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Estimation of forest
above-ground biomass
based on stacked ensemble
model in Chongqing, China
Jinlian Liu, Zhiyun Chen, Bangxiang Luo, Ao Sun,
Xuezhong Wen and Tongyi Huang*

Institute of Forestry Big Data Application Research, Chongqing Academy of Forestry Planning and
Design, Chongqing, China
Accurate regional-scale estimation of forest aboveground biomass (AGB) is

critical for effective forest management and terrestrial carbon cycle research.

However, applications integrating multiple machine learning models (MLs) for

forest AGB estimation in mountainous forests remain limited. In this study, we

introduced a practical method to estimate diameter at breast height (DBH < 5

cm) for under-threshold trees using National Forest Inventory (NFI) data. By

combining Sentinel-2 remote sensing imagery and DEM data, we employed

individual MLs (RF, XgBost, CatBoost and SVM) and a stacking approach to

estimate forest AGB in Chongqing under two scenarios: with and without

under-threshold trees. The DBH estimation method achieved high accuracy

(R²=0.93, RMSE=1.46 cm). Feature importance analysis showed spectral bands

dominated predictors, while vegetation and topographic indices varied across

models. CatBoost outperformed RF and XgBoost in both scenarios. The stacked

ensemble model demonstrated best performances in including under-threshold

trees in cross-validation (CV) and external verification (EV) (R²=0.65, RMSE=24.34

Mg·ha -¹; R²=0.68, RMSE=25.45 Mg·ha -¹), generating 10m-resolution AGB maps

with consistent spatial patterns suitable for mountainous urban terrain. This work

advances AGB estimation in southwestern China’s mountains regions and

provides insights for forest ecology and management.
KEYWORDS

above-ground biomass, national forest inventory, remote sensing, machine learning,
stacked ensemble model
1 Introduction

Forests play a crucial role in ecosystem services by providing renewable materials and

energy, maintaining biodiversity, conserving water and preventing soil erosion. They also

significantly contribute to the global carbon cycle, with plant photosynthesis accounting for

approximate 80% carbon storage of the terrestrial ecosystem (Liu et al., 2021). As an

important determinant of plant light use, turn over, and respiration, forest above-ground
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biomass (AGB) is a key index to assess forest maturity and carbon

sequestration capacity (Hao et al., 2020; Shen et al., 2020).

Forest AGB estimation approaches can be categorized into filed

measurements, remote sensing-based modeling and process-based

model simulation (Thornton et al., 2002; Zhu et al., 2020; Guo et al.,

2023). Forest inventory data provides a direct measurement which

is a valuable resource for forest AGB research, however, it is

expensive and time-consuming to implement and limited in

spatial explicit mapping. Process-based models contain detailed

ecological processes and simulate biomass allocation dynamics

which can be used for AGB estimation, but in most cases,

running these models is a daunting task since they need abundant

variables and field specific calibrations (Veroustraete et al., 2002;

Tian et al., 2017). Due to the limitations of traditional forest

inventory methods and process-based model simulations, remote

sensing-based approaches has been widely employed in forest AGB

in the past decades (Goetz et al., 2009; Zhu et al., 2020), with remote

sensing technology achieving considerable progresses and

numerous agencies launching multi-sensor satellites (Qian et al.,

2021). Accurate forest AGB estimation via remote sensing depends

on three factors: field data, imagery acquisition, and model selection

(Puliti et al., 2020; Wai et al., 2022; Feng et al., 2025).

Field data used for remote sensing-based AGB estimation

typically comes from three sources: plots measured by researchers

for specific studies, national forest inventory (NFI) data, and data

compiled from previously published literature. Data from literature

is often used as indirect validation data rather than a direct data

source of research (Chang et al., 2021). Field data collection offers

flexibility in plot design (density, size) and measurement thresholds

to meet specific research objectives; however, this approach may be

impractical for studies conducted over large geographical extents

(Lei et al., 2009; Li et al., 2018; Chen et al., 2019a). NFI data was

conducted through periodic surveys of permanent sample plots to

monitor the status of forest resources at national scale. NFI data

format is consistent at the provincial scale, making it a valuable

source for regional remote sensing-based AGB assessments (Lei

et al., 2009; Xie et al., 2011). However, using NFI data without any

pre-processes in remote sensing-based AGB studies could introduce

uncertainties due to its measurement threshold and sub-sample

design in NFI field measurements (Fridman et al., 2014;

Breidenbach et al., 2020; Perssion and Ståhl, 2020; Wang et al.,

2024). For instance, China’s National Forest Inventory adopts a 5-

cm DBH measurement threshold, excluding smaller trees per

technical specifications. This protocol stems from cost-benefit

analyses indicating that sampling sub-threshold trees incurs

disproportionate resource expenditures relative to their marginal

utility in national-scale forest ecology assessments and management

frameworks . Nevertheless , th is exc lus ion potent ia l ly

underestimated the ecological significance of under-threshold

trees (DBH < 5 cm) in forest ecosystems, considering natural

regeneration dynamics in certain regions and the impact of

China’s ongoing afforestation and forest quality improvement

initiatives (Xie et al., 2011; Li et al., 2022).

Remote sensing data used for forest AGB estimation is typically

categorized into radar and optical data. Radar data, with variations
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in wavelength, polarization, and angle of incidence, had been

proven useful for forest biomass estimation due to their influence

on backscatter coefficients (Goetz et al., 2009). However, small

bandwidth, high cost of airborne acquisition, low sampling density

and limited coverage hinder its application in regional forest AGB

research (Lu, 2006; Kumar et al., 2015). Optical sensors, including

Sentinel-2, Landsat-8, SPOT, ASTER, CVERS, QuickBird, MODIS

and AVHRR, have also been primary data sources for forest AGB

estimation with various spectral, spatial, radiometric and temporal

resolutions (Puliti et al., 2020; Yang et al., 2023). In recent years,

Sentinel-2 and Landsat-8 have emerged as widely used optical

remote sensing platforms for forest AGB estimation at regional

scales, owing to their free access and multi-spectral capacity (Puliti

et al., 2020;Qian et al., 2021; Zhu et al., 2020). Compared with

Landsat-8, Sentinel-2 offers higher spatial and temporal resolution,

as well as broader spectral band range. Among optical remote

sensing data, Sentinel-2 includes three bands in the red-edged

range, which are particularly useful for monitoring vegetation

health information, making it popular in forest AGB research.

The procedure for estimating forest AGB using Sentinel-2

typically involved extracting reflectance, vegetation and

biophysical indices from images, and then building the

relationship between these variables and forest AGB values

(Chrysafis et al, 2017; Babcock et al, 2018; Chen et al., 2019a).

