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Medicinal plants serve as abundant reservoirs of natural compounds, including
pigments, spices, insect repellents, and therapeutic compounds, which are
utilized extensively in traditional systems. However, their phytochemicals,
potential health benefits, and even response to extreme environments are not
fully explored. A range of omics technologies has been extensively utilized in the
study of medicinal plants to explore gene functions, unravel biosynthetic
pathways of bioactive compounds, and understand the regulatory mechanisms
behind gene expression. Due to the complex genetic regulatory network in
medicinal plants, new technologies such as proteome assays make it easier to
explain biological phenomena. Proteomics could offer a paradigm shift in our
understanding of medicinal plants’ cellular metabolism. Until now, few
classifications regarding recent and upcoming trends in proteomic studies in
medicinal plants have been presented. This review highlights the most recent
advances in medicinal plants’ proteomics and how proteomics gains insight into
the dynamic changes in medicinal plants’ cellular metabolism.

KEYWORDS

biochemical pathways, medicinal plants, proteomics, stress, bioactive compounds

1 Introduction

Since ancient times, diverse groups of people have used medicinal plants as primary
remedies for the treatment and prophylaxis of numerous illnesses worldwide. Medicinal
plants contain natural bioactive metabolites and compounds with strong therapeutic effects
(Aye et al,, 2019). Plant-derived antioxidants such as alkaloids, terpenes, polyphenols, and
coumarins, secondary metabolites such as saponins and tanshinones, and specialized
monomers like morphine, artemisinin, taxol, digitalin, and vinblastine constitute an
essential part of primary substances for chemical drug development (Zhang et al., 2023).

At present, not only are many drugs obtained from different medicinal plants, but also a
high number of the world’s population depend on traditional medicines for their primary
healthcare. As a result, the global demand for herbal medicines continues to grow annually.
In developed countries, comprehensive research is being conducted to isolate medicinal
compounds from various species of medicinal plants and assess their biological activities
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(Zhang et al., 2023). However, the large-scale production of herbal
medicines remains limited due to a lack of knowledge about the
molecular basis of their metabolic processes.

The rapid development of modern high-throughput “Omics”
approaches has introduced a series of breakthroughs in the
identification of gene-protein-metabolite networks, novel
biological metabolites with pharmaceutical properties, functional
genes, molecular markers, as well as enzymes with a role in
biosynthetic pathways in medicinal plants (Lifang et al., 2022).
One of the most impressive Omics approaches applied to medicinal
plants is proteomics, which recognizes a wide range of proteins
involved in promoting and regulating biological processes.
Proteomic analysis is considered an effective method for
understanding regulatory mechanisms, providing cutting-edge
information on the physiology and genetics of plants, and
identifying proteinaceous compounds involved in the synthesis of
bioactive compounds (Komatsu and Jorrin-Novo, 2021).

In recent years, the primary focus of proteomics in medicinal
plants has been on identifying proteins with unknown or novel
functions, their influence on metabolic pathways, their role in
response to environmental stresses, and their function in the
divergence of biological compounds (Zhang et al., 2023).
Proteomic and phospho-proteomic analysis of differently
cultivated Dendrobium huoshanense revealed changes in
phosphorylation levels, as well as the localization of differentially
accumulated proteins (DAPs) and phosphoproteins within the
chloroplast. Moreover, the findings indicated that these proteins
are involved in carbohydrate transport and metabolism, as well as
the biosynthesis of secondary metabolites. In another study, the
most affected pathways included signal transduction, linoleic acid
metabolism, plant-pathogen interaction, phenylpropanoids
biosynthesis, and the formation of transport barriers (Wu et al,
2022). Effective utilization of genetic diversity is the first step in
developing medicinal plant varieties that can endure environmental
stresses. The proteo-metabolomic reference map of Paris polyphylla
varieties highlighted numerous components potentially linked to
genotypic differences in medicinal constituents. These included
upregulation of proteins associated with terpenoid backbone and
steroid biosynthesis, effective sucrose utilization coupled with
increased protein levels in the sugar metabolic pathway, and
acetyl-CoA utilization efficiency in saponin biosynthesis, as
identified using Sequential Window Acquisition of all Theoretical
Mass Spectra (SWATH-MS) and GC/TOE-MS techniques. It was
suggested that the interaction between genes, proteins, and
metabolites plays a crucial role in the variability of medicinal
compound content among genotypes (Liu F. et al,, 2019).

According to Moyer et al. (2021a), medicinal plants used in
traditional medicines are an excellent source of bioactive proteins
and peptides that are not only antimicrobial but also part of the
plant’s innate immune system, suggesting their dual role in both
plant defense and potential human therapeutic applications.
Cysteine-rich (Cys-rich) antimicrobial peptides (AMPs), as novel
proteins/peptides that have pharmacological properties, found in
trace amounts, and mostly underexplored, were discovered by
bottom-up proteomic analysis of three edible traditional
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medicinal plants: Trifolium pratense (red clover), Sesamum
indicum (sesame), and Linum usitatissimum (flax). These
molecules with antimicrobial properties were classified into lipid
transfer proteins, snakins, defensins, and o-hairpinins categories
(Moyer et al., 2021b). The EF and MLH40 kind of anti-dengue virus
(DENV) peptides that can attach to the E protein of DENV as the
first line of the immune system, were identified from Acacia catechu
medicinal plants using high-performance liquid chromatography
(HPLC) (Panya et al., 2019).

Overall, research on medicinal plants has been greatly advanced
by the rapid development and accessibility of analytical and
computational approaches, particularly proteomics. Lao et al.
(2014) conducted a comprehensive review of proteomic
methodologies employed to elucidate therapeutic targets and
molecular mechanisms underlying the pharmacological effects of
Traditional Chinese Medicine (TCM). These approaches have
facilitated the discovery of novel biomarkers, enabled the
systematic characterization of numerous bioactive TCM
compounds, supported the rational design of targeted
therapeutics, and contributed to improved diagnostic precision
across a spectrum of diseases (Zhao and Lin, 2014). Zaynab et al.
(2018) examined the biochemical pathways responsible for
synthesizing bioactive compounds in indigenous medicinal plants
using proteomics. In another review, the recent developments of the
biomarker investigation strategies and their imperative role in
sustainable herbal drug developments were summarized. The
altered proteins identified by proteomics can be introduced as
potential drug targets to help comprehend a drug’s mechanism of
action (Mumtaz et al., 2017). Aghaei and Komatsu (2013) also
highlighted utilizing comparative proteomics to analyze the
complex responses of medicinal plants to environmental stresses,
which led to the discovery of their defensive mechanisms. These
studies highlight the potential of an extensive proteomic dataset to
enhance the effective utilization of medicinal plants. However, a
thorough review of recent research progress in identifying proteins
associated with medicinal plants remains absent. This review aims
to address that gap by providing updated insights into the
application of proteomic technologies in medicinal plant research,
focusing on the discovery of bioactive compounds and their
biosynthetic pathways for the production of natural drugs.

2 Proteomics studies in medicinal
plants

2.1 Applied proteomic methodologies in
medicinal plants

The tools of proteomics are among the most important methods
for understanding plant biological systems (Figure 1). Proteomic
studies offer a large amount of information about the identity,
quantitative profile, localization, and interactions of proteins in any
of the specialized structures within a living cell of plants, including
medicinal plants (Kumar and Kumari, 2018). Furthermore, the
proteome analyses of medicinal plants enable researchers to identify
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FIGURE 1
Proteomics: types, methods, steps.

systemic changes during cellular metabolism and associated
pathways in bioactive compound production (Kim et al., 2016).
Several high-throughput technologies have been developed to
investigate the proteomes of medicinal plants in depth
(Figure 2, Table 1).

Two-dimensional electrophoresis (2-DE) has been the leading
technique for a long time to investigate the accumulation profiles of
proteins in medicinal plants. However, its capabilities in protein
identification and quantification were restricted. Although 2-DE
could make comparisons easier, the accuracy of spot matching
among a group of 2-DE gels was a tough task. Therefore, the 2-DE
analysis was coupled with the mass spectrometry (MS) technology,
which supplies higher resolution and improves reproducibility
(Sharma, 2019). For example, Kim et al. (2016) employed a 2-DE
gel analysis along with MS to identify proteins involved in redox
regulation and contributing to the antioxidant activities in ginseng.

Later, second-generation proteomic techniques were developed
to overcome the disadvantages of previous techniques. Isobaric tags
for relative and absolute quantification iTRAQ) is a sensitive non-
gel-based quantitative proteomic technique that can be employed to
evaluate differentially abundant proteins (DAPs). Liu et al. (2019)
employed iTRAQ to reveal the causes of differences in secondary
metabolites of Spica Prunellae (the fruiting spike of the perennial
plant Prunella vulgaris L.), exposed to saline conditions. The iTRAQ
uses isobaric reagents to monitor relative modifications in proteins
and can provide more accurate quantification of DAPs, compared
with the 2-DE gel approach. This approach has been extensively
applied to study plant stress responses over specific time intervals.
For example, Shi et al. (2017) successfully analyzed the protein
profile of Pyropia haitanensis in response to different durations of
high-temperature stress through iTRAQ. In addition, Li et al.
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1. Sample Preparation

[Objective: Extract proteins from biological materials of medicinal plants

Steps:
1. Lysis of cells or tissues; 2. Removal of contaminants (salts, lipids, nucleic acids)
i ion (e.g..

3. Protein ion; 4. or

ion and
fractionation) (Optional)

03

2. Protein Separation / Fractionation

[Objeetive: Reduce complexity and separate proteins based on physical or chemical properties:

Common Methods:
2D Gel Electrophoresis, SDS-PAGE, Liquid Chromatography (LC)

3. Protein Identification & Quantification —
Objective: Identify and/or quantify the proteins present in a sample.
Common Methods:
Mass Spectrometry (MS), Isotope Labeling (SILAC, iTRAQ, TMT), Label-free MS
4. Bioinformatics & Data Analysis —
Objective: Interpret MS data, identify proteins, analyze functions
Common Methods:
Database searches (c.g., UniProt), pathway analysis, PPI networks
5. Validation m

[Objective: Confirm proteomic findings

Common Methods:
Western blotting, ELISA, Targeted MS (SRM/MRM), Immunohistochemistry

(2017) used this method to reveal a picture of the damaging
mechanisms due to replant disease stress in Rehmannia glutinosa.

Nowadays, high-throughput analysis of samples plays a key role
in the investigation and modernization of traditional herbal
medicine. Since quantification was not achievable by mass
spectrometry, numerous strategies have been developed with
distinct quantitation methods like labeling-based and label-free
quantitation (Table 2).

These promising approaches, including Liquid
Chromatography with Tandem Mass Spectrometry (LC-MS-MS),
and Matrix-assisted laser desorption/ionization time-of-flight mass
spectrometry (MALDI-TOF MS), which offer high separation
capacity and sensitivity, are the most commonly used analytical
methods for the quantitative analysis of proteins in medicinal plants
(Kang et al,, 2022). Cheng et al. (2008) conducted a proteomic
analysis using MALDI-TOF MS to investigate the anti-tumor
mechanism of saponin in Rhizoma Paridis (the rhizoma of Paris
polyphylla var. yunnanensis (PPY) or P. polyphylla var. chinensis).
Proteomic analysis using LC-MS/MS revealed alterations in the
proteome profile of medicinal plants traditionally employed as
hypoglycemic agents for diabetes treatment, highlighting proteins
associated with glucose regulation rather than insulin-like proteins
(Pedrete et al., 2019). Proteins associated with energetic metabolic
pathways and oxidative stress regulations have also been identified
using LC-MS/MS in Glycine max (Kazemi Oskuei et al., 2017).
Habib and Ismail (2021) demonstrated that about 60% of identified
proteins by LC-MS/MS in Phaleria macrocarpa were essential
components that regulate cell activity and enhance P.
macrocarpa’s medicinal value.

Alternatively, the developments of MS-based proteomics have
provided new opportunities for measuring proteins with critical
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The most used high-throughput proteomics technologies for investigating medicinal plants

contributions and elucidating mechanisms under different stress
conditions (Liu et al, 2019b). Ma et al. (2022) identified a
differential accumulation of proteins involved in the biosynthesis
of flavonoids, alkaloids, phenylpropanoids, and amino acid
metabolism via Tandem Mass Tag (TMT) based proteomic
profiling of S. alopecuroides leaves under salt stress. The
substantial accumulation of abiotic stress-associated proteins, as
identified through MALDI-TOF MS, suggests that Herpetospermum
pedunculosum employs a range of complex adaptive strategies in
response to high-altitude environmental conditions. Furthermore,
the observed association between these stress-related proteins and
those involved in photosynthesis indicates a potential functional
interplay contributing to the plant’s acclimation mechanisms (Kim
et al., 2018).

Proteomics relies on the availability of genomic sequences
essential for protein identification using bioinformatic tools.
Matching predicted sequences with analytically obtained spectra
is a fundamental step in proteomics, made possible by genomic
sequencing projects conducted worldwide in recent years. By the
end of 2020, more than 1000 genomes of different plant species had
been sequenced, but this number has been growing exponentially
(Sun et al, 2022). Most of these species have agronomic and
economic importance, but only a few are medicinal plants.
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Genome sequencing of many medicinal plants is underway (Pei
et al., 2024), but the number of plants with potential medicinal uses
is extremely large. This constitutes a substantial constraint in the
execution of proteomic analyses; nevertheless, RNA sequencing
technology presents a promising and cost-efficient alternative for
mitigating this limitation. Therefore, the MS data can be searched
against the newly obtained RNAseq database, thus expanding the
possibility of performing a proteomic analysis on virtually any
plant species.

