

OPEN ACCESS

EDITED BY
Dong-Wei Di,
Chinese Academy of Sciences (CAS), China

Abdul Waheed, Chinese Academy of Agricultural Sciences, China Sheikh Shanawaz Bashir, Jamia Hamdard University, India

*CORRESPONDENCE
Kedong Xu

xukd1107@126.com
Ti Liu

tiliu4542@163.com

RECEIVED 29 June 2025
ACCEPTED 24 September 2025
PUBLISHED 20 October 2025

CITATION

Guo X, Zhang J, Ma F, Li P, Ma Y, Xu K and Liu T (2025) Regulatory network of ammonium and nitrate uptake and utilization in rice.

Front. Plant Sci. 16:1656041. doi: 10.3389/fpls.2025.1656041

COPYRIGHT

© 2025 Guo, Zhang, Ma, Li, Ma, Xu and Liu. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Regulatory network of ammonium and nitrate uptake and utilization in rice

Xiaoli Guo¹, Ju Zhang¹, Feilong Ma¹, Pengxiang Li¹, Yunlong Ma¹, Kedong Xu^{1*} and Ti Liu^{2*}

¹Key Laboratory of Plant Genetics and Molecular Breeding, Henan Key Laboratory of Crop Molecular Breeding and Bioreactor, Henan International Joint Laboratory of Translational Biology, Zhoukou Normal University, Zhoukou, Henan, China, ²College of Agronomy, Henan Agricultural University, Zhengzhou, Henan, China

Nitrogen (N) plays a crucial role in various aspects of crop growth, development, yield, and quality. It is essential for processes ranging from protein synthesis and photosynthesis to crop adaptation and stress tolerance, thereby having a profound impact on crop production. Crops primarily absorb N in the forms of ammonium (NH₄⁺) and nitrate (NO₃⁻), with NH₄⁺ being the predominant form absorbed by flooded crops such as rice. This review focuses on rice and highlights recent significant advances in the mechanisms of N uptake and utilization, including the roles of NO₃⁻ and NH₄⁺ transporters. Key transporters such as OsAMT1.1 and OsNRT1.1B play central roles in enhancing N uptake and improving N use efficiency (NUE). Furthermore, natural allelic variations in genes such as DNR1 and OsWRKY23 underlie the differences in NUE between indica and japonica subspecies. We also discuss the potential of multi-gene pyramiding strategies, such as OsAMT1.2×OsGS1.2×OsAS1, to synergistically improve NUE through coordinated regulation of N uptake, assimilation, and remobilization. Collectively, this review systematically summarizes the functions and regulatory mechanisms of key NUE-related genes in rice, providing valuable gene resources and a theoretical foundation for the molecular breeding of N-efficient rice varieties.

KEYWORDS

rice, ammonium, nitrate, transport, nitrogen use efficiency

1 Introduction

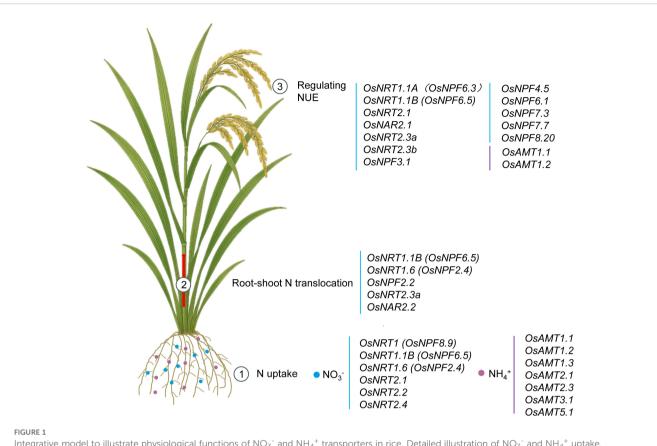
Nitrogen (N) is a major limiting factor for crop growth and high grain yield, as it is a key component of numerous essential biomolecules, including nucleic acids, enzymes, amino acids, and proteins. Hence, it is often referred to as the 'element of life' (Crawford, 1995; Stitt, 1999). N deficiency is a key limiting factor in crop yield formation. However, excessive N fertilizer application not only increases economic costs but also causes serious environmental damage. Therefore, elucidating the genetic basis of N use efficiency (NUE) in crops and breeding improved varieties with both high yield and enhanced NUE is

essential for reducing N fertilizer demand and promoting sustainable agricultural development. The mechanisms of efficient N uptake and utilization in plants involve multiple processes. Firstly, plant roots absorb various forms of N from the soil; secondly, N is transported and transformed within the plant, and finally, it is assimilated through the action of various enzymes. This constitutes a complex process regulated by multiple factors at different stages of crop growth and development. Plant roots absorb and assimilate different forms of N, including inorganic N (such as NH₄⁺ and NO₃⁻) and organic N (such as amino acids and peptides), through transmembrane transporters or ion channels. In aerobic soils, nitrate (NO₃⁻) is the predominant form of inorganic N, whereas in flooded wetlands or acidic soils, ammonium (NH₄⁺) is the main inorganic N form (Sasakawa and Yamamoto, 1978). NO₃ and NH₄⁺ are absorbed through NO₃ transporters (NPF/ NRTs) and NH₄⁺ transporters (AMTs), respectively. The absorption of NO₃ or NH₄ by plant roots typically induces rhizosphere acidification or alkalization, thereby further affecting the bioavailability of soil N to plants. To cope with the heterogeneity and dynamic changes in NO₃ or NH₄ ion concentrations in soil solutions, plants have evolved both high-affinity transport systems (HATS) and low-affinity transport systems (LATS) for NH₄⁺ and NO₃. These systems are distributed in different plant tissues and cooperatively regulate N uptake and distribution (Crawford, 1995; Glass et al., 1992; Crawford and Glass, 1998; Forde, 2000). In rice, the HATS for NH₄⁺ belong to the OsAMT1 family, while the HATS for NO₃ belong to the OsNRT2 family and its partner proteins, the OsNAR2 family.

In most plants, a small portion of the absorbed NO₃ is assimilated in the roots, while the majority is transported to the shoots, where it is reduced to nitrite by nitrate reductase (NR) in the cytosol. It is then transported into plastids and chloroplasts and further reduced to NH₄⁺ by nitrite reductase (NiR) (Xu et al., 2012). NH₄⁺ derived from NO₃⁻ reduction or directly absorbed by AMTs is toxic and must be assimilated in the roots via the glutamine synthetase (GS)/glutamate synthase (GOGAT) cycle into glutamine (Gln) and glutamate (Glu), which are the core molecules in plant N metabolism. Subsequently, Glu can be converted into aspartate (Asp) via aspartate aminotransferase (AAT), and Gln can be converted into asparagine (Asn) by asparagine synthetase (AS). These four amino acids (Glu, Gln, Asp, and Asn) play crucial roles in N transport within plants, transferring N from absorption sites to tissues where it is required (Xu et al., 2012).

In recent years, NO₃ and NH₄ transporters have been identified and their functions characterized in the model crop rice. Meanwhile, the regulatory mechanisms of N uptake, transport, and assimilation have also been extensively studied. This review focuses on rice and highlights recent significant advances in the mechanisms of N uptake and utilization, including the roles of NO₃ and NH₄ transporters. In addition, the functions and regulatory mechanisms of key genes related to NUE in rice are systematically summarized, providing gene resources and theoretical foundations for the molecular improvement of N-efficient rice varieties. Finally, this article

emphasizes the challenges of improving NUE and advocates an integrated research approach combining molecular mechanisms, advanced technologies, and agronomic practices. By precisely coordinating N uptake, transport, assimilation, and remobilization with rice developmental responses to N availability, it is possible to ensure efficient N use, thereby contributing to global food security and the sustainable development of agriculture.


2 Functions of NH₄⁺ transporters in rice

2.1 Classification and transport characteristics

Although NH₄⁺ has long been recognized as the primary form of N absorbed by rice, research on NH₄⁺ transporters have remained relatively limited. With the advancement of genomics, at least 12 potential NH₄⁺ transporters (AMTs) have been identified in the rice genome. These transporters are classified into five subfamilies: OsAMT1 (OsAMT1.1, OsAMT1.2, and OsAMT1.3), OsAMT2 (OsAMT2.1, OsAMT2.2, and OsAMT2.3), OsAMT3 (OsAMT3.1, OsAMT3.2, and OsAMT3.3), OsAMT4 (OsAMT4.1), and OsAMT5 (OsAMT5.1 and OsAMT5.2) (Suenaga et al., 2003; Li et al., 2009a). The OsAMT1 subfamily functions as a high-affinity NH₄⁺ transporter, operating under low NH₄⁺ concentrations and exhibiting saturation kinetics. In contrast, the OsAMT2, OsAMT3, and OsAMT4 families are classified as low-affinity transporters, predominantly active under high NH₄⁺ concentrations (1–40 mM), and do not display saturation kinetics (Gaur et al., 2012). Studies have demonstrated that OsAMT1.1, OsAMT1.2, OsAMT1.3, OsAMT2.1, and OsAMT5.1 all possess NH₄⁺ transport capacity (Bu et al., 2011) (Figure 1).

2.2 Spatial and N-responsive expression of *OsAMTs*

The uptake of low concentrations of $\mathrm{NH_4}^+$ in rice roots requires the coordinated activity of three OsAMT1 members, which share high amino acid sequence homology. Among these, OsAMT1.1 makes the largest contribution to N accumulation (Sonoda et al., 2003a; Zhao et al., 2014). Spatial expression analyses revealed that NH₄⁺ exposure induces the upregulation of OsAMT1.1 and OsAMT1.2, and the downregulation of OsAMT1.3 (Konishi and Ma, 2021). OsAMT1.1, OsAMT3.2, and OsAMT3.3 are constitutively expressed in both roots and stems, while OsAMT1.1 expression is promoted by NH₄⁺. OsAMT1.2 is root-specific and induced by NH₄⁺, whereas OsAMT1.3 is root-specific but suppressed by N. OsAMT2.1, OsAMT2.2, OsAMT2.3, and OsAMT3.1 are mainly expressed in aerial tissues, with relatively higher expression in stems than other genes. The expression of OsAMT3 family genes is generally higher in shoots than in roots, suggesting that AMT3 members may participate in the

Integrative model to illustrate physiological functions of NO_3^- and NH_4^+ transporters in rice. Detailed illustration of NO_3^- and NH_4^+ uptake, translocation, and utilization in rice. Rice NO_3^- uptake is orchestrated by transporters OsNRT1.1B, OsNRT1.1B, OsNRT2.1, OsNRT2.2 and OsNRT2.4. For NH_4^+ , OsAMT1.1, OsAMT1.2, OsAMT1.3, OsAMT2.1, OsAMT2.1, OsAMT3.1 and OsAMT5.1 are principal. OsNRT1.1B, OsNRT1.1B, OsNRT1.1B, OsNRT1.1B, OsNRT1.1B, OsNRT1.1B, OsNRT1.1B, OsNRT1.1B, OsNRT2.1, OsNRT2.3a, OsNRT2.3b, OsNRT2.3b, OsNPF3.1, OsNPF6.1, OsNPF7.7, and OsNPF8.20 have all been shown to enhance NUE, whereas OsNPF7.3 decreased NUE at high NH_4^+ supply. In the AMT family, only OsAMT1.1 and OsAMT1.2 have been identified as capable of improving NUE.

translocation and distribution of NH₄⁺ within leaves (Suenaga et al., 2003; Gaur et al., 2012; Sonoda et al., 2003a; Li et al., 2012; Li and Shi, 2006). Additionally, the expression patterns of *OsAMT1* genes show strong correlations with Gln levels in root tissues (*OsAMT1.1* and *OsAMT1.2* positively correlated, *OsAMT1.3* negatively correlated), but not with NH₄⁺ content (Sonoda et al., 2003b). *OsAMT5.1* is specifically expressed in leaves, with its expression enhanced by increasing NH₄⁺ concentrations (Deng et al., 2007).

