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Introduction: Due to the small size of citrus stems, their color similarity to

the background, and their variable position relative to the fruit, accurately

locating picking points using robots in natural environments presents

significant challenges.

Methods: To address this issue, this study proposes a method for segmenting

citrus fruits and stems based on an improved YOLOv8n-seg model, combined

with geometric constraints for stemmatching to achieve accurate localization of

picking points. First, all standard convolutions in the model are replaced with

GhostConv to reduce the number of model parameters. Furthermore, a

convolutional block attention module (CBAM) and a small-object detection

layer are introduced to enhance the model’s feature representation and

segmentation accuracy for small objects. Then, by incorporating the positional

relationship between the fruit and the stem, constraints are defined to match the

target stem, and an algorithm is designed to determine the optimal picking point.

Results: Experimental results show that the improved YOLOv8n-seg model

achieves recall rates of 90.91% for fruits and stems, a mean average precision

(mAP50) of 94.43%, and an F1-score of 93.51%. The precision rates for fruit and

stem segmentation are 96.04% and 97.12%, respectively. The average detection

rate of picking points reaches 88.38%, with an average localization time of 373.25

milliseconds under GPU support, demonstrating high real-time performance.

Compared with other models, the improved YOLOv8n-seg model shows

significantly better performance.

Discussion: This study confirms the reliability and effectiveness of the proposed

citrus picking point localization method and lays a technical foundation for the

automated harvesting of citrus fruits.
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1 Introduction

Citrus is an important agricultural crop in China, widely

favored by consumers and holding a significant position in

international markets. Since 2007, China has ranked first globally

in both the planting area and yield of citrus fruits (Nie, 2023; Li

et al., 2025). With increasing market demand, the scale of citrus

cultivation continues to expand. However, citrus harvesting is still

predominantly manual (Sun et al., 2023), which presents issues such

as high labor intensity, low efficiency, and high costs (Xiao et al.,

2024; Choi et al., 2025; Zhang et al., 2025). In the context of an aging

population and a growing shortage of agricultural labor in China,

harvesting has become the most time-consuming, labor-intensive,

and costly stage in fruit production (Yin et al., 2023), severely

restricting industrial development and farmer income. Therefore,

promoting the mechanization and intelligent transformation of

citrus harvesting has become essential, and the development of

harvesting robots is a vital approach to addressing this issue.

In the complex natural environment of orchards, the key to

achieving efficient and non-destructive picking by harvesting robots

lies in the accurate recognition of fruits and their picking points

(Hou et al., 2024; Liang et al., 2025). Currently, visual recognition in

harvesting robots is mainly realized through traditional image

processing methods and deep learning algorithms (Fu et al.,

2024). Traditional image processing relies on manually extracted

image features for object recognition. (Xu and Lü, 2015). extracted

color features of bayberry images and used the Hough transform to

fit fruit contours for recognition. However, this method requires

high-quality images and can only identify a small number of fruits.

Although traditional methods have shown some success in fruit

recognition, they lack robustness and adaptability due to limited

feature extraction and susceptibility to changes in lighting,

background, and fruit color (Xiao et al., 2023; Liu et al., 2024; Li

et al., 2025). With the rapid development of machine vision, deep

learning techniques have been widely applied to fruit detection tasks

due to their high accuracy and efficiency (Li et al., 2025; Zhao et al.,

2025), such as blueberries (Wang et al., 2024), apples (Zhang and

Zhang, 2024), bananas (Wu et al., 2024), pears (Ren et al., 2025),

and tomatoes (Huang et al., 2025). Among these, the single-stage

object detection algorithm YOLO (Redmon et al., 2015) has

attracted significant attention in the field. This algorithm can

directly input standardized images into a convolutional neural

network for object detection. (Xu et al., 2023). proposed a high-

precision lightweight detection method based on YOLOv4, using

the lightweight feature extraction network GhostNet to enhance

citrus feature representation, achieving an accuracy of 93.45%. (Liu

et al., 2024). developed a lightweight algorithm, Faster-YOLO-AP,

based on YOLOv8n-seg, which achieved efficient and accurate apple

detection. However, these studies mainly focus on fruit detection,

with picking points typically located on the fruit itself, which is

suitable for harvesting fruits with hard skins. For citrus fruits with

thin peels and soft flesh, picking directly from the fruit can easily

cause mechanical damage. Therefore, the picking point should be

positioned on the fruit stem to ensure the integrity of the fruit

during harvesting. Compared to fruit recognition, stem detection
Frontiers in Plant Science 02
presents greater challenges due to the small size of the stem, its color

similarity to stems and leaves, and its low pixel ratio in the image,

which categorizes it as a typical small object. Against this

background, segmentation methods based on deep learning,

which offer more precise contour extraction, have become a focal

point for stem detection research. (Su et al., 2025). introduced the

AP-UNet model to accurately detect guava fruits and stems at night.

