators, allowing for a systematic
exploration of the associative pathways. VC was treated as the
exogenous variable, CHOs as the final endogenous variables, with
APM and PHR positioned as intermediate variables in the pathway.
The observed variables for each latent variable are presented in
Table 1. Each of the four model groups (Model Groups 1-4) was
analyzed using partial least squares structural equation models
(PLS-SEMs) (Figure 1).

3.2.1 Model group 1: overall associative model
with composite latent variables

This group of models constructs two chain mediation effect
models, Model 1a and Model 1b, respectively using HU and CVDD
as dependent variables. These models analyze the association of VC
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TABLE 1 Variables of chain mediation models in this study.

Latent variables

Observed variables

Independent variable

Mediating variable

Normalized difference
vegetation index (NDVI)

Enhanced vegetation index
(EVD)

Leaf Area Index (LAI)

Forest vegetation coverage
(FVC)

Soil adjusted Vegetation
Index (SAVI)

Difference vegetation index
(DVI)

PM 2.5 concentration

Calculation
methods and
units

(B5 - B4)/(B5 + B4)
(Pettorelli, 2013)

2.54(B5-B4)/(B5 +
6*B4 -7.5B2 + 1)
(Liu and Huete, 1995)

8.278 * NDVI -
0.2459 (Allegrini
et al., 2006)

(NDVI - NDVIs)/
(NDVIv -NDVIs)
(Song et al., 2017)

(1+L)* (B5 - B4)/
(B5 + B4 + L) (Huete,
1988)

B5 - B4 (Yan et al.,
2022)

annual average, ug/

3
m

APM
1 ]
PM 10 concentration ::;nua average, Hg/
PHR
Total cholesterol (TC) mmol/L
Blood lipid risk (BLR) High density lipoprotein 1L
cholesterol (HDL-C) mmo
Blood gl isk
(B(gR)g Heose s Blood glucose (GLU) mmol/L
Blood isk
(B(I)J(I){) pressure ris Systolic blood pressure (SBP) = mmHg
Dependent variable
CHO
Times of hospitalizations .
TH) Times
Hospital utilization (
(HU) Days of hospitalizations Days

Cardiovascular disease
diagnosis (CVDD)

(DH)

Diagnosed chronic ischemic
heart disease (CIHD)

Diagnosed heart failure (HF)

Categorical variable

Categorical variable

VC, Vegetation cover; APM, Airborne particulate matter; PHR, Physiological health risk;
CHO, Cardiovascular health outcome.

with HU and CVDD, exploring the indirect pathway via APM and
PHR. The external models are as follows (Equations 1-5):

éVC :E

€ {NDVI, EVI, SAVI, DVI, FVC, LAI}

(ﬂvci*xvci)+5vc) for VC;
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Naps =2, (Aapy, * Xapy) + €appss for APM;
€ {PM2.5, PM10} 2)
Npur = >, (Agag, * X)) + Epurs for BM
€ {IC, HDL - C, GLU, SBP, DBP} 3)

Ny = 2,

(Any, * xpu,) + €gus for HU, € {TH, DH} (4)

Nevop = >, (Acvpp, * *cvop,) + €cvpps  for CVDD,

€ {CIHD, HF} (5

where & and m represent exogenous and endogenous latent
variables, respectively, x represents observed variables, A represents
factor loadings of observed variables, & represents measurement
errors of observed variables for exogenous latent variables, and €
represents measurement errors of observed variables for
endogenous latent variables.

As each latent variable in this model group is a single factor, the
constructed models are single-factor models. Their internal models
are as follows (Equations 6-9):

Napy = Yo * Eve + Capu (6)
Nprr = Bapm—pur * Tapy + Yvcoprr * Sve + Cpur (7)

Nu = Berronu * Mpur + Bapv—nu * Napm + Yvconu * Sve

+ Sy (8)

Nevop = Berr—cvop * Nprr + Bapv—cvpp * Tapm
+ Wecvop * Sve + Sevop %)

where Y represents path coefficients from exogenous latent
variables to endogenous latent variables, indicating the direct
influence of exogenous latent variables on endogenous latent
variables; B represents path coefficients between endogenous
latent variables, indicating the association between endogenous
latent variables; and { represents prediction errors of endogenous
latent variables.

