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Introduction: Excessive fertilization not only causes environmental pollution and
degrades water and soil quality but also increases production costs and reduces
agricultural sustainability.

Methods: Based on two consecutive years of field experiments, this study
developed a two-step data assimilation strategy for nitrogen (N) topdressing
recommendations for winter wheat. First, a data assimilation system was
established by minimising the discrepancy between aboveground dry biomass
(AGB) estimated from remote sensing and that simulated by the crop growth
model using a particle swarm optimization approach. Second, target yields under
varying growth conditions were constructed using the DSSAT model and N
economic return curves to enable optimised N fertilization recommendations.
Results: AGB monitoring model was developed, achieving satisfactory results in
both the calibration and validation datasets, with determination coefficient (R?)
(normalised root mean square error (NRMSE)) values of 0.94 (13.62%) and 0.82
(15.42%), respectively. Based on the data assimilation system, the data
assimilation stability for AGB and yield are relatively high. The nRMSE values for
AGB are 11.20% and 19.44% for the training and validation datasets, respectively.
The nRMSE values for yield are 6.35% and 11.22% for the training and validation
datasets, respectively. The data assimilation-based recommended fertilization
shows a negative power-law relationship with AGB at the jointing stage (R? =
0.65). Under different yield levels, fertilization was reduced by 6.69%—-34.08%
compared with that under high yield levels.

Conclusion: This study balances yield and production costs by developing a data
assimilation strategy for N fertilization recommendations, which can maintain
high productivity and sustainability.
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1 Introduction

Winter wheat is one of the most important staple crops
worldwide, and its yield is highly dependent on nitrogen (N)
availability. Urea, the most widely used N fertilizer globally
(Eickhout et al., 2006), tends to cause a temporal mismatch
between N supply and crop demand due to its rapid dissolution
(Liang et al., 2017; Li et al, 2015; Shakoor et al., 2018). Split
applications of urea can improve the synchronization between N
availability and crop demand, but the number of applications is
often limited by practical and labor constraints (Zhao et al., 2013).
Winter wheat has two critical periods of N demand, occurring at the
seedling and jointing stages, with substantially higher requirements
during the latter (Ma et al, 2021). Therefore, optimizing N
topdressing during the middle and late growth stages is critical
for maximizing crop growth and minimizing environmental
impacts, thereby supporting sustainable agricultural development
(Cui et al., 2018; Gu et al., 2013; Zhang et al., 2020).

The fundamental principle of precision N fertilization is to
quantify the N status gap between the target field and an N
reference plot, and to derive the appropriate N application rate
based on nutrient balance principles (Morris et al., 2018). By
acquiring crop canopy information and soil properties through
remote sensing, key intermediate variables can be obtained to
inform nitrogen fertilization recommendations and enhance the
precision of fertilization decisions (Yu et al., 2024; Yue et al., 2024).
N recommendation methods include direct and indirect
approaches: direct methods estimate the optimal N rate directly
through models or algorithms (Qin et al., 2018, Ransom et al,
2019), while indirect methods first predict intermediate variables
such as yield or agronomic parameters and then infer the
appropriate N rate (Raun et al., 2002; Colaco and Bramley, 2018;
Wang et al,, 2025). Remote sensing technology possesses advantages
of rapid, non-destructive data acquisition and broad spatial
coverage, making it an effective tool for achieving more scientific
N fertilization and crop nutrient management (Zhao et al., 2021; Si
et al, 2021; Li et al, 2024a). Remote sensing has advantages in
capturing intermediate variables such as yield or agronomic
parameters, N fertilization recommendations based on remote
sensing data often adopt indirect methods. N fertilization models
relying exclusively on vegetation indices are typically built on
empirical formulas and often fail to fully capture the dynamic
influences of environmental factors, soil N supply capacity, and
climate variability on crop N demand (Raun et al., 2002; Zhao et al.,
2019; Zhang et al., 2023). Crop growth models integrate
environmental factors such as climate, soil, and water to
dynamically simulate changes in crop N demand, exhibiting
strong mechanistic basis and environmental adaptability. The
incorporation of remote sensing information into crop growth
models through data assimilation systems have emerged as a
crucial technological approach to enhance the precision and
intelligence of N fertilizer application strategy (Jin et al.,, 2024;
Wang et al,, 2024). The fundamental advantage lies in bridging the
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gap between observational data and process mechanisms,
improving the precision of N demand estimation and the
dynamic simulation and prediction of soil nutrient dynamics
(Luo et al,, 2023; Huang et al., 2024). Data assimilation combines
the advantages of remote sensing data and crop growth models to
enable precise decision-making and dynamic management for N
fertilization recommendations (Silva et al., 2023). Li et al. (2024a)
optimized N fertilization during rice tillering by integrating UAV
remote sensing with the WOFOST model, reducing fertilizer use by
5.9%. Wang et al. (2024) optimized N fertilization using a data
assimilation algorithm, reducing N use by 37.9%-61.2%, increasing
profit, and providing a suitable approach for smart fertilization
management. Although data assimilation techniques have been
applied in precision fertilization research, most existing studies
rely predominantly on average yield as the basis for application (Li
et al., 2024b; Morari et al., 2021). N fertilization recommendation
algorithm that use average yield fail to capture field and crop growth
variability and overlook cost-benefit trade-offs, ultimately
constraining N management’s economic performance. Therefore,
it is necessary to develop a target yield model that considers field
variability and economic efficiency to optimize data assimilation
fertilization algorithms.

Since crop yield largely depends on aboveground dry biomass
(AGB) accumulation, the accuracy of AGB monitoring using
remote sensing directly influences the precision of yield
prediction. Li et al. (2024) demonstrated that data assimilation
systems using AGB as the state variable have advantages in
fertilization recommendations. This study aims (1) to develop a
wheat aboveground AGB (AGB) inversion model using
hyperspectral data from the wheat canopy and AGB data,
enabling rapid acquisition of wheat AGB information, (2) to
integrate crop growth models and remote sensing data to
construct a crop-specific fertilization recommendation algorithm,
and (3) to evaluate the performance of data assimilation in N
fertilization recommendation, assessing their potential for precision
fertilization and improving wheat yield.

