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Passion fruit (Passiflora edulis) is extensively cultivated in most tropical and

subtropical regions worldwide. Yet although its pulp, well known for nutritional

profile, is commonly processed into juice and other products, the peel remains

underutilized, leading to substantial biomass wastes. This study investigates the

molecular mechanisms of anthocyanin accumulation in the peel through the

integrative transcriptome and WGCNA analysis. Samples were collected at both

mature and immature developmental stages from purple- and yellow-skinned

passion fruit varieties. Transcriptome sequencing was performed on the Illumina-

Hiseq platform. After stringent quality trimming and filtering, the clean reads were

aligned to the reference genome. Differentially expressed genes (DEGs) were

identified using DESeq2 with the thresholds of |log2Fold Change| ≥ 1 and FDR <

0.05. To elucidate their biological functions and metabolic pathways, the DEGs

were annotated against the KEGG, GO and KOG databases. Subsequent WGCNA,

pinpointed ten candidate hub genes potentially involved in anthocyanin

biosynthesis. Finally, their expression patterns were validated via RT-qPCR, which

showed strong concordance with the transcriptome data. These findings not only

confirm the robustness of our analytical approach but also highlight the pivotal

regulatory roles of several key genes, involving PeCA, PeMYC2, PeMYB88, and

PeCHI, in the passion fruit anthocyanin biosynthesis pathway.
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1 Introduction

Passion fruit (Passiflora edulis) belongs to the genus Passiflora, a

perennial evergreen herbaceous vine in the family Passifloraceae. Its

juice is rich in vitamins, antioxidants, essential amino acids, lutein

and minerals required 57 by the human body (Chen et al., 2025).

cultivated extensively in tropical and subtropical regions, it

comprises two primary commercial varieties: yellow (P. edulis f.

flavicarpa) and purple (P. edulis f. edulis). Both varieties possess

significant pharmaceutical and nutraceutical value. Yellow passion

fruit demonstrates therapeutic potential for neurological

conditions, with documented sedative, anxiolytic, and

neuropharmacological effects through modulation of g-
aminobutyric acid (GABA) activity (Sena et al., 2009). Similarly,

purple passion fruit exhibits diverse pharmacological properties,

including anti-inflammatory, analgesic, and cardiovascular

protective effects (Mota et al., 2018). Despite the economic

importance of passion fruit primarily for juice production, the

peel—constituting approximately 50-60% of the fruit’s fresh

weight—remains largely underutilized, representing a significant

agricultural waste challenge.

The peel, particularly from the purple variety, is a rich reservoir

of bioactive compounds, most notably anthocyanins, the pigments

responsible for its characteristic coloration (Deng et al., 2010).

These polyphenolic compounds exhibit diverse biological

activities, including antioxidant, anti-inflammatory, antimicrobial,

and cardioprotective effects (Khoo et al., 2017). Consequently,

anthocyanins are highly sought-after as natural colorants and

functional ingredients in the food, pharmaceutical, and cosmetic

industries. The biosynthetic pathway of anthocyanins, initiated

from phenylalanine through sequential enzymatic reactions, has

been well-characterized in model plants (Chemat et al., 2017).

However, a comprehensive understanding of the molecular

machinery governing anthocyanin accumulation in passion fruit

peel remains elusive. The specific regulatory genes and co-

expression networks that differentiate the high-anthocyanin

purple variety from the low-anthocyanin yellow variety, especially

during fruit maturation, are largely uncharacterized.

The advent of high-throughput technologies, including RNA

sequencing (RNA-seq), has enabled a comprehensive and

systematic investigation of the functional characteristics of

thousands of genes (van Dam et al., 2015). RNA-seq is employed

to profile differentially expressed genes in peels of purple and yellow

passion fruits across various developmental stages. Gene co-

expression network analysis is a powerful approach for

elucidating the functional roles and interrelationships of genes

based on genome-wide expression data (Childs et al., 2011). This

methodology entails the construction of a network of co-activated

genes across multiple samples.Currently, weighted gene co-

expression network analysis (WGCNA) represents the most

frequently utilized systems biology methodology for identifying

gene correlation patterns (Tahmasebi et al., 2019). This is

particularly valuable for the identification of co-expressed gene

modules, establishing their correlations with phenotypic traits, and

pinpointing key regulatory hub genes.
Frontiers in Plant Science 02
In this study, we employed an integrated transcriptomic and

WGCNA analyses of peels from purple and yellow passion fruit

varieties at both immature and mature developmental stages. Our

primary objectives were to: (1) profile the transcriptomic changes

associated with anthocyanin accumulation; (2) identify key

structural and regulatory genes differentially expressed during

anthocyanin accumulation; (3) construct gene co-expression

networks to elucidate regulatory mechanisms; and (4) pinpoint

candidate hub genes that likely play a central role in regulating

anthocyanin biosynthesis. Our findings provide fundamental

insights into the molecular basis of anthocyanin biosynthesis in

passion fruit and establish a genomic resource for developing

strategies to valorize this underutilized agricultural byproduct.
2 Materials and methods

