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Exploration of synthesis

of anthocyanins in passion
fruit pericarp through
combinatorial transcriptomic
analysis and WGCNA
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Passion fruit (Passiflora edulis) is extensively cultivated in most tropical and
subtropical regions worldwide. Yet although its pulp, well known for nutritional
profile, is commonly processed into juice and other products, the peel remains
underutilized, leading to substantial biomass wastes. This study investigates the
molecular mechanisms of anthocyanin accumulation in the peel through the
integrative transcriptome and WGCNA analysis. Samples were collected at both
mature and immature developmental stages from purple- and yellow-skinned
passion fruit varieties. Transcriptome sequencing was performed on the Illumina-
Hiseq platform. After stringent quality trimming and filtering, the clean reads were
aligned to the reference genome. Differentially expressed genes (DEGs) were
identified using DESeqg2 with the thresholds of |log2Fold Change| > 1 and FDR <
0.05. To elucidate their biological functions and metabolic pathways, the DEGs
were annotated against the KEGG, GO and KOG databases. Subsequent WGCNA,
pinpointed ten candidate hub genes potentially involved in anthocyanin
biosynthesis. Finally, their expression patterns were validated via RT-gPCR, which
showed strong concordance with the transcriptome data. These findings not only
confirm the robustness of our analytical approach but also highlight the pivotal
regulatory roles of several key genes, involving PeCA, PeMYC2, PeMYB88, and
PeCHlI, in the passion fruit anthocyanin biosynthesis pathway.
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1 Introduction

Passion fruit (Passiflora edulis) belongs to the genus Passiflora, a
perennial evergreen herbaceous vine in the family Passifloraceae. Its
juice is rich in vitamins, antioxidants, essential amino acids, lutein
and minerals required 57 by the human body (Chen et al., 2025).
cultivated extensively in tropical and subtropical regions, it
comprises two primary commercial varieties: yellow (P. edulis f.
flavicarpa) and purple (P. edulis f. edulis). Both varieties possess
significant pharmaceutical and nutraceutical value. Yellow passion
fruit demonstrates therapeutic potential for neurological
conditions, with documented sedative, anxiolytic, and
neuropharmacological effects through modulation of v-
aminobutyric acid (GABA) activity (Sena et al., 2009). Similarly,
purple passion fruit exhibits diverse pharmacological properties,
including anti-inflammatory, analgesic, and cardiovascular
protective effects (Mota et al., 2018). Despite the economic
importance of passion fruit primarily for juice production, the
peel—constituting approximately 50-60% of the fruit’s fresh
weight—remains largely underutilized, representing a significant
agricultural waste challenge.

The peel, particularly from the purple variety, is a rich reservoir
of bioactive compounds, most notably anthocyanins, the pigments
responsible for its characteristic coloration (Deng et al., 2010).
These polyphenolic compounds exhibit diverse biological
activities, including antioxidant, anti-inflammatory, antimicrobial,
and cardioprotective effects (Khoo et al, 2017). Consequently,
anthocyanins are highly sought-after as natural colorants and
functional ingredients in the food, pharmaceutical, and cosmetic
industries. The biosynthetic pathway of anthocyanins, initiated
from phenylalanine through sequential enzymatic reactions, has
been well-characterized in model plants (Chemat et al., 2017).
However, a comprehensive understanding of the molecular
machinery governing anthocyanin accumulation in passion fruit
peel remains elusive. The specific regulatory genes and co-
expression networks that differentiate the high-anthocyanin
purple variety from the low-anthocyanin yellow variety, especially
during fruit maturation, are largely uncharacterized.

The advent of high-throughput technologies, including RNA
sequencing (RNA-seq), has enabled a comprehensive and
systematic investigation of the functional characteristics of
thousands of genes (van Dam et al., 2015). RNA-seq is employed
to profile differentially expressed genes in peels of purple and yellow
passion fruits across various developmental stages. Gene co-
expression network analysis is a powerful approach for
elucidating the functional roles and interrelationships of genes
based on genome-wide expression data (Childs et al., 2011). This
methodology entails the construction of a network of co-activated
genes across multiple samples.Currently, weighted gene co-
expression network analysis (WGCNA) represents the most
frequently utilized systems biology methodology for identifying
gene correlation patterns (Tahmasebi et al., 2019). This is
particularly valuable for the identification of co-expressed gene
modules, establishing their correlations with phenotypic traits, and
pinpointing key regulatory hub genes.
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In this study, we employed an integrated transcriptomic and
WGCNA analyses of peels from purple and yellow passion fruit
varieties at both immature and mature developmental stages. Our
primary objectives were to: (1) profile the transcriptomic changes
associated with anthocyanin accumulation; (2) identify key
structural and regulatory genes differentially expressed during
anthocyanin accumulation; (3) construct gene co-expression
networks to elucidate regulatory mechanisms; and (4) pinpoint
candidate hub genes that likely play a central role in regulating
anthocyanin biosynthesis. Our findings provide fundamental
insights into the molecular basis of anthocyanin biosynthesis in
passion fruit and establish a genomic resource for developing
strategies to valorize this underutilized agricultural byproduct.