2 Materials and methods
2.1 Experimental design

This study was implemented during 2015-2018 at the
Xiaotangshan National Precision Agriculture Research Centre
(40.17°N, 116.43°E), positioned on the outskirts of Beijing, China
(Figure 1a), a site well-known for precision farming research. The
local site, characterized with warm temperate and semi-humid
climate with a continental monsoon pattern, features silt loam
soil with 0-30-cm-layer properties with concentrations of NO3 -
N (3.16-14.82 mg kg™'), NH,"-N (8.12-14.52 mg kg '), organic
matter (15.8-20.0 g kg™'), available phosphorus (3.14-21.18 mg
kg™") and exchangeable potassium (86.83-120.62 mg kg™'). The

maximum temperature is 38.8 °C in summer, and the minimum
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FIGURE 1

Locations of winter wheat experimental area (a) and experimental design [(b) Plot |: Modeling experimental plot; (c) Plot Il: Topdressing experimental
plot. P, N and T represent different varieties, N rates and N topdressing treatment, respectively.

temperature is -20.5 °C in winter. The annual amount of solar
radiation and precipitation is 4850 MJ m% and 400-620 mm
respectively (China Meteorological Data Service, http://
data.cma.cn/).

Experiments 1 (2015-2016) and 2 (2017-2018) (Figure 1b)
were identically designed as two-factor randomized complete block
designs. The two winter wheat varieties tested were Luanxuan 167
and Jingdong 18. N application rates included four levels: 0 kg N
ha™ (N1),90 kg N ha™" (N2), 180 kg N ha™" (N3) and 270 kg N ha™"
(N4). Urea was used as the N source and applied in equal amounts
during the seeding and jointing stages. All other management
practices adhered to local agricultural standards. There were 32
plots per growing season, with 128 biomass samples (32 plots x 4
periods) and 32 yields collected annually. The data from
Experiments 1 and 2 were used for parameter calibration of the
recommended fertilization model in this study. These data was used
to set up DSSAT simulations with different fertilization rates during
the jointing stage for target yield analysis.

Experiment 3 (2017-2018) was conducted during the 2017-
2018 growing season, testing two wheat varieties (Luanxuan 167
and Jingdong 18). A base application of 90 kg N ha™ of N fertilizer
was applied, with subsequent topdressing based on a data
assimilation system during the jointing stage: TO (no
topdressing), T1 (25% of the recommended rate), T2 (50%), T3
(75%), T4 (100%) and T5 (125%). There were 32 plots with 128
biomass samples (32 plots x 4 periods) and 32 yields collected. Base
fertilizers included 375 kg ha™' of calcium superphosphate and
150 kg ha™' of potassium sulfate. All other agronomic practices
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followed local farming standards. Experiment 3 was used for
model validation.

2.2 Obtaining agricultural parameters of
winter wheat

AGB measurements were conducted at key growth stages of
winter wheat: stem elongation, flag leaf emergence, flowering, and
grain filling. At each developmental stage, 20 stems of winter wheat
were randomly selected from every experimental plot. After
isolating the individual plant parts, the stems underwent a 30-
minute heat treatment at 105 °C, followed by oven drying at 80 °C
until reaching a stable mass. The final dry mass of each sample was
then recorded. The aboveground dry biomass (AGB, t ha') was
determined based on the stem count per hectare at each growth
phase using the Equation 1:

AGB = (D x n x 15)/20 (1)

where AGB refers to aboveground dry biomass measured in
tons per hectare, D indicates the dry mass in grams, and # stands for
the number of stems per hectare across different growth stages. The
values 15 and 20 represent the conversion factors for per-mu and
per-hectare, and the conversion factor for dry weight to above-
ground dry biomass, respectively (Zhao et al., 2025).

At harvest, a 1 m* standard sampling plot was established
within the experimental field. All plants within the plot were
harvested, and the grain dry weight was determined after
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threshing and oven drying. Afterward, the yield was normalized to a
moisture content of 14% and converted to a per-hectare
value (tha™).

2.3 Meteorological data collection

Meteorological data, including daily precipitation and
maximum and minimum temperatures, were obtained from the
China Meteorological Data Sharing Service System (CMDSSS,
https://data.cma.cn). Solar radiation was calculated using the
Angstrom-Prescott formula described by Allen et al. (1998),
based on the sunshine duration recorded in CMDSSS.

2.4 Remote sensing data acquisition

A quadcopter UAV (Phantom 4 Pro, DJI, China) was used to
collect remote sensing data under favorable weather conditions,
specifically clear skies, no wind, and no cloud cover, with all flights
adhering to the same take-off points and flight paths to ensure
uniformity. Missions were conducted at 12:00 PM, maintaining a
flight altitude of 30 m, with 80% forward and 85% lateral overlap.
Prior to image acquisition, reflectance data from a spectral
calibration panel were recorded to correct the pixel brightness
values in the multispectral images. Orthomosaics were generated
using Pix4Dmapper 4.3. Additional details on the image processing
workflow can be found in Yang et al. (2021). The spectral
characteristics of the sensor are illustrated in Figure 2b.

2.5 Selection of vegetation indices

In this study, the enhanced vegetation index 2 (EVI2), a widely
adopted spectral index in vegetation monitoring, was employed to
estimate AGB, following the formulation proposed by Jiang et al.
(2008). The index is calculated using Equation 2:

10.3389/fpls.2025.1658254

NIR - R
NIR + 24 X R + 1

EVI2 =25 x (2)

where NIR and R are the reflectance values in the near-infrared
(NIR) band (840 nm) and red band (650 nm), respectively. The
constants 2.5, 2.4 and 1 are the correction factors to mitigate the
influence of soil background, atmospheric interference and signal
saturation, thereby enhancing the sensitivity of the index in densely
vegetated areas.

2.6 Data assimilation framework for
optimizing N application using the DSSAT
model

A data assimilation framework was developed to optimize N
fertilizer recommendations by integrating a crop growth model
with UAV remote sensing data (Figure 3). Particle swarm
optimization (PSO) is an efficient algorithm inspired by bird flock
foraging behavior. Particles adjust their positions based on
individual and group experience, with fast convergence and few
parameters, making it widely used for crop model parameter
optimization (Yi and Ge, 2005; Elbeltagi et al., 2005). This study
uses the PSO algorithm for remote sensing data assimilation in the
DSSAT (CERES-Wheat) model to optimize crop parameters and
recommend N fertilization. The initial soil nutrient contents,
including NO3;-N and NH,"-N, were obtained from field
measurements and used to initialize the DSSAT model. In this
study, variations in management practices were appropriately
considered during the data assimilation process to simulate crop
responses under different management scenarios within a unified
parameter framework. Meanwhile, in the simulation of
recommended fertilization, top-dressing parameters at the
jointing stage were adjusted to analyze top-dressing amounts and
target yields under different nitrogen treatments, thereby
optimizing the recommended fertilization rates and accurately
reflecting crop growth, the specific steps are as follows: First,
AGB estimation of winter wheat was conducted based on UAV

Spectral characteristic

Blue 450 nm
Green 560 nm
Red 650 nm
Rededge 730 nm
NIR 840 nm

FIGURE 2
UAV platform equipped with multispectral camera.

