& frontiers | Frontiers in

@ Check for updates

OPEN ACCESS

EDITED BY
Gemine Vivone,
National Research Council (CNR), Italy

REVIEWED BY
Yue Lin,

Timberlands Limited, New Zealand
Liu Wenchao,

China Agricultural University, China

*CORRESPONDENCE
Tongyi Huang
thuang_321@163.com

RECEIVED 01 July 2025
ACCEPTED 16 October 2025
PUBLISHED 07 November 2025

CITATION
Liu J, Chen Z, Luo B, Sun A, Wen X and
Huang T (2025) Estimation of forest above-
ground biomass based on stacked ensemble
model in Chongging, China.

Front. Plant Sci. 16:1657170.

doi: 10.3389/fpls.2025.1657170

COPYRIGHT

© 2025 Liu, Chen, Luo, Sun, Wen and Huang.
This is an open-access article distributed under
the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

Frontiers in Plant Science

TvPE Original Research
PUBLISHED 07 November 2025
po110.3389/fpls.2025.1657170

Estimation of forest
above-ground biomass
based on stacked ensemble
model in Chongqging, China

Jinlian Liu, Zhiyun Chen, Bangxiang Luo, Ao Sun,
Xuezhong Wen and Tongyi Huang*

Institute of Forestry Big Data Application Research, Chongging Academy of Forestry Planning and
Design, Chongging, China

Accurate regional-scale estimation of forest aboveground biomass (AGB) is
critical for effective forest management and terrestrial carbon cycle research.
However, applications integrating multiple machine learning models (MLs) for
forest AGB estimation in mountainous forests remain limited. In this study, we
introduced a practical method to estimate diameter at breast height (DBH < 5
cm) for under-threshold trees using National Forest Inventory (NFI) data. By
combining Sentinel-2 remote sensing imagery and DEM data, we employed
individual MLs (RF, XgBost, CatBoost and SVM) and a stacking approach to
estimate forest AGB in Chongging under two scenarios: with and without
under-threshold trees. The DBH estimation method achieved high accuracy
(R?=0.93, RMSE=1.46 cm). Feature importance analysis showed spectral bands
dominated predictors, while vegetation and topographic indices varied across
models. CatBoost outperformed RF and XgBoost in both scenarios. The stacked
ensemble model demonstrated best performances in including under-threshold
trees in cross-validation (CV) and external verification (EV) (R?=0.65, RMSE=24.34
Mg-ha "*; R?=0.68, RMSE=25.45 Mg-ha ), generating 10m-resolution AGB maps
with consistent spatial patterns suitable for mountainous urban terrain. This work
advances AGB estimation in southwestern China’s mountains regions and
provides insights for forest ecology and management.

KEYWORDS

above-ground biomass, national forest inventory, remote sensing, machine learning,
stacked ensemble model

1 Introduction

Forests play a crucial role in ecosystem services by providing renewable materials and
energy, maintaining biodiversity, conserving water and preventing soil erosion. They also
significantly contribute to the global carbon cycle, with plant photosynthesis accounting for
approximate 80% carbon storage of the terrestrial ecosystem (Liu et al, 2021). As an
important determinant of plant light use, turn over, and respiration, forest above-ground
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biomass (AGB) is a key index to assess forest maturity and carbon
sequestration capacity (Hao et al., 2020; Shen et al., 2020).

Forest AGB estimation approaches can be categorized into filed
measurements, remote sensing-based modeling and process-based
model simulation (Thornton et al., 2002; Zhu et al., 2020; Guo et al.,
2023). Forest inventory data provides a direct measurement which
is a valuable resource for forest AGB research, however, it is
expensive and time-consuming to implement and limited in
spatial explicit mapping. Process-based models contain detailed
ecological processes and simulate biomass allocation dynamics
which can be used for AGB estimation, but in most cases,
running these models is a daunting task since they need abundant
variables and field specific calibrations (Veroustraete et al., 2002;
Tian et al,, 2017). Due to the limitations of traditional forest
inventory methods and process-based model simulations, remote
sensing-based approaches has been widely employed in forest AGB
in the past decades (Goetz et al., 2009; Zhu et al., 2020), with remote
sensing technology achieving considerable progresses and
numerous agencies launching multi-sensor satellites (Qian et al,
2021). Accurate forest AGB estimation via remote sensing depends
on three factors: field data, imagery acquisition, and model selection
(Puliti et al., 2020; Wai et al., 2022; Feng et al., 2025).

Field data used for remote sensing-based AGB estimation
typically comes from three sources: plots measured by researchers
for specific studies, national forest inventory (NFI) data, and data
compiled from previously published literature. Data from literature
is often used as indirect validation data rather than a direct data
source of research (Chang et al., 2021). Field data collection offers
flexibility in plot design (density, size) and measurement thresholds
to meet specific research objectives; however, this approach may be
impractical for studies conducted over large geographical extents
(Lei et al., 2009; Li et al., 2018; Chen et al., 2019a). NFI data was
conducted through periodic surveys of permanent sample plots to
monitor the status of forest resources at national scale. NFI data
format is consistent at the provincial scale, making it a valuable
source for regional remote sensing-based AGB assessments (Lei
et al,, 2009; Xie et al,, 2011). However, using NFI data without any
pre-processes in remote sensing-based AGB studies could introduce
uncertainties due to its measurement threshold and sub-sample
design in NFI field measurements (Fridman et al., 2014;
Breidenbach et al., 2020; Perssion and Stahl, 2020; Wang et al.,
2024). For instance, China’s National Forest Inventory adopts a 5-
cm DBH measurement threshold, excluding smaller trees per
technical specifications. This protocol stems from cost-benefit
analyses indicating that sampling sub-threshold trees incurs
disproportionate resource expenditures relative to their marginal
utility in national-scale forest ecology assessments and management
frameworks. Nevertheless, this exclusion potentially
underestimated the ecological significance of under-threshold
trees (DBH < 5 cm) in forest ecosystems, considering natural
regeneration dynamics in certain regions and the impact of
China’s ongoing afforestation and forest quality improvement
initiatives (Xie et al., 2011; Li et al., 2022).