2.3 Functional divergence and regulatory mechanisms of key *OsAMT1* genes

At present, research on the regulation of AMT genes in rice has primarily focused on three OsAMT1 family genes. Among them, OsAMT1.1 plays a central role in N absorption and utilization in rice. It significantly promotes $\mathrm{NH_4}^+$ uptake under both low and high $\mathrm{NH_4}^+$ conditions, maintains N-potassium (K) homeostasis, and enhances NUE, plant growth, and grain yield under suboptimal to optimal N supply. Moreover, this gene underwent strong selection from wild rice to cultivated rice in response to soil conditions (Figure 1; Table 1) (Lee et al., 2020; Ranathunge et al.,

2014; Ding et al., 2011). Simultaneous activation of OsAMT1.2 and the glutamate synthase gene (OsGOGAT1) improve tolerance to N limitation and enhances NH₄⁺ uptake and N remobilization at the whole-plant level (Figure 1; Table 1) (Lee et al., 2020). In contrast, overexpression of OsAMT1.3 causes imbalances in carbon (C)-N metabolism, leading to poor plant growth and reduced yield (Bao et al., 2015).

2.4 Perspectives on the regulatory and metabolic roles of *AMT* genes in rice

The AMT gene family plays a critical role in $\mathrm{NH_4}^+$ uptake in rice. To date, studies on the phylogeny, expression patterns, and functions of rice AMT genes have provided preliminary insights into their roles in N absorption. However, the regulation of AMT genes is not limited to N uptake but may also be involved in N assimilation, translocation, and other N-related metabolic processes. Therefore, future studies should expand our understanding of AMT gene regulation, environmental adaptability, and especially their integrative roles in N transport and metabolism. Such research will help uncover the potential

TABLE 1 $\,$ Overview of genes that are involved in regulation of NUE in rice.

Effects to NUE Gene Source References and yield NO₃ transporters Improved NUE and Homologs of (Wang et al., OsNRT1.1A promote flowering 2018c) Arabidopsis Dual-affinity NO₃ transportation, (Hu et al., 2015; modulated the root OsNRT1.1BFine-mapping Zhang et al., microbiome. 2019) influenced NUE in indica and japonica Improved NUE and (Chen et al., Generate transgenic OsNRT2.1 2016) yield lines Enhanced NO₃ Generate transgenic (Chen et al., OsNAR2.1 uptake, grain yield, lines 2017) and NUE Co-overexpression of OsNAR2.1 and Generate transgenic (Chen et al., OsNRT2.3a OsNRT2.3a increased 2020) yield and NUE Improved NUE and (Fan et al., OsNRT2.3b Functional analysis pH balance 2016b) Increased NUE and (Yang et al., OsNPF3.1 Fine-mapping biomass production 2023) Participated in (Wang et al., OsNPF4.5 mycorrhizal NO₃-RNA Sequencing 2020a) acquisition OsNPF6.1^{HapB} (Tang et al., OsNPF6.1 enhanced both NUE GWAS 2019) and yield Increased plant growth at different N Generate transgenic (Fan et al., OsNPF7.3 supplies but 2014) decreased NUE at high $\mathrm{NH_4}^+$ supply Improved NUE and Generate transgenic (Huang et al., OsNPF7.7 grain yield 2018) lines Improved NUE and Homologs of (Fang et al., OsNPF8.20 grain yield Arabidopsis 2013) NH₄⁺ transporters Improved NUE, plant (Ranathunge OsAMT1.1growth, and grain Phenotypic analysis et al., 2014) yield Concurrent activation Isolation of of OsAMT1 2 and (Lee et al., OsAMT1.2 activation OsGOGAT1 enhanced 2020) tagging mutants Amino acid transporters or amino transferase Involved in auxin homeostasis, reflects the differences in (Zhang et al., DNR1 QTL 2021b) NO_3 uptake, N assimilation, and yield

TABLE 1 Continued

Gene name	Effects to NUE and yield	Source	References		
Amino aci	d transporters or am	ino transferase			
	between indica and japonica				
ASL	Coordinated regulation of NH ₄ ⁺ tolerance and NUE	MutMap and metabolomics analysis	(Xie et al., 2023)		
OsAAP1	Regulation of spikelet fertility and NUE	Phenotypic analysis	(Pereira et al., 2022)		
OsAAP3	Negative regulation of NUE and yield	Haplotype analysis	(Lu et al., 2018)		
Transcription factor					
SOD5	Knocking out SOD5 significantly increases NUE and grain yield	Identify upstream regulators	(Zhang et al., 2025a)		
OsWRKY23	A key regulator of NO ₃ ⁻ uptake and NUE differences between indica and japonica	Fine-mapping	(Zhang et al., 2025b)		
OsMYB61	Promotes N utilization and biomass production	QTL and map- based cloning	(Gao et al., 2020)		
OsNAC42	Improved NUE	GWAS	(Tang et al., 2019)		
OsNLP4	Improved NUE and yield	GWAS, generate transgenic lines	(Yu et al., 2021; Wu et al., 2021)		
OsTCP19	OsTCP19 ^H holds the potential for improving NUE	GWAS	(Liu et al., 2021)		
OsGATA8	Natural variation in the OsGATA8 promoter influences NUE	GWAS	(Wu et al., 2024)		
ARE4	MYB-related transcription factor, coordinated regulation of glucose signaling and NUE	Ethyl methane sulfonate mutagenesis	(Ma et al., 2023)		
OsDOF18	Mediated NH ₄ ⁺ transport and N distribution, affected NUE	T-DNA insertion mutant	(Wu et al., 2017)		
OsDREB1C	Improved crop yields and NUE, and promoted earlier flowering	Transcriptomes and metabolomes	(Wei et al., 2022)		
OsRF2b	Negative regulation of NUE and yield	Biochemical screening methods	(Li et al., 2025)		
OsbZIP61	Negative regulation of NUE and yield	N-relative gene expression variations	(Li et al., 2025)		

(Continued) (Continued)

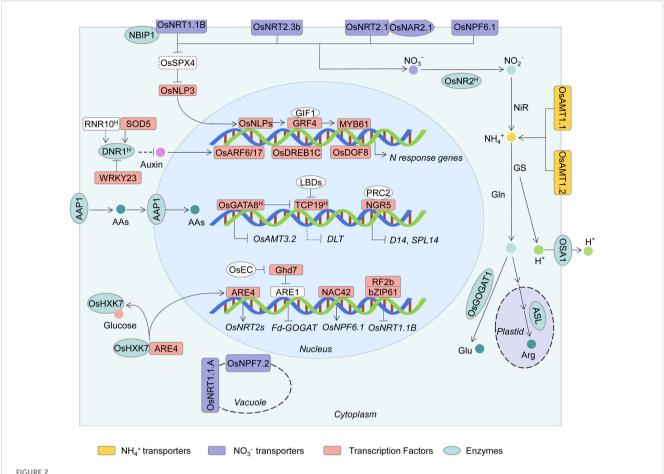
TABLE 1 Continued

Gene name	Effects to NUE and yield	Source	References	
Transcription factor				
GRF4	Improved NUE and grain yield in Green Revolution varieties	QTL	(Li et al., 2018)	
NGR5	Improved NUE and grain yield	Ethyl methane sulfonate mutagenesis, map- based cloning	(Wu et al., 2020)	
Enzymes for N assimilation and remobilization				
OsNR2	Increased effective tiller number, grain yield and NUE	QTL	(Gao et al., 2019)	
OsNR1.2	Encode an NADH- dependent NO ₃ reductase that is required for high NUE	Reverse- transcription quantitative PCR	(Han et al., 2022)	
Others				
OsSTP28	Encode an influx hexose transporter, modulated N-determined tillering and yield formation	GWAS	(Zhang et al., 2024)	
ARE1	abc1-1 repressor, mediated grain yield by modulating NUE	Mutant genetic screen	(Wang et al., 2018b)	
OSA1	Plasma membrane H*-ATPase, cooperatively improve N and C utilisation	Phenotypic analysis	(Zhang et al., 2021a)	
OsBT1/BT2	Increased NUE by 20% compared to wild-type	Homologs of Arabidopsis	(Araus et al., 2016)	
RNR10	Causal genes with that underlies the significantly different root developmental plasticity in response to changes in N level exhibited by the <i>indica</i> and <i>japonica</i>	Fine-mapping	(Huang et al., 2023)	

applications of these genes in improving NUE and crop productivity in rice, ultimately offering new strategies for sustainable agricultural production and environmental protection.

3 Functions of NO₃⁻ transporters in rice

The absorption of NO_3^- is an active process driven by H^+/NO_3^- co-transporters (Miller et al., 2007). Although rice is a plant that prefers NH_4^+ , under the action of soil microorganisms, NH_4^+ can be converted into NO_3^- through nitrification. In addition, N fertilizers


applied to the soil are also partially converted into NO₃⁻, which can then be absorbed and utilized by rice. As a result, about 25-40% of the total N absorbed by rice exists in the form of NO₃⁻ (Xu et al., 2012; Li et al., 2008; Kirk and Kronzucker, 2005). Compared with NH₄⁺, the mechanisms of NO₃⁻ absorption have been more extensively studied in rice, and the corresponding transporters have been thoroughly identified. In rice, NO₃⁻ transporters are generally classified into two families: the low-affinity *NRT1* family and the high-affinity *NRT2* family, enabling rice to adapt to changes in N availability in the environment.