2.2 Proteomics and metabolic pathways

Highly conserved metabolic pathways are extensive networks of
biochemical reactions necessary to maintain and regulate life
activities. Comprehending metabolic pathways requires the
systematic study and accurate mapping of the biochemical
processes without considering dead-end reactions or futile loops.
Metabolic pathways analysis provides critical insights into the flow
of metabolites, the different regulation of reactions, and the various
pathways (Altaf, 2016). Plants exploit metabolic systems for many
kinds of bioactive compounds. Although multiple metabolites may
have very similar chemical structures/polarities, they may utilize
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TABLE 1 High-throughput proteomics technologies.

10.3389/fpls.2025.1656247

Technology Abbreviation Description Advantages Limitations
Mass Spectrometry MS Analytical'technique Fhat. measurés mass-to- High sensit%vity, accuracy, Requires skilled operation, costly
charge ratio (m/z) of ionized particles and dynamic range instruments
S t teins by isoelectri int and Limited to abundant teins,
2D Gel Electrophoresis 2-DE cparates pro. eins by isoefectric point an High-resolution separation i e, ° a‘ undant proteins
molecular weight labor-intensive
Limited to low- lexi
Matrix-Assisted Laser A soft ionization method where a laser is used = Tolerant to contaminants, lfm edto QV\{ complexity
. oo MALDI Lo . . . . mixtures, not ideal for
Desorption/Ionization to ionize proteins embedded in a matrix good for large biomolecules .
quantification
Gentle ionization
Toni lecules b lyi high volt: i P to signal ion fi
Electrospray Ionization ESI omzc.es r}no ecires by appiying & fgh vollage compatible with complex rone fo ?1gna .51.1ppre5510n rom
to a liquid to create an aerosol . salts and impurities
mixtures
Liquid Chromatography- LC-MS/MS Combines liquid chromatography with MS/MS = High resolution, can analyze | Expensive, time-consuming
Tandem Mass Spectrometry to separate and analyze peptides complex samples sample preparation
Tandem Mass Spectrometry MS/MS Sequentifil mass spectrometry;- fragmen‘ts Enabl}es pepticile sgquencing Requires complex interpretation
selected ions to get structural information and high specificity and processing
Isobaric Tags for Relative {TRAQ Chemical labeling technique for multiplexed Enables analysis of multiple Ratio compression, expensive
and Absolute Quantitation quantification samples in one run reagents
Similar to iTRAQ; all imult; Highl itive, enabl
Tandem Mass Tags TMT m alr ° 1 Q . OWS SmUTaneous 18ty senst 1ve' enables Expensive, subject to interference
quantification of different samples large-scale studies
. MS-based quantification without using Cost-effective, no need for Less precise than label-based
Label-Free Quantification — X .
chemical labels labeling methods
High-Performance Liquid HPLC Separates proteins/peptides based on their High resolution, Not suitable for complex
Chromatography physicochemical properties reproducibility proteomes alone

different substrates to construct different products. Hence,
quantitative information on every metabolite from multiple
pathways is needed. Proteomics and metabolomics approaches
provide solutions to discern important metabolic pathways and
metabolites’ assays in a wide range of biological samples. In other
words, proteomic techniques enable the identification of proteins,
including enzymes, the synthesis and functions involved in plants’
primary/secondary metabolism, the measurement of systemic
changes during cellular metabolism, and the evaluation of
bioactive compounds biosynthesis, which confer pharmacological
effects on medicinal plants.

Proteomics analysis of Pyropia haitanensis has been effectively
utilized to identify proteins involved in the phosphoinositide
pathway, which is involved in signal transduction. This includes
the up-regulation of specific proteins associated with glycolysis, the
citric acid cycle, and beta-oxidation of fatty acids (Shi et al., 2017).
TMT-based proteomic analysis has been used by Vidovic et al.
(2023) to describe the metabolic pathways involved in Ramonda
serbica Panc. desiccation tolerance, so that proteins and transcripts
linked to late embryogenesis abundant proteins, C1 metabolism,
folding and assembly, protein production, heme synthesis, nitrogen
metabolism, and fermentation showed higher levels of
accumulation. The pathways that produce essential metabolites
must be composed of enzymes and proteins with high variation
in abundance that control metabolic fluxes, substrate utilization,
and product agglomeration. Thus, considering these concepts can
lead to predicting the activity and bottlenecks of key metabolic
pathways and facilitate the development of strategies to ameliorate
crops by enhancing secondary metabolite production. For instance,
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4-hydroxyisoleucine (4-HIL), as the main biologically active
compound in Trigonella foenum-graecum L. (fenugreek), was
increased through metabolic engineering (Safari et al., 2020). Niu
et al. (2021) indicated that both mevalonate kinase and
phosphomevalonate kinase were the potential bottleneck proteins
in the regulatory mechanisms and were involved in the mevalonic
acid pathway, which might contribute to the biosynthesis of
sesquiterpenes in Santalum album. In the model grass
Brachypodium distachyon, ammonia-lyases (ALs) and lignin
biosynthetic protein families were found to be the most abundant
proteins in lignified tissues. Additionally, changes in metabolomic
and proteomic data highlighted crosstalk between lignin
biosynthesis and primary metabolisms, particularly nitrogen
metabolism (Barros et al., 2022). 2-DE coupled with MS revealed
significant changes in the intensity of proteins in response to
homocysteine and suggested that the secondary metabolites of
Salvia miltiorrhiza inhibited homocysteine-induced A10 cell
growth via the PKC/MAPK-dependent pathway (Hung et al,
2010). Understanding the biosynthetic pathways of ginsenosides,
a class of triterpene saponins that are almost exclusively found in
ginseng, is a challenge owing to ginseng’s long life cycle.
Investigating metabolic fluctuations along with ginseng growth
through proteomics revealed the positive correlation of proteins
with a ginsenoside in roots of ginseng, and ginsenoside biosynthesis
pathways commence when the ginseng (Panax ginseng) reaches a
slow-growth period (Li et al., 2021a). In Artemisia annua, a series of
enzymatic pathways, including peroxidases within the trichome-
specific proteome, were shown to play an effective oxidative
reaction role in the final stages of artemisinin biosynthesis, which
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TABLE 2 Different proteomic techniques, targets, and identified proteins in medicinal plants studies in the past two decades.

Analytical

technique

Objective of
the study

Targeted proteome

Medicinal
species

Organ

No. of
identified
proteins

Main identified proteins

Reference

Cytosolic small heat-shock protein, cytosolic
ascorbate peroxidase, putative major latexlike protein

2-DE, ESI High Light P i C. Nz t al.,
igh Ligh anax ginseng Leaves 147 Rieske Fe/S protein, putative 3-beta hydroxysteroid (Nam et a
Q-TOF MS Response A. Meyer i X X 2003)
dehydrogenase/isomerase-like protein, and oxygen-
evolving enhancer-like protein
2-DE, . . . o
MALDLMS/ Alkaloid Catharanthus Cell suspension <8 Two isoforms of strictosidine synthase, tryptophan (Jacobs et al.,
MS Biosynthesis roseus cultures synthase, 12-oxophytodienoate reductase 2005)
2Dk Ecotypic Imperata Enolase, Mitochondria malate dehydrogenase,
MALDI-MS/ P perd Leaves 4 > O ! > dehydrogenase, (Chang, 2008)
MS Variation cylindrica Ferredoxin-NADP(H) oxidoreductase
AM, trisophosphate i , enolase, Ch: )
2-DE, LCMS/ Defense Opium Po, Cell cultures 219 ’ he::iﬁgcljsioi:r:ssonz;:)see:ens(i)sarseela?edas;;{o)nes (Zulak et al,
w X .
MS Responses P PPy P P i s 2009)
proteins
Methionine synthase,
2-DE, LCM h: i Eschscholzi Oldhz t al,
CMS/ ¢ anges. mn 5 ,sc o‘zm Cell cultures 646 S-adenosyl methionine synthase, Glutathione-S- ( ameta
MS metabolism californica 2010)
transferase, Phosphoenolpyruvate carboxylase
.. Gynura . . . . . -
Nano-LC-ESI- Medicinal Caleosin, Miraculin, Harpin protein, phosphate (Hew and Gam,
MS/MS roperties procumbens Leaves o2 translocator 2010)
prop (Lour.) Merr
Positive Chalcone synthase B, Acetyl-coenzyme A synthetase,
2-DE Allelopathic RuBisCO activase, Auxin-responsive protein IAA9,
- i3 . . A . l- A h
MALDLTOF/ Stimulation ' chyranthes Shoot 25 ‘ Cysteinyl-tRN. syr%t etase ' (Li et al, 2011)
MS Under bidentata Blume Glutamine synthetase, Tubulin alpha-3 chain,
Continuous Uridylate kinase, Recombination protein, Pyruvate
Monoculture dehydrogenase kinase
2-DE. 1C Superoxide dismutase, glutathioneS-transferase,
M ALD)I-M s/ (A)biotic stress Nicotiana Trichomes 858 peroxir.edoxin, thioredoxin peroxidase, glutathione (Van Cutsem
MS response tabacum peroxidase, 1-hydroxy2-methyl-2-(e)-butenyl 4- et al, 2011)
diphosphate reductase
Methyl
Jasmonate S-adenosyl-L-methionine-dependent
2-DE, MALDI - . o
TOF-TOF Elicitation Podophyllum Cell suspension 105 methyltransferases, caffeic acid-O-methyl transferase, = (Bhattacharyya
MS/MS Response Related hexandrum cultures chalcone synthase, polyphenol oxidase, caffeoyl CoA et al., 2012)
To PTOX 3-O-methyltransferase
Accumulation
Flavonoid and Caffeoyl-CoA-O-methyltransferase, fructose
2-DE, MALDI | Phenylpropanoid Boesenbergia Cell suspension a4 biphosphate aldolase, pyruvate kinase, pyruvate (Tan et al,
TOF/TOF Biosynthesis rotunda cultures dehydrogenase, dihydrolipoyl dehydrogenase, 2012)
pathways glutamine synthetase
Fl i El t rter, ive,
2-DE, Acca‘x,r(:ljll:fon Scutellaria Adenos lh;:l;ro:t; jlr;ssiociliof;l t?::t’eheat shock (Y t al
8 an et al.,
MALDI-TOE u baicalensis Root 24 yhomocysteinase P tan e
MS Under Water Georsi protein 70B, 2012)
Deficit & d-3-phosphoglycerate dehydrogenase, Alpha-tubulin
Cysteine protease inhibitor, putative S-phase Kinase
association Protein 1, aspartic protease,
2D-DIGE, . ) . . .
Comparative Lycium ascorbate peroxidase, putative glutamine synthetase, (Zheng et al.,
MALDI-TOF/ i Anthers 45 i K
TOE Proteomics barbarum L ATP synthase subunits, chalcone synthase, cysteine 2012)
protease, carbohydrate metabolism-related,
photosynthesis-related enzymes
MALDI-MS/ Proteomic ‘ Glandular Geranyl pyrophosphate synthe'lse, geranyl geranyl (Champagne
. Mentha spicata L . 1666 pyrophosphate synthase, 4S-limonene synthase, and Boutry,
MS Analysis trichomes .
(-)-(4S)-limonene-6-hydroxylase, pulegone reductase 2013)
(Continued)
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TABLE 2 Continued

Analytical

Objective of

Targeted proteome

No. of
identified

10.3389/fpls.2025.1656247

Main identified proteins

Reference

; Medicinal
technique the study ! o .
q species 9 proteins
Proteome
Alterations
2-D DIGE, Elicited With Silybum Pathogenesis-related pro.tein.s, protein's related t(.) the (Corchete and
Methyl . Cell cultures 67 transport process, proteins involved in metabolism,
nLC-MS/MS marianum . Bru, 2013)
Jasmonate And heat shock proteins
Methyl B
Cyclodextrin
Cofactor-independent phosphoglyceromutase,
Glyceraldehyde 3-phosphate dehydrogenase,
Glutathi idase, seri
2-DE, MALDI Comparative Panax ginseng Root 83 hvd :halt 10nef perole Ia_Ise tse;mek e (Ma et al.,
roxym ransfer , rotein
TOF-TOF MS Proteomics CA May o0 yaroxyrmety transierase €3t SIOCK prote 2013)
Hsp70, Pterocarpan reductase
Fructose-bisphosphate aldolas, 1,3-Beta-D-glucanase,
Retrotransposon protein,
HSP 70 kDa, DNA k-type molecular chaperone
hsc70.1, Glutamine synthetase, Cytosolic ascorbate
2-DE, MALDI . peroxidase, Carbonic anhydrase, Transcription factor (Sinha and
Translational X .
TOF-TOF Plant Proteomics Mentha arvensis Leaves 59 NFE2 Chattopadhyay,
i
MSMS ATP synthase B chain, P0440D10.25, Oxygen 2011)
evolving complex PS II 33 kDa pr (Sinha and
Chattopadhyay, 2011),
Thiazole biosynthetic enzyme, glutamate-1-
Proteomic semialdehyde 2,1-aminomutase, heat shock protein
2-DE, Analysis Of 70 like protein, 26S proteasome ATPase subunit (Y ¢l
ang et al.,
MALDI-TOF/ Diploid Male Ginkgo biloba L | Microsporangia 27 enolase2, Cytochrome ¢, Protein disulfide-isomerase, 25’13)
TOF-MS Gametes Induced Elongation factor Tu
By Colchicine 33 kDa oxygen-evolving protein, putative
transketolase, NADPH thioredoxin reductase
HSP21, heat shock protein 17.9, small heat shock
2-DE, Comparative protein (Zhu et al
u et al,
MALDI-TOF/ Proteomic To Pinellia ternata Leaves 24 18.2 kDa class I hsp, glycine-rich RNA-binding 2013)
TOF MS Heat Stress protein GRP1A-like, glycine-rich RNA-binding :
protein
Comparative .
: Deoxy-D-xylulose 5-phosphate reductoisomerase,
Proteomic Of X o
Mesophvll And chloroplastic, 5-Enol-pyruvylshikimate-phosphate
SDS-PAGE, phy Amaranthus synthase, Fructokinase, Salt tolerance protein I, Heat (Joaquin-Ramos
Bundle Sheath Leaves 101 .
LC-MS/MS Chloroplasts And cruentus shock protein Hsp70 et al,, 2014)
K P . NADH-ubiquinone oxidoreductase 19 kDa subunit
Their Adaptation family protein, Chaperone, Heat shock protein
To Salt Stress vP S ’ P ’
SDS-PAGE, ' Chelidonium Hez.it shock protein, Percfxidas.e, glutathione
Comparative ) , peroxidase, Cu/Zn superoxide dismutase, 14-3-3 (Nawrot et al.,
nano-LC-MS/ K majus, Corydalis Shoot/tubers 16 X k R
Proteomic protein, Lactoylglutathione lyase, putative/glyoxalase 2014)
MS cava 1
Proteins Glyceraldehyde-3-phosphate dehydrogenase,
SDS-PAGE, . . laminocyclopropane-1-carboxylate oxidase, X
Associated With i i K i (Sud et al.,
MALDI-TOF/ Picroside Picrorhiza kurroa Stolon 19 photosystem I reaction center subunit V, 2- 2012)
TOF MS Biosynthesis oxoglutarate ferrous-dependent oxygenase and
s putative cytochrome P450 superfamily protein
Chaperonin cpn60, Methionine synthase, Malate
2.DE dehydrogenase, Branched-chain-amino-acid
g Proteins Induced X Suspension- aminotransferase-like protein 2-like, TUDOR-SN (Sun et al.,
MALDI- L. i ginseng 15 ) . )
TOEMS By Salicylic Acid cultured cells protein 1, Ribulose-1,5-bisphosphate carboxylase/ 2014)
oxygenase large subunit, Esterase D, putative,
Predicted: elongation factor Tu, chloroplastic-like
(Continued)
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Main identified proteins