(Yang et al., 2023). adopted the YOLOv5s-seg segmentation model

to detect strawberry stems on trellises, achieving a precision of

82.74%, recall of 82.01%, and mean average precision of 80.67%.

(Baek et al., 2025). proposed the AppleStem (AS)-YOLO model,

utilizing ghost bottlenecks and global attention mechanism to

segment apple stems. Compared to detection, segmentation

methods provide greater advantages in handling weak-feature and

small-scale targets, providing more precise information for the

determination of cutting locations by harvesting robots. Based on

this, this study proposes an improved YOLOv8-seg model to

enhance the segmentation performance for citrus stem.

Most existing stem picking point detection methods infer stem

positions based on fruit locations, showing good adaptability for

crops like kiwifruit, lychee, and apples, where stems are generally

located directly above the fruit (Li et al., 2022). (Li et al., 2025).

determined stem picking points for kiwifruit by searching for fruit

pixel features along the stem’s vertical extension and establishing a

subordinate relationship between fruit and stem. (Xie et al., 2024).

proposed a compound model-based visual localization method,

using object detection and instance segmentation to continuously

detect strawberries and segment their stems, identifying picking

points and stem tilt angles. (Zhang et al., 2024). optimized the

YOLOv5s model to detect mango stems via segmentation for cluster

harvesting. These studies effectively realized stem detection and

picking point localization based on the physical connection between

fruit and stem. However, due to tree structure and gravity, citrus

fruits often hang at inclined angles ranging from 30° to 60°, or even

upside down, resulting in significant stem position variability and

increased detection difficulty.

In summary, this study focuses on the dwarf-cultivated citrus

variety “Dafen No. 4” and proposes a segmentation method based on

an improved YOLOv8n-seg model to enhance the detection accuracy

of citrus fruit and stems in natural environments. Based on this, a stem

matching method using geometric constraints is designed to establish

the correspondence between fruit and stem, identify the target stem,

extract the skeleton line, and develop an algorithm to localize the

optimal picking point. This method provides both theoretical and

technical support for improving the robustness and practicality of

intelligent orchard harvesting systems.
2 Materials and methods

2.1 Citrus dataset construction

2.1.1 Image acquisition
All citrus images used in this study were collected from the

citrus cultivation area of the Wuhan Academy of Agricultural
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Sciences, Hubei Province, China (latitude 30°43’30’’ N, longitude

114°30’15’’ E). The cultivated variety used for image acquisition was

‘Dafen No. 4’. Images were captured using an Intel RealSense D435i

depth camera with a resolution of 1920×1080 pixels. All data were

collected during daytime to avoid insufficient lighting conditions

that could negatively affect image quality and subsequent visual

processing. During image acquisition, the relative position between

the camera and the canopy surface of the citrus trees was carefully

controlled to maintain a parallel distance of 0.3 to 0.6 meters. This

ensured that the captured images accurately reflected the natural

growth state of the fruit. Considering the complexity of the orchard

environment and the safety of the research personnel, data

collection was not conducted under extreme weather conditions

such as heavy rainfall or low-light at night. This approach was

adopted to minimize the impact of adverse conditions factors on

data quality.

After image collection, the raw images were screened to remove

blurred, duplicate, or other invalid images. A total of 1,568 clear

original citrus images were retained. Representative samples are

shown in Figure 1. To enhance the diversity of the dataset and

improve the model’s robustness under complex conditions such as

varying shooting angles, different levels of occlusion, and motion

blur, several data augmentation techniques were applied. These

included flipping, rotation, translation, brightness adjustment, noise

addition, and Gaussian blurring, expanding the dataset to 4,023

images. Subsequently, a secondary screening was performed to

eliminate lower-quality images, resulting in a final dataset of

4,000 high-quality citrus images.