3.1 NRT1/PTR family: low-affinity NO₃⁻ transporters

The number of NO₃⁻ transporter 1/peptide transporter (NRT1/PTR, also known as NPF) family members in rice has been confirmed by several genomic analyses, with approximately 93 NPF genes identified. However, the functions of only a few NPF family members have been characterized to date (Léran et al., 2014). Different members of the NPF family perform distinct functions in rice. NRT1.1 in rice, an important NO₃⁻ transporter belonging to the NPF6 subfamily, mainly includes three homologs: OsNRT1.1A (OsNPF6.3), OsNRT1.1B (OsNPF6.5), and OsNRT1.1C (OsNPF6.4), which play critical roles in N uptake, transport, signaling, and NUE (Wang et al., 2020b).

OsNRT1.1A exhibits NH4+-induced expression and can significantly upregulate the expression of various genes related to NO₃ and NH₄ utilization. Overexpression of OsNRT1.1A significantly improves NUE and grain yield and also shortens the rice maturity period, providing a feasible approach for breeding high-yield, early-maturing rice varieties (Wang et al., 2018c). Among the NRT1 family members in rice, only OsNRT1.1B possesses dual-affinity transport properties and functions across a wide range of NO₃ concentrations. Under low N (LN) conditions, OsNRT1.1B enables plants to accumulate more N and promotes rice growth, whereas OsNRT1.1A lacks such functionality in rice (Fan et al., 2016a). The NO₃ uptake activity of indica rice is higher than that of japonica, and genetic variation in OsNRT1.1B significantly influences differences in NUE between indica and japonica by regulating NO₃ uptake and rhizosphere microbiota. Moreover, introducing the NRT1.1Bindica allele into japonica could potentially enhance the NUE of japonica rice (Hu et al., 2015; Zhang et al., 2019) (Figure 1; Figure 2; Table 1). The functional differentiation between OsNRT1.1A and OsNRT1.1B helps rice coordinate internal and external N signals and improve its adaptability to complex N environments (Wang et al., 2020b). OsNRT1.3 promoter responds to drought stress, potentially participating in basic NO₃ uptake and stress responses (Hu et al., 2006).

Within the rice NPF family, OsNPF2.2 can unload NO₃⁻ from the xylem, thereby affecting NO₃⁻ transport in the root-stem and plant development (Li et al., 2015). OsNPF2.4 (OsNRT1.6) is a pH-dependent low-affinity transporter functioning in NO₃⁻ uptake, long-distance transport, and redistribution, while its altered

Schematic representation of key regulatory pathways and major genes involved in NUE in rice. This model summarizes major molecular players and signaling pathways involved in NO_3^- and NH_4^+ uptake, assimilation, and systemic regulation of NUE in rice. NO_3^- and NH_4^+ are absorbed via NRT/ NPF and AMT transporter families, respectively. A central NO_3^- signaling module comprising OsNRT1.1B-OsSPX4-OsNLP3/NLP4 integrates NO_3^- sensing and transcriptional responses, regulating genes involved in N uptake and assimilation. Key transcription factors, including OsDREB1C, GRF4, NGR5, WRKY23, GATA8, and ARE4, modulate NUE through direct or indirect regulation of transporter genes and metabolic enzymes. Auxinmediated pathways also contribute to NUE control: DNR1 antagonizes auxin accumulation and NO_3^- responsiveness, while RNR10, SOD5, and WRKY23 regulate DNR1 expression or stability. The GRF4-MYB61, Ghd7-ARE1, and NGR5-PRC2 modules further coordinate NUE with plant development and chromatin dynamics. Additional regulators include OsDOF18, which activates *AMT* genes, OsGATA8 and OsTCP19, which link N status to tillering, and bZIP transcription factors OsRF2b/OsbZIP61, which negatively regulate *OsNRT1.1B*. The amino acid transporter OsAAP1, located on both the plasma membrane and nuclear membrane, is capable of absorbing and transporting amino acids, thereby enhancing NUE. Together, these components form a complex regulatory network integrating nutrient signaling, transcriptional control, hormone crosstalk, and epigenetic regulation to optimize NUE and sustain rice yield under variable N inputs.

expression indirectly affects K reutilization in roots and stems (Xia et al., 2015). A coding region mutation in OsNPF3.1 affects NUE differences between wild and cultivated rice and can improve NUE and biomass yield (Yang et al., 2023). OsNPF4.1 (SP1) encodes a putative peptide transporter highly expressed in the phloem of young panicle branches, controlling panicle size (Li et al., 2009b). Mycorrhizal rice could receive more than 40% of its N via the mycorrhizal pathway, and the arbuscular mycorrhizal-specific NO₃ transporter OsNPF4.5 accounted for approximately 45% of the mycorrhizal NO₃ uptake. Enhanced expression of NPF4.5 can significantly improve NUE and promote rice growth (Wang et al., 2020a). The NO₃ transporter OsNPF5.16 positively regulates rice tillering and yield by regulating cytokinin levels (Wang et al., 2022). OsNPF6.1 is NO₃-inducible and has two haplotypes: OsNPF6.1 HapA and OsNPF6.1^{HapB}. OsNPF6.1^{HapB} enhances NO₃⁻ absorption and improves NUE. Furthermore, OsNPF6.1 enhances viral resistance

by upregulating the expression of NO₃⁻ reductase (OsNR2) and subsequently promoting nitric oxide (NO) biosynthesis (Tang et al., 2019; Xu et al., 2025) (Figure 1; Table 1).

Among the *OsNPF7* and *OsNPF8* subfamilies, *OsNPF7.1* (*OsPTR4*) and *OsNPF7.4* show opposite expression patterns in tiller buds under different N concentrations. Overexpression of either *OsNPF7.1* or *OsNPF7.4* promotes NO₃⁻ absorption, although biomass is reduced in *OsNPF7.4*-overexpressing plants (Huang et al., 2019b). *OsNPF7.2* acts as a positive regulator of NO₃⁻ influx and concentration, with overexpression lines showing significant increases in tiller number and yield (Hu et al., 2016; Wang et al., 2018a). *OsNPF7.3* (*OsPTR6*) mainly transports di- and tripeptides (e.g., Gly-His, Gly-His-Gly). While its overexpression promotes rice growth, its effect on NUE is limited (Fan et al., 2014); however, subsequent studies revealed that overexpression of both *OsNPF7.3* and *OsNPF7.7* increases rice tiller number, NUE, and yield (Fang

et al., 2017; Huang et al., 2018). *OsNPF8.1* (*OsPTR7*) mediates stress-induced organic N transport, contributing to balanced plant growth and enhanced tolerance to salt/drought stress and N deficiency (Qiu et al., 2023). *OsNPF8.9* (*OsNRT1*) is the first low-affinity NO₃⁻ transporter identified in rice, functioning under high NO₃⁻ conditions (Lin et al., 2000). The di-/tripeptide and low-affinity NO₃⁻ transporter *OsNPF8.20* (*OsPTR9*) enhances NH₄⁺ uptake, promotes lateral root formation, and increases grain yield when its expression is upregulated (Fang et al., 2013) (Figure 1; Table 1).

3.2 NRT2/NAR2 family: high-affinity NO₃⁻ transporters

The HATS play a crucial role in rice N uptake. To date, five NRT2 (OsNRT2.1, OsNRT2.2, OsNRT2.3a, OsNRT2.3b, OsNRT2.4) and two NAR2 (OsNAR2.1, OsNAR2.2) high-affinity NO₃⁻ transporters have been identified in rice (Araki and Hasegawa, 2006; Feng et al., 2011; Cai et al., 2008). The rice NRT2 and NAR2 family members exhibit distinct functions. Some NRT2 members require the partner protein NAR2 for NO₃⁻ transport within relatively low concentration ranges (Cai et al., 2008).

OsNRT2.3b, through mRNA splicing, with 94.2% amino acid sequence identity and identical coding regions but different 5' and 3' untranslated regions. OsNRT2.3a is primarily expressed in roots and induced by NO₃-, whereas OsNRT2.3b is mainly expressed in shoots. Further research revealed that under LN supply, OsNRT2.3a plays a key role in long-distance NO₃- transport from roots to shoots, and OsMADS57 regulates NO₃- transport through OsNRT2.3a (Huang et al., 2019a; Tang et al., 2012). Allelic variation in the 5' untranslated region of OsNRT2.3 leads to elevated OsNRT2.3b protein levels under high-temperature stress, increasing yield (Zhang et al., 2022). Additionally, high OsNRT2.3b expression enhances pH buffering capacity and improves the uptake of N, iron, and phosphorus (Fan et al., 2016b; Feng et al., 2017).

OsNAR2.1 interacts with OsNRT2.1/2.2 and OsNRT2.3a to mediate NO₃ uptake (Feng et al., 2011; Yan et al., 2011). OsNAR2.2, localized to the endoplasmic reticulum (ER), was recently shown to regulate NO3 transport from roots to stems and control spikelet number, yield, and NUE in rice (Hou et al., 2025). OsNRT2.1, OsNRT2.2, and OsNAR2.1 are promising candidate genes for breeding high NUE rice cultivars (Araki and Hasegawa, 2006). Enhancing OsNAR2.1 expression via its native promoter, or increasing OsNRT2.1 expression under the control of the OsNAR2.1 promoter, or co-overexpressing OsNAR2.1 and OsNRT2.3a can all improve NO₃ uptake, yield, and NUE in rice (Figure 1; Table 1) (Chen et al., 2016, Chen et al., 2017, Chen et al., 2020). OsNRT2.4, a dual-affinity NO₃ transporter, participates in regulating NO₃ uptake and allocation between roots and shoots and promotes plant growth and development under NO₃ regulation (Wei et al., 2018).

3.3 NO₃ sensing and signal transduction

In rice, NO₃ acts not only as a nutrient but also as a signaling molecule. OsNRT1.1B has been confirmed to sense external NO₃ signal (Hu et al., 2015). Additionally, studies have shown that the NO₃ sensor OsNRT1.1B physically interacts with the phosphate signaling repressor OsSPX4; the presence of NO₃ enhances this interaction and promotes the recruitment of *NRT1.1B*-Interacting Protein 1 (*NBIP1*, an E3 ubiquitin ligase), leading to the ubiquitination and degradation of OsSPX4. The core NO₃ signaling transcription factor *NLP3* is also regulated by SPX4. This OsNRT1.1B-OsSPX4-OsNLP3 regulatory module fills the gap between plasma membrane NO₃ sensing and downstream NO₃ responses in the nucleus (Figure 2) (Wang et al., 2020b; Hu et al., 2019).