Remote sensing data used for forest AGB estimation is typically
categorized into radar and optical data. Radar data, with variations
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in wavelength, polarization, and angle of incidence, had been
proven useful for forest biomass estimation due to their influence
on backscatter coefficients (Goetz et al., 2009). However, small
bandwidth, high cost of airborne acquisition, low sampling density
and limited coverage hinder its application in regional forest AGB
research (Lu, 2006; Kumar et al., 2015). Optical sensors, including
Sentinel-2, Landsat-8, SPOT, ASTER, CVERS, QuickBird, MODIS
and AVHRR, have also been primary data sources for forest AGB
estimation with various spectral, spatial, radiometric and temporal
resolutions (Puliti et al., 2020; Yang et al., 2023). In recent years,
Sentinel-2 and Landsat-8 have emerged as widely used optical
remote sensing platforms for forest AGB estimation at regional
scales, owing to their free access and multi-spectral capacity (Puliti
et al., 2020;Qian et al, 2021; Zhu et al, 2020). Compared with
Landsat-8, Sentinel-2 offers higher spatial and temporal resolution,
as well as broader spectral band range. Among optical remote
sensing data, Sentinel-2 includes three bands in the red-edged
range, which are particularly useful for monitoring vegetation
health information, making it popular in forest AGB research.
The procedure for estimating forest AGB using Sentinel-2
typically involved extracting reflectance, vegetation and
biophysical indices from images, and then building the
relationship between these variables and forest AGB values
(Chrysafis et al, 2017; Babcock et al, 2018; Chen et al., 2019a).
Each index adds certain information about forest AGB. Band
reflections, such as red, green, infrared, red-edge bands,
differentiate ground objects and reflect vegetation growth.
Compared to visible bands, the red-edge band is highly
responsive to minor changes in vegetation canopy structure and
chlorophyll contents (Wai et al., 2022). Vegetation indices, such as
the normalized difference vegetation index (NDVI) and Normalized
Difference index (NDII), are simple and effective to evaluate surface
vegetation status and have been widely employed in forest AGB
estimation. However, the spectral saturation effect in areas of high
vegetation density could affect model accuracy. Some optimized
indices, such as the simple ratio (SR), could overcome the saturation
effect due to their greater sensitivity to higher AGB values (Schlerf
et al., 2005). Biophysical indices, such as leaf area index (LAI),
fraction of green vegetation cover (FCOVER) and Chlorophyll
content in the leaf (Cab), provide detailed information on
vegetation spatial distribution and dynamics and thus improve
forest AGB estimation performance (Zhang et al., 2023).
Additionally, topographic features, such as elevation, slope and
aspect, are closely related to forest growth and distribution pattern.
Variables obtained from the high-resolution DEM data further aids
AGB estimation and significantly influence the spatial distribution
of estimated AGB map (Chen et al., 2019b; Wang et al., 2021). Thus,
combining information of different indices is important to improve
forest AGB estimation accuracy.

Forest AGB estimation employs two modeling frameworks:
parametric models (regression with predefined function forms)
and non-parametric approaches (machine learning algorithms
without distribution assumptions). Typically, parametric models
are divided into two groups. The first category comprises of linear
and non-linear models that calculate the relevance of remote
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FIGURE 1

The location and elevation of Chongging.

sensing variables to forest AGB, such as stepwise regression models
(SWR), logistic regression and correlation coefficient analyses (Lu,
2005; Liu et al., 2017; Ma et al., 2021). The other category consisted
of spatial co-simulation algorithms that spatially interpolate forest
AGB between remote sensing variables and plot data, such as
geographically weighted regression (GWR) and sequential
Gaussian simulation (Zhang et al, 2013; Chen et al., 2018).
Parametric models heavily depend on measurable vegetation
parameters, thus, inaccuracies in these parameters inevitably
interfere with AGB estimation results. Non-parametric models,
also referred as machine learning methods, include k-nearest
neighbor (KNN), random forest (RF), extreme gradient boosting
(XgBoost), Categorical Boosting (CatBoost), support vector
machine (SVM), maximum entropy (MaxEnt), bagging stochastic
gradient boosting (BagSGB), etc. (Li Y. C. et al., 2019). Compared to
the parametric models, machine learning approaches have the
ability to process complex and non-linear relationships, estimate
with high precision, and deal with various data types (Puliti et al,,
20205 Li et al., 2021; Tang et al., 2022). For example, RF is easier to
achieve higher accuracy due to its strong generalization ability,
insensitivity to multicollinearity and low sensitivity to noise (Chen
etal, 2019b; Li et al., 2020). XgBoost is capable of processing large-
scale data, and the sparse perception algorithm automatically learn
its splitting direction in the samples with missing eigenvalues
without additional preprocessing (Liu et al., 2017). CatBoost has
advantages in handling class features, controlling overfitting,
dealing with missing values, and computing efficiency (Zhang
et al, 2024). SVM excels at handling high-dimensional data and
effectively avoids the “curse of dimensionality,” meaning that an
increase in the number of features does not necessarily lead to a
decline in performance (Luo et al, 2024). Due to the inherent
strengths and limitations across different algorithms, no single
method has emerged as universally optimal for estimating forest
AGB. Empirical studies demonstrate that stacking can significantly
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improve predictive accuracy by synergistically integrating outputs
from multiple single-algorithm models, thereby mitigating
information loss. Such stacking frameworks have been
successfully applied in diverse domains, including weather
forecasting, and environmental monitoring. For instance, a
stacked ensemble combining multiple machine learning
algorithms with a deep residual network achieved high cross-
validation accuracy in generating surface visibility products
(Zhang et al., 2024). Furthermore, based on entropy weighting, a
composite model is developed by integrating moving average
(ARIMA), artificial neural networks (ANNs), and exponential
smoothing (ESM) to predict PM2.5 concentration time series (Ma
et al, 2021). Despite notable progresses, research on stacked
ensemble models for AGB estimation was still limited, revealing
significant methodological opportunities.

As a mountainous metropolis, Chongqing’s extensive forest
coverage establishes it as a critical regional carbon sink. However,
slope-driven environmental vulnerability and recurrent drought
events pose challenges to carbon pool stability, underscoring the
urgent need for further forest AGB research. Consequently, the
primary objectives of this study are to: (1) develop a method to
estimate DBH of under-threshold trees in 2017 and calculate the
plot-level forest AGB values; (2) establish individual and stacked
ensemble model for forest AGB estimation and compare their
performances; and (3) generate a high spatial resolution forest
AGB map for the study area and analyze its spatial distribution.

2 Materials and methods

2.1 Study area

Chongging, located in the upper reaches of the Yangtze River
basin, is one of the economy centers in southwest China (Figure 1).

frontiersin.org


https://doi.org/10.3389/fpls.2025.1657170
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Liu et al.