Reference

; Medicinal
technique  the study : Organ '
| species g proteins
Establishing Pl’f)l: tli?ilni:l?:tl:hlzit;z; b/:';l;izn;:;::en:}:lable;lit (Uvackova
. ackovs
2-DE, MS/MS Proteome Ginkgo biloba L 158 phogty K i Y K
alpha, Carbonic anhydrase, Ginnacin, Ascorbate et al., 2014)
Reference Map K
peroxidase
Cysteine synthase-like, Pathogenesis-related protein,
Mechanisms Of Selenium-binding protein 2, Superoxide dismutase,
iTRAQ-nano- = Embryo Abortion = Chrysanthemum Leaves 4 Proteasome subunit alpha type, putative (Zhang et al.,
¢
HPLC-MS/MS During Cross- morifolium Tubulin alpha-6 chain, Beta-tubulin, UDP-glucose 6- 2015)
Breeding dehydrogenase, Elongation factor EF-2, Putative S-
adenosylmethionine synthetase
Elucidating The Ribulose-1,5-bisphosphate carboxylase/oxygenase (Bryant et al,
2DE, LC-M Bi heti 1 it, ioni i 1-like, Chl hyll 2015
C-MS/ iosynthetic Artemisia annua Trichome 319 arge 'sub.umt Cat{omc peroxidase ' 11.<e C oroP ! 5)
MS Pathways Of The a-b binding protein 40, chloroplastic-like, Peroxidase Bryant
Artemisinin N1 et al.,2015
2DE, MALDI- Proteomic Lagenaria Flavonoid 35 hydroxylase, Glyce.raldehyde > (Kumari et al.,
. . . Seed 24 phosphate dehydrogenase, RNA-directed DNA
TOF/MS Analysis siceraria R 2015)
polymerase, Transferase, transferring glycosyl groups
(+)-Delta-cadinene synthase, Spermidine synthase 2,
Soluble starch synthase 1, ATP synthase subunit a,
h: hase D, Peroxi , Indole-3-aceti
Z-DE, Adaptation Potentilla Cacﬁz:i:i};n: r?tS}ietase :‘I’;‘;d: S:I::t sﬁj:ke 7?:] ";(C];ZC (Ma et al
id- 5, aetal,
MALDI-TOF/ Strategies At saundersiana Leaves 118 Y rotein 18 ! 2015)
ol
TOF Altitude Gradient .P . .
S-adenosylmethionine synthase, Glutamine
synthetase cytosolic isozyme 1- 5, Beta-glucosidase
22, Oxalate oxidase 2, Strictosidine synthase
Mechanisms Of
Mycena
Dendrobii Chalcone synthase, patatin-like protein 6, serine
2-DE, Promoting Dendrobi protease inhibitor, flavanone 3 B-hydroxylase,
endrobium
MALDI-TOF- Transplantation officinale Root 41 putative LOB domain protein 17, kelch repeat- (Xu et al,, 2015)
MS Survival And containing F-box family protein, myrcene synthase-
Growth Of like protein
Tissue Culture
Seedlings
23 kDa thylakoid membrane protein, Glyceraldehyde
3-phosphate dehydrogenase, 60S acidic ribosomal
Postharvest protein P3, Ul{)iquitin—conjugating enzyme E2 '35,
. Ascorbate peroxidase, Nucleoside diphosphate kinase,
2-DE, Proteomic Chrysanthemum
L Alpha-barbatene synthase (Yao et al.,
MALDI-TOF | Changes Exposed morifolium Flowers 19 . .
Ferrochelatase, Oxygen-evolving enhancer protein 1, 2014)
MS To Enhanced Ramat X i Lo i )
UV-B Radiation chloroplastic, Formation of crista junctions protein 1,
NADH-ubiquinone dehydrogenase, mitochondrial,
Putative isoform 1, Elongation factor Tu,
mitochondrial, GTP cyclohydrolase
5methyltetrahydropteroyltriglutamate-homocysteine
. methyltransferase, Glutamine synthetase, S-
Proteomic L
2-DE, X adenosylmethionine synthetase 1, Glyceraldehyde-3-
Analysis Under . (Rao et al,,
MALDI-TOF- Cadmium Crocus sativus L Leaves 26 phosphate dehydrogenase 2017)
TOF-MS Toxici Chaperonin, Stromal 70 kDa heat shock-related
Xicil
ty protein, chloroplastic, Ferredoxin-NADP reductase,
leaves isozyme
Pyrophosphate-fructose 6-phosphate
1phosphotransferasebeta-subunit, Enolase, S-
2-DE, Copper Exce.ssion Hyoscyamus adenosylmethionine synthase, Ferredoxin—nitl“ite (Sako et al,
MALDI-QIT- Proteomic Root 22 reductase, Heat shock cognate 70 kDa protein
albus L i X i 2016)
TOF Change Fructose-bisphosphate aldolase-like protein,
Superoxide dismutase [Fe], Glutathione peroxidase,
Proteasome subunit beta type-6
(Continued)
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species
Phosphoribulokinase, Plastidic aldolase/fructose-
bisphosphate aldolase, Ribulose bisphosphate
s Compe il i e
PAGE, Proteomic Of Simmondsia yarog > putative, e P_ P (Al-Obaidi
K K Leaves/male 45 carboxylase/oxygenase large subunit _
MALDI-TOF/ = Male And Female chinensis i . et al., 2017)
Glyoxysomal malate dehydrogenase, Thioredoxin
TOF-MS Plants . . .
peroxidase, Ribulose-1,5bisphosphate carboxylase/
oxygenase large subunit, Thioredoxin peroxidase,
Chlorophyll a/b-binding protein
ATP synthase subunit beta, ATP synthase epsilon
X chain, Acyl-[acyl-carrier-protein] desaturase,
Proteomic . . . .
Change In putatitve respiratory burst oxidase homolog protein,
2-DE, MALDI R s T Withani caffeoyl-CoA O-methyltransferase, apurinic (Singh et al
n: ithani Singh et al.,
TOF/TOF MS/ espo se' ° ‘an _ Leaves 38 endonuclease-redox, Sin3-like protein 8
Alternaria somnifera L X . 2017)
MS lipoyl synthase, adenylate isopentenyl transferase,
Alternata . . s .
Infection cyclin-dependent kinase inhibitor, ferredoxinNADP
reductase, Phenylalanine ammonia-lyase, putative
disease resistance, apurinic endonuclease-redox
Proteo'mlc Phosphoglycerate kinase, fructose-bisphosphate
Analysis Of .
2-DE, Purple Youn aldolase, sedoheptulose-1,7-bisphosphatase, malate (Zh Cal
ul ul ’hou et al.,
MALDI-TOF/ P . & Camellia sinensis Leaves 46 dehydrogenase, pyruvate decarboxylase, glutamine
Shoots During X . i 2017)
TOF-MS Leaves synthetase, chaperonin family proteins
av
Rubisco,
Development
Sedoheptulose-1,7-bisphosphatase, 2,3-
bisphosphoglycerate-independent phosphoglycerate
mutase, transaldolase, alanine aminotransferase, 1-
2-DE, Comparative ) ) ) deoxy-D-xylulose 5-phosphate reductoisomerase, heat
L B Zhu et al.,
MALDI-TOF/ Proteomic Under oma;‘}c: :jﬁomm 1:128 :_lsd 54 shock protein 70-2, Helicase, C-terminal, a ubiquitin- ( ;‘) 167)‘
Wi
TOF-MS UV Radiation like protein
oxygen-evolving enhancer protein 1-2, urease
accessory protein G, 20S proteasome alpha subunit
E2 isoform 2,
Enolase (ch), PGK-like (ch), MDH, Succinyl-Coa
ligase B-subunit (m), UDP-glucose
pyrophosphorylase 1 (c), Adenosyl-homocysteinase
Proteomic [EC 3.3.1.1] (c), PPIase, chloroplastic, Mucunain
i ic acid- ion inhibitor-li Alca -
SDS-PAGE, Anal)-rsm For Acacia (ch), Perchloric acid-soluble .translaucfn mhlblto.r like ( 'cmtara
LC-MS/MS Arsenic-Stress 7 iana L Shoot 81 (ch), GST [EC 2.5.1.18], amino-terminal domain (c) Martinez et al.,
- arnesiana L.
And Predicted TPI (ch), pfkB family carbohydrate kinase 2018)
Endosymbiosis (ext), Oxygen—evolving enhancer 2, chloroplastic-
like, PPIase [EC 5.2.1.8] (c), Predicted PPlase-like
(ch), APX, partial (c), Fe-SOD precursor [EC
1.15.1.1] (ch)
Lysosomal beta glucosidase-like isoform X1, enolase,
ruBisCO large subunit-binding protein subunit beta,
2.DE Comparative peptidyl-prolyl cis-trans isomerase CYP38,
M ALDI-:F OF Proteolmic 'To An  Herpetospermum Leaves 5 chloroplastic, coppe.r-zinc suPeroxide c?ismutas'e (Kim et al.,
MS Altitudinal pedunculosum ATP synthase subunit beta, mitochondrial, leucine 2018)
Gradient aminopeptidase 1, protein PRUPE_ppa002167mg
probable cytosolic oligopeptidase A, ribulose-1,5-
bisphosphate carboxylase/oxygenase large subunit,
Comparative ATP-synthase CF1 alpha subunit, ribulose-1,5-
Proteomics I bisphosphate carboxyl:
2-DE, MALDI roteomics Lepidium draba . 1sphosp .a ¢ carboxylase/oxygenase . (Rezaee et al.,
Response To 11 peroxisomal 2,4-dienoyl CoA reductase, Cytoplasmic
TOEF-TOF-MS L . . 2018)
Exogenous aconitate hydratase, oxygen-evolving enhancer
Glucose protein 1-2-chloroplastic-
(Continued)
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Analytical L i ifi ini ifi i
Yyt the study Medicinal identified Main identified proteins Reference
technique . Organ proteins
species
Comparative Imperata Ribulose-1, 5-bisphosphate carboxylase/oxygenase
2-DE, LC-MS Proteomic Of cylindrica (L.? Leaves 2 small subunit,. Photosys'tem I reaction center subunit (Shih YunJhih
Salt-Treated Beauv. var. major IV, Hypothetical protein SORBIDRAFT_02g002690 et al., 2018)
Natural Variants (Nees) Hubb (OEE2)
2.DE Impact Of Elongation factor Tu, c-repeat binding factor,
i Eucal lyceraldehyde-3-phosphate deh . Alotaibi et al.,
MALDLTOF- Copper Stress Qn uca yptus' Leaves % Glycera f:le yde-3-phosphate dehydrogenase, (Alotaibi et a
The Proteomic camaldulensis fructose-bisphosphate aldolase, sucrose synthase 2019)
TOF-MS . . . .
Behavior Ribulose bisphosphate carboxylase large chain,
Somatic 40S ribosomal protein S12, 60S acidic ribosomal
i Catharanthus protein, ATP synthase subunit alpha, Catalase, )
Embryogenesis . k (Gulzar et al,,
LC-MSMS roseus (L.) G. Hypocotyl 1079 Chaperone protein ClpB1, Elongation factor 1-alpha,
(SE) Related i R _ 2021)
K Don Heat shock 70 kDa protein, Eukaryotic translation
Proteins R . .
initiation factor 3 subunit D, Peroxidase
60 S ribosomal protein L18a-2, 40 S ribosomal
protein $3-2, 60 S ribosomal protein L6-2, pyruvate
kinase, Glyceraldehyde-3-phosphate dehydrogenase,
iTRAQ, Proteomic Cinnamyl alcohol dehydrogenase 2, Calcium- (Liu 7. et al
iu Z. et al,
Nano-LC-MS/ Analysis Under Spica Prunellae 35 transporting ATPase, Calmodulin 5 2019)
MS Salt Stress 60 S ribosomal protein, 60 S ribosomal protein L22-
2, Nucleic acid-binding, OB-fold-like protein,
Cytochrome c-2, Calmodulin 7, Nucleoside
diphosphate kinase 1
Proteome Ribulose 'bisphosphate carl?oxylase/ oxygenase- activase
Analysis Under A, partial, Oxygen-evolving enhancer protein 1-2,
2-DE, W ty Deficit chloroplastic, Aminomethyltransferase, (Jamshidi
ater— i
MALDI-TOF/ Lepidium draba Sprouts 20 mitochondrial, Endopeptidase La Goharrizi et al,,
Stress Induced By . R
TOFMS Polvethvlene Ribulose-1,5-bisphosphate carboxylase/oxygenase 2020)
Z;l c}czl large subunit, partial (chloroplast), Peptidyl-prolyl
Y cis-trans isomerase CYP38, chloroplastic
Prot
0 éome. Ribulose bisphosphate carboxylase large chain, Beta-
Analysis With § . . X . .
. Viscum album Leaves, stem, galactoside-specific lectin 1 chain A isoform 1, (Tsekouras and
LC-MS/MS Putative 5 g . . . . -
. subsp callus Chitin-binding lectin, Beta-galactoside-specific lectin Kintzios, 2020)
Anticancer . . .
X 3, Beta-galactoside-specific lectin 2
Properties
Proteomic
LC-ESI MS/ Analysis Salvia Flowers 639 Malate dehydrogenase, pyruvate kinase, (Wang et al,,
MS, iTRAQ Associated With miltiorrhiza phosphoglucomutase, GAPDH, 26S proteasome, 2020)
Male Sterility
Glutamine synthetase, S-adenosyl-L-methionine
2-DE, SDS- Proteomic synthetase 2, Malate dehydrogenase, Nucléotide—
R i . rhamnose synthase, ATP synthase b subunit, Heat
PAGE, Analysis Of Panax ginseng C. Embryogenic 22 shock protein, 14-3-3-like protein, Cinnamyl alcohol (Lei et al., 2021)
ein, 14-3-3-li ein, Cin ei et al,
MALDI-TOF/ Embryogenic A. Meyer callus p P Y
dehydrogenase
TOF Callus -
S-adenosyl-L-methionine synthetase 1, Proteasome
subunit beta type, Spermidine synthase
High- Eukaryotic translation initiation factor 3,
LC-MS/MS Temperaturg Dendr?nthemu Leaves 1463 eukaryotic transl}atior} %rTiti.ation factor 4B3-like, (Li et al,,
Stress-Responsive grandiflorum chloroplast translation initiation factor IF-2, fructose 2021b)
Proteins kinase
Meja Mediated
. Regulation Of i X
TMT labeling, Alisma orientale 3-hydroxy-3-methylglutaryl-CoA reductase, squalene (Rong et al,,
Protostane Leaves 281 . A
LC-MS/MS . (Sam.) Juz. epoxidase, oxidosqualene cyclase, cytochrome P450s 2021)
Triterpene
Biosynthesis.
(Continued)
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Adenylate kinase, Glutathione S-transferase,
Isopentenyl-diphosphate Delta-isomerase I,
Germacrene A synthase short form, E3 ubiquitin-
{TRAQ, LC- Comparative Paris polyphylla protein ligase makorin, (Ling and
MS/MS Proteomic var. yunnanensis Seeds 1305 Probable cysteine proteinase At3g43960 precursor, Zhang, 2022)
Analysis NAD(P)H-quinone oxidoreductase subunit H,
chloroplastic, Alcohol dehydrogenase 1, Receptor-like
protein kinase HERK 1, 3-ketoacyl-CoA synthase 17,
Cyclin-dependent kinase A-2
S-adenosylmethionine synthetase 1, Quinone-
. oxidoreductase homolog, Putative D-isomer specific
Proteomics X )
SDS-PAGE, Analysis Under Reaumuria Leaves 7 2-hydroxy-acid dehydrogenase, Chalcone-flavonone (Yan et al,,
iTRAQ, MS Salt Stress soongorica isomerase, CRS2-associated factor 2, chloroplastic, 2022)
Ethylene-receptor, Auxin-responsive protein IAA11,
Putative glycosyltransferase
Glyoxylate and dicarboxylate metabolism, carbon (Rodrigues
LC-MS/MS Proteomics for Portulaca Leaves 752 fixation in photosynthetic organisms, cysteine and Neto et al,
salinity resistance oleracea methionine metabolism, and glycolysis/ 2023)
gluconeogenesis
Aspartate aminotransferase, dehydratase-enolase-
Label-free Flacagnus phosphatase 1 (DEP1), phospholipases D, (Chang et al.
LC-MS/MS proteomics angustifolia Roots 4227 diacylglycerol kinase, glycerol-3-phosphate O- 2023) ’
salt stress acyltransferases, and gamma-glutamyl
transpeptidases
Acetyl Coenzyme a Acyltransferase, 3-Hydroxy-3-
Methylglutaryl Coenzyme a Synthase,
Hydroxymethylglutaryl-Coa Reductase, Mevalonate
Kinase, Phosphomevalonate Kinase, Mevalonate
UPLC.Q- Pyrophosphate Decarboxylase, Isopentenyl
TOE-MS Organ-specific Dipsacus Root, leaf, and 3774 Diphosphate, Cytidylyltransferase, 4-(cytidine 50- (Pan et al,
analysis proteomics asperoides flower diphospho)-2-C-methyl-D-erythritol kinase, 2-C- 2023)
Methyl-D-Erythritol 2,4-Cyclodiphosphate Synthase;
HDS, 4-Hydroxy-3-Methylbut-2-En-1-Y1
Diphosphate Synthase, 1-Hydroxy-2-Methyl-2-(E)-
Butenyl 4-Diphosphate Reductase, HMG-CoA, 3-
Hydroxy-3-Methylglutaryl CoA,
Differential
2-DE, HPLC, Regulation of neem Proteins associated with oxidoreduction, energy, (Omar et al,
LCMS/MS Key Metabolism (Azadirachta Callus 129 transcriptional, stress response, respiration, and cell 2024)
via Shotgun indica) division
Proteomics