4 Key genes regulating nitrogen use efficiency in rice

4.1 NUE-associated genes identified by QTL and map-based cloning

During crop domestication, many advantageous variant loci are retained by natural or artificial selection. Identifying these natural variant loci can provide theoretical support for crop genetic improvement (Hu et al., 2015; Li et al., 2018). In modern rice cultivars, NUE-related quantitative trait loci (QTL) or genes have been identified through map-based cloning methods. According to the varying N absorption capacity among different varieties, key genes controlling NUE, such as *OsNRT1.1B*, *OsNR2*, *DNR1*, and *OsWRKY23*, have been cloned (Hu et al., 2015; Li et al., 2018; Zhang et al., 2021b; Gao et al., 2019; Zhang et al., 2025b).

OsNRT1.1B and OsNR2 in indica have significant improvement in NUE and grain yield than those in japonica (Hu et al., 2015; Gao et al., 2019). Auxin Response Factor OsARFs mediate the promotion of N metabolism by auxin, DNR1 participates in the regulation of auxin homeostasis, and reflects differences in NO₃uptake, N assimilation, and yield enhancement between indica and japonica. The variation in the promoter of DNR1 in indica decreased expression levels and a higher auxin content, which triggers ARF-activated the transcription of NO₃ uptake and assimilation-related genes, leading to improving the grain yield and NUE (Zhang et al., 2021b). RNR10 encodes an F-box protein that interacts with DNR1. RNR10 monoubiquitinates DNR1 and inhibits its degradation, thus antagonizing auxin accumulation, which results in reduced root responsivity to N and NO₃ uptake (Huang et al., 2023). SOD5 directly binds to the DNR1 promoter, activates its expression, and further inhibits auxin accumulation. Notably, knockout of SOD5 significantly improves NUE and grain yield, especially under LN conditions (Zhang et al., 2025a). OsWRKY23 is a key regulator of the differences in NO₃ absorption rate and NUE between indica and japonica rice. OsWRKY23indica exhibits reduced transcriptional activation of

DNR1, leading to higher auxin levels, improved NO₃⁻ absorption and assimilation, and ultimately enhanced NUE and yield (Zhang et al., 2025b).

Different varieties exhibit developmental differences due to their varying sensitivity to N supply, which can be observed in factors such as root length, biomass, and yield. Map-based cloning has been used to identify the genetic loci responsible for N modulation of plant growth, such as *MYB61*, through analysis of phenotypic values of these traits or ratios under different N levels supplied (Gao et al., 2020; Obara et al., 2010; Lian et al., 2005). The transcription factor *MYB61* is regulated by GROWTH-REGULATING FACTOR4 (GRF4) and coordinates the production of cellulosic biomass and N utilization. The *indica* allele of *MYB61* shows strong transcriptional activity, leading to improved NUE and higher grain yield under reduced N supply compared to the *japonica* allele (Gao et al., 2020) (Figure 2; Table 1).

4.2 NUE-associated genes identified by GWAS

In recent years, genome-wide association study (GWAS) has also been used to locate some N-efficient genes. For example, using NUE-related agronomic traits, the GWAS identified the excellent variation of OsNPF6.1^{HapB}, which originated from the variation of wild rice. This excellent allele was transcriptionally activated by NAC42, and it enhances the ability of N absorption capacity and improves NUE under LN conditions (Tang et al., 2019). Through GWAS analysis of NUE-related traits (effective panicle number and yield per plant) in natural populations of rice, combined with transcript data under high N (HN) and LN conditions, OsNLP4 was identified as a transcription factor that regulates NUE. Simultaneously, OsNLP4 can promote the transcription of nitrite reductase gene OsNiR and N transport-related genes (NRTs and AMT1.1) (Yu et al., 2021; Wu et al., 2021), achieving coordinated regulation of N uptake and assimilation in rice. Accordingly, the localization of OsNLP3 and OsNLP4 in rice cells is affected by NO₃ supply levels. With the application of NO₃, the localization of OsNLP3 and OsNLP4 in cells is shifted from cytoplasm to nucleus (Hu et al., 2019; Wu et al., 2021), indicating that OsNLP3 and OsNLP4 are central regulatory factors in the N signaling pathway of rice.

Using a multiparent advanced generation intercross (MAGIC) population, GWAS of NUE-related traits (tillering) under HN and LN conditions identified the OsSTP28 as a key regulator of N-responsive tillering and yield formation in rice (Zhang et al., 2024). A GWAS for N-responsive tillering in rice identified OsTCP19 as a regulatory factor; a 29-bp indel in the promoter of OsTCP19 represents a natural variation that determines tiller number under LN conditions in different rice varieties. OsTCP19 as a modulator of tillering response to N through its transcriptional response to N and its targeting to the tiller-promoting gene DWARF AND LOW-TILLERING (DLT), the OsLBD37/39-OsTCP19-DLT pathway is a key regulatory cascade governing N response and tillering in rice (Liu et al., 2021). Furthermore, the transcription factor OsGATA8

was identified as a critical regulator of N uptake and tiller formation in rice. OsGATA8 negatively regulates N absorption by repressing *OsAMT3.2* transcription, while promoting tiller formation by inhibiting the transcription of the negative tillering regulator *OsTCP19*. The *OsGATA8*^H haplotype displays high NUE, with enhanced N uptake and a higher proportion of productive tillers (Wu et al., 2024) (Figure 2; Table 1).

4.3 NUE-associated genes identified by mutant identification

In recent years, several NUE-related genes have been cloned from mutant identification, such as ARE1, ARE4, OsELF3-1, and OsDOF18. ARE1 is a negative regulator of N assimilation, encoding a chloroplast-localized protein, and is transcriptionally inhibited by Ghd7. Loss-of-function mutations in ARE1 cause delayed senescence and grain yield increases, hence enhance NUE under LN conditions (Wang et al., 2018b). OsELF3-1 forms a ternary complex (OsEC) with OsELF4s and OsLUX, repressing the expression of Ghd7, which in turn directly inhibits ARE1 expression and promotes N absorption (Wang et al., 2021; Tsednee, 2024; Sun et al., 2024). ARE4, a MYB-related transcription factor, coordinates glucose signaling with NUE in rice. It is kept in the cytosol by interacting with the glucose sensor OsHXK7. Upon sensing a glucose signal, ARE4 is released, translocated into the nucleus, and activates the expression of a group of high-affinity NO₃⁻ transporter genes, resulting in increased NO₃ uptake and accumulation (Ma et al., 2023). In the osdof18 mutant, the expression of OsAMT1.1, OsAMT1.3, OsAMT2.1, and OsAMT4.1 is reduced, indicating that these NH₄⁺ transporter genes function downstream of the transcription factor OsDOF18. The findings demonstrate that OsDOF18 mediates NH₄⁺ transport and N allocation, thereby influencing NUE (Wu et al., 2017) (Figure 2; Table 1).

4.4 Regulation of cellular pH homeostasis enhances NUE in rice

Excessive absorption of NH₄⁺ by plants leads to cellular acidification, while excessive NO₃⁻ uptake leads to cellular alkalization. Therefore, excessive uptake of a single N source affects the pH balance in plant cells, causing enzyme dysfunction and ultimately impacting crop growth and yield. In a recent study, overexpression of the N transport gene *OsNRT2.3b* helps counteract pH changes in rice plants, thus improving NUE and rice yield (Fan et al., 2016b). Plasma membrane (PM) H⁺-ATPase facilitates the transport of various nutrients, such as NO₃⁻, phosphate (Pi), and K, and maintains cytosolic H⁺ homeostasis by pumping H⁺ outside the cells. In previous studies, overexpression of *Oryza sativa* PM H⁺-ATPase 1 (*OSA1*) in rice enhances NH₄⁺ uptake and assimilation, leading to increased grain yield and NUE (Zhang et al., 2021a). The assimilation of NH₄⁺ in root cells requires a C skeleton as the substrate for the synthesis of amino acids through the GS/GOGAT

cycle. The assimilation of one molecule of NH₄⁺ generates two molecules of H⁺ in the cytoplasm. This inhibits the growth and development of plant roots and reduces NUE (Jia et al., 2020; Hachiya et al., 2021). A recent study identified a mutant that exhibited root hypersensitivity to NH₄⁺ due to a missense mutation in the gene encoding argininosuccinate lyase (ASL), which localizes to plastids and mitigates NH₄⁺-induced inhibition of root elongation by converting excess glutamine into arginine. Natural variations in *ASL* alleles between the *japonica* and *indica* subspecies of rice demonstrate *ASL* expression is positively correlated with NUE and yield (Xie et al., 2023). These results suggest that the H⁺ produced during the mitigation of NH₄⁺ assimilation can improve NUE in rice (Figure 2; Table 1).

4.5 Other key regulatory genes involved in NUE in rice

The transcription factor OsDREB1C is identified through RNA-seq as co-induced by light and LN supply, directly targets *OsNR2*, *OsNRT2.4*, and *OsNRT1.1B*, and simultaneously enhances the efficiency of photosynthesis and NUE, significantly improving rice yield (Wei et al., 2022). The bZIP transcription factor OsRF2b, identified through biochemical screening, interacts with OsbZIP61 to form heterodimers. This complex directly binds to the *OsNRT1.1B* promoter region and represses its expression, acting as a negative regulator of NUE and grain yield (Li et al., 2025). OsNR1.2 encodes an NADH-dependent NO₃⁻ reductase, essential for achieving high NUE in rice (Han et al., 2022). Furthermore, a batch of key genes involved in NUE has also been identified, such as rice *OsBT1*, *OsBT2*, and *AAP* genes (Araus et al., 2016; Lu et al., 2018; Pereira et al., 2022), crop yield and NUE can be improved by changing the expression levels of these genes (Figure 2; Table 1).

4.6 Dissecting NUE pathways in green revolution varieties

Apart from using the methods mentioned above to identify N-efficient genes, analyzing the mechanism of low NUE in 'Green Revolution' varieties (GRVs) that limit efficient N use, and mining N-efficient genes from such varieties have also proven effective. The 'Green Revolution' gene sd1, which encodes the GA20 oxidase 2 (GA20ox2) enzyme, an important synthetic enzyme in the gibberellin (GA) synthesis pathway, is widely used in indica breeding. The mutated type of sd1 causes a decrease in endogenous GA activity and GA signal suppressor DELLAs protein (SLR1) accumulation in rice, which leads to a reduction in rice plant height (Ashikari et al., 2002).

A rice transcription factor GRF4 interacts with the transcriptional activator GIF1 to promote the expression of N transport and assimilation-related genes (such as *OsAMT1.1*, *OsGS1.2*, *OsNRT1.1B*) (Li et al., 2018). SLR1 competitively represses the GRF4-GIF1 interaction, inhibiting the formation of

the GRF4-GIF1 protein complex, which leads to a reduction in NUE of rice. Introduction of the excellent allele gene *GRF4*^{ngr2} into semi-dwarf and high-yielding rice varieties can achieve a coordinated increase in the yield and NUE of rice without changing their plant height (Li et al., 2018). The key repressor DWARF 53 (D53) of the SL signalling interacts with GRF4 and prevents GRF4 from binding to its target gene promoters, and negatively regulates NUE (Sun et al., 2023).