It spans between 105°28’-110°19’E longitude and 28°16’-32°20'N
latitude, covering an area of approximately 82,400 km?. Renowned
as ‘The Mountain City’, Chongqing is defined by its rugged terrain
of hills and mountains. The region falls in the humid subtropical
zone, experiencing a typical continental monsoon climate. The
mean annual temperature ranges from 17 to 18.8°C, with an
average annual precipitation of 1000-1400 mm and annual
sunshine duration of 1000-1400 hours. The forest types in
Chongqing comprise mainly of evergreen broad-leaved forests,
secondary and warm coniferous forests, bamboo forests, and
evergreen broad-leaved shrubs. The major tree species found in
Chonggqing include Pinus massoniana, Cunninghamia lanceolata,
Cypress, and Quercus spp.

2.2 Data source and processing

2.2.1 Field data

The field campaigns was carried out in Chongqing from April to
October 2017, according to the NFI technique protocol. Mechanical
sampling method was used to set up fixed plots, with a spacing of 4
km x 4 km. Each sample plot was a square of 25.82 m x 25.82 m,
covering an area of 0.0667 ha. The tree species, tree number, scale
stick type, DBH, volume per tree and age of all trees with DBH > 5
cm and height of dominant trees in the sample plots were measured
and recorded. The NFI data also contained the corner coordinates
of the sample plot and the horizontal distance between the corner
points. After data cleaning, the actual number of available sample
plots was 623. In 2021, the NFI data collecting shifted to an annual
measurement scheme. This new protocol involved surveying one-
fifth of all permanent plots each year, completing a full inventory
cycle in five years. Previously, all plots were measured once every
five years. Thus, a plot measured in 2017 would have been revisited
in either 2021, 2022, or 2023. Consequently, NFI data from 2021 to
2023 could be utilized to estimate the under-threshold DBH from
2017 and delineated plot boundaries based on the coordinates of the
four corners.

2.2.2 Sentinel-2 data

Sentinel-2 MSI level 1C products were downloaded from the
Copernicus Data Space Ecosystem (https://
dataspace.copernicus.eu/) between April and October 2017.
Sentinel-2 level 1C data consist of 13 spectral bands at spatial
resolutions of 10 m, 20 m and 60 m, respectively. Atmospheric
correction was applied using sen2cor (version 2.8.0) to obtain level
2A products. Clouds were masked based on the pixel values of
screen classification layer (SCL) products. The 20 m and 60 m
images were then mosaic and resampled to 10 m spatial resolution,
and the final 12 spectral bands (Band 10 was removed by
atmospheric correction) were stored by tiles. 20 cloud-free mosaic
tiles were generated based on the UTM zone (48N and 49N) via
WGS84 projection which cover the entire study area.
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2.2.3 DEM

Digital Elevation Model (DEM) data with spatial resolution of
30 m was downloaded from European Space Agency (https://
www.esa.int) and clipped based on Sentinel-2 tile grids and
reprojection to WGS 84 UTM zones 48N and 49N.

2.2.4 Remote sensing indices

In our study, 40 remote sensing-based indices were selected for
AGB estimation (Table 1). Among them, 33 were obtained from
Sentinal-2 data (12 band reflectance, 16 vegetation indices and 5
biophysical indices), 7 topographic indices were derived from the
DEM data. The final variables used for model training and
prediction were 20. The biophysical indices were computed using
SNAP (ESA, Windows 64-bit, version 8.0), the others were
computed by R.

2.3 Method

2.3.1 DBH estimation of under-threshold trees

The DBH values of under-threshold trees (DBH < 5 cm) in the
2017 NFI data were estimated based on all preserve trees which
DBH reached 5 cm in previous years and enter-threshold trees
which DBH reached 5 cm in current forest inventory year data from
the 2021-2023 NFI data (Figure 2). We first calculated the DBH
growth rates of 80% preserve trees in the plots according to the tree
ID, and then estimated the average tree growth rates which are
grouped by plots, tree species and DBH levels including 4 types as
(5-10] c¢m, (10-15] cm, (15-20] cm and greater than 20cm. The
estimated DBH of the remaining 20% preserve trees was compared
with the measured DBH to verify the method performance. The
result showed that the method has a sound result and can be
employed for further analysis (Figure 3). Finally, we applied the
method to calculate the DBH growth rates for all preserve trees,
then these growth rates in different groups were subtracted from
entered-threshold trees” DBH values (same group method) in the
2021-2023 NFI data to get these trees’ DBH values in 2017 when
they were under-threshold.

2.3.2 Plot-level AGB calculation

Plot-level AGB was calculated by adopting Zeng and Tang’s
method (Zeng and Tang, 2011). Zeng and Tang (2011) compared
their approach with different empirical studies across the globe, and
demonstrated that the theoretical parameter value of 7/3 is capable
of describing the average allometric relationship between AGB and
DBH of different tree species in their study. The coefficient between
AGB and DBH can be obtained approximately by multiplying 0.3 to
wood density p. The calculation follows Equation 1.

AGB =03 x p x D? 1)

where p represents basic wood density (g:cm™) and D
represents DBH. Plot-level AGB is the sum of the AGB of all the
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TABLE 1 Details of features used for AGB estimation.

TABLE 1 Continued

Data o Data o
Group Features Description Group Features Description
source source
Band 1 Reflectance at abs'orpfion
442.7 nm ration index,
((B5-B4)-0.2*
Band 2 Reflectance at (B5-B3)]*(B5-
492.7 nm B4)
Band 3 Reflectance at MSI® Moisture Stress
559.8 nm Index, B11/B8
Band 4 Reflectance at Meris terrestrial
664.6 nm MTCE chlorophyll
Reflectance at index, (B6-B5)/
Band 5 (B5-B4)
704.1 nm
Mid-inf;
Reflectance at 7 id 1n' rared
Band 6 MVI vegetation
7405 nm index, BO/B11
Reflectance mdex,
Band 7 ;{;IZC:::C a Normalized
’ NDI* Difference
d Reflectance at index, (B8 -
Band 8 832.8 nm BL1)/(BS + B11)
Reflectance at Normalized
Band 8A 864.7 nm Difference
NDSI® Salinity Index,
Band 9 Reflectance at (B11 - B12)/
945.1 nm (B11 + B12)
Reflectance at Normalized
Band 11 X
1613.7 nm Difference
NDVI® Vegetation
Band 12 Reflectance at Index, (B8 -
Sentinel s 22024 nm B4)/(B8 + B4)
entinel-
Browning Simple Ratio of
BRI! Reflectance SR 833nm/1649nm,
Index, (1/B3-1/ B8/B11
B5)/B9
Simple Ratio of
Chigreen? Chlorophyll S 1650nm/
Green, B3/B7 2218nm, B11/
Chlorophyll B12
Chlrededge’ Index Red-Edge, Chlorophyll
(BI/BS) - 1 Cab content in the
Chlorophyll leaf
CIgreen3 Index Green, owe Canopy Water
(B9/B3) - 1 Content
Chlorophyll Biophysical index Fraction of
Vegetation index
8 Clrededge’ Red-Edge, B5/ FAPAR Absorbed
B7
Photosynthetically Active
Chlorophyll Radiation
vegetation Fracti £
CVI4 ! E raction o
index, B9*BS5/ cover vegetation cover
(B312)
LAIL Leaf Area Index
Green
Normalized Aspect™? Aspect of the
Diffe lot
GNDVI® i erer%ce plo
Vegetation )
Index, (B7-B3)/ DEM Topographical Curvature® Curvature of the
(B7+B3) index plot
MCART® Modified Elevation Elevation of the
chlorophyll plot
(Continued) (Continued)
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TABLE 1 Continued