have so far been thought to be non-enzymatic in nature (Bryant
etal, 2015). According to Decker et al. (2000), codeinone reductase,
the most abundant detected protein by proteomic analysis using 2-
DE, was guessed to be a specific enzyme involved in morphine
biosynthesis in poppy latex (Papaver somniferum).

Significant up-regulation of ABA-responsive protein, ATP-
dependent fructose 6-phosphate kinase, late embryonic
development abundant protein_2 (LEA_2) domain-containing
protein, o-galactosidase, and (Heat-Shock Protein) HSP family
proteins after severe drought stress was observed in highly
drought-tolerant Licorice (Glycyrrhiza uralensis) using
quantitative proteomics with TMT tagging combined with liquid
chromatography-tandem mass spectrometry (LC-MS/MS). Some of
these DAPs that induced stress tolerance in licorice were detected to
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be enriched in a large number of secondary metabolism-related
pathways after drought exposure, including flavonoid, terpene
skeleton, sesquiterpene, carotenoid, and phenol propane
biosynthesis, as well as amino acid, sugar, and lipid metabolisms
(Zhang et al., 2022). Prunus mira medicinal plant, after osmotic
stress, induced an adaptive mechanism by influencing proteins
related to energy metabolism, photosynthesis, carbohydrate
metabolism, transport, translation, molecular chaperones, stress,
and defense. Thus, these proteins’ abundance enhancement and
lower energy accumulation contributed to maintaining a balance of
metabolites and dealing with abiotic stress (Xu et al., 2021). The
regulation of the mechanisms underlying haustorium development
in the Taxillus chinensis medicinal plant is imperative for its
successful parasitic invasion. Based on quantitatively iTRAQ-
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based proteomics analysis, upregulation of crucial proteins involved
in the phenylpropanoid metabolic pathway and proteins associated
with ABA signaling that act as inhibitors for regulating ABA
biosynthesis, induce lignin accumulation and keep the levels of
ABA down for improving haustorial development (Pan et al., 2021).
Nawrot et al. (2017) suggested that during plant development,
biological activity transitions from vigorous biosynthetic processes
to the activation of defense mechanisms.

2.3 Proteomics for finding bioactive
compounds in medicinal plants

Most medicinal plants contain beneficial bioactive compounds
that are considered potential therapeutic agents and precursors for
drug biosynthesis. However, their pharmacological activities and
biosynthetic pathways remain unidentified (Hashiguchi et al., 2017).
To effectively utilize plants’ genetic resources and metabolic
products, conducting physiological studies is vital, especially
concerning secondary metabolism and the pharmacological effects
of plant-derived compounds on humans and animals. MS
techniques provide detailed insights into secondary metabolites,
their intricate biosynthetic pathways, and the external factors
influencing these processes. Johnson et al. (2001) employed this
strategy to screen toxic rosmarinic acid and electrophilic quinoid
metabolites from plant extracts. Pulsed ultrafiltration and LC-MS/
MS analyses demonstrated that Trifolium pratense, known for its
metabolites used in treating menopausal symptoms, does not
produce glutathione (GSH) adducts of toxic reactive metabolites.
In contrast, Symphytum officinale, Sassafras albidum, and
Rosmarinus officinalis, recognized for their carcinogenic or toxic
compounds, were found to generate GSH adducts along with a newly
identified quinone metabolite, rosmarinic acid.

Comparative proteomics of Cannabis sativa as a herbal medicine
was done to determine tissue-specific accumulation of proteins and
enzymes involved in cannabinoid biosynthesis. Most of the identified
protein spots were found to be associated with primary metabolism,
whereas only a single protein related to cannabinoid biosynthesis
was detected. This may be attributed to the low abundance of
proteins involved in secondary metabolism, such as those involved
in cannabinoid biosynthesis (Raharjo et al., 2004). Post-translational
modifications played a significant role in the proteomes of Cannabis
flowers, with various modified proteins showing potential
connections to the production of terpenes and cannabinoids, the
primary bioactive compounds in Cannabis (Jenkins and Orsburn,
2020). DAPs from Eruca sativa and Linum usitatissimum that were
identified by top-down proteomics had a good range of biological
functions, including antimicrobial, anti-aphid, antigenic, and cardio-
protective effects. These bioactive peptides belong to different classes
of AMPs and have the potential against life-threatening diseases, so
they could be used in drug development (Altaf, 2016).

The alterations in the Panax ginseng root protein and transcript
profiles correlated with the activity of enzymes within up- and
downstream processes of the ginsenoside biosynthesis network in
different stages (Jayakodi et al., 2015). Ginsenosides are a class of
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triterpene saponins that are exclusively found in Panax spp as
bioactive components. Panax ginseng herb is used to treat
physiological disorders. Studies have shown that ginseng
promotes health and prevents diseases (Rajabian et al., 2019),
including immune modulation, anti-inflammatory effects, lipid-
lowering, antioxidation, anti-diabetic, anti-tumor activities,
increased energy, restorative properties, anti-aging, anti-
depression, inhibition or delay of the neurodegenerative process,
and improvement of memory and perceptual systems (Ong et al.,
2015). Using 2-DE and mass spectrometry (GC-TOF MS) led to the
identification of DAPs related to the hydrolase, oxidoreductase, and
ATP-binding activities. Subsequently, extensive identification of
metabolites with potential beneficial health effects, including
amino acids, sugars, organic acids, phenolic acids, phytosterols,
tocopherols, and policosanols, pointed to the occurrence of
extremely active biosynthetic pathways of medicinal compounds
in Panax ginseng (Kim et al., 2016). DAPs identified by proteomics
analysis indicated the interaction of metabolic proteins associated
with the growth strategies. The major part of identified proteins was
affiliated with energy metabolism and were used to store energy for
promoting root elongation and thickening, stress resistance, as well
as improving the biosynthesis of the secondary metabolites, such as
ginsenoside biosynthesis (Ma et al., 2013).

A diverse array of secondary metabolites, produced via specific
metabolic pathways, is frequently activated by environmental stimuli.
Zheng et al. (2016) reported that short-term, high-dose UV-A
radiation activated the stress defense system in Taxus chinensis and
enhanced the production of the anticancer metabolite paclitaxel. Gel-
based proteomics and GC-MS analyses of its leaves and chloroplasts
revealed that UV-A radiation predominantly impacted systems
related to photosynthesis, glycolysis, secondary metabolism, stress
response, protein synthesis, degradation, and activation. Additionally,
the upregulation of four key glycolysis enzymes, along with 1-deoxy-
D-xylulose-5-phosphate reductoisomerase and 4-hydroxy-3-
methylbut-2-enyl diphosphate reductase, provided essential
precursors for secondary metabolism, leading to increased
paclitaxel production through activation of its biosynthetic
pathway. Proteome analysis (Q-TOF-LC-MS/MS) of the jasmonic
acid-treated Andrographis paniculata (green chiretta) medicinal plant
revealed induction of protein accumulation involved in the
isoprenoid pathway, terpenoid biosynthesis, and andrographolide
production. Functional annotation and KEGG analysis of these
DAPs unveiled highly elevated metabolic processes as well as
secondary metabolism-related proteins associated with
phenylpropanoids, isoprenoids, and flavonoid pathways. The
enhancement of andrographolide production was found to
contribute to the upregulation of terpenoid biosynthesis (Bindu
et al., 2020).