2 Materials and methods
2.1 Sample preparation

Two passion fruit cultivar utilized in this study: purple passion
fruit (Passiflora edulis ‘Tainong No. 1’), and yellow passion fruit
(Passiflora edulis ‘Qinmi 9’), were both collected from the
demonstration orchard in the Sujia Village, located in the Wanhe
Zhelmu Town, Guilin City of Guangxi region. From each cultivar, a
total of 100 fruits was meticulously selected from the fruit trees,
divided into four groups, and then randomly sampled. The fruit
samples were then classified into two maturity categories: ripe and
unripe. The peels of unripe purple passion fruit were designated as
TPU, and those of ripe fruits as TPR. For the yellow passion fruit, the
peels of unripe fruits were labeled as TYU, and those of ripe fruit as
TYR. The fruit samples were then washed with tap water and air-
dried. The pectin layer was removed from the fruit peels, followed by a
thorough washing of the pericarp layer and its subsequent drying on a
bench. Subsequently, the peel samples were flash-frozen using liquid
nitrogen, pulverized, and stored at -80 °C for further analysis. The fruit
peels from the yellow variety were used for comparison.

2.2 Transcriptome sequencing

Transcriptome sequencing was conducted in the UW Genetics
Ltd. (Shenzhen, China). The total RNA was extracted from the peel
samples of the purple passion fruit (TPU and TPR) and yellow
passion fruit (TYU and TYR) using an RNA extraction kit (Cheng
et al, 2023). Subsequently, Total RNA concentration and purity
were measured by spectrophotometry. RNA integrity was assessed
using the Agilent 2100 Bioanalyzer. After passing quality control,
paired-end sequencing was performed on the Illumina
HiSeq platform.

2.3 Data processing

The library was subjected to sequencing using a second-
generation sequencing platform (Illumina HiSeq 2000). An initial
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evaluation of the data was then conducted using the FastQC
bioinformatics tool (Ward et al., 2020). Subsequently, the results
were integrated and presented in a visual format using a MultiQC
software (Ewels et al., 2016). Non-genomic sequences were trimmed
using NGSQC Toolkit and Trimmomatic softwares with default
parameters based on the evaluation results (Bolger et al., 2014). The
softwares were employed for strict control of raw data, including
removals of non-genomic sequences, reads with connectors
(adapters). The presence of N bases in excess of this threshold
has been demonstrated to affect the subsequent comparison results.
Furthermore, low-quality bases (Q < 20) were removed. Next, PCR
duplicates generated during library construction were removed
using FastUniq software to obtain clean reads for the subsequent
comparisons (Xu et al., 2012). After quality control steps, the clean
reads were compared to the reference genome in order to identify
the source genes that were transcribed by these fragments. The
clean reads were then aligned aganist the Passiflora reference
genome using HISAT?2, which yielded information regarding the
genomic location, gene features, and sequence characteristics that
were specific to the sequenced sample.

2.4 Analysis of gene expression level

The truly differentially expressed genes (DEGs) were addressed
based on their biological variability due to considerable variation in
gene expression among individuals. To facilitate a comprehensive
analysis of the entire transcriptome, biological replicates were
established. Pearson’s correlation coefficient (R) was employed to
assess the correlation between biological replicates in the
transcriptome sequencing data. Pearson’s correlation coefficient
(R) was also utilized to quantify the degree of correlation between
biological replicates (Li et al, 2015). As R approaches 1, the
correlation between the replicates increases.

In the RNA-Seq, transcript abundance functioned as an
indicator of gene expression levels. FPKM (fragments per kilobase
of transcript per million mapped reads) was utilized to quantify
transcript abundance. This approach quantifies the expression level
of each gene as a fraction of the total length of the transcript in
millions of mapped reads (Mizushima et al., 2020). Principal
component analysis (PCA) was a statistical method that does not
require supervision. PCA was used to identify patterns in the data.
The principal component 1 (PC1) represented the principal
component that captured most of the variance in the data matrix,
while the principal component 2 (PC2) captured additional and
distinct variance. The employment of PCA was instrumental in
extracting the maximum amount of information from the original

variables, thereby ensuring their independence (Liu et al., 2003).

2.5 |Identification of DEGs

The DESeq2 method was employed to analyze the differential
expression among the samples studied, thereby identifying the DEG
sets between groups. The unstandardized data were utilized as the
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input for the differential analysis. Subsequent to the differential
analysis, the Benjamini-Hochberg method was employed to correct
the P-values for multiple testing, thereby yielding the false discovery
rate (FDR). The identification of differential genes was facilitated by
establishing a criteria of [log, fold change] > 1 and FDR < 0.05.
Subsequently, hierarchical clustering analysis was performed on
FPKM expression data following differential gene centralization and
standardization, and a corresponding heatmap was generated (Love
et al., 2014; Varet et al., 2016).