Data

F r
source eatures

Group

Description

Surface

Roughness of

the plot, the

difference

between the
Roughness'? maximum and
the minimum
value of a cell
and its 8
surrounding
cells

Slope'? Slope of the plot

Topographic

Position Index,

the difference

between the
TPI'? value of a cell
and the mean
value of its 8
surrounding
cells

Topographic
Wetness Index,
TWI=In[Ac/tan
(slope)], where
Ac is the
catchment area
directed to the
vertical flow

TWI®

Merzlyak et al., 2003; 2 Gitelson et al., 2006; ® Gitelson et al., 2003; * Hunt et al.,, 2011; ° Chen
et al., 2019a; ® Heiskanen, 2006; ” Schlerf et al., 2005; ® Main et al., 2011; ° Richardson et al.,
2002; '° Shibayama et al., 1999; ' Datt, 1999; ' Wilson et al., 2007; ** McNab, 1993.

2021-2023
Preserve trees

2021-2023
Enter-threshold trees

(5-10] cm

Step 2

>20 cm

FIGURE 2

2017
Preserve trees

Average tree
growth rates

(10-15] em
(15-20] cm

10.3389/fpls.2025.1657170

trees in the plot. The p used for AGB calculation of different tree
species are presented in Table 2 and Supplementary Table S1. The p
of most tree species refer to Zeng (2018) paper, while p of other
trees species which are not covered in the paper were adopted from
“Testing basic wood density of national dominant species (group)”
(China’s Forestry Industry Standard, LY/T 3256-2021).

2.3.3 Feature selection and variable importance
In this study, Recursive Feature Elimination with Cross-
Validation (RFECV), which was a robust feature selection method
that intelligently selects features by recursively removing the least
important features and evaluating model performance using cross-
validation at each step, was employed to select 40 remote sensing
indicators, resulting in the identification of 20 key variables that
were common across four machine learning models: RF, XgBoost,
CatBoost, and SVM (Figure 4). For these 20 remote sensing
indicators, the pearson correlation coefficient was calculated to
quantitatively assess the linear correlation between each feature
variable and total forest AGB. Subsequently, each model was trained
using 20 selected feature set, and feature importance analysis was
conducted through 100 repetitions of 5-fold cross-validation.

2.3.4 Cross-validation and model parameter
tuning

This study employed the grid search method combined with
cross-validation for hyperparameter optimization. Grid search is an
exhaustive search method, which searches for the optimal
hyperparameters by traversing all possible combinations of
hyperparameters. The hyperparameter ranges for different models
in Supplementary Table S2. To enhance the reliability and
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The process of DBH estimation of under-threshold trees. Take a tree species in a plot as an example.
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Scatter plot of estimated DBH and measured DBH.

generalizability of the model, a 5-fold cross-validation strategy was
implemented during the hyperparameter tuning process. The
original training dataset was randomly partitioned into five equal-
sized subsets. In each iteration of cross-validation, four subsets were
used as the training data to fit the model, while the remaining one
subset was retained as the validation data for performance
evaluation. This process was repeated five times, with each subset
used exactly once as the validation set. The optimal hyperparameter
combinations determined through the optimization process were
presented in Figure 5 and Table 3.

2.3.5 Development of stacked ensemble model

The stacked ensemble model integrates four distinct machine
learning models—RF, XgBoost, CatBoost, and SVM—each offering
unique strengths in capturing diverse data patterns. RF regression
employs multiple decision trees on data subsamples and aggregates
their predictions to enhance accuracy and reduce overfitting (Zhang
et al., 2024). XgBoost is an efficient gradient boosting
implementation that improves performance through
regularization, sparsity-aware splitting, and parallel processing
(Chen and Guestrin, 2016). CatBoost, also based on gradient
boosting, excels at handling categorical features effectively while
resisting overfitting and improving generalization (Luo et al., 2024).
SVM completes the ensemble by identifying optimal hyperplanes
for complex classification boundaries (Luo et al., 2024).

This study employs Ridge Regression (RR) as the meta-model in
a stacked ensemble model. During the stacking process, the
performance is evaluated using a sample-based cross-validation
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(CV) and external verification (EV). This study adopts 5-fold
cross-validation that commonly used to test model robustness,
where all site-based samples are randomly divided into five
subsets. Each time, the model is trained on data from four subsets
and tested on the remaining subset. In contrast, the EV experiment
assesses the model’s generalization capability (i.e., true predictive
performance) on a completely independent dataset that is not
involved in any part of the model training process. In each
iteration of the 5-fold cross-validation, the four base models are
trained in parallel on the same training set and generate predictions
on the test set. The predictions from the base models are used as
new features, along with the target variable, to train the meta-model
(RR). Subsequently, the external test values are input into the base
models for training, and the results are fed into the trained stacked
ensemble model for prediction. The final predictions are then
validated (Figure 6).

2.3.6 Model evaluation and uncertainty analysis

Model performance was evaluated using coefficient of
determination (R?), mean absolute error (MAE) and root mean
square error (RMSE) and root mean square error percentage
(RMSE%). The calculation follows Equations 2-5.

n ~\2
Ry, § :1_21':1()’1‘—)’1') P
07 SLi-y)° @
1 n ~
MAE(y, y) = o E,—Zl‘}’i =il 3)

frontiersin.org


https://doi.org/10.3389/fpls.2025.1657170
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Liu et al.