Each index adds certain information about forest AGB. Band

reflections, such as red, green, infrared, red-edge bands,

differentiate ground objects and reflect vegetation growth.

Compared to visible bands, the red-edge band is highly

responsive to minor changes in vegetation canopy structure and

chlorophyll contents (Wai et al., 2022). Vegetation indices, such as

the normalized difference vegetation index (NDVI) and Normalized

Difference index (NDII), are simple and effective to evaluate surface

vegetation status and have been widely employed in forest AGB

estimation. However, the spectral saturation effect in areas of high

vegetation density could affect model accuracy. Some optimized

indices, such as the simple ratio (SR), could overcome the saturation

effect due to their greater sensitivity to higher AGB values (Schlerf

et al., 2005). Biophysical indices, such as leaf area index (LAI),

fraction of green vegetation cover (FCOVER) and Chlorophyll

content in the leaf (Cab), provide detailed information on

vegetation spatial distribution and dynamics and thus improve

forest AGB estimation performance (Zhang et al., 2023).

Additionally, topographic features, such as elevation, slope and

aspect, are closely related to forest growth and distribution pattern.

Variables obtained from the high-resolution DEM data further aids

AGB estimation and significantly influence the spatial distribution

of estimated AGBmap (Chen et al., 2019b; Wang et al., 2021). Thus,

combining information of different indices is important to improve

forest AGB estimation accuracy.

Forest AGB estimation employs two modeling frameworks:

parametric models (regression with predefined function forms)

and non-parametric approaches (machine learning algorithms

without distribution assumptions). Typically, parametric models

are divided into two groups. The first category comprises of linear

and non-linear models that calculate the relevance of remote
frontiersin.org
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sensing variables to forest AGB, such as stepwise regression models

(SWR), logistic regression and correlation coefficient analyses (Lu,

2005; Liu et al., 2017; Ma et al., 2021). The other category consisted

of spatial co-simulation algorithms that spatially interpolate forest

AGB between remote sensing variables and plot data, such as

geographically weighted regression (GWR) and sequential

Gaussian simulation (Zhang et al., 2013; Chen et al., 2018).

Parametric models heavily depend on measurable vegetation

parameters, thus, inaccuracies in these parameters inevitably

interfere with AGB estimation results. Non-parametric models,

also referred as machine learning methods, include k-nearest

neighbor (KNN), random forest (RF), extreme gradient boosting

(XgBoost), Categorical Boosting (CatBoost), support vector

machine (SVM), maximum entropy (MaxEnt), bagging stochastic

gradient boosting (BagSGB), etc. (Li Y. C. et al., 2019). Compared to

the parametric models, machine learning approaches have the

ability to process complex and non-linear relationships, estimate

with high precision, and deal with various data types (Puliti et al.,

2020; Li et al., 2021; Tang et al., 2022). For example, RF is easier to

achieve higher accuracy due to its strong generalization ability,

insensitivity to multicollinearity and low sensitivity to noise (Chen

et al., 2019b; Li et al., 2020). XgBoost is capable of processing large-

scale data, and the sparse perception algorithm automatically learn

its splitting direction in the samples with missing eigenvalues

without additional preprocessing (Liu et al., 2017). CatBoost has

advantages in handling class features, controlling overfitting,

dealing with missing values, and computing efficiency (Zhang

et al., 2024). SVM excels at handling high-dimensional data and

effectively avoids the “curse of dimensionality,” meaning that an

increase in the number of features does not necessarily lead to a

decline in performance (Luo et al., 2024). Due to the inherent

strengths and limitations across different algorithms, no single

method has emerged as universally optimal for estimating forest

AGB. Empirical studies demonstrate that stacking can significantly
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improve predictive accuracy by synergistically integrating outputs

from multiple single-algorithm models, thereby mitigating

information loss. Such stacking frameworks have been

successfully applied in diverse domains, including weather

forecasting, and environmental monitoring. For instance, a

stacked ensemble combining multiple machine learning

algorithms with a deep residual network achieved high cross-

validation accuracy in generating surface visibility products

(Zhang et al., 2024). Furthermore, based on entropy weighting, a

composite model is developed by integrating moving average

(ARIMA), artificial neural networks (ANNs), and exponential

smoothing (ESM) to predict PM2.5 concentration time series (Ma

et al., 2021). Despite notable progresses, research on stacked

ensemble models for AGB estimation was still limited, revealing

significant methodological opportunities.

As a mountainous metropolis, Chongqing’s extensive forest

coverage establishes it as a critical regional carbon sink. However,

slope-driven environmental vulnerability and recurrent drought

events pose challenges to carbon pool stability, underscoring the

urgent need for further forest AGB research. Consequently, the

primary objectives of this study are to: (1) develop a method to

estimate DBH of under-threshold trees in 2017 and calculate the

plot-level forest AGB values; (2) establish individual and stacked

ensemble model for forest AGB estimation and compare their

performances; and (3) generate a high spatial resolution forest

AGB map for the study area and analyze its spatial distribution.
2 Materials and methods

2.1 Study area

Chongqing, located in the upper reaches of the Yangtze River

basin, is one of the economy centers in southwest China (Figure 1).
FIGURE 1

The location and elevation of Chongqing.
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It spans between 105°28’-110°19’E longitude and 28°16’-32°20’N

latitude, covering an area of approximately 82,400 km2. Renowned

as ‘The Mountain City’, Chongqing is defined by its rugged terrain

of hills and mountains. The region falls in the humid subtropical

zone, experiencing a typical continental monsoon climate. The

mean annual temperature ranges from 17 to 18.8°C, with an

average annual precipitation of 1000–1400 mm and annual

sunshine duration of 1000–1400 hours. The forest types in

Chongqing comprise mainly of evergreen broad-leaved forests,

secondary and warm coniferous forests, bamboo forests, and

evergreen broad-leaved shrubs. The major tree species found in

Chongqing include Pinus massoniana, Cunninghamia lanceolata,

Cypress, and Quercus spp.
2.2 Data source and processing

2.2.1 Field data
The field campaigns was carried out in Chongqing from April to

October 2017, according to the NFI technique protocol. Mechanical

sampling method was used to set up fixed plots, with a spacing of 4

km × 4 km. Each sample plot was a square of 25.82 m × 25.82 m,

covering an area of 0.0667 ha. The tree species, tree number, scale

stick type, DBH, volume per tree and age of all trees with DBH > 5

cm and height of dominant trees in the sample plots were measured

and recorded. The NFI data also contained the corner coordinates

of the sample plot and the horizontal distance between the corner

points. After data cleaning, the actual number of available sample

plots was 623. In 2021, the NFI data collecting shifted to an annual

measurement scheme. This new protocol involved surveying one-

fifth of all permanent plots each year, completing a full inventory

cycle in five years. Previously, all plots were measured once every

five years. Thus, a plot measured in 2017 would have been revisited

in either 2021, 2022, or 2023. Consequently, NFI data from 2021 to

2023 could be utilized to estimate the under-threshold DBH from

2017 and delineated plot boundaries based on the coordinates of the

four corners.
2.2.2 Sentinel-2 data
Sentinel-2 MSI level 1C products were downloaded from the

C o p e r n i c u s D a t a S p a c e E c o s y s t e m ( h t t p s : / /

dataspace.copernicus.eu/) between April and October 2017.