3.2.2 Model group 2: deconstructing PHR
pathways

This group of models builds upon Model Group 1 by further
subdividing the CHO variables (HU and CVDD) into specific
indicators: times of hospitalization (TH), days of hospitalization
(DH), diagnosed chronic ischemic heart disease (CIHD), and
diagnosed heart failure (HF). Four chain mediation effect models
(Models 2a, 2b, 2¢, and 2d) are constructed with these four variables
as dependent variables. Additionally, PHR is subdivided into latent
variables BLR, BGR, and BPR to analyze their roles as intermediate
variables in the pathway linking VC, APM, and each CHO (TH,
DH, CIHD, and HF). The external models for &y and 1,p) are the
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* Internal Model

APM

PHR

Mediating Variable 1

A Multiple mediation effects

Direct effects

Mediating Variable 2

CHO Observed Variables

Observed Variables VC

Independent Variable

FIGURE 1

Outcome Variable

Research model framework. VC, Vegetation cover; APM, Physiological health risk; PHR, Airborne particulate matter; CHO, cardiovascular health

outcome.

same as for Models (1-1) and (1-2) in Model Group 1. The
remaining external models are as follows (Equations 10-13):

MR = 2,

€ {TC, HDL - C} (10)

(AsLr, * XpLR,) *+ EpLr> for BLRy

TNser = AsGr * XGLU + €pGR (11)

TgpR = >,

€ {SBP, DBP} (12)

(Agpr, * Xppr,) + Eppr>  for BPRy

Ncno, = Acto, * Xcro, + €cnop» for CHO,

€ {TH, DH, CIHD, HF} (13)

In this model group, &yc and Mypy are single factors. Their
internal model is the same as for Model (1-6) in Model Group 1.
The internal model for npyy; is as follows (Equations 14-16):

Npur, = ﬁAPM—>PHRk *TNapm + Yve—pHR, * Eve
+ CPHRk) for PHRk

€ {BLR, BGR, BPR} (14)

As there may be interaction effects between the different PHR
variables, we construct a comprehensive-effect model to fully reflect
the combined influence of all PHR variables on CHO. The internal
model for N¢g; is as follows:

Newo, = > (Beur.—cro, * Meur,) + Bapv—cro, * Napm
+ Yeocho, * Sve + Seno, (15)

If the comprehensive-effect model encounters issues such as
multicollinearity, we consider constructing a single-factor model.
The internal model for 1y, in this case would be

Frontiers in Plant Science

Ncho, = ﬁPHRk—>CH01 * Npyr, + ﬂAPM—>CHO, * Tapm

+ Weocho, * Sve + Seno, (16)

3.2.3 Model group 3: deconstructing PM and
biomarker pathways

The third stage of our analytical strategy was designed to
simultaneously deconstruct both the APM and PHR constructs to
identify the most salient pathways at a granular level. This group
consists of four path models (Models 3a, 3b, 3¢, and 3d), one for
each CHO. Based on the findings from Model Group 2, which
highlighted the low internal consistency of the BLR construct and
the primary roles of lipid and glucose pathways, our pre-specified
plan was to disaggregate the PHR constructs directly into their
constituent, clinically-measured biomarkers: total cholesterol (TC),
high-density lipoprotein cholesterol (HDL-C), and blood glucose
(GLU). Concurrently, the APM construct was disaggregated into
PM2.5 and PMI10 to assess their distinct roles. This integrated
approach allows for a direct, competitive comparison of the
pathways running through different PM sizes to specific
biomarkers within a single, comprehensive model.

The external models for &y, Ny NMpms Nerro> and Ny are the
same as in previous groups. The remaining external models are as
follows (Equations 17, 18):

Napm, = Aapy, * Xapu, + €aprg,  for APM;

€ {PM2.5, PM10} 17)

Nea, = Asy, * Xpa, + €pag,> for BMy

€ {TC, HDL - C, GLU} (18)

where 7),py; represents the individual PM variables and 7gy;
represents the individual biomarker variables.
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https://doi.org/10.3389/fpls.2025.1659005
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Wang et al.

To comprehensively reflect the combined influence of all
variables, our primary analytical approach was to construct a
comprehensive-effect model. The internal models for this
approach are as follows (Equations 19-21):

Marn; = Yvc—apm, * Sve + Capy, 19)

Npm, = >

(ﬁAPMj—>BMk * nApM,.) + Weonm, * Sve + Can, (20)

Nero, = >, (Beme—cro, * M)
+2

+ Ceno, (21)

(.BAPM]—>CHOI * nAPMj) + Ye—cHo, * Sve

where Tcyor represents one of the four final health outcomes
(TH, DH, CIHD, or HF).