2.1.2 Image annotation
In this study, Labelme software was used to manually annotate

the images, establishing two categories: Citrus Fruit (Citrus) and

Citrus Stem (Stem). During annotation, fruits and stems that were

severely occluded or difficult to identify due to poor lighting were

not annotated. To ensure data consistency and proper

correspondence, a one-to-one annotation strategy was adopted

for fruits and their associated stems. As shown in Figure 2,

annotation was performed using polygonal outlines to trace the
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contours of both the citrus fruits and stems. All annotation files

were then converted into TXT format to be compatible with the

input format required by the segmentation network model. Finally,

the dataset was randomly divided into training, validation, and test

sets in an 8:1:1 ratio. This ensured balanced data distribution during

model training and improved the model’s generalization ability.

Following the dataset partitioning, a statistical analysis of class

distribution was conducted across the training, validation, and test

sets. The results indicate that the proportions of citrus fruits and

stems are comparable across the three subsets, reflecting a well-

balanced and consistent data distribution. Table 1 presents the

distribution of the citrus image dataset.

Dafen No. 4 is a newly emerging citrus variety with high-quality

peel and pulp characteristics. To enable non-destructive harvesting

without damaging the peel or injuring the pulp, the picking robot is

required to perform the cutting operation on the stem at a certain

distance from the fruit. As the stems of this variety are generally

long, annotating the entire stem would not only increase the

complexity of data annotation but also introduce redundant

information. Therefore, in this study, image annotation focuses

only on the area near the connection between the fruit and the stem.

The central part of the segmented stem mask is selected as the

picking point region. This strategy effectively captures the relevant

features of the picking point while simplifying the annotation task,

providing valuable data support for model training and picking

point localization.
2.2 Citrus fruit and stem segmentation
network

2.2.1 YOLOv8-seg segmentation model
YOLOv8-seg is an advanced instance segmentation model

developed by the Ultralytics team as part of the YOLO series. It

inherits the efficiency and speed of its predecessors, while

incorporating several architectural optimizations. The overall

architecture consists of four components: the Input layer,

Backbone, Neck, and Head. Compared to the earlier YOLOv5-seg
FIGURE 1

Example of a citrus image. (A) No occlusion (B) Occlusion (C) Sufficient illumination.
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model, YOLOv8-seg replaces the original C3 module with a C2f

module, enhancing feature reuse and gradient flow, thereby

improving feature representation. In addition, it removes

convolution operations in the upsampling stage and employs a

decoupled detection head, which separates classification and

bounding box regression tasks to improve detection performance.

YOLOv8-seg also supports pixel-level multi-object segmentation,

making it suitable for tasks that demand precise object contours.

The primary reason for selecting YOLOv8-seg as the baseline model

in this study, rather than adopting a newer version, lies in its

relatively stable architecture, well-established performance, and

extensive validation. These characteristics provide a reliable

foundation for subsequent network structure optimization and

functional module integration.

2.2.2 Improved YOLOv8n-seg segmentation
model

YOLOv8n-seg, as the lightest segmentation model in the

YOLOv8 series, offers fast inference speed and high detection

accuracy. However, in practical orchard environments, the

segmentation of citrus fruits and stems still faces numerous

challenges. The small size of stems, their color similarity to the

background, frequent occlusions, and varying lighting conditions all

increase the difficulty of accurate target segmentation. To address

these issues, this study proposes targeted structural improvements
Frontiers in Plant Science 04
to the YOLOv8n-seg model based on the specific perception

requirements of citrus harvesting tasks, aiming to enhance the

model’s ability to segment critical regions. First, the GhostConv

module is introduced to replace the original standard convolution,

reducing the number of model parameters and achieving a

lightweight network structure suitable for resource-constrained

agricultural scenarios. Second, the CBAM attention mechanism is

embedded into the backbone to strengthen the model’s

responsiveness to key features such as stems, thereby improving

segmentation accuracy under complex backgrounds or partial

occlusion conditions. Finally, a small-object detection layer is

added to enhance the model’s multi-scale perception capability,

further improving the detection of small stem targets and thereby

increasing the completeness and robustness of picking point

localization. The improved YOLOv8n-seg network architecture is

illustrated in Figure 3.

(1) Lightweight network reconstruction.

Traditional convolution operations typically stack multiple

convolutional kernels and apply them to all channels of the input

feature map. While this approach allows for the extraction of rich

image features, it results in slow computation and a large number of

parameters, which limits the deployment efficiency of models on

resource-constrained devices. To alleviate this burden, previous

studies have proposed lightweight convolutional networks such as

ShuffleNet and MobileNet by optimizing convolutional structures

for more efficient computation (Howard et al., 2017; Zhang et al.,

2017). However, traditional convolution operations still consume

significant memory resources. To address this issue, the present

study introduces the GhostConv module (Han et al., 2020) as a

replacement for standard convolution operations, aiming to

improve feature representation efficiency and reduce the overall

complexity of the network.

