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Introduction: Excessive fertilization not only causes environmental pollution and

degrades water and soil quality but also increases production costs and reduces

agricultural sustainability.

Methods: Based on two consecutive years of field experiments, this study

developed a two-step data assimilation strategy for nitrogen (N) topdressing

recommendations for winter wheat. First, a data assimilation system was

established by minimising the discrepancy between aboveground dry biomass

(AGB) estimated from remote sensing and that simulated by the crop growth

model using a particle swarm optimization approach. Second, target yields under

varying growth conditions were constructed using the DSSAT model and N

economic return curves to enable optimised N fertilization recommendations.

Results: AGB monitoring model was developed, achieving satisfactory results in

both the calibration and validation datasets, with determination coefficient (R²)

(normalised root mean square error (nRMSE)) values of 0.94 (13.62%) and 0.82

(15.42%), respectively. Based on the data assimilation system, the data

assimilation stability for AGB and yield are relatively high. The nRMSE values for

AGB are 11.20% and 19.44% for the training and validation datasets, respectively.

The nRMSE values for yield are 6.35% and 11.22% for the training and validation

datasets, respectively. The data assimilation-based recommended fertilization

shows a negative power-law relationship with AGB at the jointing stage (R² =

0.65). Under different yield levels, fertilization was reduced by 6.69%–34.08%

compared with that under high yield levels.

Conclusion: This study balances yield and production costs by developing a data

assimilation strategy for N fertilization recommendations, which can maintain

high productivity and sustainability.
KEYWORDS

winter wheat, data assimilation, nitrogen topdressing, remote sensing, crop
growth model
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1 Introduction

Winter wheat is one of the most important staple crops

worldwide, and its yield is highly dependent on nitrogen (N)

availability. Urea, the most widely used N fertilizer globally

(Eickhout et al., 2006), tends to cause a temporal mismatch

between N supply and crop demand due to its rapid dissolution

(Liang et al., 2017; Li et al., 2015; Shakoor et al., 2018). Split

applications of urea can improve the synchronization between N

availability and crop demand, but the number of applications is

often limited by practical and labor constraints (Zhao et al., 2013).

Winter wheat has two critical periods of N demand, occurring at the

seedling and jointing stages, with substantially higher requirements

during the latter (Ma et al., 2021). Therefore, optimizing N

topdressing during the middle and late growth stages is critical

for maximizing crop growth and minimizing environmental

impacts, thereby supporting sustainable agricultural development

(Cui et al., 2018; Gu et al., 2013; Zhang et al., 2020).

The fundamental principle of precision N fertilization is to

quantify the N status gap between the target field and an N

reference plot, and to derive the appropriate N application rate

based on nutrient balance principles (Morris et al., 2018). By

acquiring crop canopy information and soil properties through

remote sensing, key intermediate variables can be obtained to

inform nitrogen fertilization recommendations and enhance the

precision of fertilization decisions (Yu et al., 2024; Yue et al., 2024).

N recommendation methods include direct and indirect

approaches: direct methods estimate the optimal N rate directly

through models or algorithms (Qin et al., 2018, Ransom et al.,

2019), while indirect methods first predict intermediate variables

such as yield or agronomic parameters and then infer the

appropriate N rate (Raun et al., 2002; Colaco and Bramley, 2018;

Wang et al., 2025). Remote sensing technology possesses advantages

of rapid, non-destructive data acquisition and broad spatial

coverage, making it an effective tool for achieving more scientific

N fertilization and crop nutrient management (Zhao et al., 2021; Si

et al., 2021; Li et al., 2024a). Remote sensing has advantages in

capturing intermediate variables such as yield or agronomic

parameters, N fertilization recommendations based on remote

sensing data often adopt indirect methods. N fertilization models

relying exclusively on vegetation indices are typically built on

empirical formulas and often fail to fully capture the dynamic

influences of environmental factors, soil N supply capacity, and

climate variability on crop N demand (Raun et al., 2002; Zhao et al.,

2019; Zhang et al., 2023). Crop growth models integrate

environmental factors such as climate, soil, and water to

dynamically simulate changes in crop N demand, exhibiting

strong mechanistic basis and environmental adaptability. The

incorporation of remote sensing information into crop growth

models through data assimilation systems have emerged as a

crucial technological approach to enhance the precision and

intelligence of N fertilizer application strategy (Jin et al., 2024;