Given the potential for multicollinearity between PM2.5 and
PMI10, our analytical plan specified that if the comprehensive-effect
model showed evidence of multicollinearity (e.g., VIF > 5), we
would proceed with single-factor models for the PM variables to
ensure a clear interpretation. The internal models for this single-
factor approach would be (Equations 22, 23):

Nau, = Bapv,—By, * Mapm, + Ye—bm, * Eve+ Gy, (22)

Ncho, = ﬁBMk—>CHOI * Mgy, + ﬁAPM]—>CHO[ * TPy,

+ Weocro, * Sve + Ceno, (23)

3.2.4 Model group 4: comparing individual VC
indicators

The final stage of our analysis, Model Group 4, was designed to
investigate the relative importance of different vegetation
characteristics. In this stage, the composite VC construct was
disaggregated into its six individual indicators (NDVI, EVI, SAV],
DVI, FVC, and LAI). To construct the most salient and
parsimonious path for this comparative analysis, our pre-specified
plan was to utilize the single strongest APM indicator and the single
most influential biomarker identified from the preceding stage
(Model Group 3). This allowed for a direct comparison of the
association strength of each individual VC metric within a
consistent and statistically powerful pathway.

The external models for Ny, Np»> Neiro> and Mgy are the same
as for Model (2-4) in Model Group 2. The remaining external
models are as follows (Equations 24-26):

gvc, = /lvc, *Xye, + 5vc,» for VG,

€ {NDVI, EVI, SAVI, DVI, FVC, LAI} (24)

+ Expu, (25)

max

= ;LAPM,naX *XAPM,

Naprm,

max max

Nsm,,,, = A, * XBM,,, + EBM, (26)

max max

where Mappimax represents the selected APM variable with the
strongest association (determined from Model Group 3 results),
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Xapm,,, Trepresents its observed variable, 7z, =~ represents the
selected biomarker variable with the strongest association
(determined from Model Group 3 results), and xpyy,qc represents
its observed variable.

To comprehensively reflect the combined influence of all VC
indicators on APM, our primary analytical approach was to
construct a comprehensive-effect model. The internal models for
this approach are as follows (Equations 27-29):

Napmy, = 2 (We—arm * Sve,) + Capm,,, (27)

Nsm,,, = Bapsi—sy * Mapm,,, + >, (Wb * 'évc,)

+ gBMmaX (28)

NcHo, = BBMW * MM, T ﬂAPMW * TIAPM, 0
+>

However, given the high potential for multicollinearity among

(Wecno, * Eve,) + Cero, (29)

the individual VC indicators, our analytical plan specified that if the
comprehensive-effect model showed evidence of multicollinearity
(e.g, VIF > 5), we would proceed with single-factor models to
ensure a clear and direct comparison of each indicator’s effect. The
internal models for this single-factor approach are as follows
(Equations 30-32):

NaPM,,,. = WC—APM * gvc, + CAPMW (30)
N, = Bapm—sm * Napm,,, + Yve—bu * évq + G, (31)

Ncho, = BBM—»CHOI * MM, + ﬂAPM—>CH01 * TIAPM, 0y
+ Wemcno, * Sve, + Ccro, (32)

These four groups of path models allow for the decomposition
of the total association between VC and CHOs into direct and
indirect pathways involving APM and PHR. The terms “direct
effect” and “indirect effect” are used here to describe statistical paths
within the model, not to imply causality. Each group progressively
refines the analysis, from broad concepts to specific indicators. As
the coefficients and effects in the models are standardized, the
relative strengths of association across different variables and
pathways can be directly compared. To test the statistical
significance of relationships and effects in the models, we
employed the bootstrap method, generating 5000 subsamples for
each model. This method provides robust estimates of standard
errors and confidence intervals for model parameters. We evaluated
the validity and reliability of the external model using composite
reliability (CR), Cronbach’s o, and the square root of the average
variance extracted (AVE). These metrics assess the internal
consistency and convergent validity of the constructs. The
internal model’s collinearity was assessed using the variance
inflation factor (VIF), which helps identify potential
multicollinearity issues. The overall model fit was evaluated using
the standardized root mean square residual (SRMR) and the
normed fit index (NFI), which provide measures of the
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PMZ.S TC ][HDLC G%U SBP
0995 0.995" 0.640°0.699"*0.655™0.027
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Path diagrams of the PLS-SEMs in model group 1. VC, Vegetation cover; PHR, Physiological health risk; APM, Airborne particulate matter; HU,

Hospital utilization; CVDD, Cardiovascular disease diagnosis.

discrepancy between the observed and model-implied correlation
matrices. All mediation effect models were analyzed using
SmartPLS software (Version 4.1, SmartPLS GmbH, Germany).

4 Results

4.1 Overall associations among composite
latent variables

The model evaluation results (Supplementary Table S1) indicate
that the composite constructs for VC and APM have high reliability
and validity. However, the overall PHR construct, now excluding
inflammatory markers, still shows CR, AVE, and Cronbach’s o values
below recommended thresholds, suggesting heterogeneity among the
remaining physiological risks. The adjusted R* values for the final
outcomes were 0.120 for HU (Model 1a) and 0.080 for CVDD
(Model 1b), indicating modest explanatory power at this broad level.

