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Introduction: Understanding the complex associative pathways linking urban

green spaces to resident health is crucial for sustainable urban development and

public health.

Methods: This study aimed to investigate the indirect associations between

residential vegetation cover (VC) and cardiovascular health, exploring the

sequential roles of particulate matter (PM) and key physiological biomarkers in

a large patient cohort. Using partial least squares structural equationmodeling on

32,667 patient records from Nanjing, China, we constructed a series of path

models to analyze these relationships.

Results: Our findings reveal a significant indirect association between residential

VC and cardiovascular health outcomes. Specifically, our path analysis reveals

that higher VC is linked to lower concentrations of PM, with PM10 (particles

≤10mm) emerging as the dominant intermediary over PM2.5. In turn, lower PM10

levels are associated with healthier metabolic profiles—particularly lower total

cholesterol and blood glucose levels—which were subsequently linked to better

cardiovascular outcomes. Notably, total cholesterol was a key factor for reduced

hospitalization frequency, while blood glucose was more strongly associated

with lower incidence of heart failure. Among various vegetation metrics, Leaf

Area Index demonstrated the strongest association within these pathways.

Discussion: Our analysis provides evidence for a specific environmental health

pathway (Vegetation → PM10 → Metabolic Biomarkers → Cardiovascular

Outcomes) and highlights that vegetation quality, particularly Leaf Area Index,

is a key factor. These findings offer valuable insights for urban planners and public

health officials aiming to design healthier cities by leveraging the air-purifying

benefits of urban green spaces.
KEYWORDS
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1 Introduction

Cardiovascular diseases (CVDs) encompass a range of

conditions affecting the heart and blood vessels and are the

leading cause of mortality worldwide (Colantonio and Muntner,

2019; Li et al., 2023). With increasing prevalence, earlier onset,

numerous complications, and high morbidity, mortality, disability,

and recurrence rates, CVDs represent a significant global public

health challenge (Joseph et al., 2017; Roth et al., 2020).

Concurrently, substantial evidence demonstrates that urban

natural environments, particularly green spaces, play a crucial

role in improving human physiological health through various

pathways (Liang et al., 2024c; Liang et al., 2024d). These natural

elements are indispensable for sustainable urban development and

enhancing the wellbeing of residents (Liang et al., 2024a; Liang et al.,

2024b). Notably, several large-scale epidemiological studies have

consistently revealed a robust negative correlation between the level

of greenery in residential areas and CVD risk (Wang et al., 2019; Liu

et al., 2022; Hajna et al., 2023). Residents in urban areas with higher

vegetation cover (VC) exhibit a lower incidence and mortality rates

of CVDs (Group et al., 2024), underscoring the potential of urban

green spaces to promote cardiovascular health.

Extensive evidence demonstrates that urban green spaces

contribute to cardiovascular health through multiple pathways.

These natural environments provide opportunities for physical

activity, stress reduction, and improved air quality by filtering

harmful pollutants (Diener and Mudu, 2021; Jia et al., 2021; Qiu

et al., 2021; Remme et al., 2021). Additionally, green spaces mitigate

noise pollution (Dzhambov and Dimitrova, 2014; Browning et al.,

2022), alleviate urban heat island effects (Sun and Chen, 2017; van

den Bosch and Sang, 2017), and enhance immune function through

exposure to beneficial microbes (Rook, 2013; Sandifer et al., 2015).

Recognizing these benefits, healthcare professionals increasingly

offer so-called green prescriptions, encouraging patients to engage

with nature as part of lifestyle interventions (Shanahan et al., 2019;

Adewuyi et al., 2023). This approach positions urban greenery as a

promising strategy for CVD prevention. Consequently, there is a

growing need to integrate epidemiological and urban

environmental research to explore the complex relationships and

potential pathways linking urban natural environments to

cardiovascular health. Such understanding is crucial for

incorporating health considerations into urban green space

planning, guiding urban development strategies, and maximizing

the potential of urban natural environments to promote

cardiovascular wellbeing. While existing research consistently

demonstrates a protective association between residential

greenness and cardiovascular health (Yitshak-Sade et al., 2017;

Jennings et al., 2019; Wang et al., 2019; Donovan et al., 2022;

Hajna et al., 2023), these studies have predominantly relied on

correlation or regression analyses. Consequently, the complex,

multi-step pathways through which green spaces are linked to

these cardiovascular benefits remain insufficiently understood,

representing a critical gap in the literature.

Recognizing the multifaceted pathways through which green

spaces influence population health, recent studies have
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incorporated mediating factors such as physical activity

(Richardson et al., 2013; Jia et al., 2018), air temperature (Shen

and Lung, 2016), and traffic noise (Orioli et al., 2019) to better

understand the pathways underlying the relationship between green

spaces and cardiovascular health. Notably, air pollution has

emerged as a prominent mediator, with research demonstrating

the ecological benefits of green spaces for reducing air particulate

matter (APM) (Diener and Mudu, 2021). For instance, cohort

studies in China identified PM2.5 as a partial mediator in the

beneficial association between green spaces and atherosclerosis (Hu

et al., 2022; Li et al., 2022). Furthermore, a comprehensive literature

review and meta-analysis confirmed that green spaces can promote

cardiovascular health by reducing air pollution through ecosystem

regulation services (Qiu et al., 2021). However, the association

between air pollution and cardiovascular health is complex. It

involves various physiological factors such as lipid abnormalities

(Cesaroni et al., 2014), hypertension (Lei et al., 2022),

hyperglycemia (Yang et al., 2018), and inflammatory responses

(Burkart et al., 2022). Additionally, physiological health risks

(PHRs) have been recognized as potential mediators, with studies

revealing protective associations between residential greenness and

allostatic load (Lai et al., 2024), and the mediating role of

cardiometabolic disorders in the relationship between green

spaces and CVD (Yang et al., 2020). Therefore, simultaneously

considering air quality and PHR as mediating factors can offer a

more comprehensive and scientifically robust approach to

understanding the complex mechanisms linking green spaces to

cardiovascular health outcomes (CHOs).