Wang et al., 2024). The fundamental advantage lies in bridging the
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gap between observational data and process mechanisms,

improving the precision of N demand estimation and the

dynamic simulation and prediction of soil nutrient dynamics

(Luo et al., 2023; Huang et al., 2024). Data assimilation combines

the advantages of remote sensing data and crop growth models to

enable precise decision-making and dynamic management for N

fertilization recommendations (Silva et al., 2023). Li et al. (2024a)

optimized N fertilization during rice tillering by integrating UAV

remote sensing with the WOFOST model, reducing fertilizer use by

5.9%. Wang et al. (2024) optimized N fertilization using a data

assimilation algorithm, reducing N use by 37.9%–61.2%, increasing

profit, and providing a suitable approach for smart fertilization

management. Although data assimilation techniques have been

applied in precision fertilization research, most existing studies

rely predominantly on average yield as the basis for application (Li

et al., 2024b; Morari et al., 2021). N fertilization recommendation

algorithm that use average yield fail to capture field and crop growth

variability and overlook cost-benefit trade-offs, ultimately

constraining N management’s economic performance. Therefore,

it is necessary to develop a target yield model that considers field

variability and economic efficiency to optimize data assimilation

fertilization algorithms.

Since crop yield largely depends on aboveground dry biomass

(AGB) accumulation, the accuracy of AGB monitoring using

remote sensing directly influences the precision of yield

prediction. Li et al. (2024) demonstrated that data assimilation

systems using AGB as the state variable have advantages in

fertilization recommendations. This study aims (1) to develop a

wheat aboveground AGB (AGB) inversion model using

hyperspectral data from the wheat canopy and AGB data,

enabling rapid acquisition of wheat AGB information, (2) to

integrate crop growth models and remote sensing data to

construct a crop-specific fertilization recommendation algorithm,

and (3) to evaluate the performance of data assimilation in N

fertilization recommendation, assessing their potential for precision

fertilization and improving wheat yield.
2 Materials and methods

2.1 Experimental design

This study was implemented during 2015–2018 at the

Xiaotangshan National Precision Agriculture Research Centre

(40.17°N, 116.43°E), positioned on the outskirts of Beijing, China

(Figure 1a), a site well-known for precision farming research. The

local site, characterized with warm temperate and semi-humid

climate with a continental monsoon pattern, features silt loam

soil with 0–30-cm-layer properties with concentrations of NO3
−-

N (3.16–14.82 mg kg−¹), NH4
+-N (8.12–14.52 mg kg−¹), organic

matter (15.8–20.0 g kg−¹), available phosphorus (3.14–21.18 mg

kg−¹) and exchangeable potassium (86.83–120.62 mg kg−¹). The

maximum temperature is 38.8 °C in summer, and the minimum
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temperature is -20.5 °C in winter. The annual amount of solar

radiation and precipitation is 4850 MJ m−2, and 400–620 mm

respectively (China Meteorological Data Service, http://

data.cma.cn/).

Experiments 1 (2015–2016) and 2 (2017–2018) (Figure 1b)

were identically designed as two-factor randomized complete block

designs. The two winter wheat varieties tested were Luanxuan 167

and Jingdong 18. N application rates included four levels: 0 kg N

ha−¹ (N1), 90 kg N ha−¹ (N2), 180 kg N ha−¹ (N3) and 270 kg N ha−¹

(N4). Urea was used as the N source and applied in equal amounts

during the seeding and jointing stages. All other management

practices adhered to local agricultural standards. There were 32

plots per growing season, with 128 biomass samples (32 plots × 4

periods) and 32 yields collected annually. The data from

Experiments 1 and 2 were used for parameter calibration of the

recommended fertilization model in this study. These data was used

to set up DSSAT simulations with different fertilization rates during

the jointing stage for target yield analysis.

Experiment 3 (2017–2018) was conducted during the 2017–

2018 growing season, testing two wheat varieties (Luanxuan 167

and Jingdong 18). A base application of 90 kg N ha−¹ of N fertilizer

was applied, with subsequent topdressing based on a data

assimilation system during the jointing stage: T0 (no

topdressing), T1 (25% of the recommended rate), T2 (50%), T3

(75%), T4 (100%) and T5 (125%). There were 32 plots with 128

biomass samples (32 plots × 4 periods) and 32 yields collected. Base

fertilizers included 375 kg ha−¹ of calcium superphosphate and

150 kg ha−¹ of potassium sulfate. All other agronomic practices
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followed local farming standards. Experiment 3 was used for

model validation.
2.2 Obtaining agricultural parameters of
winter wheat

AGB measurements were conducted at key growth stages of

winter wheat: stem elongation, flag leaf emergence, flowering, and

grain filling. At each developmental stage, 20 stems of winter wheat

were randomly selected from every experimental plot. After

isolating the individual plant parts, the stems underwent a 30-

minute heat treatment at 105 °C, followed by oven drying at 80 °C

until reaching a stable mass. The final dry mass of each sample was

then recorded. The aboveground dry biomass (AGB, t ha-1) was

determined based on the stem count per hectare at each growth

phase using the Equation 1:

AGB = (D� n� 15)=20 (1)

where AGB refers to aboveground dry biomass measured in

tons per hectare, D indicates the dry mass in grams, and n stands for

the number of stems per hectare across different growth stages. The

values 15 and 20 represent the conversion factors for per-mu and

per-hectare, and the conversion factor for dry weight to above-

ground dry biomass, respectively (Zhao et al., 2025).