Sentinel-2 level 1C data consist of 13 spectral bands at spatial

resolutions of 10 m, 20 m and 60 m, respectively. Atmospheric

correction was applied using sen2cor (version 2.8.0) to obtain level

2A products. Clouds were masked based on the pixel values of

screen classification layer (SCL) products. The 20 m and 60 m

images were then mosaic and resampled to 10 m spatial resolution,

and the final 12 spectral bands (Band 10 was removed by

atmospheric correction) were stored by tiles. 20 cloud-free mosaic

tiles were generated based on the UTM zone (48N and 49N) via

WGS84 projection which cover the entire study area.
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2.2.3 DEM
Digital Elevation Model (DEM) data with spatial resolution of

30 m was downloaded from European Space Agency (https://

www.esa.int) and clipped based on Sentinel-2 tile grids and

reprojection to WGS 84 UTM zones 48N and 49N.

2.2.4 Remote sensing indices
In our study, 40 remote sensing-based indices were selected for

AGB estimation (Table 1). Among them, 33 were obtained from

Sentinal-2 data (12 band reflectance, 16 vegetation indices and 5

biophysical indices), 7 topographic indices were derived from the

DEM data. The final variables used for model training and

prediction were 20. The biophysical indices were computed using

SNAP (ESA, Windows 64-bit, version 8.0), the others were

computed by R.
2.3 Method

2.3.1 DBH estimation of under-threshold trees
The DBH values of under-threshold trees (DBH < 5 cm) in the

2017 NFI data were estimated based on all preserve trees which

DBH reached 5 cm in previous years and enter-threshold trees

which DBH reached 5 cm in current forest inventory year data from

the 2021–2023 NFI data (Figure 2). We first calculated the DBH

growth rates of 80% preserve trees in the plots according to the tree

ID, and then estimated the average tree growth rates which are

grouped by plots, tree species and DBH levels including 4 types as

(5-10] cm, (10-15] cm, (15-20] cm and greater than 20cm. The

estimated DBH of the remaining 20% preserve trees was compared

with the measured DBH to verify the method performance. The

result showed that the method has a sound result and can be

employed for further analysis (Figure 3). Finally, we applied the

method to calculate the DBH growth rates for all preserve trees,

then these growth rates in different groups were subtracted from

entered-threshold trees’ DBH values (same group method) in the

2021–2023 NFI data to get these trees’ DBH values in 2017 when

they were under-threshold.

2.3.2 Plot-level AGB calculation
Plot-level AGB was calculated by adopting Zeng and Tang’s

method (Zeng and Tang, 2011). Zeng and Tang (2011) compared

their approach with different empirical studies across the globe, and

demonstrated that the theoretical parameter value of 7/3 is capable

of describing the average allometric relationship between AGB and

DBH of different tree species in their study. The coefficient between

AGB and DBH can be obtained approximately by multiplying 0.3 to

wood density r. The calculation follows Equation 1.

AGB = 0:3� r� D
7
3 (1)

where r represents basic wood density (g·cm-3) and D

represents DBH. Plot-level AGB is the sum of the AGB of all the
frontiersin.org
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TABLE 1 Details of features used for AGB estimation.

Data
source

Group Features Description

Sentinel-2

Reflectance

Band 1
Reflectance at
442.7 nm

Band 2
Reflectance at
492.7 nm

Band 3
Reflectance at
559.8 nm

Band 4
Reflectance at
664.6 nm

Band 5
Reflectance at
704.1 nm

Band 6
Reflectance at
740.5 nm

Band 7
Reflectance at
782.8 nm

Band 8
Reflectance at
832.8 nm

Band 8A
Reflectance at
864.7 nm

Band 9
Reflectance at
945.1 nm

Band 11
Reflectance at
1613.7 nm

Band 12
Reflectance at
2202.4 nm

Vegetation index

BRI1

Browning
Reflectance
Index, (1/B3-1/
B5)/B9

Chlgreen2
Chlorophyll
Green, B3/B7

Chlrededge2
Chlorophyll
Index Red-Edge,
(B9/B5) - 1

CIgreen3
Chlorophyll
Index Green,
(B9/B3) - 1

CIrededge2
Chlorophyll
Red-Edge, B5/
B7

CVI4

Chlorophyll
vegetation
index, B9*B5/
(B3^2)

GNDVI5

Green
Normalized
Difference
Vegetation
Index, (B7-B3)/
(B7+B3)

MCARI5
Modified
chlorophyll

(Continued)
F
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TABLE 1 Continued

Data
source

Group Features Description

absorption
ration index,
[(B5-B4)-0.2*
(B5-B3)]*(B5-
B4)

MSI6
Moisture Stress
Index, B11/B8

MTCI5

Meris terrestrial
chlorophyll
index, (B6-B5)/
(B5-B4)

MVI7
Mid-infrared
vegetation
index, B9/B11

NDII8

Normalized
Difference
index, (B8 -
B11)/(B8 + B11)

NDSI9

Normalized
Difference
Salinity Index,
(B11 - B12)/
(B11 + B12)

NDVI5

Normalized
Difference
Vegetation
Index, (B8 -
B4)/(B8 + B4)

SR10
Simple Ratio of
833nm/1649nm,
B8/B11

TM511

Simple Ratio of
1650nm/
2218nm, B11/
B12

Biophysical index

Cab
Chlorophyll
content in the
leaf

CWC
Canopy Water
Content

FAPAR
Fraction of
Absorbed

Photosynthetically Active
Radiation

Fcover
Fraction of
vegetation cover

LAI Leaf Area Index

DEM
Topographical
index

Aspect12
Aspect of the
plot

Curvature13
Curvature of the
plot

Elevation
Elevation of the
plot

(Continued)
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trees in the plot. The r used for AGB calculation of different tree

species are presented in Table 2 and Supplementary Table S1. The r
of most tree species refer to Zeng (2018) paper, while r of other

trees species which are not covered in the paper were adopted from

“Testing basic wood density of national dominant species (group)”

(China’s Forestry Industry Standard, LY/T 3256-2021).