Current research on the relationship between green spaces and

cardiovascular health predominantly focuses on single-factor

mediation analyses. Even studies incorporating multiple

potentially interrelated mediators often conduct independent

analyses or examine parallel mediation effects. In doing so, they

neglect the potential for chain-mediated interactions between these

factors, that is, a sequential pathway where green space is associated

with air quality, which in turn is associated with physiological risk,

ultimately linking to health outcomes (Shen and Lung, 2016;

Dzhambov et al., 2020; Dong et al., 2021). While investigations

into serial mediators in the relationship between green spaces and

health are limited, some studies have made notable contributions.

For instance, one study demonstrated a partial chain-mediated

effect of air pollutants (PM2.5, NO2) and perceived air pollution

in the beneficial impact of urban street tree exposure on mental

health (Wang et al., 2020). Another study of middle-aged and

elderly Chinese found that the pathway between PM2.5

concentrations and physical activity partially mediated the

association between residential greenness and hypertension in

rural areas (Huang et al., 2021). These findings provide support

and inspiration for further exploring the complex mechanisms

underlying the impact of green spaces on physiological health.

Therefore, this study aimed to address these gaps by: (1)

Investigating the association between residential VC and CHOs in

a large patient cohort from Nanjing, China; (2) Exploring the

potential indirect pathways of association linking VC and CHOs

via particulate matter (PM) and PHR biomarkers using structural
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equation modeling; and (3) Comparing the relative strength of

association for different indicators of VC, PM, and PHR within

these associative pathways.

Our study aimed to elucidate the pathways of association

linking urban green space VC to the cardiovascular health of

residents. Specifically, we explored the indirect associations

between residential green space VC and CHOs through a

sequential pathway involving air quality and PHR. Recognizing

that single indicators may lead to bias, we employed a multi-

indicator approach to comprehensively characterize each factor.

This method facilitates a more in-depth exploration of the indirect

pathways associating green spaces with cardiovascular health via air

quality and PHR. By comparing the roles of different indicators

within the path model, we aimed to clarify the relative strength of

association for each. This research can provide a reference and

evidence-based support for urban green space planning,

cardiovascular disease prevention strategies, and patient recovery

interventions. Furthermore, our findings can contribute to the

development of more effective urban planning and public health

policies that leverage the health benefits of urban green spaces.
2 Study site and sample

Nanjing, a major metropolis in eastern China, comprises 11

administrative districts covering a total area of 6,587.04 km2, with

an urban built-up area of 868.28 km2. As of late 2023, Nanjing’s

permanent resident population was 9.547 million. Over the past

decade, the city has intensively implemented its Green Nanjing

strategy to improve the urban park system and greenway network

while strengthening ecological environmental construction and

protection. By the end of 2022, the city’s forest coverage area

exceeded 297 million mu, with a tree coverage rate of 31.96%, an

urban green coverage rate of 44.96%, and a green space rate of

40.82% (Statistics, N.B.o, 2023). Nanjing faces significant

challenges related to population aging and cardiovascular health.

The policy Key Tasks for Healthy Nanjing Construction in 2023

explicitly outlines strategic guidelines for the prevention and

treatment of cardiovascular and cerebrovascular diseases,

underscoring the practical and strategic importance of research

in this region.

We conducted a retrospective analysis of electronic medical

records from 81,306 patients with cardiovascular department

hospitalization records at all campuses of Nanjing Drum Tower

Hospital (including the Gulou and Jiangbei campuses) from

January 2013 to December 2023. After screening, 32,667 patient

records from December 2014 to December 2023 were selected for

the study, based on criteria including detailed and accurate address

information, complete key physiological indicator test data, and

residence within Nanjing city limits. For each selected patient,

environmental exposures (i.e., VC and air PM) were assessed

within a 1000-meter buffer zone around their registered residence.

The participant selection process is detailed in Supplementary

Figure S1.
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3 Materials and methods

3.1 Data collection and pretreatment

To investigate the complex pathways of association by which

VC in green spaces is linked with cardiovascular health, involving

the intermediate roles of air quality and various PHRs, we employed

four latent variables: VC, APM, PHR, and CHOs. Each latent

variable encompassed multiple observed variables (Table 1). The

bivariate correlations between all observed variables are presented

in Supplementary Figure S2 in the Supplementary Material. For a

comprehensive assessment of VC around patients’ residences, six

vegetation indices were used as observed variables for VC. Given the

known effects of VC on air quality, particularly APM (Diener and

Mudu, 2021), PM2.5 and PM10 were selected as observed variables

for APM. Based on PHRs leading to adverse cardiovascular

outcomes (Hu, 2023), and to avoid potential temporal

confounding from acute-phase reactants, we excluded

inflammatory markers. Consequently, three second-level latent

variables were chosen for PHR: blood lipid risk (BLR), blood

glucose r isk (BGR), and blood pressure r isk (BPR).

Corresponding biomarkers were selected as observed variables for

these risks (Table 1). For CHOs, hospitalization utilization (HU)

and cardiovascular disease diagnosis (CVDD) were chosen as latent

variables. Data for these variables were collected from various

sources, including satellite imagery for vegetation indices, air

quality monitoring networks for APM, and electronic medical

records for PHR and CHOs. For each patient, environmental

exposure data (VC and PM) were calculated as annual averages

for the calendar year preceding their hospital admission date.

Appendix A provides the rationale for indicator selection, detailed

data collection procedures, and data processing methods.
3.2 Chain mediation models

To explore the complex pathways of association linking VC to

CHOs, we employed a pre-specified, four-stage analytical strategy

using a series of path models. This hierarchical approach was

designed to move progressively from broad, composite constructs

to more specific, granular indicators, allowing for a systematic

exploration of the associative pathways. VC was treated as the

exogenous variable, CHOs as the final endogenous variables, with

APM and PHR positioned as intermediate variables in the pathway.

The observed variables for each latent variable are presented in

Table 1. Each of the four model groups (Model Groups 1-4) was

analyzed using partial least squares structural equation models

(PLS-SEMs) (Figure 1).