At harvest, a 1 m² standard sampling plot was established

within the experimental field. All plants within the plot were

harvested, and the grain dry weight was determined after
FIGURE 1

Locations of winter wheat experimental area (a) and experimental design [(b) Plot I: Modeling experimental plot; (c) Plot II: Topdressing experimental
plot. P, N and T represent different varieties, N rates and N topdressing treatment, respectively.
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threshing and oven drying. Afterward, the yield was normalized to a

moisture content of 14% and converted to a per-hectare

value (t·ha−1).
2.3 Meteorological data collection

Meteorological data, including daily precipitation and

maximum and minimum temperatures, were obtained from the

China Meteorological Data Sharing Service System (CMDSSS,

https://data.cma.cn). Solar radiation was calculated using the

Angström–Prescott formula described by Allen et al. (1998),

based on the sunshine duration recorded in CMDSSS.
2.4 Remote sensing data acquisition

A quadcopter UAV (Phantom 4 Pro, DJI, China) was used to

collect remote sensing data under favorable weather conditions,

specifically clear skies, no wind, and no cloud cover, with all flights

adhering to the same take-off points and flight paths to ensure

uniformity. Missions were conducted at 12:00 PM, maintaining a

flight altitude of 30 m, with 80% forward and 85% lateral overlap.

Prior to image acquisition, reflectance data from a spectral

calibration panel were recorded to correct the pixel brightness

values in the multispectral images. Orthomosaics were generated

using Pix4Dmapper 4.3. Additional details on the image processing

workflow can be found in Yang et al. (2021). The spectral

characteristics of the sensor are illustrated in Figure 2b.
2.5 Selection of vegetation indices

In this study, the enhanced vegetation index 2 (EVI2), a widely

adopted spectral index in vegetation monitoring, was employed to

estimate AGB, following the formulation proposed by Jiang et al.

(2008). The index is calculated using Equation 2:
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EVI2 = 2:5  �  
NIR − R

NIR   +   2:4  �  R   +   1
(2)

where NIR and R are the reflectance values in the near-infrared

(NIR) band (840 nm) and red band (650 nm), respectively. The

constants 2.5, 2.4 and 1 are the correction factors to mitigate the

influence of soil background, atmospheric interference and signal

saturation, thereby enhancing the sensitivity of the index in densely

vegetated areas.
2.6 Data assimilation framework for
optimizing N application using the DSSAT
model

A data assimilation framework was developed to optimize N

fertilizer recommendations by integrating a crop growth model

with UAV remote sensing data (Figure 3). Particle swarm

optimization (PSO) is an efficient algorithm inspired by bird flock

foraging behavior. Particles adjust their positions based on

individual and group experience, with fast convergence and few

parameters, making it widely used for crop model parameter

optimization (Yi and Ge, 2005; Elbeltagi et al., 2005). This study

uses the PSO algorithm for remote sensing data assimilation in the

DSSAT (CERES-Wheat) model to optimize crop parameters and

recommend N fertilization. The initial soil nutrient contents,

including NO3
--N and NH4

+-N, were obtained from field

measurements and used to initialize the DSSAT model. In this

study, variations in management practices were appropriately

considered during the data assimilation process to simulate crop

responses under different management scenarios within a unified

parameter framework. Meanwhile, in the simulation of

recommended fertilization, top-dressing parameters at the

jointing stage were adjusted to analyze top-dressing amounts and

target yields under different nitrogen treatments, thereby

optimizing the recommended fertilization rates and accurately

reflecting crop growth, the specific steps are as follows: First,

AGB estimation of winter wheat was conducted based on UAV
FIGURE 2

UAV platform equipped with multispectral camera.
frontiersin.org

https://data.cma.cn
https://doi.org/10.3389/fpls.2025.1658254
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhao et al. 10.3389/fpls.2025.1658254
remote sensing data. Second, AGB data assimilation modeling was

performed using the Particle Swarm Optimization (PSO) algorithm.