2.1 Sample preparation

Two passion fruit cultivar utilized in this study: purple passion

fruit (Passiflora edulis ‘Tainong No. 1’), and yellow passion fruit

(Passiflora edulis ‘Qinmi 9’), were both collected from the

demonstration orchard in the Sujia Village, located in the Wanhe

Zhelmu Town, Guilin City of Guangxi region. From each cultivar, a

total of 100 fruits was meticulously selected from the fruit trees,

divided into four groups, and then randomly sampled. The fruit

samples were then classified into two maturity categories: ripe and

unripe. The peels of unripe purple passion fruit were designated as

TPU, and those of ripe fruits as TPR. For the yellow passion fruit, the

peels of unripe fruits were labeled as TYU, and those of ripe fruit as

TYR. The fruit samples were then washed with tap water and air-

dried. The pectin layer was removed from the fruit peels, followed by a

thorough washing of the pericarp layer and its subsequent drying on a

bench. Subsequently, the peel samples were flash-frozen using liquid

nitrogen, pulverized, and stored at -80 °C for further analysis. The fruit

peels from the yellow variety were used for comparison.
2.2 Transcriptome sequencing

Transcriptome sequencing was conducted in the UW Genetics

Ltd. (Shenzhen, China). The total RNA was extracted from the peel

samples of the purple passion fruit (TPU and TPR) and yellow

passion fruit (TYU and TYR) using an RNA extraction kit (Cheng

et al., 2023). Subsequently, Total RNA concentration and purity

were measured by spectrophotometry. RNA integrity was assessed

using the Agilent 2100 Bioanalyzer. After passing quality control,

paired-end sequencing was performed on the Illumina

HiSeq platform.
2.3 Data processing

The library was subjected to sequencing using a second-

generation sequencing platform (Illumina HiSeq 2000). An initial
frontiersin.org
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evaluation of the data was then conducted using the FastQC

bioinformatics tool (Ward et al., 2020). Subsequently, the results

were integrated and presented in a visual format using a MultiQC

software (Ewels et al., 2016). Non-genomic sequences were trimmed

using NGSQC Toolkit and Trimmomatic softwares with default

parameters based on the evaluation results (Bolger et al., 2014). The

softwares were employed for strict control of raw data, including

removals of non-genomic sequences, reads with connectors

(adapters). The presence of N bases in excess of this threshold

has been demonstrated to affect the subsequent comparison results.

Furthermore, low-quality bases (Q ≤ 20) were removed. Next, PCR

duplicates generated during library construction were removed

using FastUniq software to obtain clean reads for the subsequent

comparisons (Xu et al., 2012). After quality control steps, the clean

reads were compared to the reference genome in order to identify

the source genes that were transcribed by these fragments. The

clean reads were then aligned aganist the Passiflora reference

genome using HISAT2, which yielded information regarding the

genomic location, gene features, and sequence characteristics that

were specific to the sequenced sample.
2.4 Analysis of gene expression level

The truly differentially expressed genes (DEGs) were addressed

based on their biological variability due to considerable variation in

gene expression among individuals. To facilitate a comprehensive

analysis of the entire transcriptome, biological replicates were

established. Pearson’s correlation coefficient (R) was employed to

assess the correlation between biological replicates in the

transcriptome sequencing data. Pearson’s correlation coefficient

(R) was also utilized to quantify the degree of correlation between

biological replicates (Li et al., 2015). As R approaches 1, the

correlation between the replicates increases.

In the RNA-Seq, transcript abundance functioned as an

indicator of gene expression levels. FPKM (fragments per kilobase

of transcript per million mapped reads) was utilized to quantify

transcript abundance. This approach quantifies the expression level

of each gene as a fraction of the total length of the transcript in

millions of mapped reads (Mizushima et al., 2020). Principal

component analysis (PCA) was a statistical method that does not

require supervision. PCA was used to identify patterns in the data.

The principal component 1 (PC1) represented the principal

component that captured most of the variance in the data matrix,

while the principal component 2 (PC2) captured additional and

distinct variance. The employment of PCA was instrumental in

extracting the maximum amount of information from the original

variables, thereby ensuring their independence (Liu et al., 2003).
2.5 Identification of DEGs

The DESeq2 method was employed to analyze the differential

expression among the samples studied, thereby identifying the DEG

sets between groups. The unstandardized data were utilized as the
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input for the differential analysis. Subsequent to the differential

analysis, the Benjamini-Hochberg method was employed to correct

the P-values for multiple testing, thereby yielding the false discovery

rate (FDR). The identification of differential genes was facilitated by

establishing a criteria of [log2 fold change] ≥ 1 and FDR < 0.05.