3.2.1 Model group 1: overall associative model
with composite latent variables

This group of models constructs two chain mediation effect

models, Model 1a and Model 1b, respectively using HU and CVDD

as dependent variables. These models analyze the association of VC
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with HU and CVDD, exploring the indirect pathway via APM and

PHR. The external models are as follows (Equations 1–5):

xVC =o​ (lVCi
∗ xVCi

) + dVC ,     for  VCi

∈ NDVI,   EVI,   SAVI,  DVI,   FVC,   LAIf g (1)
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hAPM =o​ (lAPMj
∗ xAPMj

) + eAPM ,     for  APMj

∈ PM2:5,   PM10f g (2)

hPHR =o​ (lBMk
∗ xBMk

) + ePHR,     for  BMk

∈ TC,  HDL − C,  GLU ,   SBP,  DBPf g (3)

hHU =o​ (lHUl
∗ xHUl

) + eHU ,     for  HUl ∈ TH,  DHf g (4)

hCVDD =o​ (lCVDDl
∗ xCVDDl

) + eCVDD,     for  CVDDl

∈ CIHD,  HFf g (5)

where x and h represent exogenous and endogenous latent

variables, respectively, x represents observed variables, l represents

factor loadings of observed variables, d represents measurement

errors of observed variables for exogenous latent variables, and e
represents measurement errors of observed variables for

endogenous latent variables.

As each latent variable in this model group is a single factor, the

constructed models are single-factor models. Their internal models

are as follows (Equations 6–9):

hAPM = gVC ∗ xVC + zAPM (6)

hPHR = bAPM→PHR ∗hAPM + gVC→PHR ∗ xVC + zPHR (7)

hHU = bPHR→HU ∗hPHR + bAPM→HU ∗hAPM + gVC→HU ∗ xVC

+ zHU (8)

hCVDD = bPHR→CVDD ∗hPHR + bAPM→CVDD ∗hAPM

+ gVC→CVDD ∗ xVC + zCVDD (9)

where g represents path coefficients from exogenous latent

variables to endogenous latent variables, indicating the direct

influence of exogenous latent variables on endogenous latent

variables; b represents path coefficients between endogenous

latent variables, indicating the association between endogenous

latent variables; and z represents prediction errors of endogenous

latent variables.

3.2.2 Model group 2: deconstructing PHR
pathways

This group of models builds upon Model Group 1 by further

subdividing the CHO variables (HU and CVDD) into specific

indicators: times of hospitalization (TH), days of hospitalization

(DH), diagnosed chronic ischemic heart disease (CIHD), and

diagnosed heart failure (HF). Four chain mediation effect models

(Models 2a, 2b, 2c, and 2d) are constructed with these four variables

as dependent variables. Additionally, PHR is subdivided into latent

variables BLR, BGR, and BPR to analyze their roles as intermediate

variables in the pathway linking VC, APM, and each CHO (TH,

DH, CIHD, and HF). The external models for xVC and hAPM are the
TABLE 1 Variables of chain mediation models in this study.

Latent variables Observed variables
Calculation
methods and
units

Independent variable

VC

Normalized difference
vegetation index (NDVI)

(B5 - B4)/(B5 + B4)
(Pettorelli, 2013)

Enhanced vegetation index
(EVI)

2.5*(B5-B4)/(B5 +
6*B4 -7.5*B2 + 1)
(Liu and Huete, 1995)

Leaf Area Index (LAI)
8.278 * NDVI -
0.2459 (Allegrini
et al., 2006)

Forest vegetation coverage
(FVC)

(NDVI - NDVIs)/
(NDVIv -NDVIs)
(Song et al., 2017)

Soil adjusted Vegetation
Index (SAVI)

(1 + L) * (B5 - B4)/
(B5 + B4 + L) (Huete,
1988)

Difference vegetation index
(DVI)

B5 - B4 (Yan et al.,
2022)

Mediating variable

APM

PM 2.5 concentration
annual average, mg/
m3

PM 10 concentration
annual average, mg/
m3

PHR

Blood lipid risk (BLR)

Total cholesterol (TC) mmol/L

High density lipoprotein
cholesterol (HDL-C)

mmol/L

Blood glucose risk
(BGR)

Blood glucose (GLU) mmol/L

Blood pressure risk
(BPR)

Systolic blood pressure (SBP) mmHg

Dependent variable

CHO

Hospital utilization
(HU)

Times of hospitalizations
(TH)

Times

Days of hospitalizations
(DH)

Days

Cardiovascular disease
diagnosis (CVDD)

Diagnosed chronic ischemic
heart disease (CIHD)

Categorical variable

Diagnosed heart failure (HF) Categorical variable
VC, Vegetation cover; APM, Airborne particulate matter; PHR, Physiological health risk;
CHO, Cardiovascular health outcome.
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same as for Models (1-1) and (1-2) in Model Group 1. The

remaining external models are as follows (Equations 10–13):

hBLR =o​ (lBLRk
∗ xBLRk

) + eBLR,     for   BLRk

∈ TC,  HDL − Cf g (10)

hBGR = lBGR ∗ xGLU + eBGR (11)

hBPR =o​ (lBPRk
∗ xBPRk

) + eBPR,     for   BPRk

∈ SBP,  DBPf g (12)

hCHOl
= lCHOl

∗ xCHOl
+ eCHOl

,   for  CHOl

∈ TH,  DH,  CIHD,  HFf g (13)

In this model group, xVC and hAPM are single factors. Their

internal model is the same as for Model (1-6) in Model Group 1.

The internal model for hPHRi is as follows (Equations 14–16):

hPHRk
= bAPM→PHRk

∗hAPM + gVC→PHRk
∗ xVC

+ zPHRk
,     for   PHRk

∈ BLR,  BGR,  BPRf g (14)

As there may be interaction effects between the different PHR

variables, we construct a comprehensive-effect model to fully reflect

the combined influence of all PHR variables on CHO. The internal

model for hCHOi is as follows:

hCHOl
=o​ (bPHRk→CHOl

∗hPHRk
) + bAPM→CHOl

∗hAPM

+ gVC→CHOl
∗ xVC + zCHOl

(15)

If the comprehensive-effect model encounters issues such as

multicollinearity, we consider constructing a single-factor model.

The internal model for hCHOi in this case would be
Frontiers in Plant Science 05
hCHOl
= bPHRk→CHOl

∗hPHRk
+ bAPM→CHOl

∗hAPM

+ gVC→CHOl
∗ xVC + zCHOl

(16)
3.2.3 Model group 3: deconstructing PM and
biomarker pathways

The third stage of our analytical strategy was designed to

simultaneously deconstruct both the APM and PHR constructs to

identify the most salient pathways at a granular level. This group

consists of four path models (Models 3a, 3b, 3c, and 3d), one for

each CHO. Based on the findings from Model Group 2, which

highlighted the low internal consistency of the BLR construct and

the primary roles of lipid and glucose pathways, our pre-specified

plan was to disaggregate the PHR constructs directly into their

constituent, clinically-measured biomarkers: total cholesterol (TC),

high-density lipoprotein cholesterol (HDL-C), and blood glucose

(GLU). Concurrently, the APM construct was disaggregated into

PM2.5 and PM10 to assess their distinct roles. This integrated

approach allows for a direct, competitive comparison of the

pathways running through different PM sizes to specific

biomarkers within a single, comprehensive model.