Frontiers in Plant Science

04

frontiersin.org


https://data.cma.cn
https://doi.org/10.3389/fpls.2025.1658254
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Zhao et al.

10.3389/fpls.2025.1658254

Step I
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UAV image Optimization
/ Weather Data /
CBA Wheat
- / Management /
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Assimilated AGB DSSAT et
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Nitrogen Fertilizer Price
:|" Target Yield
Yield Price

FIGURE 3

Flowchart of N fertilization recommendation based on a data assimilation system. AGB, aboveground biomass; PSO, particle swarm optimization.

remote sensing data. Second, AGB data assimilation modeling was
performed using the Particle Swarm Optimization (PSO) algorithm.
Third, the assimilation algorithm optimized the DSSAT model
using the fertilization plans of each experimental plot to ensure
that the simulated yields closely matched the target yields for the
respective test fields.

2.6.1 Aboveground dry biomass monitoring
model based on UAV remote sensing data

Remote sensing monitoring of AGB reflects dry matter
accumulation and is closely related to yield; accurate monitoring
is a key basis for achieving precise N fertilization. To address the
challenge of applying AGB remote sensing models across the entire
growth period, this study employs a hierarchical linear model based
on accumulated temperature and vegetation indices, which shows
significant advantages in monitoring winter wheat AGB at multiple
growth stages (Li et al,, 2022; Yue et al,, 2023; Zhao et al., 2025). In
this study, the calculation formula for the AGB monitoring model
based on UAV multispectral imagery as Equation 3:

Level 1: AGB = 3, + B, x EVI2; (3)

where AGB, EVI2;, B, and f3;; are the aboveground dry
biomass, enhanced vegetation index 2 obtained from UAV
multispectral imagery at different growth stages, the intercept and
the slope of the linear model, respectively.

At the second level, these parameters change according to the
phenological stages, and the first-level parameters are automatically
refined using the phenological data from the second level, as
calculated in Equation 4.

Level 2: = %,,0 + %,1 x GDD (4)
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where GDD represents growing degree day, SB;(j = 0, 1)
corresponds to f3 and B, from the HLM, respectively, ¥, is the
intercept and %,,; is the slope of each GDD.

2.6.2 Data assimilation modeling based on
particle swarm optimization

In PSO, a swarm of particles explores a D-dimensional
parameter space, with each particle representing a potential
solution. Particle positions and velocities are updated based on
both individual and collective experience to gradually approach the
global optimum (Vi and Ge, 2005; Elbeltagi et al., 2005). In this
study, AGB during key growth stages was defined as the state
variable for data assimilation. Each particle represents a set of
DSSAT model parameters, including four genotype traits (P1D,

TABLE 1 Initial values and ranges of calibration parameters or initial
data for the DSSAT model.

. Initial
Variable Ranges Reference
values 9
Plant density (m™) 350 300-400
Irrigation amount (mm) 150 90-240
Fertilization amount (kg N
a1 200 0-400
ha™)
Photoperiod parameter 50 30-70 Li et al,, 2015
Phyllochron interval
100 90-120
parameter
Root depth growth rate 3.0 2.5-3.5
Photosynthesis factor 1.0 0.8-1.0
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PHINT, RDGS, SLPF) and three management practices (planting
density, irrigation, and fertilization). According to preliminary
experiments conducted at the same experimental site and the
results of previous modeling studies, the initial velocity in each
dimension was set to approximately 10% of the dynamic range of
the corresponding variable (Table 1, Li et al,, 2015).

2.6.2.1 DSSAT model initialization

The model is initially configured using field survey data, default
parameters and historical data and are used to conduct biomass
simulations during key growth stages. The parameters and structure
of the crop growth model are typically set based on existing
knowledge, experience or default assumptions and are
subsequently refined and optimized through calibration and
assimilation processes to improve the predictive capabilities of
the model.

2.6.2.2 Particle swarm initialization

The basic assumption is that a swarm of 25 particles (Li et al.,
2015; Jin et al, 2017) moves with a certain velocity in a d-
dimensional search space. Each particle can adjust its trajectory
based on the best point found by itself in the current generation
(p_id) and the best point found by all particles in the swarm (p_gd).
In the PSO algorithm, the optimization variable is set as AGB
during critical growth stages, and a particle swarm is constructed.
Each particle represents a set of parameter combinations, with its
“position” corresponding to the current values of the parameters.
The starting position and velocity of each particle are determined.
The parameters subject to adjustment include four crop genotype
characteristics (P1D, PHINT, RDGS, and SLPF) (Li et al., 2015) and
three plant management parameters (plant density, irrigation
volume, and fertilization quantity) (Table 1). The initial position
and velocity of each particle are calculated as Equations 5, 6:

xi = (%15 X s Xig) (5)

Vi = (Vip, Vigs es Via) (6)

where xi and vi represent the initial position and velocity of the
i-th particle, respectively.

2.6.2.3 Fitness function construction

A cost function was defined to quantify the differences between
AGBr and AGBs. The function-generated fitness value indicated
whether the optimization process had reached the ideal set of
parameters,as shown in Equation 7

- ..  AGBs,—AGBr; ,
J = \/Efﬂ(imgr. ) /m @)

1

where AGBr, AGBs and m represent aboveground biomass
predicted from remote sensing data, aboveground biomass
simulated by the DSSAT model, and the number of monitored
growth stages, respectively.
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2.6.2.4 Particle swarm iterative search

Each particle’s fitness value is computed, and the individual best
(pbest) is updated if the fitness value surpasses the historical best.
Similarly, the global best (gbest) is updated if the particle’s fitness
exceeds the first gbest. The velocity and position (model
parameters) of the particle are then updated according to a pre-
defined Equations 8, 9:

k k Kk kK
viat t o= Vg + - xi) + 2M(Pga — Xia) (8)

gt = g v (9)
where x;4 and v;q denote the position and velocity of the i-th
particle in the d-th dimension of the parameter space, respectively.
The parameters (c;) and (c,) represent the cognitive and social
learning factors, both set to 2.0, which is suitable for almost all cases.
& and M are random values between 0 and 1, which helps the
particles explore the search space and obtain the optimal solution.
Detailed information on the PSO parameter settings can be found in
the study by Eberhart and Shi (2001).

2.6.2.5 Optimal result output

The DSSAT model is rerun using the updated parameters to
simulate AGB, and fitness is reassessed. This iterative process
continues until convergence criteria are met, such as a defined
error threshold or maximum number of iterations. If the iteration
target (100 iterations in this study) is not reached, the updated
positions are replaced and the next step is executed. The final
parameter set producing the best agreement between simulated and
observed AGB is identified, providing reliable estimates with
enhanced spatiotemporal resolution.