2.4 Proteomics of response to biotic
stresses in medicinal plants

Pests, parasites, and pathogens are responsible for a large
number of plant infections. Feeding on a living host or killing it
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through toxin secretion, vascular wilt induction, leaf spots, stunted
growth, and wilting are part of their capacities to affect plants and
induce biotic stresses. Viruses led to systemic damage, resulting in
stunting and chlorosis, while mites and insects impair plants by
laying eggs on them. Combating such stresses demands an elaborate
immune system in plants. Cuticles, wax, and trichomes are physical
barriers that plants use as the first defense line. At the cellular level,
producing chemical compounds is one of the plants’ capabilities to
defend themselves. In response to pathogen attacks, plants activate
mitogen-activated protein kinases (MAPKs), volatile compounds,
PAMP-triggered immunity (PTI), generating reactive oxygen
species (ROS) and Effector-triggered immunity (ETI). Induced
ETI and PTT influence specific downstream signaling pathways,
including salicylic acid (SA) regulatory pathways. Additionally,
hydrogen peroxide (H,0,), activated oligogalacturonoids (OGAs),
and jasmonic acid (JA) signaling pathways are components of plant
systemic defense responses (Igbal et al., 2021).

Another pivotal downstream defense mechanism of plants is
the generation of defensive and stress proteins comprising o-
amylase inhibitors, protein inhibitors, polyphenol oxidases,
chitinases, lectins, and PR proteins (Chi et al., 2019; Perlikowski
et al., 2019).

There is substantial evidence that variations in the proteome
and post-translational modifications (PTMs) play a direct role in
the plant immune response. Thus, for a comprehensive
understanding of medicinal plant responses to biotic stresses,
proteomics assessment is crucial. Soybean extracts are popularly
known as medicinal ingredients. Dong et al. (2015) conducted a
proteomic analysis using 2-DE to investigate soybean innate
immunity in response to Bipolaris maydis inoculation. Their
findings demonstrated a systematic Nonhost Resistance (NHR)
against non-adapted pathogens, activating major metabolic
processes, subcellular structures, and multi-gene resistance
mechanisms. Key proteins such as acidic chitinases, protease,
Kunitz-type protease inhibitors (PI), RuBisCO (Ribulose-1,5-
bisphosphate carboxylase/oxygenase), BAHD (Benzyl alcohol
acetyltransferase family), NDK (Nucleoside diphosphate kinase),
and OEE (Oxygen-evolving enhancer protein) played significant
roles in soybean NHR, with some overlapping metabolic functions.

Additionally, proteomic changes assessed via 2D-PAGE and
LC-MS/MS during the biotrophic phase of Theobroma cacao L.
genotypes revealed differential responses to Moniliophthora
perniciosa infection. Several altered proteins were linked to
essential biological functions in resistance, including oxidative
stress regulation, photosynthesis, carbohydrate metabolism, and
detoxification. The upregulation of chitinases, trypsin inhibitors,
and PR 5 proteins as defense and stress-related proteins was
enhanced in both resistant and susceptible inoculated genotypes,
reinforcing their roles in fungal resistance (dos Santos et al., 2020).

Proteomic analysis of strawberry seedling cell responses to
Colletotrichum fragariae infection, utilizing 2-DE and MALDI-
TOF/TOF MS/MS, identified proteins with significant abundance
variations. The infection led to an increase in 3-1,3-glucanase, low-
molecular-weight heat shock proteins, and novel pathogen-
responsive proteins, whose expression patterns correlated with
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physiological changes. Conversely, the infection suppresses
proteins involved in the Calvin cycle and glycolysis pathway,
affecting metabolic processes. In consequence, a pathogen-
responsive protein network was induced (Fang et al., 2012).

In several pathosystems, infected plants or hosts reduce their
photosynthetic rates to mobilize energy for defense responses and
carbohydrate assimilation. The up-regulation of proteins related to
carbohydrate metabolism refers to the required respiration
enhancement. Induced photorespiratory pathway represents a
high source of photosynthesis-related-ROS during infections; this
has an important role in retrograding signaling pathways and
leading to biotic stress defense-related genes’ expression, which
increases, eventually, the hypersensitive response (HR) (Souza et al.,
2019). During compatible and incompatible interaction of
Mungbean Yellow Mosaic India Virus (MYMIV) infection with
Vigna mungo, which can cure several diseases, biochemical and
comparative proteomic analyses deciphered differential regulations
of V. mungo leaf proteome upon MYMIV infection and elucidated
its resistance response mode at the biochemical level. It was
indicated that photosynthesis-related proteins and proteins
involved in energy metabolism were mostly affected, resulting in
reduced photosynthesis rate and correlating with the appearance of
disease symptoms. Key factors in evoking the MYMIV-resistance
mechanism were, namely the accumulation of proteins related to
signal transduction, ROS metabolism, defense/stress, and
redirecting carbohydrate flux toward the pentose phosphate
pathway (Kundu et al.,, 2013).

Peptide-level evidence identified seven novel antimicrobial
peptides (AMPs) distributed across three distinct AMP classes:
snakins, defensins, and lipid transfer proteins, and unclassified
putative AMPs were characterized by a Bottom-up LC-MS/MS-
based proteomics/peptidomics analysis in edible amaranth
(Amaranthus tricolor) plants. Isolated Atr-SN1, Atr-DEF1, and
Atr-LTP1 as short-chain proline-rich antibacterial peptides
demonstrated activity against the high-risk ESKAPE bacterial
pathogens and further suggested that many unknown bioactive
peptides with potent inhibition activities remain to be discovered
(Moyer et al., 2021a).

2.5 Proteomics of response to abiotic
stresses in medicinal plants

2.5.1 Salinity

Salinity poses a significant challenge to sustainable agriculture
by disrupting plant growth and development. It primarily exerts its
negative effects by extracting water from the cytoplasm, leading to
osmotic stress (Akula and Ravishankar, 2011). Osmotic stress
disrupts metabolic balance and leads to the accumulation of
harmful reactive oxygen species (ROS), exacerbating cellular
damage and impairing plant function (Younessi-Hamzekhanlu
et al, 2021; Zhao et al., 2021), induces specific secondary
metabolites production, stimulates the activity of ROS scavenging
enzymes (Huang et al., 2020), and aftects photosynthesis through
destabilizing the chloroplast structure, chlorophyll biosynthesis,
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and eventually photosynthetic rate (Hnilickova et al., 2021). Plants
respond to salinity by modulating various morphological,
physiological, and biochemical traits by regulating ion
homeostasis and biosynthesis of osmoprotectants, antioxidants,
and phytohormones (Arif et al, 2020). Utilization of the
impressive proteomics technologies could provide noteworthy
information about the complex impact of stress on medicinal
plants along with stress-tolerance mechanisms concerning
photosynthesis, ion homeostasis, ROS signaling, protein
phosphorylation, osmotic modulation, signaling transduction, and
post-translational regulation (Zhang et al., 2023).

In general terms, it is believed that the process of photosynthesis
is sensitive to salinity. Up-regulation of Rubisco activase, Rubisco
large subunit, and carbonic anhydrase as photosynthetic proteins
was observed in the proteomic response of medicinal halophyte
Limonium bicolor (bicolored sea lavender) leaves under salt stress.
The elevated abundance of these proteins, which boosted
photosynthesis levels, played a crucial role in enabling Limonium
bicolor to withstand salt stress (Wang et al., 2017). In Aeluropus
lagopoides, salt stress led to the downregulation of Rubisco’s small
subunit at the protein level (Sobhanian et al., 2010). Similar results
have also been reported in association with photosynthetic proteins
including Rubisco small subunit, LOC100194054, Cytb6-f, oxygen-
evolving enhancer with differential accumulation patterns in
response to salt stress in Imperata cylindrica (L.) medicinal plant
(Shih YunJhih et al., 2018). With a focus on the effect of salt stress
on proteins of chloroplasts in Amaranthus cruentus as a
photosynthetic C3-C4 medicinal plant by LC-MS/MS, Joaquin-
Ramos et al. (2014) also reported that salt stress triggered
alterations in the proteomic profiles of thylakoid protein
complexes in both bundle sheath cells and mesophyll cells were
induced by salt stress; in addition, enhancement of ATP-synthase
and the CYTb6f proteins were associated with a significant demand
for ATP during the salt stress response.

High ATP utilization in the leaves of Morus alba L. under salt
stress resulted in an increased NADPH/ATP ratio, thereby
enhancing cyclic electron flow (CEF) (Huihui et al., 2020).
Reduced ATP synthesis plays a role in minimizing
photoinhibition (Takagi et al., 2017). TMT-based proteomics
analysis revealed that mulberry seedlings exposed to NaCl and
NaHCOj; stress exhibited disruptions in internal photoprotective
mechanisms. The down-regulated xanthophyll cycle, cyclic electron
flow (CEF), chlorophyll synthesis, Fd-dependent ROS metabolism
and nitrogen metabolism due to decrease in abundance of the
LHCII antenna (CP24 10A, CP26, and CP29), PSII oxygen-evolving
complex (OEE3-1 and PPD4), and photosystem I core proteins
(PsaF, PsaG, PsaH, PsaN, Ycf4) inhibited photosystem electron
transfer and carbon assimilation. Therefore, the main prerequisite
to keeping plants’ photosynthetic function and improving plant
tolerance under stress conditions was photoinhibition as an effective
regulatory mechanism (Huihui et al., 2020).

Plants activate diverse mechanisms to counteract salinity,
including the stimulation of protective and antioxidant enzymes.
A systematic proteomic analysis of Andrographis paniculata under
salinity stress, employing a combination of 2-DE and MS, identified
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proteins that were upregulated and downregulated in response to
stress. These proteins, which contributed to stress protection, were
associated with superoxide dismutase, ascorbate peroxidase, and
ribulose-1,5-bisphosphate oxygenase, functioning as ROS
scavengers (Talei et al, 2015). It was suggested that Limonium
bicolor leaves high stress-tolerance was due to its great constitutive
antioxidant and detoxification capacity (Wang et al., 2017).

The root proteome profiling of Pongamia pinnata under salt
stress was performed by employing the free-labeled nanoLC-MS/
MS method, showing an elevated presence of proteins associated
with essential regulatory pathways, including chalcone synthase
(CHS) proteins, which take part in flavonoid biosynthesis, were
involved in signaling pathways, including secondary metabolism,
anaerobic respiration, and antioxidant metabolism associated with
salt tolerance. Moreover, the significant abundance of CHS proteins
has contributed to adjusting ROS cellular energy redox homeostasis
against Na® toxicity with high antioxidant activity under saline
environment conditions (Marriboina et al., 2022).

Plants activate a series of responses and defense mechanisms
facing abiotic stresses to transmit signals and increase tolerance
(Table 3). The comparative proteomic analyses of Limonium bicolor
leaf and root exposed to salt stress utilizing 2D-PAGE combined
with MALDI-TOF/TOF-MS revealed DAPs with diverse
physiological functions spanning a broad spectrum of molecular
processes leading to salt-stress adaptation and some chemical
constituent enhancement by activating multiple biological
pathways including energy, secondary metabolism, redox
homeostasis, carbohydrate, transcription, and transport (Wang
et al., 2017). iTRAQ-labeled quantitative proteomics in
Helianthus tuberosus L. under salt stress revealed that DAPs were
predominantly enhanced in redox regulation, carbohydrate
metabolism, ion binding processes, and ribosome translation
(Zhang et al,, 2018). A rise in soluble carbohydrates, restructuring
of ribosomes, and elevated levels of enzymes participating in the
citrate cycle, glycolysis, and the pentose phosphate pathway, with an
impact on plant developmental processes and controlling organelle
trafficking energy resource could conduct modulation of the plant
metabolism in salt defense (Li et al., 2015). Hence, the induction of
sugar signaling proteins and ribosome activity was introduced as
the reason for the salt tolerance appearance in H. tuberosus (Zhang
et al, 2018). The utilization of (iITRAQ) MS/MS by Liu Z. et al.
(2019) significantly enabled the detection of the changes in proteins
and related molecular mechanisms in Spica prunellae, a Chinese
traditional herb under different salt concentrations. Salt-stressed
Spica prunellae activated a bunch of mechanisms by enhancing
proteins related to energy metabolism, protein metabolism,
photosynthesis, and oxidative capacity that afford tolerance to
salt stress.

2.5.2 Light spectrum and low/high light intensity
Light is a critical environmental factor influencing plant growth
and development. The balance between photoreception and
intensity directly impacts photosynthetic efficiency. Under natural
conditions, plants often receive suboptimal light, resulting in
photosynthetic imbalance. Both excessive and insufficient light
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TABLE 3 Different proteomic techniques, targets, and identified proteins of various medicinal plants under abiotic stresses.