2.6 Gene annotation and enrichment
analysis

2.6.1 KEGG annotation and pathway enrichment
analysis

The KEGG (Kyoto Encyclopedia of Genes and Genomes)
automatic annotation server (KAAS, http://www.genome.jp/tools/
kaas/) was employed as a tool to annotate the sequences using a set
of Perl scripts (Kanehisa, 2002). The Bayesian network-based
Bayesian belief propagation (BBS) mode was selected for the
annotation of the transcriptome sequences. Subsequently, KEGG
pathway enrichment analysis was performed on the annotation
results of KEGG Ortholog. The number of genes that could be
annotated on the KEGG Pathway was obtained by the KAAS
annotation. Finally, the Python-based software was used to group,
sort, summarize, and visualize the pathways based on the
hypergeometric distribution principle (Klopfenstein et al., 2018).

2.6.2 GO annotation of DEGs

Gene Ontology (GO) is an international classification system
for gene functions that has been used to describe and categorize
gene and protein functions across different species. The
categorization of GO is typically divided into three distinct
categories (Chen, 2017): The first category, “Molecular Functions”
(MFs), encompasses the activities that genes perform within a cell.
The second category, “Biological Processes” (BPs), refers to the
collective functions that organisms use to survive and reproduce.
The third category, “Cellular Components” (CCs), concerns the
structural components of cells. The significance of enrichment in
GO terms was determined by comparing DEGs with the entire
genome background using the hypergeometric test. This approach
has been found to identify the GO terms that are significantly
enriched (Tatusov et al., 2000).

2.6.3 KOG annotation and functional
classification of DEGs

The KOG (eukaryotic orthologous group) is a taxonomy of
euryarchaeal proteins that are classified into groups based on
sequence similarity. Each group is assigned a KOG number that
represents homologous proteins (Wang et al., 2019). In this study,
euryarchaeal homologous proteins were clustered, and their genes
were annotated. To acquire relevant annotation information,
sequences were compared to the KOG database using a basic
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local alignment search tool (BLAST) program to acquire relevant
annotation information.

2.7 Weighted gene co-expression network
analysis

2.7.1 Construction and clustering of gene
networks

The WGCNA was applied to the DEGs for the purpose of
identifying the modules and genes associated with anthocyanin
synthesis. Initially, the expression matrix of the DEGs was loaded
and examined for any missing values, with details provided by the
good sample genes. Subsequently, the samples were clustered, and a
soft threshold power B was selected to compute the weight
parameters of the neighbor-joining matrix. This step facilitated
the construction of the network, the identification of modules, and
the plotting of a heatmap illustrating module-trait correlations (Xie
et al., 2013).

2.7.2 |dentify the hub genes

The identification of modules with the strongest correlation to
anthocyanin content was achieved through the implementation of
the Gene-Module Membership (MM) and Gene Significance (GS)
metrics. The MM value of each gene in the module with a strong
correlation to anthocyanin content was first obtained by calculating
the average of the correlation between the gene and other genes in
the module. Subsequently, the GS value of each gene with
anthocyanin content was calculated by the correlation coefficient.
Following this, a comprehensive evaluation of the MM and GS
values was conducted to identify the genes with high MM and GS
values. The Cytoscape recognizable files were exported (Chin et al.,
2014). Finally, Cytoscape software was employed to construct the
expression network map, and the CytoHubba plug-in was utilized
to identify hub genes (Mocbes et al., 2022).

2.8 Verification of DEGs by RT-qPCR

2.8.1 Synthesis of reverse transcriptional cDNA of
passion fruit

A total of ten hub genes were identified in the turquoise and
blue modules by WGCNA. To assess the accuracy of the WGCNA
strategy, these genes were then validated using quantitative PCR
(Xiaohan et al, 2023). The RNA extraction process was initiated
with the use of a total RNA extraction kit (Tiangen Biotech (Beijing)
Co., Ltd., China). Subsequently, the synthesis of cDNA was
facilitated through reverse transcription, employing the WX2050
SuperScript cDNA Synthesis Kit (Beijing Huayueyang Biological
Technology Co., Ltd., China) (Tian et al., 2018).

2.8.2 RT-qPCR

The cDNA obtained from the reverse transcription reaction was
then subjected to real-time fluorescent quantitative PCR (qPCR)
using the Hieff gPCR SYBR Kit (Yisheng Biotechnology Co., Ltd.,
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Shanghai, China) (Zhao et al., 2021). Primers for selected genes
were designed using Primer Premier 5.0. Three biological replicates
were performed for all samples. Subsequently, the relative
expression levels of the genes of interest were calculated using the
2-AACT method (Suarez et al., 2017).