The external models for xVC , hTH , hDH , hCIHO, and hHF are the

same as in previous groups. The remaining external models are as

follows (Equations 17, 18):

hAPMj
= lAPMj

∗ xAPMj
+ eAPMj

,     for  APMj

∈ PM2:5,   PM10f g (17)

hBMk
= lBMk

∗ xBMk
+ eBMk

,   for  BMk

∈ TC,  HDL − C,  GLUf g (18)

where hAPMi represents the individual PM variables and hBMj

represents the individual biomarker variables.
FIGURE 1

Research model framework. VC, Vegetation cover; APM, Physiological health risk; PHR, Airborne particulate matter; CHO, cardiovascular health
outcome.
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To comprehensively reflect the combined influence of all

variables, our primary analytical approach was to construct a

comprehensive-effect model. The internal models for this

approach are as follows (Equations 19–21):

hAPMj
= gVC→APMj

∗ xVC + zAPMj
(19)

hBMk
=o​ (bAPMj→BMk

∗hAPMj
) + gVC→BMk

∗ xVC + zBMk
(20)

hCHOl
=o​ (bBMk→CHOl

∗hBMk
)

+o​ (bAPMj→CHOl
∗hAPMj

) + gVC→CHOl
∗ xVC

+ zCHOl
(21)

where hCHOk represents one of the four final health outcomes

(TH, DH, CIHD, or HF).

Given the potential for multicollinearity between PM2.5 and

PM10, our analytical plan specified that if the comprehensive-effect

model showed evidence of multicollinearity (e.g., VIF > 5), we

would proceed with single-factor models for the PM variables to

ensure a clear interpretation. The internal models for this single-

factor approach would be (Equations 22, 23):

hBMk
= bAPMj→BMk

∗hAPMj
+ gVC→BMk

∗ xVC + zBMk
(22)

hCHOl
= bBMk→CHOl

∗hBMk
+ bAPMj→CHOl

∗hAPMj

+ gVC→CHOl
∗ xVC + zCHOl

(23)
3.2.4 Model group 4: comparing individual VC
indicators

The final stage of our analysis, Model Group 4, was designed to

investigate the relative importance of different vegetation

characteristics. In this stage, the composite VC construct was

disaggregated into its six individual indicators (NDVI, EVI, SAVI,

DVI, FVC, and LAI). To construct the most salient and

parsimonious path for this comparative analysis, our pre-specified

plan was to utilize the single strongest APM indicator and the single

most influential biomarker identified from the preceding stage

(Model Group 3). This allowed for a direct comparison of the

association strength of each individual VC metric within a

consistent and statistically powerful pathway.

The external models for hTH , hDH , hCIHO, and hHF are the same

as for Model (2-4) in Model Group 2. The remaining external

models are as follows (Equations 24–26):

xVCi
= lVCi*xVCi

+ dVCi
,     for  VCi

∈ NDVI,   EVI,   SAVI,  DVI,   FVC,   LAIf g (24)

hAPMmax
= lAPMmax

∗ xAPMmax
+ eAPMmax

(25)

hBMmax
= lBMmax

∗ xBMmax
+ eBMmax

(26)

where hAPMmax represents the selected APM variable with the

strongest association (determined from Model Group 3 results),
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xAPMmax
represents its observed variable, hBMmax

represents the

selected biomarker variable with the strongest association

(determined from Model Group 3 results), and xBMmax represents

its observed variable.

To comprehensively reflect the combined influence of all VC

indicators on APM, our primary analytical approach was to

construct a comprehensive-effect model. The internal models for

this approach are as follows (Equations 27–29):

hAPMmax
=o​ (gVCi→APM ∗ xVCi

) + zAPMmax
(27)

hBMmax
= bAPM→BM ∗hAPMmax

+o​ (gVCi→BM ∗ xVCi
)

+ zBMmax
(28)

hCHOl
= bBMmax

∗hBMmax
+ bAPMmax

∗hAPMmax

+o​ (gVCi→CHOl
∗ xVCi

) + zCHOl
(29)

However, given the high potential for multicollinearity among

the individual VC indicators, our analytical plan specified that if the

comprehensive-effect model showed evidence of multicollinearity

(e.g., VIF > 5), we would proceed with single-factor models to

ensure a clear and direct comparison of each indicator’s effect. The

internal models for this single-factor approach are as follows

(Equations 30–32):

hAPMmax
= gVCi→APM ∗ xVCi

+ zAPMmax
(30)

hBMmax
= bAPM→BM ∗hAPMmax

+ gVCi→BM ∗ xVCi
+ zBMmax

(31)

hCHOl
= bBM→CHOl

∗hBMmax
+ bAPM→CHOl

∗hAPMmax

+ gVCi→CHOl
∗ xVCi

+ zCHOl
(32)

These four groups of path models allow for the decomposition

of the total association between VC and CHOs into direct and

indirect pathways involving APM and PHR. The terms “direct

effect” and “indirect effect” are used here to describe statistical paths

within the model, not to imply causality. Each group progressively

refines the analysis, from broad concepts to specific indicators. As

the coefficients and effects in the models are standardized, the

relative strengths of association across different variables and

pathways can be directly compared. To test the statistical

significance of relationships and effects in the models, we

employed the bootstrap method, generating 5000 subsamples for

each model. This method provides robust estimates of standard

errors and confidence intervals for model parameters. We evaluated

the validity and reliability of the external model using composite

reliability (CR), Cronbach’s a, and the square root of the average

variance extracted (AVE). These metrics assess the internal

consistency and convergent validity of the constructs. The

internal model’s collinearity was assessed using the variance

inflation factor (VIF), which helps identify potential

multicollinearity issues. The overall model fit was evaluated using

the standardized root mean square residual (SRMR) and the

normed fit index (NFI), which provide measures of the
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discrepancy between the observed and model-implied correlation

matrices. All mediation effect models were analyzed using

SmartPLS software (Version 4.1, SmartPLS GmbH, Germany).
4 Results

4.1 Overall associations among composite
latent variables

The model evaluation results (Supplementary Table S1) indicate

that the composite constructs for VC and APM have high reliability

and validity. However, the overall PHR construct, now excluding

inflammatorymarkers, still shows CR, AVE, and Cronbach’s a values

below recommended thresholds, suggesting heterogeneity among the

remaining physiological risks. The adjusted R² values for the final

outcomes were 0.120 for HU (Model 1a) and 0.080 for CVDD

(Model 1b), indicating modest explanatory power at this broad level.