The path analysis results for Model Group 1 (Figure 2) show
that all path coefficients are statistically significant. VC was
significantly and negatively associated with APM (B = -0.222, p<
0.001). In turn, APM was positively associated with the composite
PHR ( = 0.132 in Model 1a; = 0.131 in Model 1b, p< 0.001).
Finally, PHR was significantly associated with both HU (B = 0.315,
p< 0.001) and CVDD (B = 0.245, p< 0.001).

Frontiers in Plant Science

The analysis of indirect associations (Table 2) reveals that all
pathways are statistically significant. For HU (Model 1a), the
primary indirect pathway is VC—-APM—HU (Specific Indirect
Effect = -0.05352, p< 0.001). For CVDD (Model 1b), a notable
inconsistent association was observed: while the total association
was negative (Total Effect = -0.01866, p< 0.001), the specific indirect
path through APM alone (VC—-APM—CVDD) was positive

TABLE 2 Indirect associations in the PLS-SEMs of model group 1.

Total
effect

Direct
effect

Specific
indirect effect

Model pathway

Model 1a (VC—APM—PHR—HU)

VC—APM—HU -0.10283*  -0.03681*** | -0.05352***
VC—PHR—HU -0.10283%*  -0.03681*** | -0.00629***
VC—APM—PHR—HU -0.10283  -0.03681*** | -0.00741***
Model 1b (VC—APM—PHR—CVDD)

VC—APM—CVDD -0.01866* = -0.01496*** | 0.00333***
VC—PHR—CVDD -0.01866* = -0.01496*** | -0.00334***
VC—APM—PHR—CVDD  -0.01866"* = -0.01496*** | -0.00369***

VC, Vegetation cover; PHR, Physiological health risk; APM, Airborne particulate matter; HU,
Hospital utilization; CVDD, Cardiovascular disease diagnosis.
*p< 0.05; **p< 0.01; **p< 0.001.
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(Specific Indirect Effect = 0.00333, p< 0.001). This statistical
phenomenon, potentially indicative of a suppressor effect,
suggests complex underlying relationships that warrant further
disaggregation in subsequent models.

4.2 Associations involving disaggregated
physiological health risks

In Model Group 2, the PHR construct was disaggregated into
BLR, BGR, and BPR. Model evaluation (Supplementary Table 52)
showed that while VC and APM remained robust, the BLR construct
had a low Cronbach’s o (0.463). This low internal consistency
indicates that TC and HDL-C do not form a reliable single
construct, methodologically necessitating the disaggregation of BLR
into its constituent biomarkers in the subsequent analytical stage.

The path results (Figure 3) confirm a significant negative
association between VC and APM (B = -0.222, p< 0.001). APM
was significantly and positively associated with both BLR (§ = 0.115,
p< 0.001) and BGR (B = 0.100, p< 0.001), but its association with
BPR was not significant. In turn, BLR and BGR were significantly
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associated with all four CHO variables (TH, DH, CIHD, HF). BPR
was only significantly associated with HF (B = -0.005, p< 0.01).

The analysis of indirect associations (Table 3) indicates that the
most substantial pathways from VC to CHOs operate through APM
to BLR and BGR. For hospitalization outcomes, the indirect
pathways involving BLR and BGR were strongest, with BGR
being slightly more prominent for DH (Specific Indirect Effect =
-0.00266) than BLR (Specific Indirect Effect = -0.00260). For disease
diagnoses, the pathways via BLR and BGR were also the most
prominent, with BLR being stronger for CIHD (Specific Indirect
Effect = -0.00150) and BGR being stronger for HF (Specific Indirect
Effect = -0.00141). The role of BPR as an intermediate variable was
negligible in most models, showing only a minor significant indirect
association for HF.

4.3 Associations involving disaggregated
pm and biomarkers

Based on the findings from Model Group 2, the third stage of
our analysis simultaneously disaggregated APM into PM2.5 and
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TABLE 3 Chain mediation effects of the PLS-SEMs in model group 2.

Model variable = Total Direct Specific indirect
(PHRI) effect effect effect
Model 2a (VC—APM—PHR—TH)

BLR -0.07881%**  -0.05845°*  -0.00262***
BGR -0.07881°%*  -0.05845°*  -0.00150***
BPR -0.07881***  -0.05845°*  0.00005
Model 2b (VC—APM—PHR—DH)

BLR -0.08455%¢  -0.01651** -0.00260**
BGR -0.08455°  -0.01651** -0.00266**
BPR -0.08455°*  -0.01651** -0.00001
Model 2¢ (VC—APM—PHR—CIHD)

BLR -0.01536"*  -0.01825°*  -0.00150***
BGR -0.01536"*  -0.01825°*  -0.00134***
BPR -0.01536"*  -0.01825°*  -0.00002
Model 2d (VC—APM—PHR—HF)

BLR -0.01244**  -0.00544* -0.00130***
BGR -0.01244"*  -0.00544* -0.00141%+*
BPR -0.01244"*  -0.00544* -0.00011*

VC, Vegetation cover; APM, Physiological health risk; PHR, Airborne particulate matter; BLR,
Blood lipid risk; BGR, Blood glucose risk; BPR, Blood pressure risk; IR, Inflammatory risk;
TH, Times of hospitalizations; DH, Days of hospitalizations; CIHD, Diagnosed chronic
ischemic heart disease; HF, Diagnosed heart failure.