3 Results

3.1 Transcriptome sequencing and
alignment

To investigate the molecular basis of anthocyanin accumulation
in passion fruit peel, RNA-seq analysis was performed on purple
and yellow varieties at two developmental stages. Samples were
collected from mature and immature fruits, with three biological
replicates for each group, totaling 12 groups. RNA-Seq was
performed on the Illumina-HiSeq platform, generating 559
million raw reads. After filtering, 535 million clean reads with an
average length of 150 bp were obtained. The raw sequence data was
evaluated using the Fastqc, and the summary reports were
generated using the MultiQC. Based on these evaluations, the
data was further filtered or trimmed to remove reads including
sequences with substandard adapter sequences, excessive N bases,
low-quality bases, and repetitive sequences caused by non-random
fragmentation. The filtered clean reads was then aligned to the
passion fruit reference genome using HISAT2 (Table 1). The
alignment results indicated that the alignment rate for each group
was higher than 73%, indicating high data quality, good mapping
efficiency and no contamination occurred during sequencing. The
transcriptome data obtained in this sequencing can be used for
subsequent analysis.

3.2 Screening of differentially expressed
genes

The correlation analysis of biological replicate samples requires
that the R® value between replicates should be at least 0.8 or higher.
Statistical analysis (seen in Figure 1A) showed that, the R* value
among biological replicates in each group was greater than 0.9,
which met the requirements of quality criteria and confirmed the
reliability of the data for subsequent analysis. The FPKM density
distribution of the 12 groups was compared (Figure 1B), and the
results showed that there was a large overlap among samples,
indicating that the overall gene expression levels of the samples
were similar. The non-overlapping parts might be attributed to
variations in the different varieties and maturity stages of the
passion fruit, which caused changes in gene expression levels.

In the principal component analysis (Figure 1C), the scattered
points corresponding to the four sample groups displayed a trend of
mutual aggregation within each groups, suggesting good internal
repeatability and high similarity among the sample data; In
contrast, the scattered points between the groups exhibited a
pattern of mutual dispersion, indicating distinct discrimination
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TABLE 1 The comparison results of the transcriptome with the reference genome.

Sample name Clean reads

Mapped reads

Readl mapped

10.3389/fpls.2025.1658779

Read2 mapped

TPU1 43477306 34108836(78.45%) 16436263(37.80%) 16423425(37.77%)
TPU2 48173982 37917091(78.71%) 18273868(37.93%) 18255871(37.90%)
TPU3 40623528 32221645(79.32%) 15531646(38.23%) 15508634(38.18%)
TPR1 42473880 31755867(74.77%) 15255067(35.92%) 15245220(35.89%)
TPR2 43862056 33316327(75.96%) 16011624(36.50%) 15999297(36.48%)
TPR3 44558662 34236170(76.83%) 16507808(37.05%) 16449649(36.92%)
TYU1 47840074 36151766(75.57%) 17442442(36.46%) 17414667(36.40%)
TYU2 42384956 33261890(78.48%) 15938716(37.60%) 15914709(37.55%)
TYU3 48477292 38004310(78.40%) 18217319(37.58%) 18186284(37.52%)
TYR1 44621880 32579244(73.01%) 15685576(35.15%) 15673975(35.13%)
TYR2 42243164 31615619(74.84%) 15269365(36.15%) 15245369(36.09%)
TYR3 46597392 34180054(73.35%) 16499204(35.41%) 16468314(35.34%)

among the groups, thus suitable for downstream differential  differentially expressed gene sets across various group. After the
expression and functional analyses. differential analysis, the Benjamini-Hochberg method was applied
The R package DESeq2 was employed to analyze the differential ~ to adjust the P-values for multiple hypothesis testing. By setting the

expression between samples, resulting in the identification of  criteria of |log,Fold Change| > 1 and FDR < 0.05 as significance
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(A) Sample correlation analysis. (B) Comparison of sample gene FPKM density. (C) Principal component analysis of samples.
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(A) Venn diagram. (B) clustering heatmap.

threshhold, the differentially expressed genes (DEGs) were
screened, and the differences among genes between different
combinations were also compared.

The Venn diagram (Figure 2A) illustrates the overlap of DEGs
among different comparison groups, providing critical insights into
the transcriptional regulation network underlying passion fruit peel
coloration. Comparative analysis between mature purple-skin and
yellow-skin passion fruit (TPR_vs_TYR) identified 7,528 DEGs,
with 3,504 upregulated and 4,024 downregulated genes. This
substantial change suggests variety-specific metabolic pathways
are most active in mature fruit. Addtionally, fewer DEGs (5,039)
were detected between immature purple-skin and yellow-skin fruit
(TPU_vs_TYU), comprising 2,272 upregulated and 2,767
downregulated genes, indicating variety differences are already
established early in development. This suggests that
transcriptomic divergence increases along with fruit ripening,
potentially corresponding to anthocyanin accumulation.
Furthermore, a comparison between the immature stage of
purple-skin passion fruit and the mature stage (TPU_vs_TPR)
revealed 3,976 differentially expressed genes, including 1,894 up-
regulated genes and 2,082 down-regulated genes, likely playing
crucial roles in pigment accumulation during maturation.