Categories Species of Analytical e F - .
g Type P Organ o4 Main identified proteins Reference
of stress the study technique
Amaranth SDS-PAGE (Joaquin-
maranthu - ,
Salinity Salt Stress cru:n:‘lus 8 Leaves LC_MS/MS Thylakoid proteins Ramos et al.,
2014)
Andrographis Leaf/ 2-DE, MALDI GluFamlne synthetase, Methlor?me synthase, Pl}osphoglycerate (Talei et al,
Salt Stress . kinase, ATP synthase subunit alpha, Carbonic anhydrase,
paniculata Nees root TOF MS . . . 2015)
Ginnacin, Ascorbate peroxidase
iTRAQ-labeled
Helianthus ! QA & Ae ¢ Redox regulation, carbohydrate metabolism, ion binding (Zhang et al.,
Salt Stress Leaf quantitative ) .
tuberosus L. . processes, and ribosome translation 2018)
proteomics
60 S ribosomal protein L18a-2, 40 S ribosomal protein S3-2, 60 S
ribosomal protein L6-2, pyruvate kinase, Glyceraldehyde-3-
. {TRAQ, Nano- phosl?hate dehydrogenase, Cinnamyl alcol.lol dehydr(.)genase 2, (Liu et al,
Salt Stress Spica Prunellae Leaf Calcium-transporting ATPase, Calmodulin 5, 60 S ribosomal
LC-MS/MS . ! ) o 2019)
protein, 60 S ribosomal protein 122-2, Nucleic acid-binding, OB-
fold-like protein, Cytochrome c-2, Calmodulin 7, Nucleoside
diphosphate kinase 1
Down-regulated xanthophyll cycle, cyclic electron flow (CEF),
chlorophyll synthesis, Fd-dependent ROS metabolism and L
M L. TMT- Huihui et al,,
Salt Stress orus alba Seedlings bas'ed nitrogen metabolism, LHCII antenna (CP24 10A, CP26, and (Huihui et a
(mulberry) proteomics K 2020)
CP29), PSII oxygen-evolving complex (OEE3-1 and PPD4), and
photosystem I core proteins (PsaF, PsaG, PsaH, PsaN, Ycf4)
Medicago sativa 2-DE,
R (Long et al.,
Salt Stress  Medicago Root MALDITOF/ APR and COMT 2016)
truncatula TOF-MS
) Free-labeled Chalcone synthase (CHS) proteins, flavonoids biosynthesis, .
Pongamia X K i i L (Marriboina
Salt Stress . Root nanoLC-MS/ | signaling pathways, secondary metabolism, anaerobic respiration,
pinnata Y R et al., 2022)
MS and antioxidant metabolism
Phot thesis (RCA, PSAF, PSAN, PSB27-1), ri
Reaumuria SDS-PAGE, ° ?syn esis (RC s SAN, PSB27-1) ?1b0son.1&.l (Yan et al.,
Salt Stress i Leaf X proteins (RPS10, RPS2D, RPS9, RPL7AA), peptide chain-
soongorica iTRAQ, MS K 2022)
releasing factor (AT2G47020)
MLP-like protein 31 (MLP31)
1,2-Dihydroxy-3-keto-5methylthiopentene dioxygenase, OTU
domain-containing protein At3g57810, Cytokininriboside
Picrorhiza 2-DE, 50monophosphate phosphoribohydrolase LOG2 (Parkash et al
arkash et al.,
Light spectrum Dark Stress  kurrooa Royle ex = Leaf/root =~ MALDI-ToF/ Cold shock domain-containing protein 4, DNA-directed RNA 2014)
Benth. ToF-MS polymerase subunit alpha, Protein vernalization insensitive 3
Protein transport protein Sec 61 subunit gamma-3, Plastid
lipidassociated protein 1
508 ribosomal protein
Sedoheptulose-1, 7-bisphosphatase, chlorophyll a/b binding
UY—I.B Catharanthus Leaf LC-MS/MS ‘protein, serine glyoxylate aminotransfera‘se 3, ribulos.e (Zhu et al,,
Radiation roseus bisphosphate carboxylase/oxygenase, and light-harvesting 2015)
complex II proteins comparative proteomic
23 kDa thylakoid membrane protein, Glyceraldehyde 3-
Chrysanthemum 2-DE, phf)sp‘h?te dehydrqgenase, 60S acidic ribosomal protei-n P3,
Uv-B s Ubiquitin-conjugating enzyme E2 35, Ascorbate peroxidase, (Yao et al,,
L morifolium Flowers MALDI-TOF . ] :
Radiation Ramat MS Nucleoside diphosphate kinase, Alpha-barbatene synthase 2014)
a
Ferrochelatase, Oxygen-evolving enhancer protein 1,
chloroplastic,
Uv-B Cintenn b Leaf! 2-DE, MALDI 'K;enI'Ijifercol,'kaempféz‘c?l%-O-glu:'os;de, llutetoh'r:i, quercet'ltn', (Zheng et al,
inkgo biloba inkgolide C, isoquercitrin, quercetin 3-galactoside, quercitrin,
Radiation 8 exotesta TOE-TOF CE 4 q X 8 q 2015)
catechin
Comparative
Uv-B Zhu et al,
,v . Caththus roseus Leaf gel-free Hydroxy geraniol oxidoreductase, alkaloid biosynthesis (Zhu et a
Radiation . 2015)
proteomics
(Continued)
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TABLE 3 Continued

Categories Species of Analytical o . :
Type Organ : Main identified proteins Reference
of stress yp the study 9 technique P
Sedoheptulose-1,7-bisphosphatase, 2,3-bisphosphoglycerate-
independ ent phosphoglycerate mutase, transaldolase, alanine
aminotransferase, 1-deoxy-D-xylulose 5-phosphate
Uv-B Lonicaranera Buds/ 2-DE, reductoisomerase, heat s‘hoc-k‘ pr‘otein 70-‘2, Helicase, C-terminal, (Zhu et al,
L R K MALDI-TOF/ ubiquitin-like protein _
Radiation  japonica Thunb Flowers . K . 2017)
TOEF-MS oxygen-evolving enhancer protein 1-2, urease accessory protein
G, 20S proteasome alpha subunit E2 isoform 2,
peroxisomal 2,4-dienoyl CoA reductase, Cytoplasmic aconitate
hydratase, oxygen evolving enhancer protein 1-2-chloroplastic
UY-I? M. himalaica, Leaf {TRAQ The cha.l(lzone- syrlltha?e enz?fmes, hf)rmone‘ s.igna%ing- systen'}ls an‘d (Gu et al,
Radiation phosphatidylinositol including auxin, abscisic acid, jasmonic acid 2018)
Enzymes involved in metabolite biosynthesis and defense
Uv-B Lonicera 2DE, MALDL- ' 'm?cha'nisms, Eflhanced levels of caffeoylquinic acids and (Zhang et al,
L ) . Leaf iridoids, increase in DXR (one-deoxy-D-xylulose 5-phosphate
Radiation Jjaponica TOF/TOF MS . . 2013)
reductoisomerase) and EPSPS (five-enol-pyruvyl shikimate-
phosphate synthase) production
Uv-B Amaranthus LC/ESL-MS/ Up-regulation of cltlloroplast chapefonins, down-regu.latio'n of (Huerta-
L . Leaf cytochrome b, Rubisco large subunit, the ascorbate peroxidase Ocampo et al.,
Radiation hypochondriacus MS .
and oxygen-evolving complexes 2009)
Mitoch ial ility, the mitoch ial
Dark Clematis SDS_PAGE, itochondrial memb.rane permeability, t] e.mlt'oc ondria (Tao et al,
) Leaf electron transport chain (mETC), photorespiration, and the
Treatment terniflora, LC-MS K X i 2022)
tricarboxylic acid cycle
Water Sct,‘ttellari‘a 2-DE, Electron transporter, putative, Adenosxlhomocysteinase, (Yuan et al,
Drought Deficit baicalensis Root MALDI-TOF Chloroplast heat shock protein 70B, 2012)
Georgi MS d-3-phosphoglycerate dehydrogenase, Alpha-tubulin
Waty affar et al.,
& e.r chrysanthemum Leaf Receptor-like cytosolic kinases CLE25, NCED3, CmWRKY10, (affar eta
Deficit 2016)
Ribulose bisphosphate carboxylase/oxygenase activase A, partia,
-evolvi h in 1-2, chl lastic,
' 2-DE, Qxygen evolving enhancer protem. chlorop! 'astlc (amshidi
Osmotic . Aminomethyltransferase, mitochondrial, Endopeptidase La 5 o
Lepidium draba Sprouts MALDI-TOF/ . : . Goharrizi
Stress TOEMS Ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit, et al., 2020)
partial (chloroplast), Peptidyl-prolyl cis-trans isomerase CYP38, v
chloroplastic
2-DE Glu S.griseus protease inhibitor-like, vacuolar protein sorting-
Drought Dendranthema Leaf MALDI I:OF/ associated protein 53 A isoform, zinc finger AN1 and C2H2 (Sahithi et al.,
Stress grandiflorum TOE MS domain-containing stress-associated protein 16-like, RNA 2021)
polymerase B, and probable disease resistance protein
Water Taxillus Seeds TMT-labeling, Calvin cycle-associated and glycolysis-related proteins, fructose (Pan et al.,
Deficit chinensis LC-MS/MS aldolases and glucose pyrophosphorylase, 2022)
2-DE, (Zhu et al
u et al,
Temperature Heat Stress  Pinellia ternata Leaf MALDI-TOF/ HSP21, heat shock protein 17.9, small heat shock protein 2013)
TOF MS :
Momordica 3D-DIGE. UDP-glucose
Heat Stress charantia L. var. Fruit nano-HPLé— pyrc?phosphf)rylase (UGPase), PhosphoglycFrate kinase (PGK), (Ng et al,
Hong Kong Quinoneoxidoreductase, Heat shock protein, 18.1 kDa class I 2014)
MS/MS .
Green (sHSP), Heat shock protein, 18.2 kDa class I (sHSP)
Panasx ginseng Label‘—fr?e Recept(?r c-haperones, G-proteins, -calFium—signaling protei.ns, (Kim et al,
Heat Stress Mever Leaf quantitative transcription factors, structural-binding, and transfer/carrier 2019)
4 proteome proteins
M Lepidi Wa t al.,
Heat Stress aca ( epidium Leaf TMT HSPs proteins (Wang cta
meyenii Walp) 2020)
Eukaryotic translation initiation factor 3,
High Dendranth Liet al,
'8 e r‘an ema Leaf LC-MS/MS eukaryotic translation initiation factor 4B3-like, chloroplast die
Temperature  grandiflorum P . 2021)
translation initiation factor IF-2, fructose kinase
(Continued)
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TABLE 3 Continued

10.3389/fpls.2025.1656247

Categories Species of Analytical o . :
: Main identified proteins Reference
of stress the study technique P
Proteomics .
R X (Zhang et al.,
Cold Stress = R. chrysanthum Leaf (iTRAQ) Expressed two heat shock proteins (Hsp18 and Hsp70 2023)
techniques
Two
Calendula dimensional Prf)teins corre'sp(')nding to photosynthesis, respiration, st.ress (Jan et al,
Cold Stress L Leaf (2D) and resistance, antioxidant defense, plant development and signal
officinalis A 2023)
MALDI-TOF- transduction
MS
Chilling T chinensis Seeds Involved at biosynthesis, trans})ort, energy, and cellular (Pan et al.,
Stress metabolism 2025)
Up-regulated putative auxin-induced proteins such as plant
growth regulator-related proteins, formate dehydrogenase
Heavy Metals High Cannabis sativa Roots (FDH), the scavenging syster-n‘protAeins fepresented b)t aldo/keto (Bona it al,,
Copper reductase, enolase and elicitor inducible; stress resistance 2007)
proteins cyclophilin and putative peroxidase; and suitable growth
regulator proteins glycine-rich RNA binding protein (GRP)
2.DE and Cytochrome b6-f complex, oxygen evolving enhancer protein 1
Cadmium Agrostis Metal identification (OEE), chlorophyll a-b binding proteins, and RuBisCO, redox (Hego et al.,
Stress capillaris L stress enzymes, isocitrate dehydrogenase, cysteine/methionine 2016)
by LC-MS/MS
synthases and chaperones
ATP synthase subunit beta, mitochondria, Enolase, Eukaryotic
elongation factor 1A, S-adenosyl-L-homocysteine hydrolase,
Cadmium Amaranthus 2-DE, Plastid-lipid-associated protein, chloropla.st precursor, putative, (in et al,
Stress ybridus L Root MALDI-TOF/ Phytochrome C, partial 2016)
4 ’ TOF-MS UDP-glucose 6-dehydrogenase, Lignin-forming anionic
peroxidase precursor, putative, Actin, Glutathione S-transferase,
Dicer-1, putative
5methyltetrahydropteroyltriglutamate-homocysteine
. 2-DE, methyltransferase, Glutamine synthetase, S-adenosylmethionine
Cadmium i (Rao et al,,
Toxicit Crocus sativus L Leaf MALDI-TOF- synthetase 1, Glyceraldehyde-3-phosphate dehydrogenase 2017)
Y TOE-MS Chaperonin, Stromal 70 kDa heat shock-related protein, !
chloroplastic, Ferredoxin-NADP reductase, leaf isozyme
Eucalypti Alotaibi et al.,
Cu Stress ueayphus . Seedlings 2-DE, MS Stress proteins, metabolism and regulatory proteins (Alotaibi et a
camaldulensis 2019)
. 2-DE, Pyrophosphate-fructose 6-phosphate 1phosphotransferasebeta-
High H Sako et al.,
' yoscyamus Root MALDI-QIT- subunit, Enolase, S-adenosylmethionine synthase, Ferredoxin- (Sako eta
Copper albus L . X 2016)
TOF nitrite reductase, Heat shock cognate 70 kDa protein
»-DE Elongation factor tu, c-repeat binding factor, Glyceraldehyde-3-
High Eucalyptus ’ phosphate dehydrogenase, fructose-bisphosphate aldolase, (Alotaibi et al.,
. Leaf MALDI-TOF-
Copper camaldulensis sucrose synthase 2019)
TOF-MS . . ;
Ribulose bisphosphate carboxylase large chain,

can damage protein complexes involved in electron transport,
disrupting NADPH and ATP availability. To adapt to these
stresses, photosynthetic organisms employ various
photoprotective mechanisms and protein modifications.
Thylakoid membrane protein complexes, such as photosystems
(PS) T and II, their light-harvesting antennae (LHC I and II),
cytochrome (Cyt) b6f, and the ATP-synthase complex, work in
coordination to absorb light energy and convert it into a chemical
form essential for plant survival (Wietrzynski et al., 2020).
Protection mechanisms have evolved in PSII to counteract ROS
generation by tuning redox processes and inhibiting damage to the
photosystem (Brinkert et al., 2016). Ultraviolet (UV) radiation is the
most impressive ray of light that impacts every level of plants’
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biological organization and alters the biochemistry of plants.
Ultraviolet radiation activates the photoregulatory pathway
(Brown and Jenkins, 2008), damages photosynthetic pigments
(Frohnmeyer and Staiger, 2003), enhances ROS production
(Trentin et al., 2015), and elicits secondary metabolite production
in medicinal plants (Binder et al., 2009). The impact of light or UV
radiation on particular biological pathways and processes can be
described by alterations in the contents of proteins that have a
functional role in the performance of photosynthesis.