Third, the assimilation algorithm optimized the DSSAT model

using the fertilization plans of each experimental plot to ensure

that the simulated yields closely matched the target yields for the

respective test fields.

2.6.1 Aboveground dry biomass monitoring
model based on UAV remote sensing data

Remote sensing monitoring of AGB reflects dry matter

accumulation and is closely related to yield; accurate monitoring

is a key basis for achieving precise N fertilization. To address the

challenge of applying AGB remote sensing models across the entire

growth period, this study employs a hierarchical linear model based

on accumulated temperature and vegetation indices, which shows

significant advantages in monitoring winter wheat AGB at multiple

growth stages (Li et al., 2022; Yue et al., 2023; Zhao et al., 2025). In

this study, the calculation formula for the AGB monitoring model

based on UAV multispectral imagery as Equation 3:

Level 1 :AGB = b0 + b1 � EVI2i (3)

where AGB, EVI2i, b0j, and b1j are the aboveground dry

biomass, enhanced vegetation index 2 obtained from UAV

multispectral imagery at different growth stages, the intercept and

the slope of the linear model, respectively.

At the second level, these parameters change according to the

phenological stages, and the first-level parameters are automatically

refined using the phenological data from the second level, as

calculated in Equation 4.

Level 2 : bj = gm0 + gm1� GDD (4)
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where GDD represents growing degree day, bj(j = 0, 1)

corresponds to b0 and b1 from the HLM, respectively, gm0 is the

intercept and gm1 is the slope of each GDD.

2.6.2 Data assimilation modeling based on
particle swarm optimization

In PSO, a swarm of particles explores a D-dimensional

parameter space, with each particle representing a potential

solution. Particle positions and velocities are updated based on

both individual and collective experience to gradually approach the

global optimum (Yi and Ge, 2005; Elbeltagi et al., 2005). In this

study, AGB during key growth stages was defined as the state

variable for data assimilation. Each particle represents a set of

DSSAT model parameters, including four genotype traits (P1D,
TABLE 1 Initial values and ranges of calibration parameters or initial
data for the DSSAT model.

Variable
Initial
values

Ranges Reference

Plant density (m-3) 350 300-400

Li et al., 2015

Irrigation amount (mm) 150 90-240

Fertilization amount (kg N
ha-1)

200 0-400

Photoperiod parameter 50 30-70

Phyllochron interval
parameter

100 90-120

Root depth growth rate 3.0 2.5-3.5

Photosynthesis factor 1.0 0.8-1.0
FIGURE 3

Flowchart of N fertilization recommendation based on a data assimilation system. AGB, aboveground biomass; PSO, particle swarm optimization.
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PHINT, RDGS, SLPF) and three management practices (planting

density, irrigation, and fertilization). According to preliminary

experiments conducted at the same experimental site and the

results of previous modeling studies, the initial velocity in each

dimension was set to approximately 10% of the dynamic range of

the corresponding variable (Table 1, Li et al., 2015).

2.6.2.1 DSSAT model initialization

The model is initially configured using field survey data, default

parameters and historical data and are used to conduct biomass

simulations during key growth stages. The parameters and structure

of the crop growth model are typically set based on existing

knowledge, experience or default assumptions and are

subsequently refined and optimized through calibration and

assimilation processes to improve the predictive capabilities of

the model.

2.6.2.2 Particle swarm initialization

The basic assumption is that a swarm of 25 particles (Li et al.,

2015; Jin et al., 2017) moves with a certain velocity in a d-

dimensional search space. Each particle can adjust its trajectory

based on the best point found by itself in the current generation

(p_id) and the best point found by all particles in the swarm (p_gd).

In the PSO algorithm, the optimization variable is set as AGB

during critical growth stages, and a particle swarm is constructed.

Each particle represents a set of parameter combinations, with its

“position” corresponding to the current values of the parameters.

The starting position and velocity of each particle are determined.

The parameters subject to adjustment include four crop genotype

characteristics (P1D, PHINT, RDGS, and SLPF) (Li et al., 2015) and

three plant management parameters (plant density, irrigation

volume, and fertilization quantity) (Table 1). The initial position

and velocity of each particle are calculated as Equations 5, 6:

xi   =   (xi1, xi2,…, xid) (5)

vi   =   (vi1, vi2,…, vid) (6)

where xi and vi represent the initial position and velocity of the

i-th particle, respectively.
2.6.2.3 Fitness function construction

A cost function was defined to quantify the differences between

AGBr and AGBs. The function-generated fitness value indicated

whether the optimization process had reached the ideal set of

parameters,as shown in Equation 7

J   =  

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
om

i  =  1(
AGBsi − AGBri

AGBri
)2=m

s
(7)

where AGBr, AGBs and m represent aboveground biomass

predicted from remote sensing data, aboveground biomass

simulated by the DSSAT model, and the number of monitored

growth stages, respectively.
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2.6.2.4 Particle swarm iterative search

Each particle’s fitness value is computed, and the individual best

(pbest) is updated if the fitness value surpasses the historical best.