Hierarchical clustering analysis was performed using
normalized FPKM values of differentially expressed genes, and
the resulting heatmap (Figure 2B) revealed distinctive expression
patterns across samples. Notably, TPU and TPR samples clustered
more closely together, as did TYU and TYR samples, indicating that
genotype (purple-skin versus yellow-skin) exerts a stronger
influence on global gene expression patterns than developmental
stage. This genotype-dependent clustering suggests that the
fundamental transcriptional programs governing fruit
development are largely conserved within each variety across
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maturation stages. In contrast, there were marked differences in
the color patterns between TPU and TYU, as well as between TPR
and TYR. These differences in gene expression patterns between
purple-skin and yellow-skin genotypes likely reflect divergent
regulation of pigment biosynthesis pathways, particularly those
involved in anthocyanin accumulation. The hierarchical clustering
results provide a foundation for identifying the key regulatory
modules that differentiate anthocyanin-accumulating and non-
accumulating passion fruit genotypes.

3.3 KEGG annotation and enrichment
analysis of DEGs

To elucidate the biological functions of DEGs, KEGG pathway
enrichment analysis was implemented (Figure 3). In the
comparison of TPR_vs_TYR (Figure 3A), 2628 of the 7528 DEGs
were successfully annotated, accounting for 34.91% of the total
DEGs, and they were involved in 113 metabolic pathways of KEGG.
The largest number of annotated genes was found in the category of
metabolism, with the metabolic pathway pathways and the
biosynthesis of secondary metabolites having the most annotated
DEGs, totaling 1215 and 724, respectively.

For the comparison of TPU_vs_TPR (Figure 3B), KEGG
annotation was conducted on 3,976 DEGs, revealing that 1,478 of
these genes were annotated, which accounted for 37.17% of the total
DEGs, and they were involved in 72 KEGG metabolic pathways.
Again, the majority of annotated genes were in the metabolism
category, with 735 DEGs related to metabolic pathways and 455 to
the biosynthesis of secondary metabolites.

Additionally, KEGG annotation was performed on 5,039 DEGs
from the TPU_vs_TYU comparison (Figure 3C), where 1,832 of the
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Rich factor

Enrichment map of DEGs in KEGG pathways. (A) TPR vs TYR, (B) TPU vs TPR, (C) TPU vs TYU.The color of the dots represents the confidence level
of enrichment, and the size of the dots represents the number of enriched genes.

DEGs were annotated, representing 36.36% of the total DEGs, and
these genes were involved in 89 KEGG metabolic pathways. As with
the previous comparisons, the largest number of annotated genes
was in the metabolism category, with 884 DEGs associated with
metabolic pathways and 536 with the biosynthesis of
secondary metabolites.
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After the genes have been annotated, the number of DEGs in
each pathway was calculated, and a KEGG enrichment scatter plot
of DEGs was drawn (Figure 4). The KEGG enrichment scatter plot
for the DEGs from the TPR_vs_TYR compariso (Figure 4A) display
the 20 most significantly enriched pathway entries, with the DEGs
annotated to the biosynthetic pathways of secondary metabolites
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being the most numerous, far exceeding other pathways. Therefore,
the Rich factor of this pathway is the smallest and the g-value is the
lowest, indicating significant enrichment.

Similarly, the KEGG enrichment scatter plot for the DEGs from
the TPU_vs_TPR comparison (Figure 4B) also shows the 20 most
significantly enriched pathway entries, where the DEGs associated
with the biosynthetic pathways of secondary metabolites are again
the most numerous. This pathway exhibits the smallest Rich factor
and the lowest q-value, confirming its significant enrichment.

Furthermore, the KEGG enrichment scatter plot for the DEGs
from the TPU_vs_TYU comparison (Figure 4C) presents the 20
most significantly enriched pathway entries, with the DEGs
annotated to the biosynthetic pathways of secondary metabolites
remaining the most numerous. As with the previous comparisons,
this pathway has the smallest Rich factor and the lowest g-value,
indicating significant enrichment.