2.6.3 Optimizing N recommendations by
integrating target yield and data assimilation

N application at the jointing stage was adjusted according to the
fertilization plans of each plot, ensuring that the DSSAT model
optimized via data assimilation produced yields close to the target.
N input levels were adjusted within a pre-defined range (e.g. 0-360
kg N ha™) with a constant increment (e.g. 10 kg N ha™"), and the
model was run iteratively using the optimized parameters from the
previous data assimilation step. For each simulation, the predicted
yield was compared against the economically derived target yield.
The N rate corresponding to the lowest input that met or slightly
exceeded the target yield was selected as the optimal N
recommendation. The field-scale economic benefit was calculated
as Equation 10:

E = (Y x Py)=(N x Py) (10)

where E, Y, PY, N, and PN represent field-scale economic
benefit, yield (kg ha™'), the market price of winter wheat (CNY
kgfl), N fertilizer amount (kg ha™!), and the cost of N fertilizer
(CNY kg "), respectively. The values of yield and N fertilizer were
from local government (https://www.ndrc.gov.cn/fgsj/) and defined
as 2.4 CNY kg ' and 2.75 CNY kg, respectively.
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2.7 Model evaluation

The DSSAT model was calibrated by adjusting AGB to match
observed growth and yield measurements. Model evaluation was
based on field experiment data, using a stepwise parameter
adjustment approach to minimize simulation errors. During the
validation phase, independent experimental data were used to assess
model performance, primarily through statistical metrics such as R*
and nRMSE, to quantify the agreement between simulated results
and observed data, ensuring the model’s applicability and reliability
under different growing seasons and management conditions. The
model’s performance was quantified by the adjusted determination
coefficient (R?) and relative root mean square error (nRMSE), with
better performance being indicated by a higher R* and a lower
nRMSE. The formulas for calculating R*, RMSE, and nRMSE are
shown in Equations 11, 12, and 13, respectively.

P (Yi-Y)/(m-p-1)

R’ = 1-
S ST T Ty o
RMSE = 1/%2?=1(Yi—Y})2 (12)
RMSE

where n, Y, Y; and p represent the sample size, estimated value,
measured value and number of predictors, respectively. In subsequent
sections, R* for the calibration and validation sets are denoted as R?. and R,
respectively; nRMSE for these sets are represented as nRMSE, and nRMSE,.

3 Results and analysis

3.1 Winter wheat AGB estimation results
derived from hyperspectral data

In this study, the winter wheat AGB ranges for the training and
validation datasets were 1.84-14.14 t ha! and 0.84-15.44 t ha™!,
with mean values of 7.27 t ha™' and 5.93 t ha™', respectively

10.3389/fpls.2025.1658254

(Figure 4). To mitigate the effects of growth stages on AGB
remote sensing monitoring, this study integrated EVI and growth
stage information employing the HLM for winter wheat AGB
inversion. Inversion results indicated that the HLM performed
excellently, with R’c and R’v values of 0.94 and 0.82 and
nRMSEc and nRMSEv values of 13.62% and 15.42%, respectively
(Figure 3, Table 2). These results demonstrate the high accuracy of
the HLM in AGB inversion for winter wheat, providing reliable
estimates for subsequent N diagnosis.

3.2 Evaluation of winter wheat growth
process based on DSSAT data assimilation

The amount of simulated AGB under different N fertilizer
treatments based on the DSSAT model increased with the
advancement of growth stages. AGB accumulation increased with
increasing N fertilizer rates (Figure 5), while the difference between
N3 and N4 treatments was relatively small. This suggests that
excessive fertilization has a limited effect on crop yield
improvement. Therefore, N fertilizer recommendations should
balance both economic and ecological benefits. The amount of
simulated AGB at various growth periods closely corresponded to
the measured AGB, with nRMSE values of 11.20% and 19.44% for
the calibration and validation datasets, respectively (Figure 6a).
Similarly, the yield results simulated by the DSSAT model showed
good agreement with the observed data, with nRMSE values of
6.35% and 11.12% for the calibration and validation datasets,
respectively (Figure 6b).

3.3 Economic benefit analysis under
varying target yield scenarios

This study explores how crop income responds to different N
topdressing rates under fixed basal N levels (N1-N4), with total N
topdressing rates ranging from 0 to 360 kg ha™ (Figure 7). When
fertilizer costs are not considered, total income increases with the
amount of fertilizer applied, indicating that higher N application
can boost crop yield and, consequently, total income. Specifically,
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FIGURE 4
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Relationships between measured AGB and predicted AGB by the HLM. The horizontal lines represent the standard error.
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TABLE 2 Coefficient of each variable in AGB by HLM method.

Parameters  Fixed effect ¥ Yio R2c NRMSEc R2Y NRMSEv
for Bo 122 0.02

AGB 094 13.62% 082 15.46%
for B, 1335 038

the total income reached its maximum at a fertilization rate of  spatial distribution maps of AGB and N topdressing rates based on
360 kg ha™" under N1, N2, N3 and N4 treatment levels. However, =~ UAV remote sensing data and DSSAT model are shown in Figure 9.
maximizing income without considering fertilizer costs does not  The results reveal the spatial variability of crop growth status and
reflect the actual profit for farmers. Specifically, the optimal  nutrient requirements in the study area, providing data support for
fertilization rates for N1, N2, N3 and N4 treatments are 140 kg  the implementation of variable-rate fertilization management.
ha™!, 120 kg ha™!, 80 kg ha™' and 40 kg ha™", respectively (Figure 7).

In practical agricultural production, farmers should find a balance

between fertilizer application and its cost to optimize net income. 3.5 Assessment of optimized N topdressing
Therefore, the study highlights that while increasing fertilizer — rate performa nce

application can enhance crop income, excessive fertilization may

lead to high costs that reduce net income, making it crucial for In the recommended fertilization trial area (Experiment 3),
farmers to use an appropriate amount of fertilizer to  wheat yields ranged from 3.00 t ha™ to 8.08 t ha™'. Crop growth
maximize profitability. simulation models indicate continuous yield generally increases

with higher fertilization rates. Therefore, this study selected 125% of
the data assimilation-based recommended fertilization amount (T5)

3.4 N recommendation developed by as the control treatment. The average yields for treatments TO, T1,
integrating remote sensing data into the T2, T3, T4 and T5 were 4.73 t ha™*, 547 t ha™?, 5.50 t ha™*, 5.71 t
DSSAT model ha™, 6.46 t ha™" and 6.52 t ha™, respectively (Figure 10). The yield

of treatment T5 was slightly higher than that of T4 with no

The N topdressing rate recommended by the data assimilation  significant difference, but the yields of both treatments were
system are primarily determined based on the growth status of the  significantly higher than those of the other treatments. For
crop and exhibits a significant correlation with AGB at the jointing  economic benefits, treatment T4 slightly outperformed T5 with
stage (Figure 8). This relationship is described by a quadratic  no significant difference, and both treatments achieved significantly
function y = 92.61x "%, with R? of 0.65. A relatively low AGB  higher economic returns than the other treatments. This suggests
indicates weak crop development, necessitating a higher N rate. The  that while optimizing fertilization plans, a moderate reduction in N
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FIGURE 5
Simulated and measured AGB of winter wheat under different N treatments. Note: Vertical bars are standard deviations of measurements and
simulation.