2.3.3 Feature selection and variable importance
In this study, Recursive Feature Elimination with Cross-

Validation (RFECV), which was a robust feature selection method

that intelligently selects features by recursively removing the least

important features and evaluating model performance using cross-

validation at each step, was employed to select 40 remote sensing

indicators, resulting in the identification of 20 key variables that

were common across four machine learning models: RF, XgBoost,

CatBoost, and SVM (Figure 4). For these 20 remote sensing

indicators, the pearson correlation coefficient was calculated to

quantitatively assess the linear correlation between each feature

variable and total forest AGB. Subsequently, each model was trained

using 20 selected feature set, and feature importance analysis was

conducted through 100 repetitions of 5-fold cross-validation.

2.3.4 Cross-validation and model parameter
tuning

This study employed the grid search method combined with

cross-validation for hyperparameter optimization. Grid search is an

exhaustive search method, which searches for the optimal

hyperparameters by traversing all possible combinations of

hyperparameters. The hyperparameter ranges for different models

in Supplementary Table S2. To enhance the reliability and
TABLE 1 Continued

Data
source

Group Features Description

Roughness12

Surface
Roughness of
the plot, the
difference
between the
maximum and
the minimum
value of a cell
and its 8
surrounding
cells

Slope12 Slope of the plot

TPI12

Topographic
Position Index,
the difference
between the
value of a cell
and the mean
value of its 8
surrounding
cells

TWI5

Topographic
Wetness Index,
TWI=ln[Ac/tan
(slope)], where
Ac is the
catchment area
directed to the
vertical flow
Merzlyak et al., 2003; 2 Gitelson et al., 2006; 3 Gitelson et al., 2003; 4 Hunt et al., 2011; 5 Chen
et al., 2019a; 6 Heiskanen, 2006; 7 Schlerf et al., 2005; 8 Main et al., 2011; 9 Richardson et al.,
2002; 10 Shibayama et al., 1999; 11 Datt, 1999; 12 Wilson et al., 2007; 13 McNab, 1993.
FIGURE 2

The process of DBH estimation of under-threshold trees. Take a tree species in a plot as an example.
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generalizability of the model, a 5-fold cross-validation strategy was

implemented during the hyperparameter tuning process. The

original training dataset was randomly partitioned into five equal-

sized subsets. In each iteration of cross-validation, four subsets were

used as the training data to fit the model, while the remaining one

subset was retained as the validation data for performance

evaluation. This process was repeated five times, with each subset

used exactly once as the validation set. The optimal hyperparameter

combinations determined through the optimization process were

presented in Figure 5 and Table 3.

2.3.5 Development of stacked ensemble model
The stacked ensemble model integrates four distinct machine

learning models—RF, XgBoost, CatBoost, and SVM—each offering

unique strengths in capturing diverse data patterns. RF regression

employs multiple decision trees on data subsamples and aggregates

their predictions to enhance accuracy and reduce overfitting (Zhang

et al., 2024). XgBoost is an efficient gradient boosting

implementat ion that improves per formance through

regularization, sparsity-aware splitting, and parallel processing

(Chen and Guestrin, 2016). CatBoost, also based on gradient

boosting, excels at handling categorical features effectively while

resisting overfitting and improving generalization (Luo et al., 2024).

SVM completes the ensemble by identifying optimal hyperplanes

for complex classification boundaries (Luo et al., 2024).

This study employs Ridge Regression (RR) as the meta-model in

a stacked ensemble model. During the stacking process, the

performance is evaluated using a sample-based cross-validation
Frontiers in Plant Science 07
(CV) and external verification (EV). This study adopts 5-fold

cross-validation that commonly used to test model robustness,

where all site-based samples are randomly divided into five

subsets. Each time, the model is trained on data from four subsets

and tested on the remaining subset. In contrast, the EV experiment

assesses the model’s generalization capability (i.e., true predictive

performance) on a completely independent dataset that is not

involved in any part of the model training process. In each

iteration of the 5-fold cross-validation, the four base models are

trained in parallel on the same training set and generate predictions

on the test set. The predictions from the base models are used as

new features, along with the target variable, to train the meta-model

(RR). Subsequently, the external test values are input into the base

models for training, and the results are fed into the trained stacked

ensemble model for prediction. The final predictions are then

validated (Figure 6).

2.3.6 Model evaluation and uncertainty analysis
Model performance was evaluated using coefficient of

determination (R2), mean absolute error (MAE) and root mean

square error (RMSE) and root mean square error percentage

(RMSE%). The calculation follows Equations 2–5.

R2(y,   ŷ ) = 1 −o
n
i=1(yi − byi)2

on
i=1(yi − �y)2

(2)

MAE(y,   ŷ ) =
1
no

n

i=1
yi − byij j (3)
FIGURE 3

Scatter plot of estimated DBH and measured DBH.
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RMSE(y,   ŷ ) =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n o

n
i=1(yi − byi)2r

(4)

RMSE%(y,   ŷ ) =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
non

i=1(yi − byi)2q
�y *100% (5)

Where y and ŷ represents actual and predicted values,

respectively. �y is the average actual values. n is the number of

training datasets.

The uncertainty of the model was determined by the estimated

values in cross validation, and the calculation follows Equation 6.

Uncertainty =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

j=1(pj − �p)2

n

s
(6)

Where n is 5 and   p1 is the predicted value of single-fold cross-

validation. �p is the average of the predicted values of the 5-fold

cross-validation. The paper framework is shown in Figure 7.

3 Results

3.1 Estimating DBH of under-threshold
trees

Under-threshold trees (DBH < 5 cm) in 2017 accounted for

nearly 23% of all trees in plot data (14697 out of 60786 trees)
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(Figure 8A), and their estimated DBH distribution for under-

threshold trees was consistent with NFI technique protocol,

where most values fall around 5 cm (Figure 8B). The distribution

mean and median were 4.983 cm and 4.533 cm, respectively, with

interquartile ranging from 3.646 cm to 5.687 cm. Some outliers

exceeding 10cm may result from measurement errors, such as

boundary positioning errors between two adjacent NFI or

operation errors in data collection.
3.2 Spatial distribution of plot-level AGB

The spatial distribution of the 623 NFI plots used in this study

was presented in Figure 9. The plots were distributed relatively

even across Chongqing to ensure representative spatial coverage.

Plot-level AGB values calculated by allometric equations,

including under-threshold trees, ranged from 5.15 to 329.81

Mg·ha-1, with an average of 66.63 Mg·ha-1. The majority of AGB

across these plots fell between 33.38 and 90.48 Mg·ha-1 (Table 4).