10.3389/fpls.2025.1657170

TABLE 2 Basic wood density (p) of different tree species used for plot-level AGB calculation.

Tress species/Groups

Tress species/Groups

Quercus 0.5762 Tsuga 0.4420
Abies 0.3464 P.sylvestris var. mongolica 0.3750
Picea 0.3730 Liquidambar formosana 0.5035
Betula 0.4848 P.elliottii 0.4118
Larix 0.4059 Salix 0.4410
Cunninghamia Lanceolata 0.3098 Eucalyptus 0.5820
P.massoniana 0.4476 Cryptomeria 0.3493
Populus 0.4177 Robinia pseudoacacia 0.0674
P.yunnanensis 0.3499 Paulownia 0.2370
P.densata 0.4720 Keteleeria fortunei 0.4485
Tilia 0.3200 Phoebe zhennan 0.4807
Fraxinus mandshurica Cinnamomum

Juglans mandshrica 0.4640 Sassafras 0.4600

Phellodendron amurense Phoebe
Schima superb 0.5563 Abrus precatorius 0.5843
P.tabulaeformis 0.4243 Melia azedarach L. 0.4389
P.koraiensis 0.3130 Other pines 0.4500
Ulmus 0.4580 Other hardwood broad-leaves 0.6250
P.armandii 0.3930 Other softwood broad-leaves 0.4430

RMSEG: 7) =\ S0~ 7 @
\ F om0 _)/1\1')2

Where y and j represents actual and predicted values,
respectively. y is the average actual values. n is the number of
training datasets.

The uncertainty of the model was determined by the estimated
values in cross validation, and the calculation follows Equation 6.

n -3 2
Uncertainty = M% ©)

Where nis 5and p; is the predicted value of single-fold cross-
validation. p is the average of the predicted values of the 5-fold
cross-validation. The paper framework is shown in Figure 7.

3 Results

3.1 Estimating DBH of under-threshold
trees

Under-threshold trees (DBH < 5 c¢cm) in 2017 accounted for
nearly 23% of all trees in plot data (14697 out of 60786 trees)

Frontiers in Plant Science

(Figure 8A), and their estimated DBH distribution for under-
threshold trees was consistent with NFI technique protocol,
where most values fall around 5 cm (Figure 8B). The distribution
mean and median were 4.983 cm and 4.533 cm, respectively, with
interquartile ranging from 3.646 cm to 5.687 cm. Some outliers
exceeding 10cm may result from measurement errors, such as
boundary positioning errors between two adjacent NFI or
operation errors in data collection.

3.2 Spatial distribution of plot-level AGB

The spatial distribution of the 623 NFI plots used in this study
was presented in Figure 9. The plots were distributed relatively
even across Chongging to ensure representative spatial coverage.
Plot-level AGB values calculated by allometric equations,
including under-threshold trees, ranged from 5.15 to 329.81
Mg-ha'!, with an average of 66.63 Mg-ha™'. The majority of AGB
across these plots fell between 33.38 and 90.48 Mg~ha'1 (Table 4).
The median and mean plot-level AGB, excluding under-threshold
trees, were relatively small, with values of 55.08 Mg-ha™ and 64.48
Mgha™. The overall range was from 0.62 Mgha' to 329.81
Mgha'. Plot-level AGB values in western Chongqing were
predominantly less than 50 Mg-ha-1, while plot-level AGB
values exceeding 150 Mg-ha! were primarily concentrated along
a northeast-southwest mountain ranges (Figure 9). When
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considering under-threshold trees, the increments of plot-level
AGB values in more than 500 plots were within 10%, while the
plot-level AGB values in the rest plots experienced increments
exceeding 10% (Figure 10).

TABLE 3 Optimal training parameters for individual model.

Model Parameter

mtree=300
RF
mtry=6
nrounds=500
XgBoost max_depth=3
learning_rate =0.01
nrounds=600
CatBoost max_depth=6
learning_rate =0.01
SVM Cost=10

Gamma=0.01

Frontiers in Plant Science
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3.3 Features importance and relevance

In the RF model, the prediction of AGB primarily relied on
spectral bands, with vegetation indices playing a secondary role
(Figure 11A). Notably, B12, B4, B3, and B5 exhibited the highest
relative importance at 12.1%, 9.5%, 8.9% and 7.7%, respectively, all
showing significant negative correlations with AGB. Vegetation
indices derived from spectral bands, such as MVI, MSI, and
NDII, also demonstrated relatively high importance. In contrast,
topographic features including Curvature and Elevation have
relatively weaker importance.

The XgBoost model highlighted the critical importance of spectral
bands in predicting AGB, with B12, B5, B3, and B4 identified as the
most influential features, contributing 19.9%, 9.45%, 8.6%, and 8.5% to
the model’s predictive power, respectively (Figure 11B). Among
vegetation indices, MVI and MSI also played notable roles,
accounting for 5.9% and 5.8% of the feature importance.
Topographic indices, including Curvature, Elevation, significantly
enhanced AGB prediction. Additionally, biophysical indices such as
CWC demonstrated moderate importance, exhibiting positive
feedback effects on AGB estimation.
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(B) Excluding under-threshold trees.

In CatBoost model, spectral band and vegetation indices remain
the most significant features (Figure 11C). Among these, B5 (7.1%)
and MVI (6.8%) exhibited the highest relative importance, yet they
demonstrated opposing feedback effects on AGB. These were
followed by TPI in terms of feature contribution, while other
topographic indices, such as Curvature and Elevation, showed
moderate importance. In contrast, B12, NDII, and B3 were also
identified as highly important features in the model.

In the SVM model, B11 (16.6%) and NDVT (15.2%) were the
primary contributors, while vegetation indices such as Clgreen
(9.5%) and MCARI (9.4%) were of secondary importance. The
significance of topographic features remains moderate. Notably,
features such as B2 (1.8%), B4 (1.1%), B3 (1.0%), and B5 (0.9%),
which exhibited high importance in the other three models, showed
relatively low importance in SVM (Figure 11D).

3.4 Model performances

The CV was used to evaluate the stability of the models. Both
individual and stacked ensemble model demonstrated robust
performance in estimating forest AGB. When including under-
threshold trees, the CatBoost model demonstrated the highest
predictive accuracy among all individual models, with a mean R* of
0.64 (interquartile range: 0.639-0.647) and a mean RMSE of 25.15

TABLE 4 Summary of plot-level AGB (Mg-ha™).