The path analysis results for Model Group 1 (Figure 2) show

that all path coefficients are statistically significant. VC was

significantly and negatively associated with APM (b = -0.222, p<

0.001). In turn, APM was positively associated with the composite

PHR (b = 0.132 in Model 1a; b = 0.131 in Model 1b, p< 0.001).

Finally, PHR was significantly associated with both HU (b = 0.315,

p< 0.001) and CVDD (b = 0.245, p< 0.001).
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The analysis of indirect associations (Table 2) reveals that all

pathways are statistically significant. For HU (Model 1a), the

primary indirect pathway is VC→APM→HU (Specific Indirect

Effect = -0.05352, p< 0.001). For CVDD (Model 1b), a notable

inconsistent association was observed: while the total association

was negative (Total Effect = -0.01866, p< 0.001), the specific indirect

path through APM alone (VC→APM→CVDD) was positive
FIGURE 2

Path diagrams of the PLS-SEMs in model group 1. VC, Vegetation cover; PHR, Physiological health risk; APM, Airborne particulate matter; HU,
Hospital utilization; CVDD, Cardiovascular disease diagnosis.
TABLE 2 Indirect associations in the PLS-SEMs of model group 1.

Model pathway
Total
effect

Direct
effect

Specific
indirect effect

Model 1a (VC→APM→PHR→HU)

VC→APM→HU -0.10283*** -0.03681*** -0.05352***

VC→PHR→HU -0.10283*** -0.03681*** -0.00629***

VC→APM→PHR→HU -0.10283*** -0.03681*** -0.00741***

Model 1b (VC→APM→PHR→CVDD)

VC→APM→CVDD -0.01866*** -0.01496*** 0.00333***

VC→PHR→CVDD -0.01866*** -0.01496*** -0.00334***

VC→APM→PHR→CVDD -0.01866*** -0.01496*** -0.00369***
VC, Vegetation cover; PHR, Physiological health risk; APM, Airborne particulate matter; HU,
Hospital utilization; CVDD, Cardiovascular disease diagnosis.
*p< 0.05; **p< 0.01; ***p< 0.001.
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(Specific Indirect Effect = 0.00333, p< 0.001). This statistical

phenomenon, potentially indicative of a suppressor effect,

suggests complex underlying relationships that warrant further

disaggregation in subsequent models.
4.2 Associations involving disaggregated
physiological health risks

In Model Group 2, the PHR construct was disaggregated into

BLR, BGR, and BPR. Model evaluation (Supplementary Table S2)

showed that while VC and APM remained robust, the BLR construct

had a low Cronbach’s a (0.463). This low internal consistency

indicates that TC and HDL-C do not form a reliable single

construct, methodologically necessitating the disaggregation of BLR

into its constituent biomarkers in the subsequent analytical stage.

The path results (Figure 3) confirm a significant negative

association between VC and APM (b ≈ -0.222, p< 0.001). APM

was significantly and positively associated with both BLR (b ≈ 0.115,

p< 0.001) and BGR (b ≈ 0.100, p< 0.001), but its association with

BPR was not significant. In turn, BLR and BGR were significantly
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associated with all four CHO variables (TH, DH, CIHD, HF). BPR

was only significantly associated with HF (b = -0.005, p< 0.01).

The analysis of indirect associations (Table 3) indicates that the

most substantial pathways from VC to CHOs operate through APM

to BLR and BGR. For hospitalization outcomes, the indirect

pathways involving BLR and BGR were strongest, with BGR

being slightly more prominent for DH (Specific Indirect Effect =

-0.00266) than BLR (Specific Indirect Effect = -0.00260). For disease

diagnoses, the pathways via BLR and BGR were also the most

prominent, with BLR being stronger for CIHD (Specific Indirect

Effect = -0.00150) and BGR being stronger for HF (Specific Indirect

Effect = -0.00141). The role of BPR as an intermediate variable was

negligible in most models, showing only a minor significant indirect

association for HF.
4.3 Associations involving disaggregated
pm and biomarkers

Based on the findings from Model Group 2, the third stage of

our analysis simultaneously disaggregated APM into PM2.5 and
FIGURE 3

Path diagrams of the PLS-SEMs in model group 2. VC, Vegetation cover; APM, Physiological health risk; BLR, Blood lipid risk; BGR, Blood glucose
risk; BPR, Blood pressure risk; IR, Inflammatory risk; TH, Times of hospitalizations; DH, Days of hospitalizations; CIHD, Diagnosed chronic ischemic
heart disease; HF, Diagnosed heart failure.
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PM10, and the key PHR constructs into their constituent

biomarkers (TC, HDL-C, and GLU). Model evaluation metrics

remained robust (Supplementary Table S3).

The path analysis results (Figure 4) reveal a critical finding:

while VC was significantly and negatively associated with both

PM2.5 (b ≈ -0.214, p< 0.001) and PM10 (b ≈ -0.228, p< 0.001),

only PM10 showed significant subsequent associations with the

key biomarkers. Specifically, PM10 was positively associated with

TC (b ≈ 0.064, p< 0.001) and GLU (b ≈ 0.100, p< 0.001), and

negatively associated with HDL-C (b ≈ -0.119, p< 0.001). In

contrast, the paths from PM2.5 to these biomarkers were not

statistically significant.