3.4 GO and KOG annotation of DEGs

In the GO term enrichment analysis, 7528 DEGs from the
TPR_vs_TYR comparison were categorized into 58 subclasses
across the three broad categories (Figure 5A). Within the BPs
category, the categories were “Cellular Processes” (45.1%),
“Metabolic Processes” (38.2%), and “Response to Stimulus”
(23%). The subclasses annotated under the CCs category included
“Cells” (55.6%), “Organelles” (43%), and “Membranes” (29.4%). In
the MFs category, the annotations were predominantly “Binding”
(45%) and “Catalytic Activity” (39.1%).

In the TPU_vs_TPR comparison, 3976 DEGs were categorized
into 56 subclasses across the three broad categories (Figure 5B). For
the BPs category, the distribution was as follows: “Cellular
Processes” (47.2%), “Metabolic Processes” (40.1%), and “Response
to Stimulus” (26.8%). In the CCs category, the DEGs were
annotated to “Cells” (58.6%), “Organelles” (43.4%), and
“Membranes” (32.8%). For the MFs category, the predominant
subclasses were “Binding” (47.5%) and “Catalytic Activity” (41.5%).

In the TPU_vs_TYU comparison, 5039 DEGs were classified
into 57 subclasses within the three broad categories (Figure 5C).
Within the category of BPs, the most prevalent subclasses were
“Cellular Processes” (45.1%), “Metabolic Processes” (38.3%), and
“Response to Stimulus” (25.1%). For the CCs category, the
annotations were “Cells” (55.6%), “Organelles” (42.6%), and
“Membranes” (30.1%). Finally, the MFs category was included
“Binding” (45.6%) and “Catalytic Activity” (41.5%).

In the TPR_vs_TYR comparison, 4321 DEGs were annotated to
KOGs. As illustrated in Figure 6A, the five most prevalent KOG
classifications are “Function Prediction” (934, 12.41%),
“Transduction Machinery” (432, 5.74%), “Post-Translational
Modifications, Protein Turnover, Molecular” (396, 4.90%),
“Biosynthesis of Secondary Metabolites, Transport and
Metabolism” (308, 4.09%), and “Carbohydrate Transport and
Metabolism” (260, 3.45%).

In the TPU_vs_TPR comparison, 2333 DEGs were annotated to
the KOG database. As illustrated in Figure 6B, the top five KOG
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classifications are as follows: “Function Prediction” (504, 12.68%),
“Transduction Mechanism” (229, 5.76%), “Secondary Metabolite
Biosynthesis, Transport and Metabolism” (222, 5.58%), “Post-
Translational Modifications, Protein Turnover, Molecular” (176,
4.43%), and “Carbohydrate Transport and Metabolism”
(150, 3.77%).

In the TPU_vs_TYU comparison, 2880 DEGs were annotated
to KOGs. As illustrated in Figure 6C, the five most prevalent KOG
classifications are: “Function Prediction” (639, 12.68%),
“Transduction Mechanism” (282, 5.60%), “Post-Translational
Modifications, Protein Turnover, Molecular” (230, 4.56%),
“Biosynthesis of Secondary Metabolites, Transport and
Metabolism” (217, 4.31%), and “Carbohydrate Transport and
Metabolism” (199, 3.95%).

3.5 Weighted gene co-expression network
analysis

This study employed weighted gene co-expression network
analysis (WGCNA) to cluster the DEGs in the peel samples of
purple and yellow passion fruit at varying maturities. The genes
were organized into multiple modules, which were found to be
associated with anthocyanin content. As demonstrated in
Figure 7A, the clustering of DEGs was executed using
anthocyanin content as an external trait. A heat map was
generated to illustrate the sample clusters for this trait, revealing
that TPR had the highest correlation. The construction of the co-
expression network was facilitated by employing an optimal soft
threshold, a process that enabled the aggregation of genes into
discrete modules. The construction of the gene clustering tree was
performed to cluster the distance between these modules, which
also illustrates their relationships.

As illustrated in Figure 7B, the upper portion of the figure
presents the hierarchical clustering tree of the genes, while the lower
portion illustrates the gene modules. The genes that exhibited
strong relatedness were observed to cluster together and be
assigned to the same module. The heat map illustrates the
modules as color blocks on the left and the corresponding ranges
as a color bar on the right. In the central section, darker colors
indicate stronger correlations, with red signifying positive
correlations and the blue denoting negative correlations. The
numerical values within each cell denote the degree of correlation
and its statistical significance. The results indicated a positive
correlation between the turquoise module and anthocyanin
content, while a negative correlation was observed between the
blue module and the same variable. Subsequent analyses were
conducted on the anthocyanin content related to the turquoise
module. To identify the genes with a high membership in the
turquoise module, the “Gene Significance” (GS) and “Module
Membership” (MM) metrics were employed.

As illustrated in Figure 7C, the gene that demonstrates a high
degree of correlation with a specific trait exhibits a robust
correlation between “Gene Significance” (GS) and “Module
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FIGURE 5

GO annotation of DEGs. (A) TPR_vs_TYR, (B)TPU_vs_TPR, (C) TPU_vs_TYU.