Min

1st Quarter

Type

AGB of including under-

33.38
threshold trees

AGB of excluding under-

.62
threshold trees 06

30.76
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Mgha 7 (interquartile range: 24.99-25.28 Mg-ha ™) (Figure 12C). In
contrast, XgBoost exhibited the lowest accuracy, with a mean R* of 0.62
(interquartile range: 0.616-0.633) and a mean RMSE of 25.97 Mgha
(interquartile range: 25.66-26.27 Mg-ha ™) (Figure 12B). The RF model
showed intermediate performance, with a mean R*> of 0.64
(interquartile range:0.635-0.645) and a mean RMSE of 25.26 Mgha
7 (interquartile range: 25.11-25.39 Mgha ) (Figure 12A). SVM’s
performance was slightly lower than that of RF, with a mean R of 0.64
(interquartile range:0.634-0.643) and a mean RMSE of 25.70Mg-ha ™
(interquartile range: 25.48-25.87 Mg-ha ) (Figure 12D). The stacked
ensemble model slightly improved prediction accuracy, with a mean R*
of 0.65 (interquartile range: 0.646-0.657) and an RMSE of 24.38 Mg-ha
7 (interquartile range: 24.22 to 24.56 Mgha ™) (Figure 12E).

When excluding under-threshold trees, the stacked ensemble
model consistently outperformed individual models in prediction
accuracy, achieving a mean R? of 0.65 (interquartile range: 0.646-
0.656) and a mean RMSE of 25.58 Mgha ' (interquartile
range:25.38-25.78 Mgha ') (Figure 13E). Among the individual
models, CatBoost achieved a mean R* of 0.64 (interquartile range:
0.632-0.642) and a mean RMSE of 26.41 Mgha ' (interquartile
range: 26.23-26.59 Mg-ha ') (Figure 13C). The RF model exhibited
slightly lower accuracy, with a mean R? of 0.63 (interquartile range:
0.629-0.639) and a mean RMSE of 26.53 Mgha ' (interquartile
range: 26.32-26.68 Mg-ha ) (Figure 13A). XgBoost displayed the
weakest results, with a mean R* of 0.61 (interquartile range: 0.605-

. 3rd
Median
Quarter
57.43 66.63 90.48 329.81
55.08 64.48 86.70 329.81
12 frontiersin.org
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0.623) and a mean RMSE of 27.04 Mgha ' (interquartile range:
26.71-27.36 Mg-ha ') (Figure 13B). SVM mean R* and RMSE were
respectively 0.62 (interquartile range: 0.621-0.632) and 26.80 Mg-ha
“!(interquartile range: 26.66-26.93 Mg-ha ) (Figure 13D).

EV was used to evaluate the final performance of the model.
Scatter plots comparing predicted values with plot-level calculated
values revealed that all models displayed a systematic bias: they
tended to overestimate AGB when values were below 30 Mg-ha
and underestimate AGB when it exceeded 125 Mgha . Among
including below-threshold trees, the stacked ensemble model
achieved the highest EV accuracy, with an R* of 0.68 and an
RMSE of 25.45 Mgha . Both CatBoost and SVM also performed
well, each attaining an R* of 0.66, with RMSE values of 26.33 Mg-ha
' and 26.86 Mgha ', respectively. RF and XgBoost also
demonstrated competitive accuracy (R% 0.64 and 0.64; RMSE:
26.61 Mgha ™ and 26.75 Mgha ™) (Figure 14). After excluding
under-threshold trees, EV accuracy declined significantly. The R?
values of RF, CatBoost, and SVM fell within the range of 0.56-0.57,
and all RMSE values exceeded 35.36 Mg-ha . The stacked ensemble
model somewhat improved predictive performance and reduced
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discrepancies among the base models (R’=0.59, RMSE=34.52
Mgha ) (Figure 15). It can be concluded that although AGB
predictions under both scenarios reached similar stability during
model training, the inclusion of under-threshold trees substantially
enhances the EV accuracy of the predictions.
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3.5 Spatially forest AGB map and
uncertainty analysis
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Scatter plot of predicted AGB and observed AGB with under-threshold trees included: (A) RF; (B) XgBoost; (C) CatBoost; (D) SVM; (E) Stacked

ensemble model.

under-threshold trees, the average AGB values for the RF, XgBoost,
CatBoost, SVM and stacked ensemble models were 61.25 Mg-ha
,59.15 Mg-ha *, 60.76 Mg-ha ', 61.48 Mg-ha " and 60.38 Mg-ha ',
respectively, with corresponding total AGB values of 3.58x10° Mg,
3.26x10° Mg, 3.35x10° Mg, 3.39x10® Mg, and 3.33x10° Mg
(Figure 16A-E). When excluding under-threshold trees, the
average AGB values for RF, XgBoost, CatBoost, SVM and the
stacked ensemble model decreased t059.29 Mg-ha , 57.08 Mg-ha
1, 58.61 Mgha ', 61.11 Mg-ha 7, and 58.70 Mg-ha ', respectively,
with total AGB values of 3.27x10% Mg, 3.15x10® Mg, 3.23x10°® Mg,

Frontiers in Plant Science

3.37x10® Mg, and 3.24x10® Mg (Supplementary Figure S1A-E). The
spatial distribution patterns of AGB maps extrapolated from
different model implementations (in/ex-clude under-threshold
trees data) were similar: lower AGB values were found in the
western and northeastern regions of Chongqing, while higher
AGB concentrations were mainly located in the southeastern area.

Uncertainty analysis revealed that the uncertainty associated
with including under-threshold trees was lower than that when
excluding them. When under-threshold trees were included, the
average uncertainties for RF, XgBoost, CatBoost, and SVM were

15 frontiersin.org
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Scatter plot of predicted AGB and observed AGB with under-threshold trees excluded: (A) RF; (B) XgBoost; (C) CatBoost; (D) SVM; (E) Stacked

ensemble model.