Frontiers in Plant Science 08 frontiersin.org


https://doi.org/10.3389/fpls.2025.1658254
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Zhao et al.

10.3389/fpls.2025.1658254

121nRMSE, =11.20% 1 12
% |nRMSE, =19.44% =
< ¥ P
é 9]---- 1:1 line < 9
2 =]
<6 2 6
3 =
2 &
<
= 3 3 3
E E
» xn

0~ (2) 0l

3 6 9
Measured AGB (t ha'!)

FIGURE 6

nRMSE_ =6.35%
nRMSE, =11.12%
---- 1:1 line

Year
» 2015-2016
©2017-2018

(b)

3 6 9
Measured yield (t ha'!)

12

Relationships between measured and simulated AGB (a) and measured and simulated yield (b) for winter wheat based on DSSAT Model. Note: The

horizontal lines in the FIGURE represent the standard error.

input can still maintain high yield levels, providing a cost-effective
and efficient fertilization strategy for agricultural production. In
practical applications, appropriate N fertilization not only promotes
crop growth but also reduces the risk of environmental pollution.

4 Discussions

4.1 Significance of AGB remote sensing
monitoring in N fertilizer management

Data assimilation algorithms not only offer clear advantages in

estimating the current crop state but also demonstrate strong
robustness and dynamic adaptability in forecasting later growth

x103

stages. This research employs AGB as the assimilation variable,
which is vital for formulating accurate fertilization strategies. Li
et al. (2024) also employed AGB as a state variable for data
assimilation in N recommendation for rice. The AGB monitoring
model based on HLM achieved calibration and validation R? values
of 0.94 and 0.82 with nRMSE of 13.62% and 15.42% and provided
notable scalability throughout the growing season (Figure 2,
Table 2). The jointing stage, as the key period for winter wheat
topdressing, is highly sensitive to management practices. This study
demonstrates that the N topdressing rate reccommended by the data
assimilation system exhibits a negative power-law relationship with
aboveground biomass (AGB) at the jointing stage of winter wheat
(R* = 0.65), a pattern analogous to the critical nitrogen dilution
curve (Justes et al., 1994). This relationship arises primarily because

20
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FIGURE 7

Optimization of N fertilizer for maximizing crop yield and farmer’s net income. (a), (b), (c), and (d) represent the base fertilizer treatments as N1, N2,

N3, and N4, respectively.
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(1) plots with higher AGB have sufficient N accumulation and thus
require less additional N input, whereas plots with lower AGB are
relatively nitrogen-deficient and require greater N compensation., and
(2) spatial heterogeneity in soil nutrients and water results in
differences in crop growth potential, necessitating location-specific
adjustments of recommended fertilization even under uniform
management practices. Previous studies using growth indicators
such as leaf area index and nitrogen nutrition index for fertilizer
recommendation have also obtained similar results (Xue et al., 2008; Li
etal, 2024b). This study developed an empirical curve linking biomass
to recommended nitrogen application, but it was constructed using
data from a specific experimental field. With the accumulation and
optimization of more data, this approach has the potential to evolve
into a simple fertilization recommendation tool, serving as a practical
alternative to complex data assimilation systems.
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FIGURE 9

10.3389/fpls.2025.1658254

4.2 Constructing target yield for data-
driven N management

The setting of target yields should not solely focus on
maximizing yield, as this may lead to excessive use of N fertilizer,
resulting in environmental issues such as soil acidification and
groundwater pollution (Peng et al., 2010). In this study, target yield
is constructed based on economic benefits. The calculation of target
yield considers not only the final crop yield but also the relationship
between fertilizer costs and yield gains. Data assimilation-based
fertilization decisions driven by target yield allow for the balancing
of yield, costs and profits, thus maximizing economic benefits. The
recommendation to enhance N application in fields with poor crop
growth and reduce it in fields with robust growth is in agreement
with the results from previous research (Zhang et al., 2022).
Additionally, data assimilation-based N recommendation
methods facilitate the precise achievement of target yields and
quantify N fertilizer recommendations for heterogeneous growth
zones within fields (Figures 7, 9). In this study, the optimal
fertilization rates for N1-N4 treatments (140, 120, 80, and 40 kg
ha™) follow a trend consistent with previous research (Yang et al.,
2022; Li et al., 2024a).

Simulation results indicated that, compared with traditional
fertilization strategies, this method maintained relatively stable
yields while reducing N application by 6.69%-34.08% (Figure 10).
Therefore, the target yield-based data assimilation strategy holds
potential to become a practically applicable approach for
fertilization optimization (Wang et al., 2023). Setting target yields
depends largely on historical data and predictive models, which can
introduce errors, particularly in the face of significant climate
variability. To address these uncertainties and to evaluate the
environmental benefits of reduced N application, future research
integrating field measurements with modeling approaches is
essential for guiding sustainable fertilization practices.

N topdresing (kg ha™)
AL

<70 1110- 130 )
70-90  EE>130 0 5 10 20
90- 110

AGB prediction (a) and the corresponding fertilization recommendation (b) in the topdressing zone using a data assimilation system.
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4.3 Challenges in N recommendation
through data assimilation systems

Significant progress has been made in N recommendation
methods using data assimilation systems; however, numerous
challenges remain concerning their widespread adoption and
practical application in agriculture. This research primarily
focuses on growth differences in winter wheat caused by nutrient
factors and does not consider other influencing factors such as pest
and disease stress. The acquisition and quality control of multi-
source observational data are primary issues in current N fertilizer
recommendation systems (Lu et al., 2022). The effectiveness of data
assimilation heavily relies on the accuracy, frequency and spatial
coverage of observational data. Issues such as insufficient temporal
resolution, limited spatial precision and meteorological interference
limit the precision required for N management (Diacono et al,
2013). The uncertainty in remote sensing observations is introduced
into the assimilation process, and misleading parameter corrections
may occur when observational errors are combined with model
biases (Kang and Ozdogan, 2019). This study realized N fertilizer
recommendation applications based on UAV data, offering spatial
and temporal flexibility, thereby establishing a technically robust
and economically feasible pathway for precision agriculture
applications. In the future, integrating the spatial advantages of

satellite remote sensing data will further enhance the cost-
effectiveness and practicality of large-scale precision
agriculture applications.