Subsequently, NGR5 is a new target of GA-GIBBERELLIN-INSENSITIVE DWARF1 (GID1)-mediated proteasomal destruction, and SLR1 competes with NGR5 for interaction with GID1, in the case of NGR5, with stabilized SLR1 of rice GRVs promoting stabilization of NGR5, thus explaining why GRVs exhibit increased tillering. N status affects chromatin function through modification of histones, a process in which the transcription factor NGR5 recruits polycomb repressive complex 2 (PRC2) to inhibit tiller genes, including OsD14 and OsSPL14, through repressive H3K27me3 modifications (Wu et al., 2020). Additionally, SLR1 competes with NGR5 for interaction with GID1. In the case of NGR5 with stabilized SLR1 of rice (GRVs), promoting the stabilization of NGR5 leads to increased tillering, explaining why GRVs exhibit enhanced tillering. Furthermore, pyramiding of sd1 elite NGR5 alleles can enhance NUE, leading to reduced N fertilizer usage and increased grain yield, without affecting the beneficial semi-dwarfism (Wu et al., 2020) (Figure 2; Table 1). This suggests that manipulation of plant development and NUE comodulation would drive modern breeding for sustainable food security.

5 Conclusion and future perspectives

5.1 Identification of key NO₃⁻ and NH₄⁺ transporters enhancing NUE in rice

Over the past two decades, one of the most significant advances in understanding N utilization regulation in rice has been the identification of NO₃ and NH₄ transporters, as well as transcription factors involved in NUE. In rice, OsNRT1, OsNRT1.1B, OsNRT1.6, OsNRT2.1, OsNRT2.2 and OsNRT2.4 are responsible for NO₃ uptake. OsAMT1.1, OsAMT1.2, OsAMT1.3, OsAMT2.1, OsAMT2.3, OsAMT3.1 and OsAMT5.1 are principal for NH₄⁺ uptake. OsNRT1.1B, OsNRT1.6, OsNPF2.2, OsNRT2.3a and OsNAR2.2 are crucial for NO₃ translocation to shoots. In addition, among the currently identified members of the rice NRT/NPF family, OsNRT1.1A, OsNRT1.1B, OsNRT2.1, OsNAR2.1, OsNRT2.3a, OsNRT2.3b, OsNPF3.1, OsNPF4.5, OsNPF6.1, OsNPF7.7, and OsNPF8.20 have all been shown to enhance NUE, whereas OsNPF7.3 decreased NUE at high NH₄⁺ supply. Compared to the substantial advances made in NO₃ transporters, the progress achieved with NH₄⁺ transporter proteins in improving NUE has remained relatively limited. In the AMT family, only OsAMT1.1 and OsAMT1.2 have been identified as capable of improving NUE (Figure 1; Table 1).

5.2 Genetic and molecular strategies for enhancing NUE in rice

Significant genetic variation in NUE exists within rice germplasm resources, providing a valuable foundation for the precise breeding of cultivars with enhanced NUE. During rice domestication, natural variations in several key loci genes have been identified (including OsNRT1.1B, OsNR2, DNR1, OsWRKY23, and MYB61), playing important roles in regulating NUE and contributing to yield differences between indica and japonica cultivars. In the future, it remains essential to further dissect the candidate genes responsible for NUE variation among rice germplasm resources. GWAS has already cloned multiple key NUE-regulating genes, such as OsNPF6.1, OsNLP4, OsSTP28, OsTCP19, and OsGATA8, which enhance N uptake, assimilation, and tillering ability in rice, thereby improving both NUE and grain yield under varying N conditions. These findings have provided important genetic resources for the molecular breeding of rice cultivars with improved NUE. Moreover, maintaining cellular pH homeostasis is crucial for achieving high NUE in rice. Genes such as OsNRT2.3b, OSA1, and ASL play pivotal roles in regulating proton flux, nutrient transport, and N assimilation, ultimately enhancing NUE and grain yield under N stress conditions. Moreover, introducing advantageous alleles such as GRF4^{ngr2} or NGR5 into the genetic background of the 'Green Revolution' sd1 can simultaneously enhance NUE and grain yield while maintaining a desirable dwarf plant architecture. The synergistic effect of sd1-GRF4-NGR5 enables the coordinated improvement of both NUE and yield, representing an ideal strategy for future molecular breeding (Figure 2; Table 1).

5.3 Multi-gene co-regulation strategies for enhancing NUE in rice

Despite the successive identification and characterization of key genes involved in N uptake, transport, and utilization in rice, the effect of a single gene on improving N absorption or NUE remains limited. By adopting a multi–gene co–regulation strategy, rice NUE and yield can be further enhanced. Studies have shown that co–overexpression of genes for N transport, uptake, and assimilation increases both rice yield and NUE. For instance, the *OsNPF8.9a×OsNR2*, *OsAMT1.2×OsGS1.2×OsAS1*, and *OsGS2×OsAS2×OsANT3* combinations respectively optimize NO₃⁻ uptake, NH₄⁺ conversion, and N recycling. Notably, combining *OsAMT1.2*, *OsGS1.2*, and *OsAS1* overexpression represents a promising breeding strategy (Luo et al., 2023).

Looking forward, the success of such multi-gene strategies will benefit greatly from the integration of advanced biotechnological tools. CRISPR/Cas-based multiplex genome editing allows for precise and simultaneous modification of multiple target genes, while transgenic stacking enables coordinated expression of gene cassettes. When combined with high-throughput phenotyping and omics-assisted selection, these approaches provide a robust framework for the rational design of rice cultivars with enhanced NUE and yield potential. This systems-level breeding strategy offers an effective path toward reducing N fertilizer input while maintaining high productivity, contributing to more sustainable and environmentally friendly rice production.

5.4 Integration of NUE regulation with environmental stress responses

In the context of global climate change and increasingly variable field conditions, the regulation of NUE in rice must be understood not only under optimal environments but also under abiotic stress conditions. Recent studies have demonstrated that N uptake and assimilation are not only genetically regulated but also highly responsive to environmental cues. Under abiotic stresses such as drought, salinity, and extreme temperatures, N transporter expression and NR activity or other enzymes involved in N metabolism are frequently suppressed, leading to reduced NUE (Henckel, 1964; Plaut, 1974; Guo et al., 2003; Robredo et al., 2011; Goel and Singh, 2015; Han et al., 2015; Meng et al., 2016).

However, the application of key genes has been shown to be significant potential for improving NUE under stress conditions. For instance, DST (Drought and Salt Tolerance)-OsNR1.2 regulatory module has been shown to be involved in the suppression of NO₃ assimilation under drought tolerance. Given that DST negatively regulates stomatal closure while positively regulating N assimilation, it likely mediates a coupling between N metabolism and stomatal movement. This mechanism offers a promising target for developing drought-tolerant crops with improved NUE (Han et al., 2022). OsDREB1C, a member of the AP2/EREBP transcription factor family, was initially identified for its role in cold stress responses in rice, recent studies have demonstrated that overexpression of OsDREB1C shortens the growth duration, enhances NUE, and promotes more effective resource allocation, suggesting a potential regulatory link between stress response pathways and nutrient efficiency (Mao and Chen, 2012; Wei et al., 2022).

Moreover, agronomic practices such as irrigation regimes, fertilization strategies, and soil amendments can influence the expression and function of key N-related genes, thereby affecting NUE in crops (Shoji et al., 2001; Yang et al., 2015; Sajjad et al., 2024). Furthermore, in paddy fields, NO₃ and NH₄ availability fluctuates significantly in time and space, necessitating root responses to diverse and changing environmental cues. It has been found that NO₃ supply enhances NH₄ uptake in rice (Zhao et al., 2008). Therefore, a deeper understanding of the interaction between NO₃ and NH₄, and their roles in physiological and biochemical regulation of N uptake, is crucial for improving NUE. In summary, a systematic understanding of the dynamic interactions between genetic regulatory networks and management practices will provide a theoretical foundation and practical guidance for developing N management strategies that are both high-yielding and environmentally sustainable under variable environmental conditions.

5.5 Integrative strategies for future NUE improvement

In summary, we have outlined the genetic regulatory factors involved in the transport of NO₃ and NH₄, which contribute to efficient N absorption and translocation. We further discussed the key genes regulating NUE in rice, highlighting their potential to significantly improve both crop yield and NUE. Although substantial progress has been made in understanding the genetic architecture and molecular mechanisms underlying NUE in rice, there remain significant gaps in our knowledge of the complex genetic networks governing NUE regulation. This calls for an indepth exploration of the genes and regulatory elements affecting NUE through advanced genomic technologies and bioinformatics tools. Future studies should focus on elucidating the functions of these genes, their interactions, and their responses to nitrogen availability under varying environmental conditions. Ultimately, by leveraging strategies such as multi-gene pyramiding, in-depth analysis of signaling regulatory networks, and the mining of elite genetic resources, it is expected that rice NUE can be further improved, facilitating the development of high-yield, environmentally sustainable rice varieties.

Author contributions

XG: Data curation, Project administration, Validation, Resources, Visualization, Formal analysis, Software, Writing – review & editing, Investigation, Supervision, Writing – original draft, Conceptualization. JZ: Writing – review & editing, Funding acquisition, Investigation. FM: Writing – review & editing, Investigation. PL: Writing – review & editing, Investigation. YM: Writing – review & editing. KX: Supervision, Writing – review & editing. TL: Supervision, Writing – review & editing.