2.68 Mgha ', 5.44 Mgha ', 2.87 Mgha 7, and 4.30 Mgha 7,
respectively. The stacked ensemble model further reduced
uncertainty to 3.04 Mgha ' (Figure 17A-E). In the scenario
where under-threshold trees were excluded, the average
uncertainties for RF, XgBoost, CatBoost, SVM, and the stacked
ensemble model were 2.77 Mg-ha ™, 5.47 Mg-ha 7, 2.94 Mg-ha ™,
4.37 Mgha ', and 3.11 Mgha ', respectively (Supplementary
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Figure S2A-E). Areas with higher uncertainty were primarily
distributed in northeastern Chongqing and mountainous regions,
while regions with lower uncertainty were mainly concentrated in
central and western Chongging. Additionally, the uncertainties of
the RF and CatBoost models were significantly lower than those of
XgBoost and SVM, with the stacked ensemble model exhibiting
intermediate levels of uncertainty.
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4 Discussion

4.1 Under-threshold trees should be
considered in AGB estimation

According to the technical protocol of the NFI, all trees
(including economic trees), bamboo (including bamboo in non-
bamboo forests), and tree-like shrubs (excluding shrub-like tree
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species) in permanent plots should be measured if their DBH
reaches 5 cm. Previous studies which utilized NFI data for forest
AGB estimation generally did not focus on the impact of trees with
DBH less than 5 cm (Zhu et al., 2020; Qian et al., 2021; Li et al,,
20225 Zhang et al., 2023), as researchers generally assumed that the
biomass contribution of these trees was negligible. However, we
compared two consecutive NFI datasets in this study and employed
a developed DBH estimation method to estimate the number of
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trees with DBH less than 5 cm in the earlier measurement. The  lanceolata, and quercus spp. The studies conducted by Yang et al.
results indicated that under-threshold trees account for a significant ~ (2012) and Wen et al. (2015) found that in southern and
proportion (23%) of the total number of trees measured in 2017,  southwestern China, new wild tree species began to emerge in the
with some plots having AGB variations exceeding 10% (Figure 9  forests of Pinus massoniana, Cyclobalanopsis glauca and other
and Figure 10). Although the AGB change of tree plots under  broad-leaves forest after the middle-aged forest stage, and
threshold value was small, in these plots, the under-threshold trees ~ community succession existed in over-mature forests to a certain
were primarily broadleaf trees, including Cupressus funebris,  extent. Based on the 2017 forest resource survey data from our
Cyclobalanopsis glauca, Pinus massoniana, Cunninghamia  study, middle-aged forests, near-mature forests and over-mature
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forests collectively occupied a significant proportion (42%) of the
forest sub-compartments. In addition, excluding under-threshold
trees in AGB estimation resulted in noticeably lower R* values and
higher RMSE values across all models, indicating a significant
decline in prediction accuracy (Figure 14 and Figure 15). These
results underscored the non-negligible importance of under-
threshold trees in AGB estimation.

In the forest AGB predicted by including under-threshold trees,
higher values were primarily concentrated in the Daba,
Wulingshan, and Dalou mountain regions. Firstly, these three
areas feature high altitudes and inherently possess high forest
coverage, leading to elevated forest AGB. Secondly, the 2015
“National Ecological Function Zoning” designated these regions
as important areas for water conservation and biodiversity
protection, strengthening the protection of existing nature
reserves and the management of natural forests. For damaged
ecosystems, efforts have been made to adhere to natural
restoration, rejuvenate the tree, shrub, and grass vegetation
system of evergreen broad-leaved forests, optimize the structure
of forest ecosystems, continue implementing the Grain for Green
Program and grassland restoration projects, as well as rocky
desertification control projects, further enhancing forest coverage.
Thirdly, Chongqing has adopted management measures such as
establishing multiple nature reserves and forest parks to reduce the
impact of human activities, which contributes to increased forest
AGB. Areas with lower forest AGB were mainly distributed in the
western part of Chongqing, primarily due to frequent human
activities and low forest coverage.

4.2 Importance of features on AGB
estimation

Feature variables were pivotal in forest AGB estimation. In the
study, spectral bands emerged as the most critical features across all
models, with B3, B5, and B12 demonstrating consistently high
importance, corroborating findings by Wai et al. (2022)
(Figure 11). B5, a red-edge band, exhibited strong capabilities in
detecting key vegetation physiological parameters, including
chlorophyll content and canopy architecture, which were essential
for accurate AGB estimation (Zhang et al., 2023). In contrast, other
red-edge bands (B6, B7) have shown greater significance in previous
studies (Yang et al., 2012). B3, located at the chlorophyll reflection
peak (500-600 nm), was highly sensitive to vegetation “greenness”
and effectively reflected physiological states such as chlorophyll
content and photosynthetic activity. Similarly, B2 and B4, also
within the visible spectrum, were notably important in RF and
XgBoost models (Wen et al., 2015). The effectiveness of shortwave
infrared (SWIR) bands, particularly B12, in forest AGB estimation
had been well-documented. B12 was sensitive to vegetation water
content. As biomass and vegetation coverage increased, reflectance
absorption by vegetation or water reduced reflectance, whereas low
biomass areas exhibited higher reflectance, explaining the negative
correlation between B12 and AGB (Wai et al., 2022). These findings
underscored the high sensitivity of SWIR, visible, and red-edge
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bands to biomass, highlighting their critical role in
biomass assessment.

The importance of vegetation indices varied across models.
MVI was consistently significant across all three models, primarily
reflecting forest canopy characteristics that contribute to biomass
accumulation. Indices such as MSI and NDII also showed notable
importance. MSI typically exhibited a negative feedback effect on
AGB, driven by vegetation’s dependence on water and the impact of
water stress on growth and physiological processes. NDII and SR
primarily indicated changes in foliar chlorophyll and carotenoid
content, reflecting photosynthetic activity, becoming key
parameters for AGB remote sensing retrieval (Richardson et al,
2002; Merzlyak et al., 2003; Main et al., 2011).

Topographic features, including TPI, Curvature, and Elevation,
were strong predictors of forest AGB, particularly in the CatBoost
model. Chongqing’s mountainous terrain, characterized by diverse
geomorphological features, influences sunlight exposure and water
retention, thereby affecting vegetation growth (Wai et al., 2022). TPI
and curvature effectively captured these land surface variations.
Elevation and aspect also showed significant importance, consistent
with previous research (Chen et al., 2019b; Wang et al., 2021). In
mountainous regions, variations in elevation and aspect impact
moisture levels, temperature, and species richness, ultimately
influencing vegetation biomass (Shen et al., 2014; Cong et al., 2019).