Subsequently, hierarchical clustering analysis was performed on

FPKM expression data following differential gene centralization and

standardization, and a corresponding heatmap was generated (Love

et al., 2014; Varet et al., 2016).
2.6 Gene annotation and enrichment
analysis

2.6.1 KEGG annotation and pathway enrichment
analysis

The KEGG (Kyoto Encyclopedia of Genes and Genomes)

automatic annotation server (KAAS, http://www.genome.jp/tools/

kaas/) was employed as a tool to annotate the sequences using a set

of Perl scripts (Kanehisa, 2002). The Bayesian network-based

Bayesian belief propagation (BBS) mode was selected for the

annotation of the transcriptome sequences. Subsequently, KEGG

pathway enrichment analysis was performed on the annotation

results of KEGG Ortholog. The number of genes that could be

annotated on the KEGG Pathway was obtained by the KAAS

annotation. Finally, the Python-based software was used to group,

sort, summarize, and visualize the pathways based on the

hypergeometric distribution principle (Klopfenstein et al., 2018).

2.6.2 GO annotation of DEGs
Gene Ontology (GO) is an international classification system

for gene functions that has been used to describe and categorize

gene and protein functions across different species. The

categorization of GO is typically divided into three distinct

categories (Chen, 2017): The first category, “Molecular Functions”

(MFs), encompasses the activities that genes perform within a cell.

The second category, “Biological Processes” (BPs), refers to the

collective functions that organisms use to survive and reproduce.

The third category, “Cellular Components” (CCs), concerns the

structural components of cells. The significance of enrichment in

GO terms was determined by comparing DEGs with the entire

genome background using the hypergeometric test. This approach

has been found to identify the GO terms that are significantly

enriched (Tatusov et al., 2000).
2.6.3 KOG annotation and functional
classification of DEGs

The KOG (eukaryotic orthologous group) is a taxonomy of

euryarchaeal proteins that are classified into groups based on

sequence similarity. Each group is assigned a KOG number that

represents homologous proteins (Wang et al., 2019). In this study,

euryarchaeal homologous proteins were clustered, and their genes

were annotated. To acquire relevant annotation information,

sequences were compared to the KOG database using a basic
frontiersin.org
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local alignment search tool (BLAST) program to acquire relevant

annotation information.
2.7 Weighted gene co-expression network
analysis

2.7.1 Construction and clustering of gene
networks

The WGCNA was applied to the DEGs for the purpose of

identifying the modules and genes associated with anthocyanin

synthesis. Initially, the expression matrix of the DEGs was loaded

and examined for any missing values, with details provided by the

good sample genes. Subsequently, the samples were clustered, and a

soft threshold power b was selected to compute the weight

parameters of the neighbor-joining matrix. This step facilitated

the construction of the network, the identification of modules, and

the plotting of a heatmap illustrating module-trait correlations (Xie

et al., 2013).

2.7.2 Identify the hub genes
The identification of modules with the strongest correlation to

anthocyanin content was achieved through the implementation of

the Gene-Module Membership (MM) and Gene Significance (GS)

metrics. The MM value of each gene in the module with a strong

correlation to anthocyanin content was first obtained by calculating

the average of the correlation between the gene and other genes in

the module. Subsequently, the GS value of each gene with

anthocyanin content was calculated by the correlation coefficient.

Following this, a comprehensive evaluation of the MM and GS

values was conducted to identify the genes with high MM and GS

values. The Cytoscape recognizable files were exported (Chin et al.,

2014). Finally, Cytoscape software was employed to construct the

expression network map, and the CytoHubba plug-in was utilized

to identify hub genes (Moebes et al., 2022).
2.8 Verification of DEGs by RT-qPCR

2.8.1 Synthesis of reverse transcriptional cDNA of
passion fruit

A total of ten hub genes were identified in the turquoise and

blue modules by WGCNA. To assess the accuracy of the WGCNA

strategy, these genes were then validated using quantitative PCR

(Xiaohan et al., 2023). The RNA extraction process was initiated

with the use of a total RNA extraction kit (Tiangen Biotech (Beijing)

Co., Ltd., China). Subsequently, the synthesis of cDNA was

facilitated through reverse transcription, employing the WX2050

SuperScript cDNA Synthesis Kit (Beijing Huayueyang Biological

Technology Co., Ltd., China) (Tian et al., 2018).

2.8.2 RT-qPCR
The cDNA obtained from the reverse transcription reaction was

then subjected to real-time fluorescent quantitative PCR (qPCR)

using the Hieff qPCR SYBR Kit (Yisheng Biotechnology Co., Ltd.,
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Shanghai, China) (Zhao et al., 2021). Primers for selected genes