References

Araki, R., and Hasegawa, H. (2006). Expression of rice (*Oryza sativa* L.) genes involved in high-affinity nitrate transport during the period of nitrate induction. *Breed. Sci.* 56, 295–302. doi: 10.1270/jsbbs.56.295

Araus, V., Vidal, E. A., Puelma, T., Alamos, S., Mieulet, D., Guiderdoni, E., et al. (2016). Members of BTB gene family of scaffold proteins suppress nitrate uptake and nitrogen use efficiency. *Plant Physiol.* 171, 1523–1532. doi: 10.1104/pp.15.01731

Ashikari, M., Sasaki, A., Ueguchi-Tanaka, M., Itoh, H., Nishimura, A., Datta, S., et al. (2002). Loss-of-function of a rice gibberellin biosynthetic gene, GA20 oxidase (GA20ox-2), led to the rice 'green revolution'. *Breed. Sci.* 52, 143–150. doi: 10.1270/jsbbs.52.143

Bao, A., Liang, Z., Zhao, Z., and Cai, H. (2015). Overexpressing of OsAMT1-3, a high affinity ammonium transporter gene, modifies rice growth and carbon-nitrogen metabolic status. *Int. J. Mol. Sci.* 16, 9037–9063. doi: 10.3390/ijms16059037

Bu, Y., Takano, T., Nemoto, K., and Liu, S. (2011). Research progress of ammonium transporter in rice plants. G. A. B. 2, 373–379. doi: 10.5376/gab.2011.02.0003

Cai, C., Wang, J. Y., Zhu, Y. G., Shen, Q. R., Li, B., Tong, Y. P., et al. (2008). Gene structure and expression of the high-affinity nitrate transport system in rice roots. *J. Integr. Plant Biol.* 50, 443–451. doi: 10.1111/j.1744-7909.2008.00642.x

Chen, J., Fan, X., Qian, K., Zhang, Y., Song, M., Liu, Y., et al. (2017). pOsNAR2.1: OsNAR2.1 expression enhances nitrogen uptake efficiency and grain yield in transgenic rice plants. *Plant Biotechnol. J.* 15, 1273–1283. doi: 10.1111/pbi.12714

Funding

The author(s) declare financial support was received for the research and/or publication of this article. This work was funded by the Department of Science and Technology Planning Project of Henan Province (252102111147 and 252102110328).

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Generative Al statement

The author(s) declare that no Generative AI was used in the creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this article has been generated by Frontiers with the support of artificial intelligence and reasonable efforts have been made to ensure accuracy, including review by the authors wherever possible. If you identify any issues, please contact us.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Chen, J., Liu, X., Liu, S., Fan, X., Zhao, L., Song, M., et al. (2020). Co-overexpression of OsNAR2.1 and OsNRT2.3a increased agronomic nitrogen use efficiency in transgenic rice plants. *Front. Plant Sci.* 11. doi: 10.3389/fpls.2020.01245

Chen, J., Zhang, Y., Tan, Y., Zhang, M., Zhu, L., Xu, G., et al. (2016). Agronomic nitrogen-use efficiency of rice can be increased by driving OsNRT2.1 expression with the OsNAR2.1 promoter. *Plant Biotechnol. J.* 14, 1705–1715. doi: 10.1111/pbi.12531

Crawford, N. M. (1995). Nitrate: nutrient and signal for plant growth. Plant Cell. 7, 859–868. doi: 10.1105/tpc.7.7.859

Crawford, N. M., and Glass, A. D. (1998). Molecular and physiological aspects of nitrate uptake in plants. *Trends Plant Sci.* 3, 389–395. doi: 10.1016/S1360-1385(98) 01311-9

Deng, R. L., Gu, J. T., Lu, W. J., Xu, H. R., and Xiao, K. (2007). Characterization, function and expression analysis of ammonium transporter gene OsAMT1;4 and OsAMT5 in rice (*Oryza sativa*). *Sci. Agric. Sin.* 40, 2395–2402. Available online at: https://api.semanticscholar.org/CorpusID:87104589 (Accessed July 11, 2025).

Ding, Z., Wang, C., Chen, S., and Yu, S. (2011). Diversity and selective sweep in the OsAMT1;1 genomic region of rice. *BMC Evol. Biol.* 11, 61. doi: 10.1186/1471-2148-11-61

Fan, X., Feng, H., Tan, Y., Xu, Y., Miao, Q., and Xu, G. (2016a). A putative 6-transmembrane nitrate transporter OsNRT1.1b plays a key role in rice under low nitrogen. *J. Integr. Plant Biol.* 58, 590–599. doi: 10.1111/jipb.12382

- Fan, X., Tang, Z., Tan, Y., Zhang, Y., Luo, B., Yang, M., et al. (2016b). Overexpression of a pH-sensitive nitrate transporter in rice increases crop yields. *Proc. Natl. Acad. Sci.* 113, 7118–7123. doi: 10.1073/pnas.1525184113
- Fan, X., Xie, D., Chen, J., Lu, H., Xu, Y., Ma, C., et al. (2014). Over-expression of OsPTR6 in rice increased plant growth at different nitrogen supplies but decreased nitrogen use efficiency at high ammonium supply. *Plant Sci.* 227, 1–11. doi: 10.1016/j.plantsci.2014.05.013
- Fang, Z., Bai, G., Huang, W., Wang, Z., Wang, X., and Zhang, M. (2017). The rice peptide transporter OsNPF7.3 is induced by organic nitrogen, and contributes to nitrogen allocation and grain yield. *Front. Plant Sci.* 8. doi: 10.3389/fpls.2017.01338
- Fang, Z., Xia, K., Yang, X., Grotemeyer, M. S., Meier, S., Rentsch, D., et al. (2013). Altered expression of the PTR/NRT1 homologue OsPTR9 affects nitrogen utilization efficiency, growth and grain yield in rice. *Plant Biotechnol. J.* 11, 446–458. doi: 10.1111/pbi.12031
- Feng, H., Li, B., Zhi, Y., Chen, J., Li, R., Xia, X., et al. (2017). Overexpression of the nitrate transporter, OsNRT2.3b, improves rice phosphorus uptake and translocation. *Plant Cell Rep.* 36, 1287–1296. doi: 10.1007/s00299-017-2153-9
- Feng, H., Yan, M., Fan, X., Li, B., Shen, Q., Miller, A. J., et al. (2011). Spatial expression and regulation of rice high-affinity nitrate transporters by nitrogen and carbon status. *J. Exp. Bot.* 62, 2319–2332. doi: 10.1007/s00299-017-2153-9
- Forde, B. G. (2000). Nitrate transporters in plants: structure, function and regulation. *Biochim. Biophys. Acta* 1465, 219–235. doi: 10.1016/s0005-2736(00)00140-1
- Gao, Z., Wang, Y., Chen, G., Zhang, A., Yang, S., Shang, L., et al. (2019). The indica nitrate reductase gene OsNR2 allele enhances rice yield potential and nitrogen use efficiency. *Nat. Commun.* 10, 5207. doi: 10.1038/s41467-019-13110-8
- Gao, Y., Xu, Z., Zhang, L., Li, S., Wang, S., Yang, H., et al. (2020). MYB61 is regulated by GRF4 and promotes nitrogen utilization and biomass production in rice. *Nat. Commun.* 11, 5219. doi: 10.1038/s41467-020-19019-x
- Gaur, V. S., Singh, U. S., Gupta, A. K., and Kumar, A. (2012). Understanding the differential nitrogen sensing mechanism in rice genotypes through expression analysis of high and low affinity ammonium transporter genes. *Mol. Biol. Rep.* 39, 2233–2241. doi: 10.1007/s11033-011-0972-2
- Glass, A. D., Shaff, J. E., and Kochian, L. V. (1992). Studies of the uptake of nitrate in barley: IV. Electrophysiology. *Plant Physiol.* 99, 456–463. doi: 10.1104/pp.99.2.456
- Goel, P., and Singh, A. K. (2015). Abiotic stresses downregulate key genes involved in nitrogen uptake and assimilation in Brassica juncea L. *PLoS One* 10, e0143645. doi: 10.1371/journal.pone.0143645
- Guo, F. Q., Young, J., and Crawford, N. M. (2003). The nitrate transporter AtNRT1.1 (CHL1) functions in stomatal opening and contributes to drought susceptibility in Arabidopsis. *Plant Cell.* 15, 107–117. doi: 10.1105/tpc.006312
- Hachiya, T., Inaba, J., Wakazaki, M., Sato, M., Toyooka, K., Miyagi, A., et al. (2021). Excessive ammonium assimilation by plastidic glutamine synthetase causes ammonium toxicity in. *Arabidopsis thaliana*. *Nat. Commun.* 12, 4944. doi: 10.1038/
- Han, M., Lv, Q., Zhang, J., Wang, T., Zhang, C., Tan, R., et al. (2022). Decreasing nitrogen assimilation under drought stress by suppressing DST-mediated activation of Nitrate Reductase 1.2 in rice. *Mol. Plant* 15, 167–178. doi: 10.1016/j.molp.2021.09.005
- Han, M., Okamoto, M., Beatty, P. H., Rothstein, S. J., and Good, A. G. (2015). The genetics of nitrogen use efficiency in crop plants. *Annu. Rev. Genet.* 49, 269–289. doi: 10.1146/annurev-genet-112414-055037
- Henckel, P. A. (1964). Physiology of plants under drought. Annu. Rev. *Plant Physiol.* 15, 363–386. doi: 10.1146/annurev.pp.15.060164.002051
- Hou, L., Chen, D., Pan, X., Jiang, S., Liu, J., Li, Q., et al. (2025). 9311 allele of OsNAR2.2 enhances nitrate transport to improve rice yield and nitrogen use efficiency. *Plant Biotechnol. J.* 23, 1–11. doi: 10.1111/pbi.70073
- Hu, T., Cao, K., Xia, M., and Wang, X. (2006). Functional characterization of a putative nitrate transporter gene promoter from rice. Acta. *Biochim. Biophys. Sin.* 38, 795–802. doi: 10.1111/j.1745-7270.2006.00225.x
- Hu, B., Jiang, Z., Wang, W., Qiu, Y., Zhang, Z., Liu, Y., et al. (2019). Nitrate-NRT1.1B-SPX4 cascade integrates nitrogen and phosphorus signalling networks in plants. *Nat.Plants.* 5, 637. doi: 10.1038/s41477-019-0384-1
- Hu, R., Qiu, D., Chen, Y., Miller, A. J., Fan, X., Pan, X., et al. (2016). Knock-down of a tonoplast localized low-affinity nitrate transporter OsNPF7.2 affects rice growth under high nitrate supply. *Front. Plant Sci.* 7. doi: 10.3389/fpls.2016.01529
- Hu, B., Wang, W., Ou, S., Tang, J., Li, H., Che, R., et al. (2015). Variation in NRT1.1B contributes to nitrate-use divergence between rice subspecies. *Nat. Genet.* 47, 834–838. doi: 10.1038/ng.3337
- Huang, W., Bai, G., Wang, J., Zhu, W., Zeng, Q., Lu, K., et al. (2018). Two splicing variants of OsNPF7.7 regulate shoot branching and nitrogen utilization efficiency in rice. *Front. Plant Sci.* 9. doi: 10.3389/fpls.2018.00300
- Huang, Y., Ji, Z., Tao, Y., Wei, S., Jiao, W., Fang, Y., et al. (2023). Improving rice nitrogen-use efficiency by modulating a novel monouniquitination machinery for optimal root plasticity response to nitrogen. *Nat. Plants.* 9, 1902–1914. doi: 10.1038/s41477-023-01533-7
- Huang, S., Liang, Z., Chen, S., Sun, H., Fan, X., Wang, C., et al. (2019a). A transcription factor, OsMADS57, regulates long-distance nitrate transport and root elongation. *Plant Physiol.* 180, 882–895. doi: 10.1104/pp.19.00142