4.3 Model performance in AGB estimation

Among the individual employed models evaluated, CatBoost
demonstrated the best performance, achieving an R? of 0.66,
followed by RF and XgBoost, while SVM yielded comparatively
lower results (Figure 9). Previous studies have indicated that tree-
based machine learning methods were particularly well-suited for
ecological remote sensing research (Belgiu and Dragut, 2016). The
RF, CatBoost and XgBoost models evaluated in this study were all
ensemble methods based on decision trees, and the AGB maps
generated by them have a high degree of spatial consistency.
Compared with RF and XgBoost, CatBoost was a better choice for
estimating AGB due to its advanced design and functions. CatBoost
employed an ordered boosting mechanism that reduced the risk of
overfitting and minimized the impact of noisy data by processing
training examples in a specific order. Given that NFI data often
contain inherent noise and variability, CatBoost’s robust handling
of categorical features and superior generalization capabilities,
makes it particularly well-suited for accurately estimating AGB in
complex and noisy datasets. Based on individual models, a stacked
ensemble model for AGB estimation using RR as the meta-model
was developed. The stacked ensemble model significantly improved
prediction accuracy, generalization capability, and robustness,
achieving an R* of 0.68 and highlighting its superior performance
(Figure 14). The selection of RR as the meta-model was based on the
following considerations. Compared to alternative meta-models
such as LM, KNN, and entropy weighting, RR exhibited superior
and highly consistent performance in both CV and EV, with no
evidence of overfitting (Supplementary Table S3). Furthermore,
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since the base models—RF, XgBoost, and CatBoost—were all tree-
based models, their predictions were prone to high correlation
(collinearity). RR effectively mitigated collinearity through L2
regularization, yielding more stable and reliable coefficient
estimates, although RR’s CV accuracy was slightly lower than that
of LM. KNN achieved the highest CV performance, the test
performance of KNN declined markedly—indicating overfitting
and disqualifying it as a suitable meta-model. The entropy weight
method performed similarly to LM and RR on CV, though
marginally worse. However, this study found that although the
stacked ensemble model demonstrated the highest performance and
stronger generalization capability, its uncertainty was greater than
that of RF and CatBoost. The primary reason for this is that the
uncertainty of the stacked ensemble model is influenced not only by
factors such as 5-fold cross-validation but also by performance
variations among the base models. Therefore, future research
should focus on developing stacked ensemble models that achieve
high performance while maintaining low uncertainty. Additionally,
the scarcity of field-measured data in high-altitude areas where are
usually heavily vegetated resulted in insufficient training, leading to
higher uncertainty across all models in these regions. This study
also evaluated LM, ANN, and RR as base models and found their
performance substantially lower than that of the tree-based
ensemble (Supplementary Table S4). These results underscore the
strong potential of tree-based machine learning models in
AGB estimation.

To validate the generated 10 m spatial resolution forest AGB
map, we compared it (including under-threshold trees) with
existing AGB products (Figure 18). Our results aligned closely
with those of Chang et al. (2021) in six studies (Avitabile et al.,
2016; Su et al., 2016; Baccini et al., 2018; Huang et al., 2021; Santoro

10.3389/fpls.2025.1657170

and Cartus, 2021). The mixed model RMSE in Chang’s study
ranged between 24.3 Mgha ' and 29.6 Mgha 7', while the
stacked ensemble model RMSE in this study was 25.45 Mg-ha ',
indicating comparable model accuracy (Figure 14E). The reason for
the differences might be the variations in the base model and the
stacking method used. The model exhibited a slight overestimation
at low AGB levels (<30 Mg-ha ) but a significant underestimation
at high AGB levels (>125 Mgha ™), consistent with documented
saturation thresholds in AGB estimation that vary depending on
remote sensing data, modeling approaches, and forest structure
(Chen et al., 2018; Qian et al., 2021; Wai et al., 2022). First, remote
sensing data limitations contributed to these errors. In low AGB
areas, the dense canopy structure of small trees obscures thinner
trunks (smaller DBH). The spatial resolution of Sentinel-2 (10-20
m) primarily captures spectral characteristics of leaves to estimate
AGB, failing to adequately represent trunk structures, which leads
to overestimation. Conversely, spectral saturation in high-biomass
regions (particularly dense forests) reduced the ability of sensor to
discriminate subtle vegetation differences. Although red-edge band
of Sentinel-2 partially mitigated saturation, improper band
combinations or model selection could still result in
underestimation at high AGB levels. Second, model training
limitations introduced additional biases. The scarcity of high-
biomass samples in the training dataset led to insufficient learning
of extreme values, causing the model to regress toward the mean
and underestimate high AGB. Meanwhile, low AGB may be
overestimated due to noise or mixed-pixel effects (e.g., soil
background interference). Therefore, Addressing AGB saturation
remained a significant challenge in remote sensing (Qian et al,
2021). Potential improvements to mitigate AGB underestimation
include leveraging hyperspectral imagery and LiDAR data to
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construct three-dimensional forest models, as well as integrating
climate and environmental data to enhance biomass estimation
accuracy (Feng et al., 2024). Additionally, exploring novel methods
such as parametric decomposition and clustering to characterize
horizontal and vertical forest structure details could provide
alternative approaches.

Computational performance considerations: For the AGB
prediction using stacked ensemble models in this study, the
computing device must have a minimum of 64 GB RAM and
over 500 GB storage memory. The runtime for a single model under
a specific scenario exceeds 24 hours. Therefore, it was
recommended to implement this method on high-performance
computers supporting parallel processing capabilities.

5 Conclusions

In this study, we developed a DBH estimation method using
NFI data to measure DBH of under-threshold trees, integrated
remote sensing imagery and topographic data to compare the
performances of individual and stacked ensemble model between
scenarios including and excluding under-threshold trees, and
ultimately generated a 10m resolution forest AGB map
for Chongqing.

The developed method for estimating the DBH of under-
threshold trees demonstrated high accuracy (R*=0.93, RMSE=1.46
cm). Given that under-threshold trees constituted 23% of the total
tree population, their exclusion significantly compromised the
accuracy of AGB prediction. Consequently, in forest AGB remote
sensing inversion studies utilizing NFI data, the calibration of trees
with DBH < 5 c¢m is crucial to minimize deviation and improve
prediction accuracy.

Spectral bands serve as the predominant features for AGB
prediction across all models, while vegetation and topographic
indices exhibited significant variations in their importance among
different models. Consequently, the selection of distinct feature
variables tailored to specific models contributes to enhanced
prediction accuracy.

The stacked ensemble model demonstrated superior
performance compared to individual models. Although all four
individual models achieved R* values between 0.64 and 0.66
(including the under-threshold trees), the stacked ensemble
model effectively reduced inter-model variability and improved
prediction accuracy (R?=0.68), which was notably higher than the
value obtained when excluding under-threshold trees (R*=0.59)
These findings established a foundation for exploring the potential
applications of hybrid machine learning approaches in forest
AGB estimation.
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