were designed using Primer Premier 5.0. Three biological replicates

were performed for all samples. Subsequently, the relative

expression levels of the genes of interest were calculated using the

2-DDCT method (Suarez et al., 2017).
3 Results

3.1 Transcriptome sequencing and
alignment

To investigate the molecular basis of anthocyanin accumulation

in passion fruit peel, RNA-seq analysis was performed on purple

and yellow varieties at two developmental stages. Samples were

collected from mature and immature fruits, with three biological

replicates for each group, totaling 12 groups. RNA-Seq was

performed on the Illumina-HiSeq platform, generating 559

million raw reads. After filtering, 535 million clean reads with an

average length of 150 bp were obtained. The raw sequence data was

evaluated using the Fastqc, and the summary reports were

generated using the MultiQC. Based on these evaluations, the

data was further filtered or trimmed to remove reads including

sequences with substandard adapter sequences, excessive N bases,

low-quality bases, and repetitive sequences caused by non-random

fragmentation. The filtered clean reads was then aligned to the

passion fruit reference genome using HISAT2 (Table 1). The

alignment results indicated that the alignment rate for each group

was higher than 73%, indicating high data quality, good mapping

efficiency and no contamination occurred during sequencing. The

transcriptome data obtained in this sequencing can be used for

subsequent analysis.
3.2 Screening of differentially expressed
genes

The correlation analysis of biological replicate samples requires

that the R2 value between replicates should be at least 0.8 or higher.

Statistical analysis (seen in Figure 1A) showed that, the R2 value

among biological replicates in each group was greater than 0.9,

which met the requirements of quality criteria and confirmed the

reliability of the data for subsequent analysis. The FPKM density

distribution of the 12 groups was compared (Figure 1B), and the

results showed that there was a large overlap among samples,

indicating that the overall gene expression levels of the samples

were similar. The non-overlapping parts might be attributed to

variations in the different varieties and maturity stages of the

passion fruit, which caused changes in gene expression levels.

In the principal component analysis (Figure 1C), the scattered

points corresponding to the four sample groups displayed a trend of

mutual aggregation within each groups, suggesting good internal

repeatability and high similarity among the sample data; In

contrast, the scattered points between the groups exhibited a

pattern of mutual dispersion, indicating distinct discrimination
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among the groups, thus suitable for downstream differential

expression and functional analyses.

The R package DESeq2 was employed to analyze the differential

expression between samples, resulting in the identification of
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differentially expressed gene sets across various group. After the

differential analysis, the Benjamini-Hochberg method was applied

to adjust the P-values for multiple hypothesis testing. By setting the

criteria of |log2Fold Change| ≥ 1 and FDR < 0.05 as significance
FIGURE 1

(A) Sample correlation analysis. (B) Comparison of sample gene FPKM density. (C) Principal component analysis of samples.
TABLE 1 The comparison results of the transcriptome with the reference genome.

Sample name Clean reads Mapped reads Read1 mapped Read2 mapped

TPU1 43477306 34108836(78.45%) 16436263(37.80%) 16423425(37.77%)

TPU2 48173982 37917091(78.71%) 18273868(37.93%) 18255871(37.90%)

TPU3 40623528 32221645(79.32%) 15531646(38.23%) 15508634(38.18%)

TPR1 42473880 31755867(74.77%) 15255067(35.92%) 15245220(35.89%)

TPR2 43862056 33316327(75.96%) 16011624(36.50%) 15999297(36.48%)

TPR3 44558662 34236170(76.83%) 16507808(37.05%) 16449649(36.92%)

TYU1 47840074 36151766(75.57%) 17442442(36.46%) 17414667(36.40%)

TYU2 42384956 33261890(78.48%) 15938716(37.60%) 15914709(37.55%)

TYU3 48477292 38004310(78.40%) 18217319(37.58%) 18186284(37.52%)

TYR1 44621880 32579244(73.01%) 15685576(35.15%) 15673975(35.13%)

TYR2 42243164 31615619(74.84%) 15269365(36.15%) 15245369(36.09%)

TYR3 46597392 34180054(73.35%) 16499204(35.41%) 16468314(35.34%)
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threshhold, the differentially expressed genes (DEGs) were

screened, and the differences among genes between different

combinations were also compared.

The Venn diagram (Figure 2A) illustrates the overlap of DEGs

among different comparison groups, providing critical insights into

the transcriptional regulation network underlying passion fruit peel

coloration. Comparative analysis between mature purple-skin and

yellow-skin passion fruit (TPR_vs_TYR) identified 7,528 DEGs,

with 3,504 upregulated and 4,024 downregulated genes. This

substantial change suggests variety-specific metabolic pathways

are most active in mature fruit. Addtionally, fewer DEGs (5,039)

were detected between immature purple-skin and yellow-skin fruit

(TPU_vs_TYU), comprising 2,272 upregulated and 2,767

downregulated genes, indicating variety differences are already

establ ished early in development. This suggests that

transcriptomic divergence increases along with fruit ripening,

potentially corresponding to anthocyanin accumulation.

Furthermore, a comparison between the immature stage of

purple-skin passion fruit and the mature stage (TPU_vs_TPR)

revealed 3,976 differentially expressed genes, including 1,894 up-

regulated genes and 2,082 down-regulated genes, likely playing

crucial roles in pigment accumulation during maturation.