Similarly, the global best (gbest) is updated if the particle’s fitness

exceeds the first gbest. The velocity and position (model

parameters) of the particle are then updated according to a pre-

defined Equations 8, 9:

vk   +   1id   =   vkid   +   c1x(p
k
id − xkid)   +   c2h(p

k
gd − xkid) (8)

xk   +   1id   =   xkid   +   v
k   +   1
id (9)

where xid and vid denote the position and velocity of the i-th

particle in the d-th dimension of the parameter space, respectively.

The parameters (c1) and (c2) represent the cognitive and social

learning factors, both set to 2.0, which is suitable for almost all cases.

x and h are random values between 0 and 1, which helps the

particles explore the search space and obtain the optimal solution.

Detailed information on the PSO parameter settings can be found in

the study by Eberhart and Shi (2001).

2.6.2.5 Optimal result output

The DSSAT model is rerun using the updated parameters to

simulate AGB, and fitness is reassessed. This iterative process

continues until convergence criteria are met, such as a defined

error threshold or maximum number of iterations. If the iteration

target (100 iterations in this study) is not reached, the updated

positions are replaced and the next step is executed. The final

parameter set producing the best agreement between simulated and

observed AGB is identified, providing reliable estimates with

enhanced spatiotemporal resolution.

2.6.3 Optimizing N recommendations by
integrating target yield and data assimilation

N application at the jointing stage was adjusted according to the

fertilization plans of each plot, ensuring that the DSSAT model

optimized via data assimilation produced yields close to the target.

N input levels were adjusted within a pre-defined range (e.g. 0–360

kg N ha−¹) with a constant increment (e.g. 10 kg N ha−¹), and the

model was run iteratively using the optimized parameters from the

previous data assimilation step. For each simulation, the predicted

yield was compared against the economically derived target yield.

The N rate corresponding to the lowest input that met or slightly

exceeded the target yield was selected as the optimal N

recommendation. The field-scale economic benefit was calculated

as Equation 10:

E   =   (Y  �   PY ) − (N  �   PN ) (10)

where E, Y, PY, N, and PN represent field-scale economic

benefit, yield (kg ha−1), the market price of winter wheat (CNY

kg−1), N fertilizer amount (kg ha−1), and the cost of N fertilizer

(CNY kg−1), respectively. The values of yield and N fertilizer were

from local government (https://www.ndrc.gov.cn/fgsj/) and defined

as 2.4 CNY kg−1 and 2.75 CNY kg−1, respectively.
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2.7 Model evaluation

The DSSAT model was calibrated by adjusting AGB to match

observed growth and yield measurements. Model evaluation was

based on field experiment data, using a stepwise parameter

adjustment approach to minimize simulation errors. During the

validation phase, independent experimental data were used to assess

model performance, primarily through statistical metrics such as R²

and nRMSE, to quantify the agreement between simulated results

and observed data, ensuring the model’s applicability and reliability

under different growing seasons and management conditions. The

model’s performance was quantified by the adjusted determination

coefficient (R²) and relative root mean square error (nRMSE), with

better performance being indicated by a higher R² and a lower

nRMSE. The formulas for calculating R2, RMSE, and nRMSE are

shown in Equations 11, 12, and 13, respectively.

R2  =  1 −o
n
i = 1ðYi − Y}

iÞ=ðn − p − 1Þ
on

i = 1(Yi − Y}
i )
2=ðn − 1Þ (11)

RMSE  =  

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
no

n
i = 1(Yi − Y}

i )
2

r
(12)

nRMSE =
RMSE

average(Yi)
(13)

where n, Y′i, Yi and p represent the sample size, estimated value,

measured value and number of predictors, respectively. In subsequent

sections, R² for the calibration and validation sets are denoted as R²c andR²v,

respectively; nRMSE for these sets are represented as nRMSEc and nRMSEv.
3 Results and analysis