The median and mean plot-level AGB, excluding under-threshold

trees, were relatively small, with values of 55.08 Mg·ha-1 and 64.48

Mg·ha-1. The overall range was from 0.62 Mg·ha-1 to 329.81

Mg·ha-1. Plot-level AGB values in western Chongqing were

predominantly less than 50 Mg·ha-1, while plot-level AGB

values exceeding 150 Mg·ha-1 were primarily concentrated along

a northeast-southwest mountain ranges (Figure 9). When
TABLE 2 Basic wood density (r) of different tree species used for plot-level AGB calculation.

Tress species/Groups r (g·cm-3) Tress species/Groups r (g·cm-3)

Quercus 0.5762 Tsuga 0.4420

Abies 0.3464 P.sylvestris var. mongolica 0.3750

Picea 0.3730 Liquidambar formosana 0.5035

Betula 0.4848 P.elliottii 0.4118

Larix 0.4059 Salix 0.4410

Cunninghamia Lanceolata 0.3098 Eucalyptus 0.5820

P.massoniana 0.4476 Cryptomeria 0.3493

Populus 0.4177 Robinia pseudoacacia 0.0674

P.yunnanensis 0.3499 Paulownia 0.2370

P.densata 0.4720 Keteleeria fortunei 0.4485

Tilia 0.3200 Phoebe zhennan 0.4807

Fraxinus mandshurica

0.4640

Cinnamomum

0.4600Juglans mandshrica Sassafras

Phellodendron amurense Phoebe

Schima superb 0.5563 Abrus precatorius 0.5843

P.tabulaeformis 0.4243 Melia azedarach L. 0.4389

P.koraiensis 0.3130 Other pines 0.4500

Ulmus 0.4580 Other hardwood broad-leaves 0.6250

P.armandii 0.3930 Other softwood broad-leaves 0.4430
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FIGURE 4

Feature selection results based on the RFECV (A), and the 20 feature variables after selecting (the red bar graph) (B).
FIGURE 5

Parameter tuning for RF (A), XgBoost (B), CatBoost (C) and SVM (D).
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considering under-threshold trees, the increments of plot-level

AGB values in more than 500 plots were within 10%, while the

plot-level AGB values in the rest plots experienced increments

exceeding 10% (Figure 10).
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3.3 Features importance and relevance

In the RF model, the prediction of AGB primarily relied on

spectral bands, with vegetation indices playing a secondary role

(Figure 11A). Notably, B12, B4, B3, and B5 exhibited the highest

relative importance at 12.1%, 9.5%, 8.9% and 7.7%, respectively, all

showing significant negative correlations with AGB. Vegetation

indices derived from spectral bands, such as MVI, MSI, and

NDII, also demonstrated relatively high importance. In contrast,

topographic features including Curvature and Elevation have

relatively weaker importance.

The XgBoost model highlighted the critical importance of spectral

bands in predicting AGB, with B12, B5, B3, and B4 identified as the

most influential features, contributing 19.9%, 9.45%, 8.6%, and 8.5% to

the model’s predictive power, respectively (Figure 11B). Among

vegetation indices, MVI and MSI also played notable roles,

accounting for 5.9% and 5.8% of the feature importance.

Topographic indices, including Curvature, Elevation, significantly

enhanced AGB prediction. Additionally, biophysical indices such as

CWC demonstrated moderate importance, exhibiting positive

feedback effects on AGB estimation.
FIGURE 6

Framework of stacked ensemble model.
TABLE 3 Optimal training parameters for individual model.

Model Parameter

RF
mtree=300

mtry=6

XgBoost

nrounds=500

max_depth=3

learning_rate =0.01

CatBoost

nrounds=600

max_depth=6

learning_rate =0.01

SVM Cost=10

Gamma=0.01
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FIGURE 7

Workflows of AGB estimation based on field data, remote sensing images and machine learning.
FIGURE 8

Distributionof tree numbers of different measure types (A) and estimated DBH of under-threshold trees (B).
Frontiers in Plant Science frontiersin.org11

https://doi.org/10.3389/fpls.2025.1657170
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Liu et al. 10.3389/fpls.2025.1657170
In CatBoost model, spectral band and vegetation indices remain

the most significant features (Figure 11C). Among these, B5 (7.1%)

and MVI (6.8%) exhibited the highest relative importance, yet they

demonstrated opposing feedback effects on AGB. These were

followed by TPI in terms of feature contribution, while other

topographic indices, such as Curvature and Elevation, showed

moderate importance. In contrast, B12, NDII, and B3 were also

identified as highly important features in the model.

In the SVM model, B11 (16.6%) and NDVI (15.2%) were the

primary contributors, while vegetation indices such as CIgreen

(9.5%) and MCARI (9.4%) were of secondary importance. The

significance of topographic features remains moderate. Notably,

features such as B2 (1.8%), B4 (1.1%), B3 (1.0%), and B5 (0.9%),

which exhibited high importance in the other three models, showed

relatively low importance in SVM (Figure 11D).
3.4 Model performances

The CV was used to evaluate the stability of the models. Both

individual and stacked ensemble model demonstrated robust

performance in estimating forest AGB. When including under-

threshold trees, the CatBoost model demonstrated the highest

predictive accuracy among all individual models, with a mean R² of

0.64 (interquartile range: 0.639–0.647) and a mean RMSE of 25.15
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Mg·ha -¹ (interquartile range: 24.99–25.28 Mg·ha -¹) (Figure 12C). In

contrast, XgBoost exhibited the lowest accuracy, with amean R² of 0.62

(interquartile range: 0.616–0.633) and a mean RMSE of 25.97 Mg·ha -¹

(interquartile range: 25.66–26.27Mg·ha -¹) (Figure 12B). The RFmodel

showed intermediate performance, with a mean R² of 0.64

(interquartile range:0.635–0.645) and a mean RMSE of 25.26 Mg·ha
-¹ (interquartile range: 25.11–25.39 Mg·ha -¹) (Figure 12A). SVM’s

performance was slightly lower than that of RF, with a mean R² of 0.64

(interquartile range:0.634–0.643) and a mean RMSE of 25.70Mg·ha -¹

(interquartile range: 25.48–25.87 Mg·ha -¹) (Figure 12D). The stacked

ensemble model slightly improved prediction accuracy, with amean R²

of 0.65 (interquartile range: 0.646–0.657) and an RMSE of 24.38 Mg·ha
-¹ (interquartile range: 24.22 to 24.56 Mg·ha -¹) (Figure 12E).