Plants activate defense strategies by regulating specific genes
and accumulating UV-absorbing compounds in response to light/
UV stress (Frohnmeyer and Staiger, 2003). Modern
pharmacological studies have confirmed the high medicinal value
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of Lonicera japonica. The main molecular processes involved in its
development when exposed to UV radiation were analyzed by
comparative proteomics. Studies have shown that UV radiation
significantly increases the levels of proteins involved in antioxidant
activity, energy and carbohydrate metabolism, and secondary
metabolite content in Lonicera japonica flower buds. These
alterations in bioactive components, primarily secondary
metabolites, influence both the quality and quantity of the
resulting medicinal materials (Zhu et al., 2017). Similar results
have also been reported in association with the effect of blue/red
light on Scrophularia kakudensis proteomic profiles, referring to up-
regulation of carbohydrate metabolism, photosynthesis, and stress
responses as well as stimulation of secondary metabolites with
medicinal value via activated stress alleviation mechanisms
(Manivannan et al., 2021). Comparative proteomics using 2-DE
combined with MALDI-TOF/TOF MS was conducted to identify
key enzymes involved in metabolite biosynthesis and defense
mechanisms in UV-irradiated Lonicera japonica. Findings
suggested that UV stress activated a complex defense system,
leading to differential protein accumulation across various
molecular processes, including photosynthesis, secondary
metabolite biosynthesis, transport, carbohydrate and energy
metabolism, cell wall dynamics, and lipid metabolism. Enhanced
levels of caffeoylquinic acids and iridoids were recognized as
secondary metabolites with antioxidant and UV-absorbing
properties. Additionally, an increase in DXR (one-deoxy-D-
xylulose 5-phosphate reductoisomerase) and EPSPS (5-
enolpyruvylshikimate-3-phosphate synthase) production, as two
UV-responsive key enzymes, provides more precursors for
secondary metabolite biosynthetic pathways following exposure to
UV stress (Zhang et al., 2013).

High radiation may disrupt the balance between the energy
absorbed through the photophysical processes of PSII and the
energy utilized for carbon assimilation (Joshi et al, 2011). The
major function of chloroplasts, namely photosynthesis, could be
severely suppressed by enhanced UV-B irradiation. To prevent UV-
B’s detrimental effects on photosynthesis, flavonoids are actively
expressed, acting both as an internal filter against this harmful
radiation and participating in the antioxidant defense system
(Ferreyra et al., 2021). Zhu et al. (2015) also discussed the
negative impact of UV-B irradiation and dark incubation on
photosynthesis in Catharanthus roseus leaves by reporting the
diminution in abundance of sedoheptulose-1, 7-bisphosphatase,
chlorophyll a/b binding protein, serine glyoxylate
aminotransferase 3, ribulose bisphosphate carboxylase/oxygenase,
and light-harvesting complex II proteins. The declining production
of RuBisCO and PSII-related proteins, in both whole leaves and
chloroplasts, implies the adverse effect of UV-B irradiation on the
photosynthetic system efficiency. Obtained data from a comparative
proteomic approach confirmed that augmented UV-B radiation
exposure up-regulated antioxidant, stress-responsive proteins, and
flavonoid biosynthesis enzymes, while reducing photosynthesis rate
in Ginkgo biloba traditional medicinal plant (Zheng et al., 2015).
Catharanthus roseus synthesizes a diverse range of indole alkaloids,
which exhibit notable pharmaceutical properties. Comparative gel-
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free proteomics revealed a high abundance of 10-hydroxy geraniol
oxidoreductase, involved in the biosynthesis of indole alkaloids in
C. roseus leaves. The UV-B irradiation and darkness induced
alkaloid biosynthesis by altering related metabolic pathways and
therewith significantly boosted indole alkaloids, including
ajmalicine, vindoline, catharanthine, and strictosidine production
(Zhu et al,, 2015). UV-B radiation could have a remarkable positive
effect on the medicinally active substances, namely rotenoids,
flavonoids, and coumarins, as the secondary metabolite. To focus
on the role of UV-B radiation in regulating the metabolism of M.
himalaica, a Tibetan medicinal plant, an iTRAQ proteomics
approach was used. It was found that under exposure to UV-B
radiation, up-regulation of DAPs such as the chalcone synthase
enzymes improved the biosynthesis of rotenoid through the
hormone signaling systems and phosphatidylinositol, including
auxin, abscisic acid, jasmonic acid, and calcium signals (Gu et al.,
2018). Mitochondrial proteomics was employed to investigate the
response mechanism of Clematis terniflora, a medicinal plant from
the Ranunculaceae family, to UV-B radiation and dark treatment.
DAPs were primarily linked to mitochondrial membrane
permeability, the mitochondrial electron transport chain (mETC),
photorespiration, and the tricarboxylic acid cycle, to minimize
energy consumption and maintain energy balance under stress.
Additionally, alternative oxidases played a role in regulating
intracellular oxygen balance by engaging other oxygen-consuming
pathways (Tao et al., 2022).

2.5.3 Drought

Water deficit is one of the most intense environmental
restrictions on plant productivity. Drought stress disturbs plant
water relations and diminishes water-use efficiency, root
proliferation, and eventually yield (Kazemi Oskuei et al., 2023).
Drought conditions also affect plants’ metabolic processes and lead
to cellular damage (Perlikowski et al., 2022; Sahithi et al., 2021).
However, concerning spice and medicinal plants, the situation is
different. Drought has a significant effect on the growth and
secondary metabolic pathways of medicinal plants. Exposure to
drought stress reduces medicinal plants’ biomass production as
well, yet enhances the contents and quality of important
compounds (Shil and Dewanjee, 2022). Various response
strategies in plants have been proposed at physiological and
biochemical levels to cope with drought stress (Farooq et al., 2009).

To trigger the defense mechanisms immediately during any
stress, various stress-responsive proteins remain active in plants.
For the relative protein profiling of chrysanthemum
(Dendranthema grandiflorum) Sahithi et al. (2021) performed 2-
DEs combined with MALDI-TOF MS. Most of the DAPs under
drought stress conditions were mostly related to flower
development and stress response/defense. An increase in stress
response proteins’ content was associated with reduced reactive
oxygen species (ROS) and redox reaction regulation to protect the
cell from oxidative damage and maintain homeostasis (Sahithi
et al,, 2021).

The seeds of Taxillus chinensis, belonging to Taxillus, a genus of
parasitic plants that are important herbs in the Chinese
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pharmaceutical industry, are sensitive to dehydration. Dehydration
stress induces oxidative damage in seeds. Proteomics analysis using
TMT-labeling and LC-MS/MS identified DAPs primarily localized
in the chloroplast, playing key roles in photosynthesis, signal
transduction, and energy metabolism. Increased levels of Calvin
cycle-associated and glycolysis-related proteins, such as fructose
aldolases and glucose pyrophosphorylase, contribute to energy
production and enhanced dehydration tolerance in Loranthus
seeds (Pan et al., 2022). The up-regulation of chloroplast
chaperonins involved in refolding and protein complexes
protection, along with the down-regulation of cytochrome b,
Rubisco large subunit, the ascorbate peroxidase and oxygen-
evolving complexes, as mitochondrial proteins, disclosed the
central role of chloroplasts and mitochondria in abiotic stress
adaptation in Amaranthus hypochondriacus L (Huerta-Ocampo
et al., 2009).

Up-regulation of GA-responsive protein and anthranilate
synthase as indoleacetic acids (IAA)-related proteins in leaves of
Scutellaria baicalensis, a traditional Chinese herbal plant exposed to
water deficit, was detected by proteomic analysis, demonstrating the
effect of water deficits on flavonoid accumulation through
hormonal metabolism regulation. The great accumulation of
flavonoids as active compounds affects the high quality of this
herbal medicine (Yuan et al., 2012). In addition, an appropriate
degree of drought promotes baicalin accumulation, stimulating the
production of key biosynthetic enzymes (L. Cheng et al., 2018). The
proteomic profiles of drought-stressed Mulberry Trees (Morus alba
L.) showed DAPs mostly enriched in the sucrose-related metabolic
pathway (Liu et al., 2019a).

The differential regulation of proteins involved in cell wall
strengthening, signal transduction, gene regulation, and cellular
detoxification affects the molecular mechanism behind drought
stress tolerance (Kottapalli et al., 2009). Proteomic analysis of
Lepidium draba under drought stress revealed differential
regulation of key proteins involved in energy metabolism and
photosynthesis, including rubisco activase A, RuBisCO large
subunit, aminomethyl transferase mitochondrial-like proteins,
endopeptidase La protein, and oxygen-evolving enhancer protein
1-2 (OEE1-2). Additionally, the two-component system (TCS),
comprising histidine kinase proteins (HKs), histidine
phosphotransfer proteins (Hpts), and response regulator proteins
(RRs), played a role in signal transduction and environmental
sensing. Glycosyltransferase contributed to plant development,
while glutamate 5-kinase, a component of the proline biosynthesis
pathway, likely enhanced drought tolerance in L. draba (Jamshidi
Goharrizi et al., 2020). Comparative proteomics of chrysanthemum
leaves under drought stress identified DAPs involved in flower
development, stress signaling pathways, and secondary metabolic
processes, including the regulation of the circadian rhythm,
physiological transport, DNA synthesis, gene expression, and
protein ubiquitination. These findings contributed to defining the
key signaling networks, homeostatic regulation, and tolerance
mechanisms, essential for chrysanthemum’s adaptation to drought
stress (Sahithi et al., 2021). In the view of Jaffar et al. (2016), the
overaccumulation of CmWRKY 10, which is known as DNA DNA-
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binding protein in chrysanthemum, was induced by drought to
behave as a positive regulator of stress-related genes with a role in
ABA signaling and cellular ROS production, and improve its
drought tolerance. Receptor-like cytosolic kinases CLE25
contribute to transmitting drought signals to downstream targets,
leading to the activation of NCED3, a crucial enzyme in abscisic
acid (ABA) biosynthesis (Takahashi et al., 2018). Therefore, the
involvement of protein kinases in stress signal transduction is co-
regulated with plant responses to drought stress in all aspects.

2.5.4 Temperature

Temperature is one of the most critical abiotic stresses that
profoundly affects plant growth and productivity (Parankusam
et al,, 2017). Both heat stress (high temperatures) and cold stress
(low temperatures) significantly disrupt the physiological processes
of plants, including protein synthesis, metabolism, and cellular
integrity. Each medicinal plant species has its own optimal
temperature range; extreme variations can quickly disrupt its
cellular structures, macromolecules, and, in particular, valuable
secondary metabolites (Alum, 2025). Hence, medicinal plants
similar to crops have evolved different adaptation mechanisms to
withstand adverse conditions for optimal growth (Niu and Xiang,
2018). The induction of variety cellular phenomena, namely
membrane fluidity, metabolite, osmolyte concentrations,
photosynthesis, carbon assimilation, and redox status, constitutes
responses to heat stress (Niu and Xiang, 2018). According to the
Sher et al. (2024) the alteration of the post-translational,
transcriptional, and translational mechanisms, followed by
changes in signaling pathways, is a key strategy for combating
heat stress in medicinal plants. High or low temperatures disrupt
protein stability, specific enzyme functions, and perturb
metabolism. Therefore, the identification of protein profiles of
medicinal plants by proteomics in response to extreme
temperatures is crucial to understand the molecular mechanisms
that underpin response strategies in medicinal plants’.

The heat shock transcription factors (HsfAls), which are the
master regulators of the heat stress response (HSR), acquire
thermotolerance in plants through interaction with heat shock
proteins (HSPs). So, the enhancement in the level of HsfAls and
HSPs (HSP70 and HSP90) leads to adaptation and heat stress
tolerance in medicinal plants (Ohama et al., 2016). Gouda et al.
(2024) reported that the optimal response in which cells survive the
heat stress was the elevation of HSP levels as heat-responsive
proteins. In addition, the upregulation of HSPs prevented other
cellular proteins from damage caused by heat stress.

The evaluation of heat-responsive proteins in P. ternata
through 2-DE followed by MALDI-TOF/TOF MS showed that in
the protein expression pattern, more than 20 proteins were up- and
down-regulated in response to heat stress. Several tolerance-related
proteins with various functions were identified, including small
HSPs, RNA processing proteins, photosynthesis proteins, protein
degradation proteins, and defense proteins (Zhu et al., 2013). It was
reported that heat stress reduced the photosynthetic efficiency of
Ginseng (Panax ginseng Meyer) 48 h after treatment, and
modulated 847 differentially abundant proteins, which were
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identified by label-free quantitative proteome analysis in response
to stress. These proteins with increased abundance were mainly
associated with antioxidant and translation-regulating activities,
whereas the proteins related to the receptor chaperones, G-
proteins, calcium-signaling proteins, transcription factors,
structural-binding, and transfer/carrier proteins activities
exhibited reduced abundance (Kim et al., 2019). DAPs in the
leaves of Dendranthema grandiflorum ‘Jinba’ under high
temperature stress were investigated using label-free quantitative
proteomics techniques and LC-MS/M. It was demonstrated that
most of the DAPs were involved in energy metabolism pathways,
protein metabolism, and heat shock, as well as some of them had a
correlation with heat resistance in chrysanthemum (Li et al., 2021b).
Proteomic analysis of Maca (Lepidium meyenii Walp) showed that
the levels of 300 proteins, in particular, HSP proteins, which
regulate protein quality, were differentially changed in response to
the high temperature stress. HSPs were significantly up-regulated to
protect other proteins from being denatured. Moreover, a variety of
transcription factors, including MBF1C, HSFA2, AF1, WRKY70,
and HY5, that take part in the inspection of HSR-related genes, ROS
scavengers, and enzymes, were regulated by these HSPs (Wang
et al.,, 2020).