3.1 Winter wheat AGB estimation results
derived from hyperspectral data

In this study, the winter wheat AGB ranges for the training and

validation datasets were 1.84–14.14 t ha−1 and 0.84–15.44 t ha−1,

with mean values of 7.27 t ha−1 and 5.93 t ha−1, respectively
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(Figure 4). To mitigate the effects of growth stages on AGB

remote sensing monitoring, this study integrated EVI and growth

stage information employing the HLM for winter wheat AGB

inversion. Inversion results indicated that the HLM performed

excellently, with R²c and R²v values of 0.94 and 0.82 and

nRMSEc and nRMSEv values of 13.62% and 15.42%, respectively

(Figure 3, Table 2). These results demonstrate the high accuracy of

the HLM in AGB inversion for winter wheat, providing reliable

estimates for subsequent N diagnosis.
3.2 Evaluation of winter wheat growth
process based on DSSAT data assimilation

The amount of simulated AGB under different N fertilizer

treatments based on the DSSAT model increased with the

advancement of growth stages. AGB accumulation increased with

increasing N fertilizer rates (Figure 5), while the difference between

N3 and N4 treatments was relatively small. This suggests that

excessive fertilization has a limited effect on crop yield

improvement. Therefore, N fertilizer recommendations should

balance both economic and ecological benefits. The amount of

simulated AGB at various growth periods closely corresponded to

the measured AGB, with nRMSE values of 11.20% and 19.44% for

the calibration and validation datasets, respectively (Figure 6a).

Similarly, the yield results simulated by the DSSAT model showed

good agreement with the observed data, with nRMSE values of

6.35% and 11.12% for the calibration and validation datasets,

respectively (Figure 6b).
3.3 Economic benefit analysis under
varying target yield scenarios

This study explores how crop income responds to different N

topdressing rates under fixed basal N levels (N1–N4), with total N

topdressing rates ranging from 0 to 360 kg ha-¹ (Figure 7). When

fertilizer costs are not considered, total income increases with the

amount of fertilizer applied, indicating that higher N application

can boost crop yield and, consequently, total income. Specifically,
FIGURE 4

Relationships between measured AGB and predicted AGB by the HLM. The horizontal lines represent the standard error.
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the total income reached its maximum at a fertilization rate of

360 kg ha−¹ under N1, N2, N3 and N4 treatment levels. However,

maximizing income without considering fertilizer costs does not

reflect the actual profit for farmers. Specifically, the optimal

fertilization rates for N1, N2, N3 and N4 treatments are 140 kg

ha−1, 120 kg ha−1, 80 kg ha−1 and 40 kg ha−1, respectively (Figure 7).

In practical agricultural production, farmers should find a balance

between fertilizer application and its cost to optimize net income.

Therefore, the study highlights that while increasing fertilizer

application can enhance crop income, excessive fertilization may

lead to high costs that reduce net income, making it crucial for

farmers to use an appropriate amount of fertilizer to

maximize profitability.
3.4 N recommendation developed by
integrating remote sensing data into the
DSSAT model

The N topdressing rate recommended by the data assimilation

system are primarily determined based on the growth status of the

crop and exhibits a significant correlation with AGB at the jointing

stage (Figure 8). This relationship is described by a quadratic

function y = 92.61x-0.88, with R² of 0.65. A relatively low AGB

indicates weak crop development, necessitating a higher N rate. The
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spatial distribution maps of AGB and N topdressing rates based on

UAV remote sensing data and DSSAT model are shown in Figure 9.

The results reveal the spatial variability of crop growth status and

nutrient requirements in the study area, providing data support for

the implementation of variable-rate fertilization management.
3.5 Assessment of optimized N topdressing
rate performance

In the recommended fertilization trial area (Experiment 3),

wheat yields ranged from 3.00 t ha−¹ to 8.08 t ha−¹. Crop growth

simulation models indicate continuous yield generally increases

with higher fertilization rates. Therefore, this study selected 125% of

the data assimilation-based recommended fertilization amount (T5)

as the control treatment. The average yields for treatments T0, T1,

T2, T3, T4 and T5 were 4.73 t ha−¹, 5.47 t ha−¹, 5.50 t ha−¹, 5.71 t

ha−¹, 6.46 t ha−¹ and 6.52 t ha−¹, respectively (Figure 10). The yield

of treatment T5 was slightly higher than that of T4 with no

significant difference, but the yields of both treatments were

significantly higher than those of the other treatments. For

economic benefits, treatment T4 slightly outperformed T5 with

no significant difference, and both treatments achieved significantly

higher economic returns than the other treatments. This suggests

that while optimizing fertilization plans, a moderate reduction in N
FIGURE 5

Simulated and measured AGB of winter wheat under different N treatments. Note: Vertical bars are standard deviations of measurements and
simulation.
TABLE 2 Coefficient of each variable in AGB by HLM method.