- Huang, W., Nie, H., Feng, F., Wang, J., Lu, K., and Fang, Z. (2019b). Altered expression of OsNPF7.1 and OsNPF7.4 differentially regulates tillering and grain yield in rice. *Plant Sci.* 283, 23–31. doi: 10.1016/j.plantsci.2019.01.019
- Jia, L., Xie, Y., Wang, Z., Luo, L., Zhang, C., Pélissier, P. M., et al. (2020). Rice plants respond to ammonium stress by adopting a helical root growth pattern. *Plant J.* 104, 1023–1037. doi: 10.1111/tpj.14978
- Kirk, G. J., and Kronzucker, H. J. (2005). The potential for nitrification and nitrate uptake in the rhizosphere of wetland plants: a modelling study. *Ann. Bot.* 96, 639–646. doi: 10.1093/aob/mci216
- Konishi, N., and Ma, J. F. (2021). Three polarly localized ammonium transporter 1 members are cooperatively responsible for ammonium uptake in rice under low ammonium condition. *New Phytol.* 232, 1778–1792. doi: 10.1111/nph.17679
- Lee, S., Marmagne, A., Park, J., Fabien, C., Yim, Y., Kim, S. J., et al. (2020). Concurrent activation of OsAMT1;2 and OsGOGAT1 in rice leads to enhanced nitrogen use efficiency under nitrogen limitation. *Plant J.* 103, 7–20. doi: 10.1111/tpj.14794
- Léran, S., Varala, K., Boyer, J., Chiurazzi, M., Crawford, N., Daniel-Vedele, F., et al. (2014). A unified nomenclature of NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER family members in plants. *Trends Plant Sci.* 19, 5–9. doi: 10.1016/j.tplants.2013.08.008
- Li, Y. L., Fan, X. R., and Shen, Q. R. (2008). The relationship between rhizosphere nitrification and nitrogen-use efficiency in rice plants. *Plant Cell Environ.* 31, 73–85. doi: 10.1111/j.1365-3040.2007.01737.x
- Li, S. M., Li, B. Z., and Shi, W. M. (2012). Expression patterns of nine ammonium transporters in rice in response to N status. *Pedosphere.* 22, 860–869. doi: 10.1016/S1002-0160(12)60072-1
- Li, B., Merrick, M., Li, S., Li, H., Zhu, S., Shi, W., et al. (2009a). Molecular basis and regulation of ammonium transporter in rice. *Rice Sci.* 16, 314–322. doi: 10.1016/S1672-6308(08)60096-7
- Li, Y., Ouyang, J., Wang, Y., Hu, R., Xia, K., Duan, J., et al. (2015). Disruption of the rice nitrate transporter OsNPF2.2 hinders root-to-shoot nitrate transport and vascular development. *Sci. Rep.* 5, 9635. doi: 10.1038/srep09635
- Li, S., Qian, Q., Fu, Z., Zeng, D., Meng, X., Kyozuka, J., et al. (2009b). Short panicle1 encodes a putative PTR family transporter and determines rice panicle size. *Plant J.* 58, 592–605. doi: 10.1111/j.1365-313X.2009.03799.x
- Li, S. M., and Shi, W. M. (2006). Quantitative characterization of nitrogen regulation of OsAMT1;1, OsAMT1;2, and OsAMT2;2 expression in rice seedlings. *Russian J. Plant Physiol.* 53, 837–843. doi: 10.1134/S102144370606015X
- Li, S., Tian, Y., Wu, K., Ye, Y., Yu, J., Zhang, J., et al. (2018). Modulating plant growth-metabolism coordination for sustainable agriculture. *Nature* 560, 595–600. doi: 10.1038/s41586-018-0415-5
- Li, C., Wen, H., Wu, Y., Li, Y., Feng, X., Li, X., et al. (2025). OsRF2b interacting with OsbZIP61 modulates nitrogen use efficiency and grain yield via heterodimers in rice. *Plant Biotechnol. J.* 23, 3300–3312. doi: 10.1111/pbi.70136
- Lian, X., Xing, Y., Yan, H., Xu, C., Li, X., and Zhang, Q. (2005). QTLs for low nitrogen tolerance at seedling stage identified using a recombinant inbred line population derived from an elite rice hybrid. *Theor. Appl. Genet.* 112, 85–96. doi: 10.1007/s00122-005-0108-y
- Lin, C. M., Koh, S., Stacey, G., Yu, S. M., Lin, T. Y., and Tsay, Y. F. (2000). Cloning and functional characterization of a constitutively expressed nitrate transporter gene, OsNRT1, from rice. *Plant Physiol.* 122, 379–388. doi: 10.1104/pp.122.2.379
- Liu, Y., Wang, H., Jiang, Z., Wang, W., Xu, R., Wang, Q., et al. (2021). Genomic basis of geographical adaptation to soil nitrogen in rice. *Nature* 590, 600–605. doi: 10.1038/s41586-020-03091-w
- Lu, K., Wu, B., Wang, J., Zhu, W., Nie, H., Qian, J., et al. (2018). Blocking amino acid transporter OsAAP3 improves grain yield by promoting outgrowth buds and increasing tiller number in rice. *Plant Biotechno. J.* 16, 1710–1722. doi: 10.1111/pbi.12907
- Luo, J., Hang, J., Wu, B., Wei, X., Zhao, Q., and Fang, Z. (2023). Co-overexpression of genes for nitrogen transport, assimilation, and utilization boosts rice grain yield and nitrogen use efficiency. *Crop J.* 11, 785–799. doi: 10.1016/j.cj.2023.01.005
- Ma, X., Nian, J., Yu, H., Zhang, F., Feng, T., Kou, L., et al. (2023). Linking glucose signaling to nitrogen utilization by the OsHXK7-ARE4 complex in rice. *Dev. Cell* 58, 1489-1501. e5. doi: 10.1016/j.devcel.2023.06.003
- Mao, D., and Chen, C. (2012). Colinearity and similar expression pattern of rice DREB1s reveal their functional conservation in the cold-responsive pathway. *PLoS One* 7, e47275. doi: 10.1371/journal.pone.0047275
- Meng, S., Zhang, C., Su, L., Li, Y., and Zhao, Z. (2016). Nitrogen uptake and metabolism of Populus simonii in response to PEG-induced drought stress. *Environ. Exp. Bot.* 123, 78–87. doi: 10.1016/j.envexpbot.2015.11.005
- Miller, A. J., Fan, X., Orsel, M., Smith, S. J., and Wells, D. M. (2007). Nitrate transport and signalling. *J. Exp. Bot.* 58, 2297–2306. doi: 10.1093/jxb/erm066
- Obara, M., Tamura, W., Ebitani, T., Yano, M., Sato, T., and Yamaya, T. (2010). Fine-mapping of qRL6.1, a major QTL for root length of rice seedlings grown under a wide range of $\mathrm{NH_4}^+$ concentrations in hydroponic conditions. *Theor. Appl. Genet.* 121, 535–547. doi: 10.1007/s00122-010-1328-3

- Pereira, E. G., Bucher, C. P. C., Bucher, C. A., Santos, L. A., Lerin, J., Catarina, C. S., et al. (2022). The amino acid transporter OsAAP1 regulates the fertility of spikelets and the efficient use of N in rice. *Plant Soil* 480, 507–521. doi: 10.1007/s11104-022-05598-9
- Plaut, Z. (1974). Nitrate reductase-activity of wheat seedlings during exposure to and recovery from water stress and salinity. Physiol. *Plant.* 30, 212–217. doi: 10.1111/j.1399-3054.1974.tb03646.x
- Qiu, D., Hu, R., Li, J., Li, Y., Ding, J., Xia, K., et al. (2023). Peptide transporter OsNPF8.1 contributes to sustainable growth under salt and drought stresses, and grain yield under nitrogen deficiency in rice. *Rice Sci.* 30, 113–126. doi: 10.1016/i.rsci.2023.01.004
- Ranathunge, K., El-Kereamy, A., Gidda, S., Bi, Y., and Rothstein, S. J. (2014). AMT1;1 transgenic rice plants with enhanced NH₄⁺ permeability show superior growth and higher yield under optimal and suboptimal NH₄⁺ conditions. *J. Exp. Bot.* 65, 965–979. doi: 10.1093/jxb/ert458
- Robredo, A., Pérez-López, U., Miranda-Apodaca, J., Lacuesta, M., Mena-Petite, A., and Muñoz-Rueda, A. (2011). Elevated CO2 reduces the drought effect on nitrogen metabolism in barley plants during drought and subsequent recovery. *Environ. Exp. Bot.* 71, 399–408. doi: 10.1016/j.envexpbot.2011.02.011
- Sajjad, M., Hussain, K., Wajid, S. A., and Saqib, Z. A. (2024). The impact of split nitrogen fertilizer applications on the productivity and nitrogen use efficiency of rice. *Nitrogen* 6, 1. doi: 10.3390/nitrogen6010001
- Sasakawa, H., and Yamamoto, Y. (1978). Comparison of the uptake of nitrate and ammonium by rice seedlings: influences of light, temperature, oxygen concentration, exogenous sucrose, and metabolic inhibitors. *Plant Physiol.* 62, 665–669. doi: 10.1104/pp.62.4.665
- Shoji, S., Delgado, J., Mosier, A., and Miura, Y. (2001). Use of controlled release fertilizers and nitrification inhibitors to increase nitrogen use efficiency and to conserve air andwater quality. *Commun. Soil Sci. Plan* 32, 1051–1070. doi: 10.1081/CSS-100104103
- Sonoda, Y., Ikeda, A., Saiki, S., Wirén, N. V., Yamaya, T., and Yamaguchi, J. (2003a). Distinct expression and function of three ammonium transporter genes (OsAMT1;1-1;3) in Rice. *Plant Cell Physiol.* 44, 726–734. doi: 10.1093/pcp/pcg083
- Sonoda, Y., Ikeda, A., Saiki, S., Yamaya, T., and Yamaguchi, J. (2003b). Feedback regulation of the ammonium transporter gene family AMT1 by glutamine in rice. *Plant Cell Physiol.* 44, 1396–1402. doi: 10.1093/pcp/pcg169
- Stitt, M. (1999). Nitrate regulation of metabolism and growth. Curr. Opin. Plant Biol. 2, 178-186. doi: 10.1016/S1369-5266(99)80033-8
- Suenaga, A., Moriya, K., Sonoda, Y., Ikeda, A., Von Wirén, N., Hayakawa, T., et al. (2003). Constitutive expression of a novel-type ammonium transporter OsAMT2 in rice plants. *Plant Cell Physiol.* 44, 206–211. doi: 10.1093/pcp/pcg017
- Sun, H., Guo, X., Zhu, X., Gu, P., Zhang, W., Tao, W., et al. (2023). Strigolactone and gibberellin signaling coordinately regulate metabolic adaptations to changes in nitrogen availability in rice. *Mol. Plant* 16, 588–598. doi: 10.1016/j.molp.2023.01.009
- Sun, Q., Yu, Z., Wang, X., Chen, H., Lu, J., Zhao, C., et al. (2024). EARLY FLOWERING3-1 represses Grain number, plant height, and heading date7 to promote ABC1 REPRESSOR1 and regulate nitrogen uptake in rice. *Plant Physiol.* 196, 1857–1868. doi: 10.1093/plphys/kiae416
- Tang, Z., Fan, X., Li, Q., Feng, H., Miller, A. J., Shen, Q., et al. (2012). Knockdown of a rice stelar nitrate transporter alters long-distance translocation but not root influx. *Plant Physiol.* 160, 2052–2063. doi: 10.1104/pp.112.204461
- Tang, W., Ye, J., Yao, X., Zhao, P., Xuan, W., Tian, Y., et al. (2019). Genome-wide associated study identifies NAC42-activated nitrate transporter conferring high nitrogen use efficiency in rice. *Nat. Commun.* 10, 5279. doi: 10.1038/s41467-019-13187-1
- Tsednee, M. (2024). Linking timing to nitrogen use efficiency: Rice OsEC-Ghd7-ARE1 module works on it. *Plant Physiol.* 196, 1720–1721. doi: 10.1093/plphys/kiae488
- Wang, S., Chen, A., Xie, K., Yang, X., Luo, Z., Chen, J., et al. (2020a). Functional analysis of the OsNPF4.5 nitrate transporter reveals a conserved mycorrhizal pathway of nitrogen acquisition in plants. *Proc. Natl. Acad. Sci.* 117, 16649–16659. doi: 10.1073/pnas.2000926117
- Wang, W., Hu, B., Li, A., and Chu, C. (2020b). NRT1.1s in plants: functions beyond nitrate transport. J. Exp. Bot. 71, 4373–4379. doi: 10.1093/jxb/erz554
- Wang, W., Hu, B., Yuan, D., Liu, Y., Che, R., Hu, Y., et al. (2018c). Expression of the nitrate transporter gene OsNRT1.1A/OsNPF6.3 confers high yield and early maturation in rice. *Plant Cell* 30, 638–651. doi: 10.1105/tpc.17.00809
- Wang, J., Lu, K., Nie, H., Zeng, Q., Wu, B., Qian, J., et al. (2018a). Rice nitrate transporter OsNPF7.2 positively regulates tiller number and grain yield. *Rice* 11, 12. doi: 10.1186/s12284-018-0205-6
- Wang, Q., Nian, J., Xie, X., Yu, H., Zhang, J., Bai, J., et al. (2018b). Genetic variations in ARE1 mediate grain yield by modulating nitrogen utilization in rice. *Nat. Commun.* 9, 735. doi: 10.1038/s41467-017-02781-w
- Wang, Q., Su, Q., Nian, J., Zhang, J., Guo, M., Dong, G., et al. (2021). The Ghd7 transcription factor represses ARE1 expression to enhance nitrogen utilization and grain yield in rice. *Mol. Plant* 14, 1012–1023. doi: 10.1016/j.molp.2021.04.012