Hierarchical clustering analysis was performed using

normalized FPKM values of differentially expressed genes, and

the resulting heatmap (Figure 2B) revealed distinctive expression

patterns across samples. Notably, TPU and TPR samples clustered

more closely together, as did TYU and TYR samples, indicating that

genotype (purple-skin versus yellow-skin) exerts a stronger

influence on global gene expression patterns than developmental

stage. This genotype-dependent clustering suggests that the

fundamental transcriptional programs governing fruit

development are largely conserved within each variety across
Frontiers in Plant Science 06
maturation stages. In contrast, there were marked differences in

the color patterns between TPU and TYU, as well as between TPR

and TYR. These differences in gene expression patterns between

purple-skin and yellow-skin genotypes likely reflect divergent

regulation of pigment biosynthesis pathways, particularly those

involved in anthocyanin accumulation. The hierarchical clustering

results provide a foundation for identifying the key regulatory

modules that differentiate anthocyanin-accumulating and non-

accumulating passion fruit genotypes.
3.3 KEGG annotation and enrichment
analysis of DEGs

To elucidate the biological functions of DEGs, KEGG pathway

enrichment analysis was implemented (Figure 3). In the

comparison of TPR_vs_TYR (Figure 3A), 2628 of the 7528 DEGs

were successfully annotated, accounting for 34.91% of the total

DEGs, and they were involved in 113 metabolic pathways of KEGG.

The largest number of annotated genes was found in the category of

metabolism, with the metabolic pathway pathways and the

biosynthesis of secondary metabolites having the most annotated

DEGs, totaling 1215 and 724, respectively.

For the comparison of TPU_vs_TPR (Figure 3B), KEGG

annotation was conducted on 3,976 DEGs, revealing that 1,478 of

these genes were annotated, which accounted for 37.17% of the total

DEGs, and they were involved in 72 KEGG metabolic pathways.

Again, the majority of annotated genes were in the metabolism

category, with 735 DEGs related to metabolic pathways and 455 to

the biosynthesis of secondary metabolites.

Additionally, KEGG annotation was performed on 5,039 DEGs

from the TPU_vs_TYU comparison (Figure 3C), where 1,832 of the
FIGURE 2

(A) Venn diagram. (B) clustering heatmap.
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FIGURE 3

KEGG annotation of DEGs. (A) TPR_vs_TYR. (B) TPU_vs_TPR. (C) TPU_vs_TYU.
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DEGs were annotated, representing 36.36% of the total DEGs, and

these genes were involved in 89 KEGGmetabolic pathways. As with

the previous comparisons, the largest number of annotated genes

was in the metabolism category, with 884 DEGs associated with

metabolic pathways and 536 with the biosynthesis of

secondary metabolites.
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After the genes have been annotated, the number of DEGs in

each pathway was calculated, and a KEGG enrichment scatter plot

of DEGs was drawn (Figure 4). The KEGG enrichment scatter plot

for the DEGs from the TPR_vs_TYR compariso (Figure 4A) display

the 20 most significantly enriched pathway entries, with the DEGs

annotated to the biosynthetic pathways of secondary metabolites
FIGURE 4

Enrichment map of DEGs in KEGG pathways. (A) TPR vs TYR, (B) TPU vs TPR, (C) TPU vs TYU.The color of the dots represents the confidence level
of enrichment, and the size of the dots represents the number of enriched genes.
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being the most numerous, far exceeding other pathways. Therefore,

the Rich factor of this pathway is the smallest and the q-value is the

lowest, indicating significant enrichment.

Similarly, the KEGG enrichment scatter plot for the DEGs from

the TPU_vs_TPR comparison (Figure 4B) also shows the 20 most

significantly enriched pathway entries, where the DEGs associated

with the biosynthetic pathways of secondary metabolites are again

the most numerous. This pathway exhibits the smallest Rich factor

and the lowest q-value, confirming its significant enrichment.

Furthermore, the KEGG enrichment scatter plot for the DEGs

from the TPU_vs_TYU comparison (Figure 4C) presents the 20

most significantly enriched pathway entries, with the DEGs

annotated to the biosynthetic pathways of secondary metabolites

remaining the most numerous. As with the previous comparisons,

this pathway has the smallest Rich factor and the lowest q-value,

indicating significant enrichment.
3.4 GO and KOG annotation of DEGs

In the GO term enrichment analysis, 7528 DEGs from the

TPR_vs_TYR comparison were categorized into 58 subclasses

across the three broad categories (Figure 5A). Within the BPs

category, the categories were “Cellular Processes” (45.1%),

“Metabolic Processes” (38.2%), and “Response to Stimulus”

(23%). The subclasses annotated under the CCs category included

“Cells” (55.6%), “Organelles” (43%), and “Membranes” (29.4%). In

the MFs category, the annotations were predominantly “Binding”

(45%) and “Catalytic Activity” (39.1%).