As shown in Figure 4, the GhostConv module mainly consists of

three main steps. First, some feature maps are generated using

standard convolution operations. Then, a series of linear

transformations are applied to these feature maps to produce

additional feature maps. Finally, both sets of feature maps are
FIGURE 2

Data annotation. (A) Original image (B) Annotation visualization.
TABLE 1 Distribution of citrus image datasets.

Dataset
type

Number of
images/
pieces

Number of
citrus fruits/
pieces

Number of
citrus stems/
pieces

Training set 3200 5330 4645

Verification set 400 650 550

Test set 400 655 560

Total 4000 6635 5755
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concatenated to form the complete output. This structure effectively

reduces the computational cost associated with learning non-critical

image features, thereby improving the feature representation

efficiency of the network while maintaining model accuracy and

reducing parameter count.

(2) Incorporation of attention mechanism.

In the complex environment of orchards, factors such as

varying lighting conditions, occlusion by branches and leaves, and
Frontiers in Plant Science 05
unstructured backgrounds introduce significant interference,

resulting in a large amount of irrelevant information in the

images. These challenges severely affect the model’s ability to

accurately recognize target objects. Attention mechanisms, which

assign adaptive weights to feature maps, enable the model to

dynamically select and enhance key information. This can

effectively improve the model’s discriminative capacity under

complex background conditions. Therefore, in this study, the
FIGURE 3

Architecture of the improved YOLOv8n-seg model.
FIGURE 4

Structure of the GhostConv module.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1655093
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Li et al. 10.3389/fpls.2025.1655093
CBAM (Woo et al., 2018) is integrated into the backbone of the

YOLOv8n-seg model to enhance the network’s ability to represent

target regions. The CBAM module is composed of a channel

attention module (CAM) followed by a spatial attention module

(SAM). CAM captures the importance of different channels by

applying both global average pooling and max pooling,

emphasizing features related to fruits and stems. SAM models the

spatial attention distribution using the feature map compressed

along the channel dimension, improving the model’s response to

the edges of small targets under complex backgrounds. While

maintaining a lightweight architecture, the CBAM module

enhances the network’s perception of target regions. Figure 5

shows the structural diagram of the CBAM module. Given an

input feature map F∈RC×H×W, CBAM sequentially derives the

CAM map MC∈RC×1×1 and the SAM map MS∈R1×H×W. The

overall process is as follows:

F 0 = MC(F)⊗ F

F 00 = MS(F
0 )⊗ F 0

Here, ⊗ denotes element-wise multiplication. F’ represents the

intermediate feature map after channel attention adjustment, and

F” is the final enhanced output feature map.

(3) Introduction of small object detection layer.

To enhance the model’s ability to detect and segment small-

scale targets such as citrus stems, this study introduces an additional

shallow detection path on top of the original three-scale

segmentation structure (P3, P4, P5) of YOLOv8n-seg. This new

path constructs a fourth output branch by incorporating

upsampling and feature fusion operations on shallow feature

maps, aiming to compensate for the original segmentation head’s

limited perception of small targets. Specifically, this path leverages

the rich spatial structure information in low-level feature maps and

enhances it by fusing semantic features from deeper layers, thereby

improving the model’s perception consistency across different

object scales. Considering that citrus stems are small, slender, and

prone to occlusion by branches and leaves, this architectural design

enhances the model’s representational capacity for such targets,
Frontiers in Plant Science 06
resulting in more stable segmentation performance under complex

backgrounds. Moreover, the added module maintains the

lightweight nature of the overall network, facilitating deployment

on resource-constrained intelligent agricultural machinery with

high practical applicability.
2.3 Citrus stem picking point localization
method

2.3.1 Target stem determination strategy
As described in Section 2.2.2, after the citrus fruit and stem are

segmented, it is necessary to further determine whether the detected

stem region is the target stem connected to the corresponding fruit

in order to accurately identify the picking position. However, as

shown in Figure 6, complex situations commonly occur in the tree

canopy, including multiple fruits on a single stem, fruit clusters,

occlusion by stems, and fruitless stems. These factors make it

difficult to directly establish the correspondence between fruits

and stems. To address this challenge, this study proposes a stem

matching method based on geometric constraints. First, the

segmented stem region is fitted with a straight line using the least

squares method to estimate its general geometric direction. Then,

the Euclidean distance from each fruit centroid to the fitted line is

calculated, and the stem with the shortest distance is selected as the

preliminary candidate. Finally, by comparing the maximum

distance from the centroid to the fruit contour with the minimum

distance from the centroid to the fitted stem line, the final target

stem is identified.