Parameters Fixed effect gi0 gi0 R2c nRMSEc R2v nRMSEv

AGB
for b0 1.22 0.02

0.94 13.62% 0.82 15.46%
for b1 -13.35 0.38
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input can still maintain high yield levels, providing a cost-effective

and efficient fertilization strategy for agricultural production. In

practical applications, appropriate N fertilization not only promotes

crop growth but also reduces the risk of environmental pollution.
4 Discussions

4.1 Significance of AGB remote sensing
monitoring in N fertilizer management

Data assimilation algorithms not only offer clear advantages in

estimating the current crop state but also demonstrate strong

robustness and dynamic adaptability in forecasting later growth
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stages. This research employs AGB as the assimilation variable,

which is vital for formulating accurate fertilization strategies. Li

et al. (2024) also employed AGB as a state variable for data

assimilation in N recommendation for rice. The AGB monitoring

model based on HLM achieved calibration and validation R² values

of 0.94 and 0.82 with nRMSE of 13.62% and 15.42% and provided

notable scalability throughout the growing season (Figure 2,

Table 2). The jointing stage, as the key period for winter wheat

topdressing, is highly sensitive to management practices. This study

demonstrates that the N topdressing rate recommended by the data

assimilation system exhibits a negative power-law relationship with

aboveground biomass (AGB) at the jointing stage of winter wheat

(R² = 0.65), a pattern analogous to the critical nitrogen dilution

curve (Justes et al., 1994). This relationship arises primarily because
FIGURE 7

Optimization of N fertilizer for maximizing crop yield and farmer’s net income. (a), (b), (c), and (d) represent the base fertilizer treatments as N1, N2,
N3, and N4, respectively.
FIGURE 6

Relationships between measured and simulated AGB (a) and measured and simulated yield (b) for winter wheat based on DSSAT Model. Note: The
horizontal lines in the FIGURE represent the standard error.
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(1) plots with higher AGB have sufficient N accumulation and thus

require less additional N input, whereas plots with lower AGB are

relatively nitrogen-deficient and require greater N compensation., and

(2) spatial heterogeneity in soil nutrients and water results in

differences in crop growth potential, necessitating location-specific

adjustments of recommended fertilization even under uniform

management practices. Previous studies using growth indicators

such as leaf area index and nitrogen nutrition index for fertilizer

recommendation have also obtained similar results (Xue et al., 2008; Li

et al., 2024b). This study developed an empirical curve linking biomass

to recommended nitrogen application, but it was constructed using

data from a specific experimental field. With the accumulation and

optimization of more data, this approach has the potential to evolve

into a simple fertilization recommendation tool, serving as a practical

alternative to complex data assimilation systems.
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4.2 Constructing target yield for data-
driven N management

The setting of target yields should not solely focus on

maximizing yield, as this may lead to excessive use of N fertilizer,

resulting in environmental issues such as soil acidification and

groundwater pollution (Peng et al., 2010). In this study, target yield

is constructed based on economic benefits. The calculation of target

yield considers not only the final crop yield but also the relationship

between fertilizer costs and yield gains. Data assimilation-based

fertilization decisions driven by target yield allow for the balancing

of yield, costs and profits, thus maximizing economic benefits. The

recommendation to enhance N application in fields with poor crop

growth and reduce it in fields with robust growth is in agreement

with the results from previous research (Zhang et al., 2022).

Additionally, data assimilation-based N recommendation

methods facilitate the precise achievement of target yields and

quantify N fertilizer recommendations for heterogeneous growth

zones within fields (Figures 7, 9). In this study, the optimal

fertilization rates for N1–N4 treatments (140, 120, 80, and 40 kg

ha-¹) follow a trend consistent with previous research (Yang et al.,

2022; Li et al., 2024a).

Simulation results indicated that, compared with traditional

fertilization strategies, this method maintained relatively stable

yields while reducing N application by 6.69%–34.08% (Figure 10).

Therefore, the target yield-based data assimilation strategy holds

potential to become a practically applicable approach for

fertilization optimization (Wang et al., 2023). Setting target yields

depends largely on historical data and predictive models, which can

introduce errors, particularly in the face of significant climate

variability. To address these uncertainties and to evaluate the

environmental benefits of reduced N application, future research

integrating field measurements with modeling approaches is

essential for guiding sustainable fertilization practices.
FIGURE 9

AGB prediction (a) and the corresponding fertilization recommendation (b) in the topdressing zone using a data assimilation system.
FIGURE 8

Relationship between AGB and N fertilization topdressing rates
based on the data assimilation system.
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4.3 Challenges in N recommendation
through data assimilation systems