*p< 0.05; **p< 0.01; **p< 0.001. The underlined values in the table denote statistically
significant and relatively large effect sizes and proportions, highlighting paths with substantial
indirect effects. These paths and their corresponding variables are identified as having
significant and strong mediating effects in the model, and are thus selected for further
analysis or interpretation.

PM10, and the key PHR constructs into their constituent
biomarkers (TC, HDL-C, and GLU). Model evaluation metrics
remained robust (Supplementary Table S3).

The path analysis results (Figure 4) reveal a critical finding:
while VC was significantly and negatively associated with both
PM2.5 (B = -0.214, p< 0.001) and PM10 (B = -0.228, p< 0.001),
only PM10 showed significant subsequent associations with the
key biomarkers. Specifically, PM10 was positively associated with
TC (B = 0.064, p< 0.001) and GLU (B = 0.100, p< 0.001), and
negatively associated with HDL-C (B = -0.119, p< 0.001). In
contrast, the paths from PM2.5 to these biomarkers were not
statistically significant.

Consequently, the analysis of indirect associations (Table 4)
demonstrates that the significant sequential pathways from VC to
all CHOs operate exclusively through PM10. For TH, the strongest
indirect pathway involved PM10 and TC (Specific Indirect Effect =
-0.00282, p< 0.01). For DH, CIHD, and HF, the pathways involving
PM10 and GLU were consistently the most prominent (e.g., for DH:
Specific Indirect Effect = -0.00273, p< 0.01). These results identify
PMI10 as the primary PM variable in this chain of association,
linking VC to CHOs via specific metabolic biomarkers.
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4.4 Comparison of association strengths
for individual VC indicators

In the final stage, we compared the relative strength of six
individual VC indicators within the most salient pathway identified
in Model Group 3. Based on those results, PM10 was used as the
APM indicator, while TC was selected as the key biomarker for the
TH outcome, and GLU was selected for the DH, CIHD, and
HF outcomes.

The comprehensive-effect model was found to be invalid due to
severe multicollinearity (VIF > 5), as anticipated in our pre-
specified analytical plan. Consequently, we proceeded with single-
factor models. The results (Supplementary Figure S3 and Table 5)
show that all six VC indicators were significantly and negatively
associated with PM10. In the subsequent pathways to CHOs, LAI
consistently emerged as the indicator with the strongest indirect
association for disease diagnoses, particularly for CIHD (Specific
Indirect Effect = -0.00164) and HF (Specific Indirect Effect =
-0.00164). For hospitalization outcomes (TH and DH), SAVI and
LAI showed the most prominent associations. Notably, FVC also
demonstrated a strong association for TH (Specific Indirect Effect =
-0.00172) and DH (Specific Indirect Effect = -0.00259), although
slightly weaker than LAI This suggests that vegetation quality and
structure, as captured by LAI and FVC, are particularly important
in this environmental health pathway.

5 Discussion

5.1 Interpretation of key associative
pathways

The results from our four-stage analytical strategy consistently
support an association between VC and CHOs, which is statistically
explained by indirect pathways involving APM and PHR. This
highlights the complex web of associations through which green
spaces are linked to cardiovascular health.

A central finding, established in Model Group 3, is the
dominant role of PM10. While VC was associated with
reductions in both PM2.5 and PMI10 concentrations, only the
pathways involving PM10 were significantly linked to subsequent
changes in metabolic biomarkers and CHOs. This differential
impact could be attributed to PM10 being more easily captured
by vegetation. Additionally, PM10’s deposition in the upper
respiratory tract may more readily trigger systemic responses
affecting lipid and glucose metabolism.

The analysis further specified the biological pathways involved.
Model Group 3 demonstrated that lower PM10 concentrations were
associated with reduced TC and GLU levels, and increased HDL-C
levels. These biomarkers, in turn, were linked to better health
outcomes. Notably, the indirect pathways showed specificity: the
VC—PMI10—TC pathway was most prominent for TH, whereas
the VC—PM10—GLU pathway was strongest for DH, CIHD, and
HF. This suggests that PM10 exposure may influence
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hospitalization frequency and disease severity through distinct
metabolic routes. The significant role of HDL-C in the pathways
for DH, CIHD, and HF, but not for TH, further underscores
this complexity.