This study not only validates the potential of data assimilation
in crop N management but also identifies the directions for the
further improvement of model reliability. However, the predictions
of a single crop growth model are inherently uncertain (Huang
et al,, 2017; Zare et al., 2024). The combination of multiple models
can effectively address the shortcomings of a single model’s
adaptability in specific scenarios, further advancing the
application and development of data assimilation technology in
agricultural management (Huang et al., 2017; Zare et al.,, 2024).
Existing research indicates that model integration or weighted
averaging methods can reduce biases that may arise from a single
model. Among studies comparing algorithms that include PSO,
most show that PSO outperforms other methods in terms of
convergence speed, computational efficiency, and assimilation
accuracy. However, some studies report that PSO is not the best-
performing algorithm, indicating that algorithm performance
depends on the specific study context, assimilation variables, and
model complexity (Table 3). This study selected the PSO algorithm
as the data assimilation method, which has demonstrated good
performance in assimilating initial input parameters and simulating
grain yield (Wang et al., 2024). The PSO algorithm can operate with

TABLE 3 Comparison of data assimilation algorithms, target variables, and performance in previous studies.

Data
assimilation Variables Main results Reference
algorithm
PSO showed hi fhici d bett imilati
1 Ricegrow rice PSO, SCE-UA LAL LNA showed higher efficiency and better assimilation Wang et al,, 2014
performance than SCE-UA.
PSO, SA, and SCE-UA all simulate winter wheat AGB well,
2 Aquacrop Winter wheat PSO, SCE-UA, SA AGB with SCE-UA achieving the highest accuracy and Xing et al., 2017
computational efficiency
The PSO algorith hi the highest in yield
3 ChinaAgrosys Winter wheat PSO, SCE-UA Yield estiemation gorithm achieves the highest accuracy in yle Jin et al., 2022

LAIL LNC, AGB, PSO, SA and SCE-UA represent leaf area index, leaf nitrogen concentration, aboveground dry biomass, particle swarm optimization, simulated annealing and shuffled complex

evolution.
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a simple encoding scheme and achieves higher retrieval accuracy for
nitrogen application rates (Wang et al., 2014). In this study, PSO
was applied for fertilizer recommendation, yielding stable results.
Future research should compare fertilization strategies developed
using multiple assimilation algorithms to identify more accurate
assimilation methods for more rational fertilization strategies.

5 Conclusion

This study established an N fertilization decision-making model
based on a data assimilation system and conducted detailed
evaluation and discussion. The main results are presented below:
(1) the AGB monitoring method was developed using GDD and
vegetation indices, achieving satisfactory results in both the
calibration and validation datasets, with R* (nRMSE) values of 0.94
(13.62%) and 0.82 (15.42%), respectively. (2) The data assimilation
stability for AGB and yield is relatively high based on the data
assimilation system. For AGB, the nRMSE values are 11.20% and
19.44% for the training and validation datasets, respectively, and for
yield, they are 6.35% for the training dataset and 11.22% for the
validation dataset. (3) The data assimilation-based recommended
fertilization system shows a negative power-law relationship with
AGB at the jointing stage (R*> = 0.65). Under different yield levels,
fertilization was reduced by 6.69%-34.08% compared with that under
high yield levels. Data assimilation-based recommended fertilization
system proves to be effective, enhancing resource utilization and
fostering more sustainable agricultural practices.

Data availability statement

The original contributions presented in the study are included
in the article/supplementary material. Further inquiries can be
directed to the corresponding author.

Author contributions

YZ: Methodology, Conceptualization, Writing — review &
editing, Visualization, Writing — original draft. ZW: Writing — review
& editing, Data curation, Methodology. CW: Methodology, Writing —
original draft, Validation. LX: Data curation, Writing - review
& editing. ZL: Writing - review & editing, Conceptualization,
Methodology. GL: Writing — review & editing, Funding acquisition.

References

Allen, R. G,, Pereira, L. S., Raes, D., and Smith, M. (1998). Crop evapotranspiration-
Guidelines for computing crop water requirements-FAO Irrigation and drainage paper
56 Vol. 300 (Rome: FAO), D05109.

Colago, A. F,, and Bramley, R. G. (2018). Do crop sensors promote improved
nitrogen management in grain crops?. Field Crops Research, 218, 126-140.

Frontiers in Plant Science

12

10.3389/fpls.2025.1658254

HEF: Writing - review & editing, Data curation, Project administration.
WY: Conceptualization, Writing — review & editing. MF: Writing —
review & editing, Conceptualization.

Funding

The author(s) declare financial support was received for the
research and/or publication of this article. This work was funded by
the project of Shanxi Province key lab construction
(Z135050009017-3-4), Shanxi Agricultural University Science and
Technology Innovation Fund Doctoral Initiation Project
(2023BQ67), Shanxi Province Higher Education Science and
Technology Innovation Project (2024L51), the 2023 Open Project
of the Huanghuaihai Key Laboratory of Smart Agricultural
Technology of the Ministry of Agriculture and Rural Affairs
(202401) and Shanxi Agricultural University Science and
Technology Innovation Enhancement Project (CXGC202444).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative Al statement

The author(s) declare that no Generative Al was used in the
creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this
article has been generated by Frontiers with the support of artificial
intelligence and reasonable efforts have been made to ensure
accuracy, including review by the authors wherever possible. If
you identify any issues, please contact us.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations,
or those of the publisher, the editors and the reviewers. Any product
that may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

Cui, Z., Zhang, H., Chen, X., Zhang, C., Ma, W., Huang, C., et al. (2018). Pursuing
sustainable productivity with millions of smallholder farmers. Nature 555, 363
366.

Diacono, M., Rubino, P., and Montemurro, F. (2013). Precision nitrogen
management of wheat. A review Agron. Sustain. Dev. 33, 219-241.

frontiersin.org


https://doi.org/10.3389/fpls.2025.1658254
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Zhao et al.

Eberhart, R, and Shi, Y. (2001). Particle swarm optimization: developments, applications
and resources, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat.
No.01TH8546), Seoul, Korea (South), 81-86 . doi: 10.1109/CEC.2001.934374.

Elbeltagi, E., Hegazy, T., and Grierson, D. (2005). Comparison among five
evolutionary-based optimization algorithms. Advanced Eng. Inf. 19, 43-53.

Eickhout, B., Bouwman, A. V., and Van Zeijts, H. (2006). The role of nitrogen in
world food production and environmental sustainability. Agriculture, ecosystems &
environment, 116(1-2), 4-14.