3.6 RT-qPCR verification of DEGs

Membership” (MM) within its designated module. This finding
suggests that these genes play crucial roles within the key modules.

In order to verify the reliability of the transcriptional

The construction of the gene co-expression network for the two

related modules was facilitated by the Cytoscape software. The
turquoise module identified 5 hub genes (Figure 8A), and the blue

sequencing data, 10 genes related to anthocyanin content were

selected for a real-time fluorescence quantitative PCR verification

(Table 2). The B-actin gene was utilized as an internal reference for

module similarly identified 5 hub genes (Figure 8B) using the

MCC algorithm.

the test samples by SYBR@Green I chimeric fluorescence method to
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KOG annotation of DEGs. (A) TPR_vs_TYR, (B) TPU_vs_TPR, (C) TPU_vs_TYU.

detect the relative expression levels of each factor at the two
maturity levels (Figure 9). The relative expression levels of RT-
qPCR were calculated using the 2-AACT method, while the RNA-
seq data were represented by the log2-transformed FPKM values.
We conducted a correlation analysis on these two datasets. The
results are shown in Figure 10, with a Pearson correlation coefficient
(r =0.968 > 0.9, p < 0.001), indicating that the two methods have
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transcriptome data.

extremely strong consistency in detecting gene expression changes.
This high consistency confirms the reliability and accuracy of our

The results demonstrated the up-regulation of PeCA (4-

coumarate-CoA ligase activity), PeMYC2 (transcription factor
MYC2), and PeCHI (chalcone isomerase) gene expression and the
down-regulation of PeKIA (kinase inhibitor activity) and PeEIA
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TABLE 2 Comparison of transcriptome data and RT-qPCR results.

10.3389/fpls.2025.1658779

7X.01G0005290 PeCA 4-coumarate-CoAligaseactivity 3.26

7X.09G0013530 PeMYC2 transcription factor MYC2 2.96 1.79

ZX.01G0010830 PeSUIL translation initiation factor SUI1 -2.13 -3.54
7X.01G0005530 PeCAL catalytic activity, acting on a protein 3.67 2.57

7X.01G0038770 PeTFG transferase activity, transferring glycosyl groups 332 1.68

7X.08G0032360 PeMYB8S transcription factor MYB88 1.98 -0.95
7X.01G0100390 PeCHI Chalcone isomerase 2.26 1.04

7X.01G0037350 PeERA -3.84 -4.67
ZX.01G0010090 PeKIA kinase inhibitor activity -9.41 -7.52
7X.08G0027120 PeEIA enzyme inhibitor activity -10.88 -8.09

(enzyme inhibitor activity) expressions. Consequently, the
expression of these genes was found to be instrumental in the

promotion of anthocyanin accumulation and synthesis.

4 Discussion

Anthocyanin,a water-soluble pigment commonly present in
dark-colored plants, plays a key role in determining the color of
plant fruits or flowers. Numerous studies have demonstrated that
variations in anthocyanin content directly influence the visual
presentation of plant colors.

The accumulation of anthocyanins is a hallmark of fruit
maturation in purple passion fruit, yet the underlying molecular
architecture remains poorly understood. By integrating RNA-seq
and WGCNA, this study dissects the complex regulatory network

governing this process, moving beyond individual gene analysis to
reveal a multi-layered control system. Our findings pinpoint key
transcriptional regulators, crucial enzymatic steps, and a potentially
novel post-translational control mechanism, collectively
orchestrating anthocyanin biosynthesis in Passiflora edulis peel.

The anthocyanin biosynthetic pathway, branching from the
phenylpropanoid pathway, has been well-characterized across
various plant species. This pathway necessitates coordinated
expression of structural genes encoding biosynthetic enzymes,
which is primarily controlled by a transcriptional regulatory
complex comprising R2R3-MYB, basic helix-loop-helix (bHLH),
and WD40 repeat proteins (MBW complex) (DiLeo et al., 2011).
Our WGCNA analysis effectively captured this regulatory
framework, Identification of key genes involved in anthocyanin
biosynthesis and their associated transcription factors:

(i) positive regulatory factor
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Among the identified hub genes, PeCA (encoding 4-coumarate:
CoA ligase, 4CL) emerged as a critical regulatory node. The 4CL
enzyme catalyzes the conversion of p-coumaric acid into 4-
coumaroyl-CoA, providing essential precursors for downstream
flavonoid biosynthesis. Our findings indicated that PeCA
expression was positively correlated with anthocyanin content,
consistent with previous findings in blueberries. In blueberries,
enhanced 4CL activity promoted both lignin and anthocyanin
accumulation through upregulation of the phenylpropanoid
pathway (Xie et al., 2018). Recent studies have further confirmed
the crucial role of 4CL in flavonoid biosynthesis, demonstrating that
its activity directly influences anthocyanin accumulation (Keller-
Przybylkowicz et al., 2024; Golovatskaya et al., 2024).