Finally, the single-factor models in Model Group 4 confirmed
that while all vegetation indicators were associated with reduced
PM10, LAT and FVC showed the most significant indirect
associations with CHOs. This indicates that vegetation structure
and density are key characteristics. LAI, reflecting the total leaf
surface area, is directly related to the capacity for air purification
and particle deposition. FVC represents the density of VC, which
also contributes to overall air quality improvement.

These findings collectively underscore the multifaceted nature
of urban greening’s health benefits. They suggest that urban
planning strategies should prioritize vegetation types that
effectively reduce PM10 concentrations. Based on this study’s
results, increasing LAI and FVC could be effective strategies for
improving cardiovascular health. It is also important to note the
presence of inconsistent associations in some pathways, such as the
VC—APM—CVDD path in Model 1b. This phenomenon,
potentially a suppressor effect, suggests the existence of complex
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underlying relationships not fully captured by the current model
and highlights a valuable direction for future research.

5.2 Comparison with existing literature

Our general finding that green space is associated with better
cardiovascular health via pathways involving PM and metabolic
biomarkers is consistent with a growing body of literature. For
example, studies have similarly identified PM as a key intermediate
variable in the link between greenness and atherosclerotic CVD risk
(Shen and Lung, 2016; Dong et al., 2021), and have associated green
space with improved lipid profiles (R. Lei et al., 2024; Xu et al., 2022,
better glucose metabolism (Yang et al., 2019; Li et al,, 2021), and
reduced inflammation (Egorov et al., 2024; Lai et al., 2024). Our
study builds upon this foundation by using a path analysis
framework to explore these sequential relationships, aligning with
findings that cardiometabolic disorders mediate the relationship
between green space and CVD (Yang et al., 2020).

A notable finding of our study, confirmed robustly in our
competitive model (Model Group 3), is the dominant role of PM10
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TABLE 4 Chain mediation effects of the PLS-SEMs in model group 3.

10.3389/fpls.2025.1659005

HodEt Total effect Direct effect Specific indirect
Variable (APM) Variable (PHR) effect
MODEL 3a (VC—APM—BM—TH)
TC -0.07877%** -0.05717%%* 0.00092
PM2.5 HDL-C -0.07877%** -0.05717%%* -0.00005
GLU -0.07877%%* -0.05717%%* -0.00004
TC -0.07877%%* -0.05717%%* -0.00282**
PM10 HDL-C -0.07877%%* -0.05717%%* 0.00026
GLU -0.07877%* -0.05717%* -0.00166**
MODEL 3b (VC—APM—BM—DH)
TC -0.08461*** -0.01690*** 0.00052
PM2.5 HDL-C -0.08461%** -0.01690*%* 0.00034
GLU -0.08461*** -0.01690*** -0.00007
TC -0.08461%* -0.01690*** -0.00159**
PM10 HDL-C -0.08461%* -0.01690*** -0.00176%**
GLU -0.08461%* -0.01690*** -0.00273**
Model 3¢ (VC—APM—BM—CIHD)
TC -0.01532%*%* -0.01814%** 0.00032
PM2.5 HDL-C -0.01532%*%* -0.01814*%* 0.00018
GLU -0.01532%%* -0.01814*%* -0.00004
TC -0.01532%%* -0.01814*%* -0.00097**
PM10 HDL-C -0.01532%%* -0.01814*** -0.00095%**
GLU -0.01532%%* -0.01814*%* -0.00138**
Model 3d (VC—APM—BM—HF)
TC -0.01240%** -0.00546* 0.00019
PM2.5 HDL-C -0.01240%%* -0.00546* 0.00025
GLU -0.01240%** -0.00546* -0.00004
PM10 TC -0.01240%** -0.00546* -0.00058**
HDL-C -0.01240*** -0.00546* -0.00127%%*
GLU -0.01240%* -0.00546* -0.00137*%*

VG, Vegetation cover; APM, Physiological health risk; BM, Biomarker; TC, Total cholesterol; HDL-C, High density lipoprotein cholesterol; GLU, Blood glucose; TH, Times of hospitalizations;
DH, Days of hospitalizations; CIHD, Diagnosed chronic ischemic heart disease; HF, Diagnosed heart failure.