In the TPU_vs_TPR comparison, 3976 DEGs were categorized

into 56 subclasses across the three broad categories (Figure 5B). For

the BPs category, the distribution was as follows: “Cellular

Processes” (47.2%), “Metabolic Processes” (40.1%), and “Response

to Stimulus” (26.8%). In the CCs category, the DEGs were

annotated to “Cells” (58.6%), “Organelles” (43.4%), and

“Membranes” (32.8%). For the MFs category, the predominant

subclasses were “Binding” (47.5%) and “Catalytic Activity” (41.5%).

In the TPU_vs_TYU comparison, 5039 DEGs were classified

into 57 subclasses within the three broad categories (Figure 5C).

Within the category of BPs, the most prevalent subclasses were

“Cellular Processes” (45.1%), “Metabolic Processes” (38.3%), and

“Response to Stimulus” (25.1%). For the CCs category, the

annotations were “Cells” (55.6%), “Organelles” (42.6%), and

“Membranes” (30.1%). Finally, the MFs category was included

“Binding” (45.6%) and “Catalytic Activity” (41.5%).

In the TPR_vs_TYR comparison, 4321 DEGs were annotated to

KOGs. As illustrated in Figure 6A, the five most prevalent KOG

classifications are “Function Prediction” (934, 12.41%),

“Transduction Machinery” (432, 5.74%), “Post-Translational

Modifications, Protein Turnover, Molecular” (396, 4.90%),

“Biosynthesis of Secondary Metabolites, Transport and

Metabolism” (308, 4.09%), and “Carbohydrate Transport and

Metabolism” (260, 3.45%).

In the TPU_vs_TPR comparison, 2333 DEGs were annotated to

the KOG database. As illustrated in Figure 6B, the top five KOG
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classifications are as follows: “Function Prediction” (504, 12.68%),

“Transduction Mechanism” (229, 5.76%), “Secondary Metabolite

Biosynthesis, Transport and Metabolism” (222, 5.58%), “Post-

Translational Modifications, Protein Turnover, Molecular” (176,

4.43%), and “Carbohydrate Transport and Metabolism”

(150, 3.77%).

In the TPU_vs_TYU comparison, 2880 DEGs were annotated

to KOGs. As illustrated in Figure 6C, the five most prevalent KOG

classifications are: “Function Prediction” (639, 12.68%),

“Transduction Mechanism” (282, 5.60%), “Post-Translational

Modifications, Protein Turnover, Molecular” (230, 4.56%),

“Biosynthesis of Secondary Metabolites, Transport and

Metabolism” (217, 4.31%), and “Carbohydrate Transport and

Metabolism” (199, 3.95%).
3.5 Weighted gene co-expression network
analysis

This study employed weighted gene co-expression network

analysis (WGCNA) to cluster the DEGs in the peel samples of

purple and yellow passion fruit at varying maturities. The genes

were organized into multiple modules, which were found to be

associated with anthocyanin content. As demonstrated in

Figure 7A, the clustering of DEGs was executed using

anthocyanin content as an external trait. A heat map was

generated to illustrate the sample clusters for this trait, revealing

that TPR had the highest correlation. The construction of the co-

expression network was facilitated by employing an optimal soft

threshold, a process that enabled the aggregation of genes into

discrete modules. The construction of the gene clustering tree was

performed to cluster the distance between these modules, which

also illustrates their relationships.

As illustrated in Figure 7B, the upper portion of the figure

presents the hierarchical clustering tree of the genes, while the lower

portion illustrates the gene modules. The genes that exhibited

strong relatedness were observed to cluster together and be

assigned to the same module. The heat map illustrates the

modules as color blocks on the left and the corresponding ranges

as a color bar on the right. In the central section, darker colors

indicate stronger correlations, with red signifying positive

correlations and the blue denoting negative correlations. The

numerical values within each cell denote the degree of correlation

and its statistical significance. The results indicated a positive

correlation between the turquoise module and anthocyanin

content, while a negative correlation was observed between the

blue module and the same variable. Subsequent analyses were

conducted on the anthocyanin content related to the turquoise

module. To identify the genes with a high membership in the

turquoise module, the “Gene Significance” (GS) and “Module

Membership” (MM) metrics were employed.

As illustrated in Figure 7C, the gene that demonstrates a high

degree of correlation with a specific trait exhibits a robust

correlation between “Gene Significance” (GS) and “Module
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Membership” (MM) within its designated module. This finding

suggests that these genes play crucial roles within the key modules.

The construction of the gene co-expression network for the two

related modules was facilitated by the Cytoscape software. The

turquoise module identified 5 hub genes (Figure 8A), and the blue

module similarly identified 5 hub genes (Figure 8B) using the

MCC algorithm.
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3.6 RT-qPCR verification of DEGs

In order to verify the reliability of the transcriptional

sequencing data, 10 genes related to anthocyanin content were

selected for a real-time fluorescence quantitative PCR verification

(Table 2). The b-actin gene was utilized as an internal reference for

the test samples by SYBR@Green I chimeric fluorescence method to
FIGURE 5

GO annotation of DEGs. (A) TPR_vs_TYR, (B)TPU_vs_TPR, (C) TPU_vs_TYU.
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detect the relative expression levels of each factor at the two

maturity levels (Figure 9). The relative expression levels of RT-

qPCR were calculated using the 2-DDCT method, while the RNA-

seq data were represented by the log2-transformed FPKM values.