Likewise, proteomic analyses revealed that cold acclimation
enhanced the cold tolerance of medicinal plants by promoting the
biosynthesis of proteins that participated in ROS scavenging,
photosynthesis, energy metabolism, carbohydrate metabolism,
protein metabolism, and cofactor biosynthesis (Dugganaboyana
et al, 2023). By using MALDI-TOF/TOF-MS, Shen et al. (2021)
found some proteins in G8, such as TIM, ATPB, and LEA in both
cold-acclimated and non-acclimated S. apetala seedlings, which act
as common responsive proteins in response to chilling stress. Also,
they suggested that CAB, eEF-G and APX1 proteins function as the
hub proteins in regulating the stress response. Zhang et al. (2023),
using integrated transcriptomics (RNA-seq) and proteomics
(iTRAQ) techniques, have revealed the enrichment of some
pathways comprising antioxidant activity and carbohydrate
metabolism through the induction of six different genes (GLUST,
GO1, RPE3, P5PI3, RbcS, and POD4) and differentially expressed
two heat shock proteins (Hsp18 and Hsp70) in two CfT lines of
(cold-resistant) R. chrysanthum exposed to cold stress. Comparative
proteomics of Ammopiptanthus mongolicus leaves under cold stress
identified differentially accumulated proteins involved in
photosynthesis in chloroplasts, reactive oxygen species
scavenging, defense system, protein synthesis, protein folding, and
protein degradation (Zheng et al., 2023). The findings of Pan et al.
(2025) revealed that the differentially expressed proteins were
predominantly involved in biosynthesis, transport, energy, and
cellular metabolism in T. chinensis seeds under chilling stress.
There was an investigation of the cold stress tolerance mechanism
in Calendula officinalis, assessing 2-DE and MALDI-TOF-MS
proteomic analyses in exposure to 4 °C at different time intervals.
It was indicated that Calendula officinalis, which is an important
medicinal plant, can withstand cold stress due to the involvement of
proteins corresponding to photosynthesis, respiration, stress
resistance, antioxidant defense, plant development, and signal
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transduction. Furthermore, the main pathway for protecting this
plant against cold stress were introduced as the Glutathione-
ascorbate pathway and different antioxidants (Jan et al., 2023).

2.5.5 Heavy metals

One of the major abiotic stresses that leads to serious effects in
plants is heavy metal (HM) toxicity. Heavy metal (HM) term is
generally used for an extensive range of metal(loid)s that are natural
constituents of soils including nickel (Ni), cobalt (Co), cadmium
(Cd), copper (Cu), chromium (Cr), lead (Pb), zinc (Zn), boron(B),
and arsenic (As); the presence of these toxic ions seriously alters the
physiological and metabolic processes of living organisms.
However, most of the heavy metal(loid)s are indeed
micronutrients and/or elements essential in small quantities for
the functional behaviors of many proteins associated with
supporting the normal growth and development of plants
(Alloway, 2013). Generally, an extensive consequence of HM ions’
entrance into cells is interacting with vital constituents, inactivating
the enzymes, interacting with sulthydryl groups of proteins,
displacement of essential cations from their specific binding sites,
and excessive ROS generation contribute to oxidative damage in
lipids, nucleic acids, and proteins, and ultimately inhibiting plant
growth and causing cell death (Hossain et al.,, 2012).

To withstand excess HMs, plants use diverse strategies as
coordinated homeostatic mechanisms leading to uptake limitation
or sequestration, as well as constitutive and adaptive mechanisms.

The compatible solutes, metallothionein, phytochelatins, and
secondary metabolites are part of various molecules that participate
in attenuating the negative impact of HMs. Hence, gaining
information at the translational and/or post-translational levels,
and identifying the function of genes/proteins, are fundamental
steps in understanding the molecular mechanisms of heavy-metal
stress responses and developing tolerant transgenic plants that are
capable of detoxification or toxic elements removal from soils
(Riyazuddin et al., 2021). Comparative or quantitative proteomics
studies represent an efficient platform for the recognition of
biologically functional complex protein networks in organisms
subjected to constraints. Proteomics provides a preferable concept
of the specific mechanisms and biochemical pathways related to
tolerance mechanisms to metal stress and cellular detoxification
(Hossain and Komatsu, 2013).

Certainly, limited research has been performed on the effects of
heavy-metal stress on pharmacologically active substances and the
protein abundance of medical plants in the last decades (Table 3).
Cannabis sativa, which is an important, tolerant herbaceous species
from central Asia, has a high capability to cope with high metal
concentrations in soil. The proteomic analysis of Cannabis sativa
roots exposed to high Copper concentration (Bona et al., 2007)
exhibited that the Copper treatment up-regulated putative auxin-
induced proteins such as plant growth regulator-related proteins,
formate dehydrogenase (FDH), which plays a role in maintaining a
reduced environment, and the scavenging system proteins
represented by aldo/keto reductase. While stress-responsive
proteins enolase and elicitor inducible stress resistance proteins
cyclophilin and putative peroxidase, and suitable growth regulator
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proteins glycine-rich RNA binding protein (GRP) were
down-regulated.

The high accumulation of HMs inhibited the plant’s growth and
its photosynthetic product. The separation of proteins from Agrostis
capillaris L. under metal stress with 2-DE and identification by LC-
MS/MS demonstrated that high Copper concentration severely
disrupted the photosynthesis apparatus and impacted both light-
dependent and -independent photosynthetic pathway-related
proteins like cytochrome b6-f complex, oxygen-evolving enhancer
protein 1 (OEE), chlorophyll a-b binding proteins, and RuBisCO.
The enhancement of redox enzymes, isocitrate dehydrogenase,
cysteine/methionine synthases, and chaperones in Agrostis
capillaris L. was related to Cu detoxification and tolerance of this
metallicolous plant (Hego et al., 2016).

Alotaibi et al. (2019) characterized the molecular mechanism
underlying the impact of Cu stress on Eucalyptus camaldulensis and
the achievement of homeostasis in response to this metal. As
attested by the proteomics results, altered proteins were involved
in photosynthesis, protein metabolism, and regulation; special
stress-related proteins further assisted E. camaldulensis seedlings
in handling Cu exposure. Comparative proteomic analysis of
Hyoscyamus albus L. seedlings exposed to copper revealed that
proteins involved in proteasome were decreased in abundance
whilst the energy supply and anabolism proteins were increased
as well as newly generated proteins acting as Cu-binding reservoirs
for deposition of additional Cu. It was indicated that high levels of
Cu increased the activity of respiration and promoted the
propagation of H. albus roots by enhancing proteins associated
with protein synthesis, carbohydrate metabolism, and ATP
synthesis (Sako et al., 2016).

According to proteomic analysis, arsenic bioaccumulation
negatively impacted most of the proteins related to energy and
carbon metabolism inducing a metabolic disorder in the Acacia
farnesiana (Sweet Acacia) medicinal plant utilized in Mexican
traditional medicine. Since Acacia farnesiana under Arsenic stress
requires more energy to maintain cellular homeostasis,
endosymbiosis with Methylobacterium sp. provided the required
energy to cope with arsenic through up-regulation of carbonic
anhydrase which promotes the photosynthetic activity. In
addition, the up-regulated defense-related proteins were involved
directly in the ASC-GSH cycle and ROS metabolism (Alcantara-
Martinez et al, 2018). The substantial amounts of secondary
metabolites in Tetraena qatarensis indicated its potential
medicinal significance. MALDI-TOF/MS and in silico proteome
analysis of lead-treated Tetraena qatarensis demonstrated DAPs
having a role in ion and protein binding, transport, antioxidant
activity, and abiotic stress response. In spite of the increased level of
proteins linked with HSF1-mediated heat shock proteins regulation,
glutathione metabolism, and cellular response as stress-regulating
metabolic pathways, the role of the identified proteins, in particular,
up-regulated glycine-rich protein (GRP) in Pb tolerance and or
detoxification has not been clarified (Usman et al., 2022). Analysis
of Cd-exposed soybean samples by 2-DE coupled with MS revealed
DAPs associated with Cd-chelating pathways. Moreover, increased
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xylem lignification prevented translocation of Cd from the roots to
the aerial parts by significantly up-regulation of lignin biosynthesis-
associated proteins under Cd stress (Ahsan et al., 2012). Jin et al.
(2016) submitted a report regarding higher Cd enrichment in
Amaranthus hybridus L. roots in comparison with other organs as
well as the identified DAPs by MALDI-TOF MS indicated that the
redirection of root cell metabolism was the main survival
mechanism of A. hybridus under Cd stress. Moreover, it was
proven that tolerance and enrichment strategies were activated in
A. hybridus through up-regulation of proteins related to protein
metabolism (proteasome subunit alpha type and ClpC protease),
energy metabolism (fructokinase, ATP synthase subunit beta, 2-
phospho-D-glyceratehydrolase, enolase, and fructose-
biphosphatealdolase), stress and defense (salt tolerance protein I,
GST, and salt tolerance protein II) and signal transduction (wall-
associated receptor kinase-likel4 and phytochrome C) to tolerate
Cd stress.

2.6 Al-assisted proteomics

Proteins are the main functional components of the cell; they
control gene expression, support cell structure, and provide
enzymatic machinery. Additionally, since most biomarkers and
beneficial targets are proteins, proteomics focuses on four key
aspects, namely sequence, structure, function, and expression, to
offer a comprehensive understanding of the intricate interactions
within plant cells (Aizat and Hassan, 2018). Despite the remarkable
capabilities of proteomics, the vast complexity of the proteome
poses a significant analytical challenge. Moreover, other “omics”
technologies provide valuable insights into the molecular
mechanisms governing plant responses, capturing various layers
of gene expression and small molecule generation. As a result, these
approaches are producing datasets that rival proteomics in size and
often surpass them in multidimensional complexity (Mund et al.,
2022). Formerly, results could be summed up in a few spreadsheets,
but nowadays even individual projects with each omics generate
data that require processing and interpreting in the best way.
Traditional statistical models struggle to effectively process the
immense complexity of multi-dimensional omics datasets,
necessitating the development of advanced computational
approaches for deeper insights into biological systems (Murmu
et al, 2024). Key difficulties include real-time MS analysis, high-
dimensional data interpretation, post-translational modification
(PTM) site prediction and predicting protein-protein interactions
from primary sequences. Additionally, automating hypothesis
generation, understanding mutation effects on protein function
and structure, repurposing existing drugs, identifying drug targets,
and deeply integrating omics data require advanced computational
strategies to navigate their complexity effectively (Stransky et al,
2023). To solve these challenges, recently Artificial Intelligence (AI)
has appeared as a powerful tool with a new perspective. The
superiority of Al in genomic prediction and integrative analysis of
plant omics data, particularly by using decision tree-based ensemble
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models was highlighted recently (Gokalp and Tasci, 2019; Isewon
et al,, 2022). Deep learning models, graph neural networks, and
machine learning algorithms were introduced as state-of-the-art AI
techniques for predicting protein-drug binding affinity (Yang et al.,
2024). The high accuracy was achieved by utilizing machine
learning algorithms to simplify the identification of SRG genes in
exposure to various stress conditions with the SVM model (Meher
et al,, 2022) and a novel Al approach entitled improved MPMO-
based differential evolution (IMPMO-DE) was added to multi-
objective protein structure prediction (Hong et al, 2024). The
Percolator algorithm, one of the earliest and most widely adopted
machine learning techniques in proteomics, enhances the
identification of true peptide hits by analyzing multiple
experimental sequence features. By leveraging statistical learning,
it optimizes the number of accurate matches at a specified false
discovery rate (FDR), improving the reliability of peptide-spectrum
matching in MS-based proteomics (Kill et al., 2007). According to
Granholm et al. (2014) Percolator by increasing the number of
identified peptides in comparison with MS-GF highlighting
machine learning algorithms power in peptide identification,
cross-linked peptide search, intact protein search, and DIA-based
peptide search. AT also supports the MS-based shotgun proteomics
workflow. Reports indicate that the integration of MS-based
proteomics with artificial intelligence, high-content imaging, and
single-cell laser microdissection enhances molecular analysis,
delivering reliable information that closely reflects functional
dynamics (Mund et al, 2022). Arsenovic et al. (2019) reported
that deep learning, a subset of Al, has demonstrated remarkable
accuracy in analyzing plant proteome characteristics influenced by
genotype-environment interactions. While the advantages of Al in
extracting meaningful insights from extensive datasets are well
recognized, the specific challenges of Al implementation in plant
proteomics—particularly in medicinal plant studies—remain
insufficiently explored. Addressing these limitations will be crucial
in driving future advancements in the field.

3 Discussion

In conclusion, studying proteomics in medicinal plants has
proven to be a significant avenue for understanding the complex
biological mechanisms underlying their therapeutic properties. This
review has highlighted the recent advancements and methodologies
applied in medicinal plant proteomics, including such techniques as
2-DE, iTRAQ, and LC-MS/MS, which have enabled the
identification of proteins and metabolic pathways vital for the
bioactive compounds.

The findings from various proteomic studies have underscored
the potential of proteomics to provide deeper insights into the
functional proteins and metabolic networks that contribute to the
medicinal properties of plants. These insights can pave the way for
developing new drugs and improving medicinal plant strains to
enhance their tolerance to environmental stresses.

Despite these advancements, challenges and limitations exist
such as the need for more comprehensive genomic and protein
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interactions data. Future research should focus on integrating
proteomics with other omics technologies to build a more holistic
understanding of medicinal plant biology. Additionally, exploring
the proteomic responses of medicinal plants to different
environmental conditions and stresses could yield valuable
information for sustainable cultivation practices. Combining
proteomics with AI may enable a profound understanding of the
molecular foundations of medicinal plants’ response systems and
lead to more effective protection strategies.

In summary, proteomics offers significant potential for enhancing
our understanding of medicinal plants and their medical applications.
Continued research in this field is crucial for fully harnessing the
therapeutic benefits of these natural resources.
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