Consequently, the analysis of indirect associations (Table 4)

demonstrates that the significant sequential pathways from VC to

all CHOs operate exclusively through PM10. For TH, the strongest

indirect pathway involved PM10 and TC (Specific Indirect Effect =

-0.00282, p< 0.01). For DH, CIHD, and HF, the pathways involving

PM10 and GLU were consistently the most prominent (e.g., for DH:

Specific Indirect Effect = -0.00273, p< 0.01). These results identify

PM10 as the primary PM variable in this chain of association,

linking VC to CHOs via specific metabolic biomarkers.
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4.4 Comparison of association strengths
for individual VC indicators

In the final stage, we compared the relative strength of six

individual VC indicators within the most salient pathway identified

in Model Group 3. Based on those results, PM10 was used as the

APM indicator, while TC was selected as the key biomarker for the

TH outcome, and GLU was selected for the DH, CIHD, and

HF outcomes.

The comprehensive-effect model was found to be invalid due to

severe multicollinearity (VIF > 5), as anticipated in our pre-

specified analytical plan. Consequently, we proceeded with single-

factor models. The results (Supplementary Figure S3 and Table 5)

show that all six VC indicators were significantly and negatively

associated with PM10. In the subsequent pathways to CHOs, LAI

consistently emerged as the indicator with the strongest indirect

association for disease diagnoses, particularly for CIHD (Specific

Indirect Effect = -0.00164) and HF (Specific Indirect Effect =

-0.00164). For hospitalization outcomes (TH and DH), SAVI and

LAI showed the most prominent associations. Notably, FVC also

demonstrated a strong association for TH (Specific Indirect Effect =

-0.00172) and DH (Specific Indirect Effect = -0.00259), although

slightly weaker than LAI. This suggests that vegetation quality and

structure, as captured by LAI and FVC, are particularly important

in this environmental health pathway.
5 Discussion

5.1 Interpretation of key associative
pathways

The results from our four-stage analytical strategy consistently

support an association between VC and CHOs, which is statistically

explained by indirect pathways involving APM and PHR. This

highlights the complex web of associations through which green

spaces are linked to cardiovascular health.

A central finding, established in Model Group 3, is the

dominant role of PM10. While VC was associated with

reductions in both PM2.5 and PM10 concentrations, only the

pathways involving PM10 were significantly linked to subsequent

changes in metabolic biomarkers and CHOs. This differential

impact could be attributed to PM10 being more easily captured

by vegetation. Additionally, PM10’s deposition in the upper

respiratory tract may more readily trigger systemic responses

affecting lipid and glucose metabolism.

The analysis further specified the biological pathways involved.

Model Group 3 demonstrated that lower PM10 concentrations were

associated with reduced TC and GLU levels, and increased HDL-C

levels. These biomarkers, in turn, were linked to better health

outcomes. Notably, the indirect pathways showed specificity: the

VC→PM10→TC pathway was most prominent for TH, whereas

the VC→PM10→GLU pathway was strongest for DH, CIHD, and

HF. This suggests that PM10 exposure may influence
TABLE 3 Chain mediation effects of the PLS-SEMs in model group 2.

Model variable
(PHRi)

Total
effect

Direct
effect

Specific indirect
effect

Model 2a (VC→APM→PHR→TH)

BLR -0.07881*** -0.05845*** -0.00262***

BGR -0.07881*** -0.05845*** -0.00150***

BPR -0.07881*** -0.05845*** 0.00005

Model 2b (VC→APM→PHR→DH)

BLR -0.08455*** -0.01651** -0.00260***

BGR -0.08455*** -0.01651** -0.00266***

BPR -0.08455*** -0.01651** -0.00001

Model 2c (VC→APM→PHR→CIHD)

BLR -0.01536*** -0.01825*** -0.00150***

BGR -0.01536*** -0.01825*** -0.00134***

BPR -0.01536*** -0.01825*** -0.00002

Model 2d (VC→APM→PHR→HF)

BLR -0.01244*** -0.00544* -0.00130***

BGR -0.01244*** -0.00544* -0.00141***

BPR -0.01244*** -0.00544* -0.00011**
VC, Vegetation cover; APM, Physiological health risk; PHR, Airborne particulate matter; BLR,
Blood lipid risk; BGR, Blood glucose risk; BPR, Blood pressure risk; IR, Inflammatory risk;
TH, Times of hospitalizations; DH, Days of hospitalizations; CIHD, Diagnosed chronic
ischemic heart disease; HF, Diagnosed heart failure.
*p< 0.05; **p< 0.01; ***p< 0.001. The underlined values in the table denote statistically
significant and relatively large effect sizes and proportions, highlighting paths with substantial
indirect effects. These paths and their corresponding variables are identified as having
significant and strong mediating effects in the model, and are thus selected for further
analysis or interpretation.
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hospitalization frequency and disease severity through distinct

metabolic routes. The significant role of HDL-C in the pathways

for DH, CIHD, and HF, but not for TH, further underscores

this complexity.

Finally, the single-factor models in Model Group 4 confirmed

that while all vegetation indicators were associated with reduced

PM10, LAI and FVC showed the most significant indirect

associations with CHOs. This indicates that vegetation structure

and density are key characteristics. LAI, reflecting the total leaf

surface area, is directly related to the capacity for air purification

and particle deposition. FVC represents the density of VC, which

also contributes to overall air quality improvement.

These findings collectively underscore the multifaceted nature

of urban greening’s health benefits. They suggest that urban

planning strategies should prioritize vegetation types that

effectively reduce PM10 concentrations. Based on this study’s

results, increasing LAI and FVC could be effective strategies for

improving cardiovascular health. It is also important to note the

presence of inconsistent associations in some pathways, such as the

VC→APM→CVDD path in Model 1b. This phenomenon,

potentially a suppressor effect, suggests the existence of complex
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underlying relationships not fully captured by the current model

and highlights a valuable direction for future research.
5.2 Comparison with existing literature

Our general finding that green space is associated with better

cardiovascular health via pathways involving PM and metabolic

biomarkers is consistent with a growing body of literature. For

example, studies have similarly identified PM as a key intermediate

variable in the link between greenness and atherosclerotic CVD risk

(Shen and Lung, 2016; Dong et al., 2021), and have associated green

space with improved lipid profiles (R. Lei et al., 2024; Xu et al., 2022,

better glucose metabolism (Yang et al., 2019; Li et al., 2021), and

reduced inflammation (Egorov et al., 2024; Lai et al., 2024). Our

study builds upon this foundation by using a path analysis

framework to explore these sequential relationships, aligning with

findings that cardiometabolic disorders mediate the relationship

between green space and CVD (Yang et al., 2020).