At the apex of the regulatory hierarchy are transcription factors
(TFs) that orchestrate the expression of the entire pathway. Our
WGCNA results strongly support the operation of this complex in
passion fruit. We identified PeMYC2, encoding a bHLH
transcription factor, as a key regulator within the anthocyanin-
associated modules. MYC2 transcription factors have been
extensively studied in jasmonate signaling pathways, where they
govern the production of secondary metabolites, including
anthocyanins. Significantly, the disruption of MYC2 function has
been shown to impair anthocyanin regulation in apple fruit (Sun
etal, 2019), highlighting its conserved role across species. The high
connectivity of PeMYC2 in our co-expression network suggests it
may function as a central integrator, linking stress signals to
anthocyanin biosynthesis in passion fruit.

Similarly, PeMYB88 was identified as another hub transcription
factor in our analysis. R2R3-MYB transcription factors is known as
one of the largest regulatory families in plants and have been well-
documented as regulators of anthocyanin biosynthesis (Ma et al.,
2022). Recent studies in chili pepper demonstrated that transient
overexpression of CaMYB5 resulted in significant anthocyanin
accumulation, accompanied by upregulation of key biosynthetic
genes including Ca4CL and CaCHI (Zhou et al., 2025). PeMYB88 is
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highly homologous to CaMYB5 and has a close genetic relationship.
This indicates that PeMYB88 regulates the synthesis of
anthocyanins by modulating the expression of anthocyanin
biosynthesis-related structural genes such as Pe4CL and PeCHI.

(ii) negative regulatory factors

Intriguingly, our analysis also revealed a downregulation of
genes encoding enzyme inhibitors (PeKIA and PeEIA) in samples
with high anthocyanin content. In the biosynthetic pathway of
anthocyanins, the expressions of enzymes such as PAL, CHI and
F3H have a significant positive correlation with the synthesis of
anthocyanins. This suggests a novel regulatory mechanism in which
decreased inhibitor activity may enhance the enzymatic flux
through the anthocyanin biosynthetic pathway, For instance,
sugars phosphorylated by hexokinase can induce the expression
of F3H, thereby increasing the accumulation of anthocyanins.
Meanwhile, the specific inhibitors of hexokinase, such as
glucosamine and mannose heptose, can block this induction
process (Zheng et al., 2009). Although, post-translational
regulation through enzyme inhibitors has been less studied in
anthocyanin biosynthesis compared to transcriptional control, our
findings highlight its potential importance and warrant
further investigation.

(iii) enzymatic reactions

At the enzymatic level, significant upregulation of PeCHI
(chalcone isomerase), which catalyzes the stereospecific
conversion of chalcones to flavanones—a critical early step in
flavonoid biosynthesis, was observed. The positive correlation
between PeCHI expression and anthocyanin content is consistent
with previous reports that have been demonstrated the rate-limiting
nature of this enzymatic step (Guo et al., 2015). Recent functional
characterization of chalcone isomerases from other species has
confirmed their essential role in anthocyanin biosynthesis
(Nakanishi et al., 2024), thus supporting our findings in
passion fruit.

The integrated transcriptome and WGCNA analyses provide a
comprehensive perspective on the anthocyanin regulatory network
in passion fruit peel. The identified hub genes cover multiple
regulatory levels, ranging from precursor supply (PeCA) through
transcriptional control (PeMYC2, PeMYB88) to enzymatic catalysis
(PeCHI) and post-translational regulation (PeKIA, PeEIA). This
multi-layered regulatory framework likely enables precise control of
anthocyanin accumulation in response to developmental and
environmental signals.

In summary, this study enhances our understanding of
anthocyanin biosynthesis regulation in passion fruit peel through
integrated transcriptomic and network analyses. The identified
regulatory genes and their co-expression patterns provide
valuable targets for genetic improvement of fruit color and
nutritional quality in passion fruit breeding programs.

5 Conclusion

In this paper, Firstly, we compared the differentially expressed
genes involved in anthocyanin synthesis among various degrees of

frontiersin.org


https://doi.org/10.3389/fpls.2025.1658779
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Chen et al.

ripeness of passion fruits. We annotated these differentially
expressed genes, analyzed their functions and metabolic
pathways, and constructed a co-expression network of related
modules and genes. Based on this, we identified potential hub
genes related to anthocyanin synthesis. Finally, we verified the
results of the transcriptome analysis through RT-qPCR, further
discovering key genes related to anthocyanin synthesis, and
providing reference bases for the subsequent research on the
regulatory mechanism and functional identification of related
genes. This study provides a reference basis for subsequent
research on the regulatory mechanism of anthocyanin
biosynthesis in passion fruit pericarp and the functional
identification of related genes.
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