We conducted a correlation analysis on these two datasets. The

results are shown in Figure 10, with a Pearson correlation coefficient

(r = 0.968 > 0.9, p < 0.001), indicating that the two methods have
Frontiers in Plant Science 11
extremely strong consistency in detecting gene expression changes.

This high consistency confirms the reliability and accuracy of our

transcriptome data.

The results demonstrated the up-regulation of PeCA (4-

coumarate-CoA ligase activity), PeMYC2 (transcription factor

MYC2), and PeCHI (chalcone isomerase) gene expression and the

down-regulation of PeKIA (kinase inhibitor activity) and PeEIA
FIGURE 6

KOG annotation of DEGs. (A) TPR_vs_TYR, (B) TPU_vs_TPR, (C) TPU_vs_TYU.
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FIGURE 7

(A) Heatmap of sample and trait clustering. (B) Hierarchical clustering tree diagram and module identification. (C) Correlation heat map between
sample module and trait,The color block on the far left represents the module, and the color bar on the far right represents the range of correlation.
In the heatmap in the middle section, the darker the color, the higher the correlation. Red indicates positive correlation, and blue indicates negative
correlation. The number in each cell represents the correlation and significance.
FIGURE 8

(A) turquoise module co-expresses network diagram. (B) blue module co-expresses network diagram.
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(enzyme inhibitor activity) expressions. Consequently, the

expression of these genes was found to be instrumental in the

promotion of anthocyanin accumulation and synthesis.
4 Discussion

Anthocyanin,a water-soluble pigment commonly present in

dark-colored plants, plays a key role in determining the color of

plant fruits or flowers. Numerous studies have demonstrated that

variations in anthocyanin content directly influence the visual

presentation of plant colors.

The accumulation of anthocyanins is a hallmark of fruit

maturation in purple passion fruit, yet the underlying molecular

architecture remains poorly understood. By integrating RNA-seq

and WGCNA, this study dissects the complex regulatory network
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governing this process, moving beyond individual gene analysis to

reveal a multi-layered control system. Our findings pinpoint key

transcriptional regulators, crucial enzymatic steps, and a potentially

novel post-translational control mechanism, collectively

orchestrating anthocyanin biosynthesis in Passiflora edulis peel.

The anthocyanin biosynthetic pathway, branching from the

phenylpropanoid pathway, has been well-characterized across

various plant species. This pathway necessitates coordinated

expression of structural genes encoding biosynthetic enzymes,

which is primarily controlled by a transcriptional regulatory

complex comprising R2R3-MYB, basic helix-loop-helix (bHLH),

and WD40 repeat proteins (MBW complex) (DiLeo et al., 2011).

Our WGCNA analysis effectively captured this regulatory

framework, Identification of key genes involved in anthocyanin

biosynthesis and their associated transcription factors:

(i) positive regulatory factor
TABLE 2 Comparison of transcriptome data and RT-qPCR results.

Gene ID Name Definition RNA-seq RT-qPCR

ZX.01G0005290 PeCA 4-coumarate-CoAligaseactivity 3.26 2.18

ZX.09G0013530 PeMYC2 transcription factor MYC2 2.96 1.79

ZX.01G0010830 PeSUI1 translation initiation factor SUI1 -2.13 -3.54

ZX.01G0005530 PeCAL catalytic activity, acting on a protein 3.67 2.57

ZX.01G0038770 PeTFG transferase activity, transferring glycosyl groups 3.32 1.68

ZX.08G0032360 PeMYB88 transcription factor MYB88 1.98 -0.95

ZX.01G0100390 PeCHI Chalcone isomerase 2.26 1.04

ZX.01G0037350 PeERA -3.84 -4.67

ZX.01G0010090 PeKIA kinase inhibitor activity -9.41 -7.52

ZX.08G0027120 PeEIA enzyme inhibitor activity -10.88 -8.09
FIGURE 9

Relative expression levels of key genes. T1 represents the immature stage, while T2 represents the mature stage.
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Among the identified hub genes, PeCA (encoding 4-coumarate:

CoA ligase, 4CL) emerged as a critical regulatory node. The 4CL

enzyme catalyzes the conversion of p-coumaric acid into 4-

coumaroyl-CoA, providing essential precursors for downstream

flavonoid biosynthesis. Our findings indicated that PeCA

expression was positively correlated with anthocyanin content,

consistent with previous findings in blueberries. In blueberries,

enhanced 4CL activity promoted both lignin and anthocyanin

accumulation through upregulation of the phenylpropanoid

pathway (Xie et al., 2018). Recent studies have further confirmed

the crucial role of 4CL in flavonoid biosynthesis, demonstrating that

its activity directly influences anthocyanin accumulation (Keller-

Przybylkowicz et al., 2024; Golovatskaya et al., 2024).