When excluding under-threshold trees, the stacked ensemble

model consistently outperformed individual models in prediction

accuracy, achieving a mean R² of 0.65 (interquartile range: 0.646–

0.656) and a mean RMSE of 25.58 Mg·ha -¹ (interquartile

range:25.38–25.78 Mg·ha -¹) (Figure 13E). Among the individual

models, CatBoost achieved a mean R² of 0.64 (interquartile range:

0.632–0.642) and a mean RMSE of 26.41 Mg·ha -¹ (interquartile

range: 26.23–26.59 Mg·ha -¹) (Figure 13C). The RF model exhibited

slightly lower accuracy, with a mean R² of 0.63 (interquartile range:

0.629–0.639) and a mean RMSE of 26.53 Mg·ha -¹ (interquartile

range: 26.32–26.68 Mg·ha -¹) (Figure 13A). XgBoost displayed the

weakest results, with a mean R² of 0.61 (interquartile range: 0.605–
FIGURE 9

Spatial distribution of plot-level AGB: (A) Including under-threshold trees; (B) Excluding under-threshold trees.
TABLE 4 Summary of plot-level AGB (Mg·ha-1).

Type Min 1st Quarter Median Mean
3rd

Quarter
Max

AGB of including under-
threshold trees

5.15 33.38 57.43 66.63 90.48 329.81

AGB of excluding under-
threshold trees

0.62 30.76 55.08 64.48 86.70 329.81
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0.623) and a mean RMSE of 27.04 Mg·ha -¹ (interquartile range:

26.71–27.36 Mg·ha -¹) (Figure 13B). SVM mean R² and RMSE were

respectively 0.62 (interquartile range: 0.621–0.632) and 26.80 Mg·ha
-¹(interquartile range: 26.66–26.93 Mg·ha -¹) (Figure 13D).

EV was used to evaluate the final performance of the model.

Scatter plots comparing predicted values with plot-level calculated

values revealed that all models displayed a systematic bias: they

tended to overestimate AGB when values were below 30 Mg·ha -¹

and underestimate AGB when it exceeded 125 Mg·ha -¹. Among

including below-threshold trees, the stacked ensemble model

achieved the highest EV accuracy, with an R² of 0.68 and an

RMSE of 25.45 Mg·ha -¹. Both CatBoost and SVM also performed

well, each attaining an R² of 0.66, with RMSE values of 26.33 Mg·ha
-¹ and 26.86 Mg·ha -¹, respectively. RF and XgBoost also

demonstrated competitive accuracy (R²: 0.64 and 0.64; RMSE:

26.61 Mg·ha -¹ and 26.75 Mg·ha -¹) (Figure 14). After excluding

under-threshold trees, EV accuracy declined significantly. The R²

values of RF, CatBoost, and SVM fell within the range of 0.56–0.57,

and all RMSE values exceeded 35.36 Mg·ha -¹. The stacked ensemble

model somewhat improved predictive performance and reduced
FIGURE 10

Distribution of changes in plot-level AGB after accounting for
under-threshold trees.
FIGURE 11

The correlation between features and AGB and the relative importance of features across different models: (A)RF; (B) XgBoost; (C)Catboost; (D) SVM.
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discrepancies among the base models (R²=0.59, RMSE=34.52

Mg·ha -¹) (Figure 15). It can be concluded that although AGB

predictions under both scenarios reached similar stability during

model training, the inclusion of under-threshold trees substantially

enhances the EV accuracy of the predictions.
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3.5 Spatially forest AGB map and
uncertainty analysis

The 10m resolution map revealed clear distinct patterns in AGB

estimation with and without under-threshold trees. When including
FIGURE 12

Performance evaluation of individual and stacked ensemble model including under-threshold trees. (A) R2; (B) MAE; (C) RMSE; (D) RMSE%.
FIGURE 13

Performance evaluation of individual and stacked ensemble model excluding under-threshold trees. (A) R2; (B) MAE; (C) RMSE; (D) RMSE%.
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under-threshold trees, the average AGB values for the RF, XgBoost,

CatBoost, SVM and stacked ensemble models were 61.25 Mg·ha
-¹,59.15 Mg·ha -¹, 60.76 Mg·ha -¹, 61.48 Mg·ha -¹ and 60.38 Mg·ha -¹,

respectively, with corresponding total AGB values of 3.58×108 Mg,

3.26×108 Mg, 3.35×108 Mg, 3.39×108 Mg, and 3.33×108 Mg

(Figure 16A-E). When excluding under-threshold trees, the

average AGB values for RF, XgBoost, CatBoost, SVM and the

stacked ensemble model decreased to59.29 Mg·ha -¹, 57.08 Mg·ha
-¹, 58.61 Mg·ha -¹, 61.11 Mg·ha -¹, and 58.70 Mg·ha -¹, respectively,

with total AGB values of 3.27×108 Mg, 3.15×108 Mg, 3.23×108 Mg,
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3.37×108 Mg, and 3.24×108 Mg (Supplementary Figure S1A-E). The

spatial distribution patterns of AGB maps extrapolated from

different model implementations (in/ex-clude under-threshold

trees data) were similar: lower AGB values were found in the

western and northeastern regions of Chongqing, while higher

AGB concentrations were mainly located in the southeastern area.

Uncertainty analysis revealed that the uncertainty associated

with including under-threshold trees was lower than that when

excluding them. When under-threshold trees were included, the

average uncertainties for RF, XgBoost, CatBoost, and SVM were
FIGURE 14

Scatter plot of predicted AGB and observed AGB with under-threshold trees included: (A) RF; (B) XgBoost; (C) CatBoost; (D) SVM; (E) Stacked
ensemble model.
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2.68 Mg·ha -¹, 5.44 Mg·ha -¹, 2.87 Mg·ha -¹, and 4.30 Mg·ha -¹,

respectively. The stacked ensemble model further reduced

uncertainty to 3.04 Mg·ha -¹ (Figure 17A-E). In the scenario

where under-threshold trees were excluded, the average

uncertainties for RF, XgBoost, CatBoost, SVM, and the stacked

ensemble model were 2.77 Mg·ha -¹, 5.47 Mg·ha -¹, 2.94 Mg·ha -¹,

4.37 Mg·ha -¹, and 3.11 Mg·ha -¹, respectively (Supplementary
Frontiers in Plant Science 16
Figure S2A-E). Areas with higher uncertainty were primarily

distributed in northeastern Chongqing and mountainous regions,

while regions with lower uncertainty were mainly concentrated in

central and western Chongqing. Additionally, the uncertainties of

the RF and CatBoost models were significantly lower than those of

XgBoost and SVM, with the stacked ensemble model exhibiting

intermediate levels of uncertainty.
FIGURE 15

Scatter plot of predicted AGB and observed AGB with under-threshold trees excluded: (A) RF; (B) XgBoost; (C) CatBoost; (D) SVM; (E) Stacked
ensemble model.
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4 Discussion