Gu, B, Ge, Y, Chang, S. X, Luo, W., and Chang, J. (2013). Nitrate in groundwater of
China: Sources and driving forces. Global Environ. Change 23, 1112-1121.

Huang, X., Huang, G, Yu, C, Ni, S,, and Yu, L. (2017). A multiple crop model
ensemble for improving broad-scale yield prediction using Bayesian model averaging.
Field Crops Res. 211, 114-124.

Huang, J,, Song, J., Huang, H.,, Zhuo, W., Niu, Q, Wu, S,, et al. (2024). Progress and
perspectives in data assimilation algorithms for remote sensing and crop growth model. Sci.
Remote Sens. 100146.

Jiang, Z., Huete, A. R, Didan, K., and Miura, T. (2008). Development of a two-band
enhanced vegetation index without a blue band. Remote sensing of Environment, 112
(10), 3833-3845.

Jin, Z., Guo, S. E.,, Li, S., Yu, F., and Xu, T. (2024). Research on the rice fertiliser
decision-making method based on UAV remote sensing data assimilation. Comput.
Electron. Agric. 216, 108508.

Jin, X,, Li, Z,, Yang, G., Yang, H., Feng, H., Xu, X,, et al. (2017). Winter wheat yield
estimation based on multi-source medium resolution optical and radar imaging data
and the AquaCrop model using the particle swarm optimization algorithm. ISPRS J.
Photogrammetry Remote Sens. 126, 24-37.

Jin, N,, Tao, B, Ren, W., He, L., Zhang, D., Wang, D,, et al. (2022). Assimilating
remote sensing data into a crop model improves winter wheat yield estimation based on
regional irrigation data. Agric. Water Manage. 266, 107583.

Justes, E., Mary, B., Meynard, J. M., Machet, J. M., and Thelier-Huché, L. (1994).
Determination of a critical nitrogen dilution curve for winter wheat crops. Ann. Bot. 74,
397-407.

Kang, Y., and Ozdogan, M. (2019). Field-level crop yield mapping with Landsat using
a hierarchical data assimilation approach. Remote Sens. Environ. 228, 144-163.

Li, S, Jin, Z., Bai, J., Xiang, S., Xu, C,, Yu, F,, et al. (2024a). Research on fertilization
decision method for rice tillering stage based on the coupling of UAV hyperspectral
remote sensing and WOFOST. Front. Plant Sci. 15, 1405239.

Li, Z,, Jin, X,, Zhao, C., Wang, J., Xu, X,, Yang, G., et al. (2015). Estimating wheat
yield and quality by coupling the DSSAT-CERES model and proximal remote sensing.
Eur. ]. Agron. 71, 53-62.

Li, Y., Miao, Y., Ata-UI-Karim, S. T., Liu, X., Tian, Y., Zhu, Y., et al. (2024b).
Sustainability assessment of nitrogen nutrition index based topdressing nitrogen
application. Field Crops Res. 307, 109260.

Li, Z., Zhao, Y., Taylor, J., Gaulton, R., Jin, X., Song, X,, et al. (2022). Comparison and
transferability of thermal, temporal and phenological-based in-season predictions of
above-ground biomass in wheat crops from proximal crop reflectance data. Remote
Sens. Environ. 273, 112967.

Liang, H., Wang, S., and Wei, S. (2017). Nitrate distribution and accumulation in
deep unsaturated zone soils in piedmont of North China Plain. Soils 49, 1179-1186.

Lu, J., Dai, E., Miao, Y., and Kusnierek, K. (2022). Improving active canopy sensor-
based in-season rice nitrogen status diagnosis and recommendation using multi-source
data fusion with machine learning. J. Cleaner Production 380, 134926.

Luo, L., Sun, S., Xue, J., Gao, Z., Zhao, J., Yin, Y., et al. (2023). Crop yield estimation
based on assimilation of crop models and remote sensing data: A systematic evaluation.
Agric. Syst. 210, 103711.

Ma, Q.,, Wang, M., Zheng, G., Yao, Y., Tao, R,, Zhu, M, et al. (2021). Twice-split
application of controlled-release nitrogen fertilizer met the nitrogen demand of winter
wheat. Field Crops Res. 267, 108163.

Morari, F., Zanella, V., Gobbo, S., Bindi, M., Sartori, L., Pasqui, M., et al. (2021).
Coupling proximal sensing, seasonal forecasts and crop modelling to optimize nitrogen
variable rate application in durum wheat. Precis. Agric. 22, 75-98.

Morris, T. F., Murrell, T. S., Beegle, D. B., Camberato, J. J., Ferguson, R. B., Grove, J.,
et al. (2018). Strengths and limitations of nitrogen rate recommendations for corn and
opportunities for improvement. Agron. J. 110, 1-37.

Peng, S., Buresh, R. J., Huang, J., Zhong, X., Zou, Y., Yang, J., et al. (2010). Improving
nitrogen fertilization in rice by site specific N management. A review Agron. Sustain.
Dev. 30, 649-656.

Qin, Z., Myers, D. B., Ransom, C. ], Kitchen, N. R,, Liang, S. Z., Camberato, J. ., et al.
(2018). Application of machine learning methodologies for predicting corn economic
optimal nitrogen rate. Agronomy Journal, 110(6), 2596-2607.

Ransom, C. J., Kitchen, N. R,, Camberato, J. J., Carter, P. R., Ferguson, R. B,
Fernandez, F. G,, et al. (2019). Statistical and machine learning methods evaluated for
incorporating soil and weather into corn nitrogen recommendations. Computers and
electronics in agriculture, 164, 104872.

Frontiers in Plant Science

10.3389/fpls.2025.1658254

Raun, W., Solie, J., and Johnson, G. (2002). Improving nitrogen use efficiency in
cereal grain production with optical sensing and variable rate application. Agron. J. 94,
815-820.

Shakoor, A., Xu, Y., Wang, Q., Chen, N., He, F., Zuo, H., et al. (2018). Effects of
fertilizer application schemes and soil environmental factors on nitrous oxide
emission fluxes in a rice-wheat cropping system, east China. Plos one, 13(8),
€0202016.

Si, Z., Zain, M., Li, S, Liu, J,, Liang, Y., Gao, Y., et al. (2021). Optimizing nitrogen
application for drip-irrigated winter wheat using the DSSAT-CERES-Wheat model.
Agric. Water Manage. 244, 106592.

Silva, L., Conceigio, L. A, Lidon, F. C., and Magis, B. (2023). Remote monitoring of
crop nitrogen nutrition to adjust crop models: A review. Agriculture 13, 835.

Wang, Y., Jiang, K., Shen, H., Wang, N., Liu, R, Wu, J., et al. (2023).
Decision-making method for maize irrigation in supplementary irrigation
areas based on the DSSAT model and a genetic algorithm. Agric. Water
Manage. 280, 108231.