- Wang, J., Wan, R., Nie, H., Xue, S., and Fang, Z. (2022). OsNPF5.16, a nitrate transporter gene with natural variation, is essential for rice growth and yield. *Crop J.* 10, 397–406. doi: 10.1016/j.cj.2021.08.005
- Wei, S., Li, X., Lu, Z., Zhang, H., Ye, X., Zhou, Y., et al. (2022). A transcriptional regulator that boosts grain yields and shortens the growth duration of rice. *Science* 377, eabi8455. doi: 10.1126/science.abi8455
- Wei, J., Zheng, Y., Feng, H., Qu, H., Fan, X., Yamaji, N., et al. (2018). OsNRT2.4 encodes a dual-affinity nitrate transporter and functions in nitrate-regulated root growth and nitrate distribution in rice. *J. Exp. Bot.* 69, 1095–1107. doi: 10.1093/jxb/erx486
- Wu, W., Dong, X., Chen, G., Lin, Z., Chi, W., Tang, W., et al. (2024). The elite haplotype OsGATA8-H coordinates nitrogen uptake and productive tiller formation in rice. *Nat. Genet.* 56, 1516–1526. doi: 10.1038/s41588-024-01795-7
- Wu, K., Wang, S., Song, W., Zhang, J., Wang, Y., Liu, Q., et al. (2020). Enhanced sustainable green revolution yield via nitrogen-responsive chromatin modulation in rice. *Science* 367, eaaz2046. doi: 10.1126/science.aaz2046
- Wu, Y., Yang, W., Wei, J., Yoon, H., and An, G. (2017). Transcription factor OsDOF18 controls ammonium uptake by inducing ammonium transporters in rice roots. *Mol. Cells* 40, 178–185. doi: 10.14348/molcells.2017.2261
- Wu, J., Zhang, Z. S., Xia, J. Q., Alfatih, A., Song, Y., Huang, Y. J., et al. (2021). Rice NIN-LIKE PROTEIN 4 plays a pivotal role in nitrogen use efficiency. *Plant Biotechnol. J.* 19, 448–461. doi: 10.1111/pbi.13475
- Xia, X., Fan, X., Wei, J., Feng, H., Qu, H., Xie, D., et al. (2015). Rice nitrate transporter OsNPF2.4 functions in low-affinity acquisition and long-distance transport. *J. Exp. Bot.* 66, 317–331. doi: 10.1093/jxb/eru425
- Xie, Y., Lv, Y., Jia, L., Zheng, L., Li, Y., Zhu, M., et al. (2023). Plastid-localized amino acid metabolism coordinates rice ammonium tolerance and nitrogen use efficiency. *Nat. Plants* 9, 1514–1529. doi: 10.1038/s41477-023-01494-x
- Xu, G., Fan, X., and Miller, A. J. (2012). Plant nitrogen assimilation and use efficiency. *Annu. Rev. Plant Biol.* 63, 153–182. doi: 10.1146/annurev-arplant-042811-105532
- Xu, S., Wei, Y., Zhao, P., Sun, Y., Gao, K., Yin, C., et al. (2025). A nitrate transporter OsNPF6.1 promotes nitric oxide signaling and virus resistance. *Plant Cell Environ.* 48, 6493-6508. doi: 10.1111/pce.15626
- Yan, M., Fan, X., Feng, H., Miller, A. J., Shen, Q., and Xu, G. (2011). Rice OsNAR2.1 interacts with OsNRT2.1, OsNRT2.2 and OsNRT2.3a nitrate transporters to provide uptake over high and low concentration ranges. *Plant Cell Environ.* 34, 1360–1372. doi: 10.1111/j.1365-3040.2011.02335.x
- Yang, X., Nong, B., Chen, C., Wang, J., Xia, X., Zhang, Z., et al. (2023). OsNPF3.1, a member of the NRT1/PTR family, increases nitrogen use efficiency and biomass production in rice. *Crop J.* 11, 108–118. doi: 10.1016/j.cj.2022.07.001
- Yang, S., Peng, S., Xu, J., He, Y., and Wang, Y. (2015). Effects of water saving irrigation and controlled release nitrogen fertilizer managements on nitrogen losses from paddy fields. *Paddy Water Environ*. 13, 71–80. doi: 10.1007/s10333-013-0408-9
- Yu, J., Xuan, W., Tian, Y., Fan, L., Sun, J., Tang, W., et al. (2021). Enhanced OsNLP4-OsNiR cascade confers nitrogen use efficiency by promoting tiller number in rice. *Plant Biotechnol. J.* 19, 167–176. doi: 10.1111/pbi.13450
- Zhang, S., Huang, Y., Ji, Z., Fang, Y., Tian, Y., Shen, C., et al. (2025a). Discovery of SOD5 as a novel regulator of nitrogen-use efficiency and grain yield via altering auxin level. *New Phytol.* 246, 1084–1095. doi: 10.1111/nph.70038
- Zhang, S., Ji, Z., Jiao, W., Shen, C., Qin, Y., Huang, Y., et al. (2025b). Natural variation of OsWRKY23 drives difference in nitrate use efficiency between indica and japonica rice. *Nat. Commun.* 16, 1420. doi: 10.1038/s41467-025-56752-7
- Zhang, J., Liu, Y., Zhang, N., Hu, B., Jin, T., Xu, H., et al. (2019). NRT1.1B is associated with root microbiota composition and nitrogen use in field-grown rice. *Nat. Biotechnol.* 37, 676–684. doi: 10.1038/s41587-019-0104-4
- Zhang, Y., Tateishi-Karimata, H., Endoh, T., Jin, Q., Li, K., Fan, X., et al. (2022). High-temperature adaptation of an OsNRT2.3 allele is thermoregulated by small RNAs. *Sci. Adv.* 8, eadc9785. doi: 10.1126/sciadv.adc9785
- Zhang, M., Wang, Y., Chen, X., Xu, F., Ding, M., Ye, W., et al. (2021a). Plasma membrane H⁺-ATPase overexpression increases rice yield via simultaneous enhancement of nutrient uptake and photosynthesis. *Nat. Commun.* 12, 735. doi: 10.1038/s41467-021-20964-4
- Zhang, J., Zhang, Y., Chen, J., Xu, M., Guan, X., Wu, C., et al. (2024). Sugar transporter modulates nitrogen-determined tillering and yield formation in rice. *Nat. Commun.* 15, 9233. doi: 10.1038/s41467-024-53651-1
- Zhang, S., Zhu, L., Shen, C., Ji, Z., Zhang, H., Zhang, T., et al. (2021b). Natural allelic variation in a modulator of auxin homeostasis improves grain yield and nitrogen use efficiency in rice. *Plant Cell* 33, 566–580. doi: 10.1093/plcell/koaa037
- Zhao, S. P., Ye, X. Z., and Shi, W. M. (2014). Expression of OsAMT1 (1.1-1.3) in rice varieties differing in nitrogen accumulation. *Russ. J. Plant Physiol.* 61, 707–713. doi: 10.1134/S1021443714040220
- Zhao, X. Q., Zhao, S. P., and Shi, W. M. (2008). Enhancement of $\mathrm{NH_4}^+$ uptake by $\mathrm{NO_3}^-$ in relation to expression of nitrate-induced genes in rice (*Oryza sativa*) roots. *Pedosphere* 18, 86–91. doi: 10.1016/S1002-0160(07)60106-4