A notable finding of our study, confirmed robustly in our

competitive model (Model Group 3), is the dominant role of PM10
FIGURE 4

Path diagrams of the PLS-SEMs in model group 3. VC, Vegetation cover; TC, Total cholesterol; HDL-C, High density lipoprotein cholesterol; GLU,
Blood glucose; TH, Times of hospitalizations; DH, Days of hospitalizations; CIHD, Diagnosed chronic ischemic heart disease; HF, Diagnosed heart
failure.
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over PM2.5 in the associative pathways. This diverges from several

studies that have specifically implicated PM2.5 as the primary

mediator (Li et al., 2022; Lei et al., 2024). Several factors could

explain this discrepancy. First, urban vegetation may be more

effective at capturing larger PM10 particles through deposition and

impaction (Diener andMudu, 2021). Second, our patient cohort might

be particularly susceptible to the inflammatory and metabolic effects

induced by PM10. While PM2.5 is known for its ability to penetrate

deeper into the bloodstream, the metabolic responses observed in our

cross-sectional data may be more strongly linked to PM10 exposure.
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Furthermore, our granular analysis pinpointed TC and GLU as

the most significant biomarkers. While previous research has

broadly linked greenness to cardiometabolic disorders (Yang

et al., 2020), our study identifies TC and GLU as particularly

sensitive indicators in this environmental health context. The

strong association with GLU aligns with studies suggesting that

air pollution can induce insulin resistance and impair glucose

metabolism (Yang et al., 2018; Burkart et al., 2022). The specific

prominence of TC in the pathway to TH, and the significant roles of

both TC and HDL-C in other outcomes, suggests that PM10
TABLE 4 Chain mediation effects of the PLS-SEMs in model group 3.

Model
Total effect Direct effect

Specific indirect
effectVariable (APM) Variable (PHR)

MODEL 3a (VC→APM→BM→TH)

PM2.5

TC -0.07877*** -0.05717*** 0.00092

HDL-C -0.07877*** -0.05717*** -0.00005

GLU -0.07877*** -0.05717*** -0.00004

PM10

TC -0.07877*** -0.05717*** -0.00282**

HDL-C -0.07877*** -0.05717*** 0.00026

GLU -0.07877*** -0.05717*** -0.00166**

MODEL 3b (VC→APM→BM→DH)

PM2.5

TC -0.08461*** -0.01690*** 0.00052

HDL-C -0.08461*** -0.01690*** 0.00034

GLU -0.08461*** -0.01690*** -0.00007

PM10

TC -0.08461*** -0.01690*** -0.00159**

HDL-C -0.08461*** -0.01690*** -0.00176***

GLU -0.08461*** -0.01690*** -0.00273**

Model 3c (VC→APM→BM→CIHD)

PM2.5

TC -0.01532*** -0.01814*** 0.00032

HDL-C -0.01532*** -0.01814*** 0.00018

GLU -0.01532*** -0.01814*** -0.00004

PM10

TC -0.01532*** -0.01814*** -0.00097**

HDL-C -0.01532*** -0.01814*** -0.00095***

GLU -0.01532*** -0.01814*** -0.00138**

Model 3d (VC→APM→BM→HF)

PM2.5

TC -0.01240*** -0.00546* 0.00019

HDL-C -0.01240*** -0.00546* 0.00025

GLU -0.01240*** -0.00546* -0.00004

PM10 TC -0.01240*** -0.00546* -0.00058**

HDL-C -0.01240*** -0.00546* -0.00127***

GLU -0.01240*** -0.00546* -0.00137**
VC, Vegetation cover; APM, Physiological health risk; BM, Biomarker; TC, Total cholesterol; HDL-C, High density lipoprotein cholesterol; GLU, Blood glucose; TH, Times of hospitalizations;
DH, Days of hospitalizations; CIHD, Diagnosed chronic ischemic heart disease; HF, Diagnosed heart failure.
*p< 0.05; **p< 0.01; ***p< 0.001. The underlined values in the table denote statistically significant and relatively large effect sizes and proportions, highlighting paths with substantial indirect
effects. These paths and their corresponding variables are identified as having significant and strong mediating effects in the model, and are thus selected for further analysis or interpretation.
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exposure in this population may have a pronounced effect on

overall cholesterol regulation, a finding that complements broader

evidence linking air pollution to adverse lipid profiles (Cesaroni

et al., 2014). This specificity provides a more focused target for

future mechanistic research, suggesting that TC and GLU could

serve as key biomarkers for assessing the cardiovascular benefits of

urban greening initiatives.
5.3 Methodological contributions and
reflections

This study presented several methodological innovations for

exploring the complex relationships between green space, air
Frontiers in Plant Science 12
quality, PHR, and CHOs. (1) While traditional structural

equation modeling has been widely used in previous

epidemiological studies (Hays et al., 2005; Grande et al., 2020),

PLS-SEMs have gained popularity in recent years for their efficiency

at handling complex structural models with multiple constructs,

indicators, and model relationships. For instance, some research

employed PLS-SEMs to investigate the relationships between green

structures, air pollution, temperature, and CVD mortality (Shen

and Lung, 2016). Our study builds upon this trend, leveraging the

ability of PLS-SEMs to explore more complex mediation pathways.

(2) A key innovation in our approach is the application of chain

mediation analysis to examine the mechanisms linking green space

to cardiovascular health. While some previous studies have

considered potential mediators between environmental factors
TABLE 5 Chain mediation effects of the PLS-SEMs in model group 4.