*p< 0.05; **p< 0.01; ***p< 0.001. The underlined values in the table denote statistically significant and relatively large effect sizes and proportions, highlighting paths with substantial indirect
effects. These paths and their corresponding variables are identified as having significant and strong mediating effects in the model, and are thus selected for further analysis or interpretation.

over PM2.5 in the associative pathways. This diverges from several
studies that have specifically implicated PM2.5 as the primary
mediator (Li et al, 2022; Lei et al, 2024). Several factors could
explain this discrepancy. First, urban vegetation may be more
effective at capturing larger PM10 particles through deposition and
impaction (Diener and Mudu, 2021). Second, our patient cohort might
be particularly susceptible to the inflammatory and metabolic effects
induced by PM10. While PM2.5 is known for its ability to penetrate
deeper into the bloodstream, the metabolic responses observed in our
cross-sectional data may be more strongly linked to PM10 exposure.
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Furthermore, our granular analysis pinpointed TC and GLU as
the most significant biomarkers. While previous research has
broadly linked greenness to cardiometabolic disorders (Yang
et al., 2020), our study identifies TC and GLU as particularly
sensitive indicators in this environmental health context. The
strong association with GLU aligns with studies suggesting that
air pollution can induce insulin resistance and impair glucose
metabolism (Yang et al.,, 2018; Burkart et al., 2022). The specific
prominence of TC in the pathway to TH, and the significant roles of
both TC and HDL-C in other outcomes, suggests that PM10
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TABLE 5 Chain mediation effects of the PLS-SEMs in model group 4.

10.3389/fpls.2025.1659005

HodEt Total effect Direct effect Specific indirect

Variable (CHO) Variable (VC) effect
NDVI -0.05206%** -0.03957*%* -0.00082***
EVI -0.08096*** -0.05993*** -0.00189***
SAVI -0.08576*** -0.06425%** -0.00193***

TH
DVI -0.08897+%* -0.06853*** -0.00180***
LAI -0.07046%** -0.04899*** -0.00193***
FVC -0.04723%** -0.03263*** -0.00172***
NDVI -0.05143%** -0.02109%** -0.00129%*
EVI -0.08527+%* -0.01655* -0.00311%%*
SAVI -0.08864*** -0.01772%** -0.00320%**

DH
DVI -0.08600*** -0.01960%** -0.00298***
LAI -0.08155*%* -0.01321% -0.00321%**
FVC -0.06547%** -0.01245* -0.00259***
NDVI -0.01181%** -0.01227%** -0.00066***
EVI -0.01737+%* -0.02213*%** -0.00159***
SAVI -0.01778*** -0.02276%** -0.00163***

CIHD
DVI -0.01884*** -0.02323%** -0.00152%**
LAI -0.01636*%* -0.02177%* -0.00164***
FVC 0.00107 -0.00283 -0.00132%**

HF NDVI -0.01688*** -0.01309%** -0.00066***

EVI -0.01306*** -0.00651** -0.00159***

SAVI -0.01341%* -0.00666** -0.00164***

DVI -0.01357%%* -0.00709** -0.00153%**

LAI -0.00938*** -0.00320 -0.00164***

FVC -0.00390 0.00063 -0.00132%+*

CHO, Cardiovascular health outcome; VC, Vegetation cover; TH, Times of hospitalizations; DH, Days of hospitalizations; CIHD, Diagnosed chronic ischemic heart disease; HF, Diagnosed heart
failure; NDVI, Normalized difference vegetation index; EVI, Enhanced vegetation index; SAVI, Soil adjusted vegetation index; DVI, Difference vegetation index; FVC, Fractional Vegetation
Cover; LAI, Leaf area index.

*p< 0.05; **p< 0.01; ***p< 0.001. The underlined values in the table denote statistically significant and relatively large effect sizes and proportions, highlighting paths with substantial indirect
effects. These paths and their corresponding variables are identified as having significant and strong mediating effects in the model, and are thus selected for further analysis or interpretation.

exposure in this population may have a pronounced effect on
overall cholesterol regulation, a finding that complements broader
evidence linking air pollution to adverse lipid profiles (Cesaroni
et al., 2014). This specificity provides a more focused target for
future mechanistic research, suggesting that TC and GLU could
serve as key biomarkers for assessing the cardiovascular benefits of
urban greening initiatives.