4.1 Under-threshold trees should be
considered in AGB estimation

According to the technical protocol of the NFI, all trees

(including economic trees), bamboo (including bamboo in non-

bamboo forests), and tree-like shrubs (excluding shrub-like tree
Frontiers in Plant Science 17
species) in permanent plots should be measured if their DBH

reaches 5 cm. Previous studies which utilized NFI data for forest

AGB estimation generally did not focus on the impact of trees with

DBH less than 5 cm (Zhu et al., 2020; Qian et al., 2021; Li et al.,

2022; Zhang et al., 2023), as researchers generally assumed that the

biomass contribution of these trees was negligible. However, we

compared two consecutive NFI datasets in this study and employed

a developed DBH estimation method to estimate the number of
FIGURE 16

Spatial map of AGB including under-threshold trees at a 10 m resolution. (A) RF; (B) XgBoost; (C) CatBoost; (D) SVM; and (E) Stacked ensemble
model.
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trees with DBH less than 5 cm in the earlier measurement. The

results indicated that under-threshold trees account for a significant

proportion (23%) of the total number of trees measured in 2017,

with some plots having AGB variations exceeding 10% (Figure 9

and Figure 10). Although the AGB change of tree plots under

threshold value was small, in these plots, the under-threshold trees

were primarily broadleaf trees, including Cupressus funebris,

Cyclobalanopsis glauca, Pinus massoniana, Cunninghamia
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lanceolata, and quercus spp. The studies conducted by Yang et al.

(2012) and Wen et al. (2015) found that in southern and

southwestern China, new wild tree species began to emerge in the

forests of Pinus massoniana, Cyclobalanopsis glauca and other

broad-leaves forest after the middle-aged forest stage, and

community succession existed in over-mature forests to a certain

extent. Based on the 2017 forest resource survey data from our

study, middle-aged forests, near-mature forests and over-mature
FIGURE 17

Spatial distribution of uncertainty of AGB including under-threshold trees. (A) RF; (B) XgBoost; (C) CatBoost; (D) SVM; and (E) Stacked ensemble
model.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1657170
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Liu et al. 10.3389/fpls.2025.1657170
forests collectively occupied a significant proportion (42%) of the

forest sub-compartments. In addition, excluding under-threshold

trees in AGB estimation resulted in noticeably lower R² values and

higher RMSE values across all models, indicating a significant

decline in prediction accuracy (Figure 14 and Figure 15). These

results underscored the non-negligible importance of under-

threshold trees in AGB estimation.

In the forest AGB predicted by including under-threshold trees,

higher values were primarily concentrated in the Daba,

Wulingshan, and Dalou mountain regions. Firstly, these three

areas feature high altitudes and inherently possess high forest

coverage, leading to elevated forest AGB. Secondly, the 2015

“National Ecological Function Zoning” designated these regions

as important areas for water conservation and biodiversity

protection, strengthening the protection of existing nature

reserves and the management of natural forests. For damaged

ecosystems, efforts have been made to adhere to natural

restoration, rejuvenate the tree, shrub, and grass vegetation

system of evergreen broad-leaved forests, optimize the structure

of forest ecosystems, continue implementing the Grain for Green

Program and grassland restoration projects, as well as rocky

desertification control projects, further enhancing forest coverage.

Thirdly, Chongqing has adopted management measures such as

establishing multiple nature reserves and forest parks to reduce the

impact of human activities, which contributes to increased forest

AGB. Areas with lower forest AGB were mainly distributed in the

western part of Chongqing, primarily due to frequent human

activities and low forest coverage.
4.2 Importance of features on AGB
estimation

Feature variables were pivotal in forest AGB estimation. In the

study, spectral bands emerged as the most critical features across all

models, with B3, B5, and B12 demonstrating consistently high

importance, corroborating findings by Wai et al. (2022)

(Figure 11). B5, a red-edge band, exhibited strong capabilities in

detecting key vegetation physiological parameters, including

chlorophyll content and canopy architecture, which were essential

for accurate AGB estimation (Zhang et al., 2023). In contrast, other

red-edge bands (B6, B7) have shown greater significance in previous

studies (Yang et al., 2012). B3, located at the chlorophyll reflection

peak (500–600 nm), was highly sensitive to vegetation “greenness”

and effectively reflected physiological states such as chlorophyll

content and photosynthetic activity. Similarly, B2 and B4, also

within the visible spectrum, were notably important in RF and

XgBoost models (Wen et al., 2015). The effectiveness of shortwave

infrared (SWIR) bands, particularly B12, in forest AGB estimation

had been well-documented. B12 was sensitive to vegetation water

content. As biomass and vegetation coverage increased, reflectance

absorption by vegetation or water reduced reflectance, whereas low

biomass areas exhibited higher reflectance, explaining the negative

correlation between B12 and AGB (Wai et al., 2022). These findings

underscored the high sensitivity of SWIR, visible, and red-edge
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bands to biomass , highl ighting their cri t ical role in

biomass assessment.

The importance of vegetation indices varied across models.

MVI was consistently significant across all three models, primarily

reflecting forest canopy characteristics that contribute to biomass

accumulation. Indices such as MSI and NDII also showed notable

importance. MSI typically exhibited a negative feedback effect on

AGB, driven by vegetation’s dependence on water and the impact of

water stress on growth and physiological processes. NDII and SR

primarily indicated changes in foliar chlorophyll and carotenoid

content, reflecting photosynthetic activity, becoming key

parameters for AGB remote sensing retrieval (Richardson et al.,

2002; Merzlyak et al., 2003; Main et al., 2011).

Topographic features, including TPI, Curvature, and Elevation,

were strong predictors of forest AGB, particularly in the CatBoost

model. Chongqing’s mountainous terrain, characterized by diverse

geomorphological features, influences sunlight exposure and water

retention, thereby affecting vegetation growth (Wai et al., 2022). TPI

and curvature effectively captured these land surface variations.

Elevation and aspect also showed significant importance, consistent

with previous research (Chen et al., 2019b; Wang et al., 2021). In

mountainous regions, variations in elevation and aspect impact

moisture levels, temperature, and species richness, ultimately

influencing vegetation biomass (Shen et al., 2014; Cong et al., 2019).
4.3 Model performance in AGB estimation

Among the individual employed models evaluated, CatBoost

demonstrated the best performance, achieving an R² of 0.66,

followed by RF and XgBoost, while SVM yielded comparatively

lower results (Figure 9). Previous studies have indicated that tree-

based machine learning methods were particularly well-suited for

ecological remote sensing research (Belgiu and Dragut, 2016). The

RF, CatBoost and XgBoost models evaluated in this study were all

ensemble methods based on decision trees, and the AGB maps

generated by them have a high degree of spatial consistency.