Wang, L., Ling, Q,, Liu, Z,, Dai, M., Zhou, Y., Shi, X,, et al. (2025). Precision estimation
of rice nitrogen fertilizer topdressing according to the nitrogen nutrition index using uav
multi-spectral remote sensing: a case study in southwest China. Plants 14, 1195.

Wang, D., Struik, P. C,, Liang, L., and Yin, X. (2024). Developing remote sensing-and
crop model-based methods to optimize nitrogen management in rice fields. Comput.
Electron. Agric. 220, 108899.

Wang, H.,, Zhu, Y., Li, W., Cao, W., and Tian, Y. (2014). Integrating remotely sensed
leaf area index and leaf nitrogen accumulation with RiceGrow model based on particle
swarm optimization algorithm for rice grain yield assessment. J. Appl. Remote Sens. 8,
083674-083674.

Xing, H., Li, Z., Xu, X, Feng, H., Yang, G., Chen, Z., et al. (2017). Multi-assimilation
methods based on AquaCrop model and remote sensing data. Trans. Chin. Soc. Agric.
Eng. 33, 183-192.

Xue, L., and Yang, L. (2008). Recommendations for nitrogen fertiliser topdressing
rates in rice using canopy reflectance spectra. Biosystems Engineering, 100(4), 524-534.

Yang, S., Hu, L., Wu, H,, Ren, H,, Qiao, H,, Li, P,, et al. (2021). Integration of crop
growth model and random forest for winter wheat yield estimation from UAV
hyperspectral imagery. IEEE ]. Selected Topics Appl. Earth Observations Remote Sens.
14, 6253-6269.

Yang, M., Xu, X,, Li, Z., Meng, Y., Yang, X,, Song, X, et al. (2022). Remote sensing
prescription for rice nitrogen fertilizer recommendation based on improved NFOA
model. Agronomy 12, 1804.

Yi, D., and Ge, X. (2005). An improved PSO-based ANN with simulated annealing
technique. Neurocomputing 63, 527-533.

Yu, F, Bai, ], Fang, J., Guo, S., Zhu, S., and Xu, T. (2024). Integration of a parameter
combination discriminator improves the accuracy of chlorophyll inversion from
spectral imaging of rice. Agric. Commun. 2, 100055.

Yue, J, Li, T., Feng, H., Fu, Y., Liu, Y., Tian, J., et al. (2024). Enhancing field soil
moisture content monitoring using laboratory-based soil spectral measurements and
radiative transfer models. Agric. Commun. 2, 100060.

Yue, J,, Yang, H,, Yang, G., Fu, Y,, Wang, H., and Zhou, C. (2023). Estimating
vertically growing crop above-ground biomass based on UAV remote sensing. Comput.
Electron. Agric. 205, 107627.

Zare, H., Weber, T. K., Ingwersen, J., Nowak, W., Gayler, S., Streck, T., et al. (2024).
Within-season crop yield prediction by a multi-model ensemble with integrated data
assimilation. Field Crops Res. 308, 109293.

Zhang, K., Cao, Q,, Song, X, Han, B,, Zhang, Y., Liu, X,, et al. (2023). Remote sensing
approaches for crop nutrition diagnosis and recommendations for nitrogen fertilizers
in rice at canopy level. Arch. Agron. Soil Sci. 69, 2878-2897.

Zhang, J., Wang, W, Krienke, B., Cao, Q., Zhu, Y., Cao, W., et al. (2022). In-season
variable rate nitrogen recommendation for wheat precision production supported by
fixed-wing UAV imagery. Precis. Agric. 23, 830-853.

Zhang, K., Yuan, Z., Yang, T., Lu, Z., Cao, Q., Tian, Y., et al. (2020). Chlorophyll
meter-based nitrogen fertilizer optimization algorithm and nitrogen nutrition index
for in-season fertilization of paddy rice. Agron. J. 112, 288-300.

Zhao, B., Dong, S., Zhang, J., and Liu, P. (2013). Effects of controlled-release fertiliser
on nitrogen use efficiency in summer maize. PloS One 8, €70569.

Zhao, Y., Feng, H., Han, S., Wang, C., Feng, M., Xiao, L., et al. (2025). A UAV-based
hybrid approach for improving aboveground dry biomass estimation of winter wheat.
Eur. ]. Agron. 168, 127638.

Zhao, Y., Li, Z., Wang, J., Yang, W., Duan, D., Xu, X,, et al. (2019). Recommendations
for Nitrogen Fertilizer in Winter wheat Based on Nitrogen Nutrition Index," 2019 8th
International Conference on Agro-Geoinformatics (Agro-Geoinformatics), Istanbul,
Turkey, 1-4, IEEE. doi: 10.1109/Agro-Geoinformatics.2019.8820439.

Zhao, Y., Wang, J., Chen, L., Fu, Y., Zhu, H., Feng, H,, et al. (2021). An entirely new
approach based on remote sensing data to calculate the nitrogen nutrition index of
winter wheat. J. Integr. Agric. 20, 2535-2551.

frontiersin.org


https://doi.org/10.3389/fpls.2025.1658254
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

	Optimizing nitrogen topdressing for winter wheat by coupling remote sensing data with the DSSAT model
	1 Introduction
	2 Materials and methods
	2.1 Experimental design
	2.2 Obtaining agricultural parameters of winter wheat
	2.3 Meteorological data collection
	2.4 Remote sensing data acquisition
	2.5 Selection of vegetation indices
	2.6 Data assimilation framework for optimizing N application using the DSSAT model
	2.6.1 Aboveground dry biomass monitoring model based on UAV remote sensing data
	2.6.2 Data assimilation modeling based on particle swarm optimization
	2.6.2.1 DSSAT model initialization
	2.6.2.2 Particle swarm initialization
	2.6.2.3 Fitness function construction
	2.6.2.4 Particle swarm iterative search
	2.6.2.5 Optimal result output

	2.6.3 Optimizing N recommendations by integrating target yield and data assimilation

	2.7 Model evaluation

	3 Results and analysis
	3.1 Winter wheat AGB estimation results derived from hyperspectral data
	3.2 Evaluation of winter wheat growth process based on DSSAT data assimilation
	3.3 Economic benefit analysis under varying target yield scenarios
	3.4 N recommendation developed by integrating remote sensing data into the DSSAT model
	3.5 Assessment of optimized N topdressing rate performance

	4 Discussions
	4.1 Significance of AGB remote sensing monitoring in N fertilizer management
	4.2 Constructing target yield for data-driven N management
	4.3 Challenges in N recommendation through data assimilation systems

	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References