At the apex of the regulatory hierarchy are transcription factors

(TFs) that orchestrate the expression of the entire pathway. Our

WGCNA results strongly support the operation of this complex in

passion fruit. We identified PeMYC2, encoding a bHLH

transcription factor, as a key regulator within the anthocyanin-

associated modules. MYC2 transcription factors have been

extensively studied in jasmonate signaling pathways, where they

govern the production of secondary metabolites, including

anthocyanins. Significantly, the disruption of MYC2 function has

been shown to impair anthocyanin regulation in apple fruit (Sun

et al., 2019), highlighting its conserved role across species. The high

connectivity of PeMYC2 in our co-expression network suggests it

may function as a central integrator, linking stress signals to

anthocyanin biosynthesis in passion fruit.

Similarly, PeMYB88 was identified as another hub transcription

factor in our analysis. R2R3-MYB transcription factors is known as

one of the largest regulatory families in plants and have been well-

documented as regulators of anthocyanin biosynthesis (Ma et al.,

2022). Recent studies in chili pepper demonstrated that transient

overexpression of CaMYB5 resulted in significant anthocyanin

accumulation, accompanied by upregulation of key biosynthetic

genes including Ca4CL and CaCHI (Zhou et al., 2025). PeMYB88 is
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highly homologous to CaMYB5 and has a close genetic relationship.

This indicates that PeMYB88 regulates the synthesis of

anthocyanins by modulating the expression of anthocyanin

biosynthesis-related structural genes such as Pe4CL and PeCHI.

(ii) negative regulatory factors

Intriguingly, our analysis also revealed a downregulation of

genes encoding enzyme inhibitors (PeKIA and PeEIA) in samples

with high anthocyanin content. In the biosynthetic pathway of

anthocyanins, the expressions of enzymes such as PAL, CHI and

F3H have a significant positive correlation with the synthesis of

anthocyanins. This suggests a novel regulatory mechanism in which

decreased inhibitor activity may enhance the enzymatic flux

through the anthocyanin biosynthetic pathway, For instance,

sugars phosphorylated by hexokinase can induce the expression

of F3H, thereby increasing the accumulation of anthocyanins.

Meanwhile, the specific inhibitors of hexokinase, such as

glucosamine and mannose heptose, can block this induction

process (Zheng et al., 2009). Although, post-translational

regulation through enzyme inhibitors has been less studied in

anthocyanin biosynthesis compared to transcriptional control, our

findings highlight its potential importance and warrant

further investigation.

(iii) enzymatic reactions

At the enzymatic level, significant upregulation of PeCHI

(chalcone isomerase), which catalyzes the stereospecific

conversion of chalcones to flavanones—a critical early step in

flavonoid biosynthesis, was observed. The positive correlation

between PeCHI expression and anthocyanin content is consistent

with previous reports that have been demonstrated the rate-limiting

nature of this enzymatic step (Guo et al., 2015). Recent functional

characterization of chalcone isomerases from other species has

confirmed their essential role in anthocyanin biosynthesis

(Nakanishi et al., 2024), thus supporting our findings in

passion fruit.

The integrated transcriptome and WGCNA analyses provide a

comprehensive perspective on the anthocyanin regulatory network

in passion fruit peel. The identified hub genes cover multiple

regulatory levels, ranging from precursor supply (PeCA) through

transcriptional control (PeMYC2, PeMYB88) to enzymatic catalysis

(PeCHI) and post-translational regulation (PeKIA, PeEIA). This

multi-layered regulatory framework likely enables precise control of

anthocyanin accumulation in response to developmental and

environmental signals.

In summary, this study enhances our understanding of

anthocyanin biosynthesis regulation in passion fruit peel through

integrated transcriptomic and network analyses. The identified

regulatory genes and their co-expression patterns provide

valuable targets for genetic improvement of fruit color and

nutritional quality in passion fruit breeding programs.
5 Conclusion

In this paper, Firstly, we compared the differentially expressed

genes involved in anthocyanin synthesis among various degrees of
FIGURE 10

Validation of the correlation between RNA-Seq and RT-qPCR
results.
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ripeness of passion fruits. We annotated these differentially

expressed genes, analyzed their functions and metabolic

pathways, and constructed a co-expression network of related

modules and genes. Based on this, we identified potential hub

genes related to anthocyanin synthesis. Finally, we verified the

results of the transcriptome analysis through RT-qPCR, further

discovering key genes related to anthocyanin synthesis, and

providing reference bases for the subsequent research on the

regulatory mechanism and functional identification of related

genes. This study provides a reference basis for subsequent

research on the regulatory mechanism of anthocyanin

biosynthesis in passion fruit pericarp and the functional

identification of related genes.
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