Compared with RF and XgBoost, CatBoost was a better choice for

estimating AGB due to its advanced design and functions. CatBoost

employed an ordered boosting mechanism that reduced the risk of

overfitting and minimized the impact of noisy data by processing

training examples in a specific order. Given that NFI data often

contain inherent noise and variability, CatBoost’s robust handling

of categorical features and superior generalization capabilities,

makes it particularly well-suited for accurately estimating AGB in

complex and noisy datasets. Based on individual models, a stacked

ensemble model for AGB estimation using RR as the meta-model

was developed. The stacked ensemble model significantly improved

prediction accuracy, generalization capability, and robustness,

achieving an R² of 0.68 and highlighting its superior performance

(Figure 14). The selection of RR as the meta-model was based on the

following considerations. Compared to alternative meta-models

such as LM, KNN, and entropy weighting, RR exhibited superior

and highly consistent performance in both CV and EV, with no

evidence of overfitting (Supplementary Table S3). Furthermore,
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since the base models—RF, XgBoost, and CatBoost—were all tree-

based models, their predictions were prone to high correlation

(collinearity). RR effectively mitigated collinearity through L2

regularization, yielding more stable and reliable coefficient

estimates, although RR’s CV accuracy was slightly lower than that

of LM. KNN achieved the highest CV performance, the test

performance of KNN declined markedly—indicating overfitting

and disqualifying it as a suitable meta-model. The entropy weight

method performed similarly to LM and RR on CV, though

marginally worse. However, this study found that although the

stacked ensemble model demonstrated the highest performance and

stronger generalization capability, its uncertainty was greater than

that of RF and CatBoost. The primary reason for this is that the

uncertainty of the stacked ensemble model is influenced not only by

factors such as 5-fold cross-validation but also by performance

variations among the base models. Therefore, future research

should focus on developing stacked ensemble models that achieve

high performance while maintaining low uncertainty. Additionally,

the scarcity of field-measured data in high-altitude areas where are

usually heavily vegetated resulted in insufficient training, leading to

higher uncertainty across all models in these regions. This study

also evaluated LM, ANN, and RR as base models and found their

performance substantially lower than that of the tree-based

ensemble (Supplementary Table S4). These results underscore the

strong potential of tree-based machine learning models in

AGB estimation.

To validate the generated 10 m spatial resolution forest AGB

map, we compared it (including under-threshold trees) with

existing AGB products (Figure 18). Our results aligned closely

with those of Chang et al. (2021) in six studies (Avitabile et al.,

2016; Su et al., 2016; Baccini et al., 2018; Huang et al., 2021; Santoro
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and Cartus, 2021). The mixed model RMSE in Chang’s study

ranged between 24.3 Mg·ha -¹ and 29.6 Mg·ha -¹, while the

stacked ensemble model RMSE in this study was 25.45 Mg·ha -¹,

indicating comparable model accuracy (Figure 14E). The reason for

the differences might be the variations in the base model and the

stacking method used. The model exhibited a slight overestimation

at low AGB levels (<30 Mg·ha -¹) but a significant underestimation

at high AGB levels (>125 Mg·ha -¹), consistent with documented

saturation thresholds in AGB estimation that vary depending on

remote sensing data, modeling approaches, and forest structure

(Chen et al., 2018; Qian et al., 2021; Wai et al., 2022). First, remote

sensing data limitations contributed to these errors. In low AGB

areas, the dense canopy structure of small trees obscures thinner

trunks (smaller DBH). The spatial resolution of Sentinel-2 (10–20

m) primarily captures spectral characteristics of leaves to estimate

AGB, failing to adequately represent trunk structures, which leads

to overestimation. Conversely, spectral saturation in high-biomass

regions (particularly dense forests) reduced the ability of sensor to

discriminate subtle vegetation differences. Although red-edge band

of Sentinel-2 partially mitigated saturation, improper band

combinations or model selection could sti l l result in

underestimation at high AGB levels. Second, model training

limitations introduced additional biases. The scarcity of high-

biomass samples in the training dataset led to insufficient learning

of extreme values, causing the model to regress toward the mean

and underestimate high AGB. Meanwhile, low AGB may be

overestimated due to noise or mixed-pixel effects (e.g., soil

background interference). Therefore, Addressing AGB saturation

remained a significant challenge in remote sensing (Qian et al.,

2021). Potential improvements to mitigate AGB underestimation

include leveraging hyperspectral imagery and LiDAR data to
FIGURE 18

Comparison of present AGB map (including under-threshold trees) and different published AGB products.
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construct three-dimensional forest models, as well as integrating

climate and environmental data to enhance biomass estimation

accuracy (Feng et al., 2024). Additionally, exploring novel methods

such as parametric decomposition and clustering to characterize

horizontal and vertical forest structure details could provide

alternative approaches.

Computational performance considerations: For the AGB

prediction using stacked ensemble models in this study, the

computing device must have a minimum of 64 GB RAM and

over 500 GB storage memory. The runtime for a single model under

a specific scenario exceeds 24 hours. Therefore, it was

recommended to implement this method on high-performance

computers supporting parallel processing capabilities.
5 Conclusions

In this study, we developed a DBH estimation method using

NFI data to measure DBH of under-threshold trees, integrated

remote sensing imagery and topographic data to compare the

performances of individual and stacked ensemble model between

scenarios including and excluding under-threshold trees, and

ultimately generated a 10m resolution forest AGB map

for Chongqing.

The developed method for estimating the DBH of under-

threshold trees demonstrated high accuracy (R²=0.93, RMSE=1.46

cm). Given that under-threshold trees constituted 23% of the total

tree population, their exclusion significantly compromised the

accuracy of AGB prediction. Consequently, in forest AGB remote

sensing inversion studies utilizing NFI data, the calibration of trees

with DBH < 5 cm is crucial to minimize deviation and improve

prediction accuracy.

Spectral bands serve as the predominant features for AGB

prediction across all models, while vegetation and topographic

indices exhibited significant variations in their importance among

different models. Consequently, the selection of distinct feature

variables tailored to specific models contributes to enhanced

prediction accuracy.

The stacked ensemble model demonstrated superior

performance compared to individual models. Although all four

individual models achieved R² values between 0.64 and 0.66

(including the under-threshold trees), the stacked ensemble

model effectively reduced inter-model variability and improved

prediction accuracy (R²=0.68), which was notably higher than the

value obtained when excluding under-threshold trees (R²=0.59)

These findings established a foundation for exploring the potential

applications of hybrid machine learning approaches in forest

AGB estimation.
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