5.3 Methodological contributions and
reflections

This study presented several methodological innovations for
exploring the complex relationships between green space, air
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quality, PHR, and CHOs. (1) While traditional structural
equation modeling has been widely used in previous
epidemiological studies (Hays et al., 2005; Grande et al., 2020),
PLS-SEMs have gained popularity in recent years for their efficiency
at handling complex structural models with multiple constructs,
indicators, and model relationships. For instance, some research
employed PLS-SEMs to investigate the relationships between green
structures, air pollution, temperature, and CVD mortality (Shen
and Lung, 2016). Our study builds upon this trend, leveraging the
ability of PLS-SEMs to explore more complex mediation pathways.
(2) A key innovation in our approach is the application of chain
mediation analysis to examine the mechanisms linking green space
to cardiovascular health. While some previous studies have
considered potential mediators between environmental factors
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and health outcomes, they typically focused on single mediators
such as air pollution or physical activity (Bauwelinck et al., 2021; Yu
et al, 2023). Our study extends this by incorporating multiple
potential mediators—air quality and PHR—in a chain mediation
model. This approach allows for a more comprehensive
understanding of the complex pathways through which green
space influences cardiovascular health. (3) Our study employed a
series of increasingly refined models (Model Groups 1-4) to
elucidate the associations at play: Model Group 1 established the
overall associative pathway, Model Group 2 deconstructed the
composite PHR into its sub-risks, Model Group 3 simultaneously
examined the roles of different PM sizes (PM2.5 and PM10) and
specific biomarkers (TC, HDL-C, GLU) in a competitive model, and
Model Group 4 explored the relative importance of various
individual vegetation indicators. This progressive refinement
allowed for a more nuanced and comprehensive analysis of the
relationships between variables. (4) In Model Groups 2-4, we
considered both the interactive effects of multiple variables in
chain mediation models and the individual effects of single
indicators. This dual approach, using both comprehensive-effect
and single-factor models, provides a more realistic representation of
complex real-world mechanisms while also allowing for the
identification of key individual factors. Our study employed
different models based on the specific requirements of each
analysis stage. This flexible approach, using comprehensive-effect
models as the primary strategy with single-factor models as a pre-
specified alternative to address multicollinearity, was applied in
Model Groups 2, 3, and 4. This flexible approach to model selection
enhanced the scientific rigor and accuracy of our findings. In
conclusion, our methodological approach—combining PLS-SEMs
with chain mediation analysis and a progressive model refinement
strategy—offers a novel and comprehensive framework for
investigating the complex relationships between environmental
factors and health outcomes. This approach allows for a more
detailed and nuanced understanding of the mechanisms linking
green space to cardiovascular health, and it provides valuable
insights for urban planning and public health strategies.

5.4 Limitations

This study has several important limitations that must be
considered when interpreting the findings. First and foremost, the
cross-sectional and retrospective nature of our study design is a
major limitation. The environmental exposures (VC and PM) were
assigned based on annual averages for the year preceding
hospitalization, and physiological data were collected during the
hospitalization episode. This design does not allow for the
establishment of clear temporal precedence, which is a
prerequisite for making causal claims. Consequently, our findings
should be interpreted as evidence of statistical association rather
than causal mediation. The language used throughout this paper,
such as indirect association and pathway of association, reflects this
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non-causal, exploratory framework. Second, our analysis did not
include several crucial individual-level confounders. Data on
patient age, sex, socioeconomic status, lifestyle factors such as
smoking and diet, and pre-existing comorbidities were not
available in the electronic medical records used for this study.
These factors are known to be strong predictors of both
residential location choices and cardiovascular risk. Their
omission means that the associations we observed could be biased
due to unmeasured confounding. For example, higher
socioeconomic status might be associated with both living in
greener neighborhoods and better baseline health, which could
partially explain the observed link between vegetation and better
health outcomes. Therefore, the results should be interpreted with
caution. Third, the use of annual average data for environmental
exposures, while common in such studies, may mask the potentially
important effects of short-term or seasonal fluctuations in PM
concentrations. The health impacts of acute exposure spikes
might differ from those of chronic, long-term exposure. Finally,
while we used a 1000m buffer to estimate exposure, this is an
approximation and may not perfectly reflect an individual’s true
exposure, which is influenced by daily mobility patterns, time spent
indoors versus outdoors, and occupational exposures. Future
research employing longitudinal designs, with detailed individual-
level data on confounders and time-activity patterns, is needed to
confirm the exploratory findings of this study and to establish
causal relationships.

6 Conclusions

This study elucidates a key environmental health pathway,
demonstrating a significant association between residential VC
and cardiovascular health that is statistically explained by a
sequential path involving air quality and metabolic biomarkers.
Our analysis robustly identifies PM10, over the more commonly
implicated PM2.5, as the primary atmospheric intermediary
linking vegetation to physiological risk. Furthermore, our
findings decompose this association into distinct metabolic
routes. We demonstrate that the pathway from PMI10 to
cardiovascular outcomes is statistically specified through key
biomarkers, with TC being most prominent for TH, while GLU
is the crucial link to DH and specific diagnoses like CIHD and HF.
Crucially, these health-promoting pathways are anchored in the
quality and structure of urban vegetation. LAT and FVC emerged as
the most significant vegetation characteristics, suggesting that
dense, structurally complex green spaces are most effective at
initiating this beneficial cascade. These findings have direct
implications for urban planning and public health, indicating
that strategic greening policies focused on maximizing LAI and
FVC can be a potent tool for targeted air quality management and
cardiovascular disease prevention. Future longitudinal research is
essential to validate these associative pathways and explore their
causal underpinnings.
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