Model
Total effect Direct effect

Specific indirect
effectVariable (CHO) Variable (VC)

TH

NDVI -0.05206*** -0.03957*** -0.00082***

EVI -0.08096*** -0.05993*** -0.00189***

SAVI -0.08576*** -0.06425*** -0.00193***

DVI -0.08897*** -0.06853*** -0.00180***

LAI -0.07046*** -0.04899*** -0.00193***

FVC -0.04723*** -0.03263*** -0.00172***

DH

NDVI -0.05143*** -0.02109*** -0.00129***

EVI -0.08527*** -0.01655* -0.00311***

SAVI -0.08864*** -0.01772*** -0.00320***

DVI -0.08600*** -0.01960*** -0.00298***

LAI -0.08155*** -0.01321* -0.00321***

FVC -0.06547*** -0.01245* -0.00259***

CIHD

NDVI -0.01181*** -0.01227*** -0.00066***

EVI -0.01737*** -0.02213*** -0.00159***

SAVI -0.01778*** -0.02276*** -0.00163***

DVI -0.01884*** -0.02323*** -0.00152***

LAI -0.01636*** -0.02177*** -0.00164***

FVC 0.00107 -0.00283 -0.00132***

HF NDVI -0.01688*** -0.01309*** -0.00066***

EVI -0.01306*** -0.00651** -0.00159***

SAVI -0.01341*** -0.00666** -0.00164***

DVI -0.01357*** -0.00709** -0.00153***

LAI -0.00938*** -0.00320 -0.00164***

FVC -0.00390 0.00063 -0.00132***
CHO, Cardiovascular health outcome; VC, Vegetation cover; TH, Times of hospitalizations; DH, Days of hospitalizations; CIHD, Diagnosed chronic ischemic heart disease; HF, Diagnosed heart
failure; NDVI, Normalized difference vegetation index; EVI, Enhanced vegetation index; SAVI, Soil adjusted vegetation index; DVI, Difference vegetation index; FVC, Fractional Vegetation
Cover; LAI, Leaf area index.
*p< 0.05; **p< 0.01; ***p< 0.001. The underlined values in the table denote statistically significant and relatively large effect sizes and proportions, highlighting paths with substantial indirect
effects. These paths and their corresponding variables are identified as having significant and strong mediating effects in the model, and are thus selected for further analysis or interpretation.
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and health outcomes, they typically focused on single mediators

such as air pollution or physical activity (Bauwelinck et al., 2021; Yu

et al., 2023). Our study extends this by incorporating multiple

potential mediators—air quality and PHR—in a chain mediation

model. This approach allows for a more comprehensive

understanding of the complex pathways through which green

space influences cardiovascular health. (3) Our study employed a

series of increasingly refined models (Model Groups 1–4) to

elucidate the associations at play: Model Group 1 established the

overall associative pathway, Model Group 2 deconstructed the

composite PHR into its sub-risks, Model Group 3 simultaneously

examined the roles of different PM sizes (PM2.5 and PM10) and

specific biomarkers (TC, HDL-C, GLU) in a competitive model, and

Model Group 4 explored the relative importance of various

individual vegetation indicators. This progressive refinement

allowed for a more nuanced and comprehensive analysis of the

relationships between variables. (4) In Model Groups 2–4, we

considered both the interactive effects of multiple variables in

chain mediation models and the individual effects of single

indicators. This dual approach, using both comprehensive-effect

and single-factor models, provides a more realistic representation of

complex real-world mechanisms while also allowing for the

identification of key individual factors. Our study employed

different models based on the specific requirements of each

analysis stage. This flexible approach, using comprehensive-effect

models as the primary strategy with single-factor models as a pre-

specified alternative to address multicollinearity, was applied in

Model Groups 2, 3, and 4. This flexible approach to model selection

enhanced the scientific rigor and accuracy of our findings. In

conclusion, our methodological approach—combining PLS-SEMs

with chain mediation analysis and a progressive model refinement

strategy—offers a novel and comprehensive framework for

investigating the complex relationships between environmental

factors and health outcomes. This approach allows for a more

detailed and nuanced understanding of the mechanisms linking

green space to cardiovascular health, and it provides valuable

insights for urban planning and public health strategies.
5.4 Limitations

This study has several important limitations that must be

considered when interpreting the findings. First and foremost, the

cross-sectional and retrospective nature of our study design is a

major limitation. The environmental exposures (VC and PM) were

assigned based on annual averages for the year preceding

hospitalization, and physiological data were collected during the

hospitalization episode. This design does not allow for the

establishment of clear temporal precedence, which is a

prerequisite for making causal claims. Consequently, our findings

should be interpreted as evidence of statistical association rather

than causal mediation. The language used throughout this paper,

such as indirect association and pathway of association, reflects this
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non-causal, exploratory framework. Second, our analysis did not

include several crucial individual-level confounders. Data on

patient age, sex, socioeconomic status, lifestyle factors such as

smoking and diet, and pre-existing comorbidities were not

available in the electronic medical records used for this study.

These factors are known to be strong predictors of both

residential location choices and cardiovascular risk. Their

omission means that the associations we observed could be biased

due to unmeasured confounding. For example, higher

socioeconomic status might be associated with both living in

greener neighborhoods and better baseline health, which could

partially explain the observed link between vegetation and better

health outcomes. Therefore, the results should be interpreted with

caution. Third, the use of annual average data for environmental

exposures, while common in such studies, may mask the potentially

important effects of short-term or seasonal fluctuations in PM

concentrations. The health impacts of acute exposure spikes

might differ from those of chronic, long-term exposure. Finally,

while we used a 1000m buffer to estimate exposure, this is an

approximation and may not perfectly reflect an individual’s true

exposure, which is influenced by daily mobility patterns, time spent

indoors versus outdoors, and occupational exposures. Future

research employing longitudinal designs, with detailed individual-

level data on confounders and time-activity patterns, is needed to

confirm the exploratory findings of this study and to establish

causal relationships.
6 Conclusions

This study elucidates a key environmental health pathway,

demonstrating a significant association between residential VC

and cardiovascular health that is statistically explained by a

sequential path involving air quality and metabolic biomarkers.

Our analysis robustly identifies PM10, over the more commonly

implicated PM2.5, as the primary atmospheric intermediary

linking vegetation to physiological risk. Furthermore, our

findings decompose this association into distinct metabolic

routes. We demonstrate that the pathway from PM10 to

cardiovascular outcomes is statistically specified through key

biomarkers, with TC being most prominent for TH, while GLU

is the crucial link to DH and specific diagnoses like CIHD and HF.

Crucially, these health-promoting pathways are anchored in the

quality and structure of urban vegetation. LAI and FVC emerged as

the most significant vegetation characteristics, suggesting that

dense, structurally complex green spaces are most effective at

initiating this beneficial cascade. These findings have direct

implications for urban planning and public health, indicating

that strategic greening policies focused on maximizing LAI and

FVC can be a potent tool for targeted air quality management and

cardiovascular disease prevention. Future longitudinal research is

essential to validate these associative pathways and explore their

causal underpinnings.
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