Significant progress has been made in N recommendation

methods using data assimilation systems; however, numerous

challenges remain concerning their widespread adoption and

practical application in agriculture. This research primarily

focuses on growth differences in winter wheat caused by nutrient

factors and does not consider other influencing factors such as pest

and disease stress. The acquisition and quality control of multi-

source observational data are primary issues in current N fertilizer

recommendation systems (Lu et al., 2022). The effectiveness of data

assimilation heavily relies on the accuracy, frequency and spatial

coverage of observational data. Issues such as insufficient temporal

resolution, limited spatial precision and meteorological interference

limit the precision required for N management (Diacono et al.,

2013). The uncertainty in remote sensing observations is introduced

into the assimilation process, and misleading parameter corrections

may occur when observational errors are combined with model

biases (Kang and Özdoğan, 2019). This study realized N fertilizer

recommendation applications based on UAV data, offering spatial

and temporal flexibility, thereby establishing a technically robust

and economically feasible pathway for precision agriculture

applications. In the future, integrating the spatial advantages of
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satellite remote sensing data will further enhance the cost-

effectiveness and practical i ty of large-scale precis ion

agriculture applications.

This study not only validates the potential of data assimilation

in crop N management but also identifies the directions for the

further improvement of model reliability. However, the predictions

of a single crop growth model are inherently uncertain (Huang

et al., 2017; Zare et al., 2024). The combination of multiple models

can effectively address the shortcomings of a single model’s

adaptability in specific scenarios, further advancing the

application and development of data assimilation technology in

agricultural management (Huang et al., 2017; Zare et al., 2024).

Existing research indicates that model integration or weighted

averaging methods can reduce biases that may arise from a single

model. Among studies comparing algorithms that include PSO,

most show that PSO outperforms other methods in terms of

convergence speed, computational efficiency, and assimilation

accuracy. However, some studies report that PSO is not the best-

performing algorithm, indicating that algorithm performance

depends on the specific study context, assimilation variables, and

model complexity (Table 3). This study selected the PSO algorithm

as the data assimilation method, which has demonstrated good

performance in assimilating initial input parameters and simulating

grain yield (Wang et al., 2024). The PSO algorithm can operate with
FIGURE 10

Effects of fertilization treatments on yield (a) and economic benefit (Yuan) under different yield levels (b).
TABLE 3 Comparison of data assimilation algorithms, target variables, and performance in previous studies.

No.
Crop
growth
model

Crop
Data
assimilation
algorithm

Variables Main results Reference

1 Ricegrow rice PSO, SCE-UA LAI, LNA
PSO showed higher efficiency and better assimilation
performance than SCE-UA.

Wang et al., 2014

2 Aquacrop Winter wheat PSO, SCE-UA, SA AGB
PSO, SA, and SCE-UA all simulate winter wheat AGB well,
with SCE-UA achieving the highest accuracy and
computational efficiency

Xing et al., 2017

3 ChinaAgrosys Winter wheat PSO, SCE-UA Yield
The PSO algorithm achieves the highest accuracy in yield
estimation.

Jin et al., 2022
LAI, LNC, AGB, PSO, SA and SCE-UA represent leaf area index, leaf nitrogen concentration, aboveground dry biomass, particle swarm optimization, simulated annealing and shuffled complex
evolution.
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a simple encoding scheme and achieves higher retrieval accuracy for

nitrogen application rates (Wang et al., 2014). In this study, PSO

was applied for fertilizer recommendation, yielding stable results.

Future research should compare fertilization strategies developed

using multiple assimilation algorithms to identify more accurate

assimilation methods for more rational fertilization strategies.
5 Conclusion

This study established an N fertilization decision-making model

based on a data assimilation system and conducted detailed

evaluation and discussion. The main results are presented below:

(1) the AGB monitoring method was developed using GDD and

vegetation indices, achieving satisfactory results in both the

calibration and validation datasets, with R² (nRMSE) values of 0.94

(13.62%) and 0.82 (15.42%), respectively. (2) The data assimilation

stability for AGB and yield is relatively high based on the data

assimilation system. For AGB, the nRMSE values are 11.20% and

19.44% for the training and validation datasets, respectively, and for

yield, they are 6.35% for the training dataset and 11.22% for the

validation dataset. (3) The data assimilation-based recommended

fertilization system shows a negative power-law relationship with

AGB at the jointing stage (R² = 0.65). Under different yield levels,

fertilization was reduced by 6.69%–34.08% compared with that under

high yield levels. Data assimilation-based recommended fertilization

system proves to be effective, enhancing resource utilization and

fostering more sustainable agricultural practices.
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Determination of a critical nitrogen dilution curve for winter wheat crops. Ann. Bot. 74,
397–407.
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