First, linear fitting is performed on the segmented stem regions

to extract their geometric directional features. The least squares

method is used to fit a straight line to the contour points of each

stem. Suppose there are N stems in the image, forming a

setB = lif gNi=1. Each stem li is represented by a fitted line with

slope ai and intercept bi. The equation of the fitted line for the i-

th stem is expressed as: y=aix+bi.

Next, to accurately obtain the centroid coordinates of the citrus

fruits, it is necessary to parse the label files generated by the
FIGURE 5

Architecture of the CBAM.
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improved YOLOv8n-seg model and extract the fruit segmentation

masks. Since fruits may be clustered or touching, directly

calculating the centroid could lead to miscounting the number of

fruits. Within the detected citrus region R, which contains M pixels,

the centroid coordinates (xc, yc) are calculated as follows:

xc =
1
Mo(x,y)∈Rx, yc =

1
Mo(x,y)∈Ry

To establish the correspondence between fruits and stems, it is

necessary to calculate the distance from the fruit centroid (xc, yc) to

all fitted stem lines. The calculation formula is as follows:

di =
aixc − yc + bij jffiffiffiffiffiffiffiffiffiffiffiffi

a2i + 1
p

Obviously, the smaller the distance di, the more likely the stem li
corresponds to the target stem of the fruit. Let the minimum

distance be denoted as d1. Then, the candidate target stem should

satisfy the following equation, and the corresponding stem lmin is

selected as the candidate target stem:

lmin = argminli ∈Bdi

Let the set of boundary points on the fruit’s maximum contour

be D = (xj, yj)
� �M

j=1.Then, the shortest distance from the centroid to

the boundary is defined as:

d = min(xj ,yj)∈D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(xC − xj)

2 + (yC − yj)
2

q

Since the boundary points of the fruit contour represent its

maximum physical extent, the maximum distance d from the fruit

centroid to the contour boundary can be used as a constraint for

matching. This ensures that the matched stem is structurally

connected to the corresponding fruit. The constraint helps

eliminate stems that are not clearly associated with any fruit,

thereby improving the accuracy of the matching process. If the

shortest distance d1 from the fruit centroid to the fitted stem line

satisfies the condition d1< d, the stem is considered to be validly

matched with the fruit and identified as the target stem. Otherwise,

it is regarded as unmatched. A visual example of citrus fruit and

stem matching is shown in Figure 7. In Figure 7B, the green lines
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(Stem 1 and Stem 2) represent the stem orientations estimated using

the least squares fitting method. The red lines indicate the shortest

distance from the centroid of each fruit to its corresponding stem

direction, while the cyan lines represent the maximum distance

from the fruit centroid to its contour boundary. Based on these

geometric constraints, the structural association between each fruit

and stem can be determined. The figure illustrates the matching

relationships, such as “Citrus 1 - Stem 1” and “Citrus 2 - Stem 2,”

providing an intuitive visualization of the fruit-to-stem

matching process.

2.3.2 Stem picking point localization
After matching the target stem using the geometric constraint

method, further localization of the picking point on the target stem

is necessary to achieve automated harvesting. First, the stem

segmentation mask output by the YOLOv8n-seg model is used to

extract the region of interest (ROI), which is then converted into a

corresponding binary image. This image is then processed using

morphological opening operations to eliminate falsely connected

regions and edge noise, thereby enhancing the main structure of the

stem. Next, an image thinning algorithm is applied to extract the

skeleton of the preprocessed image, allowing for simplification of

the stem’s structural information by identifying its central axis.

Based on this skeleton, the midpoint of the centerline is selected as

the picking point, and its spatial coordinates are obtained through

coordinate transformation. The flowchart of the picking point

localization strategy is shown in Figure 8.
3 Experimental results

3.1 Experimental environment and
parameter configuration

The model training and testing in this study were conducted

under the same environment. The host operating system was

Windows 11, with a Gen Intel(R) Core(TM) i7-12650H CPU @

2.3GHz, 32 GB RAM, and an NVIDIA GeForce RTX 4060 Laptop

GPU. The neural network was trained in an Anaconda 3 virtual
FIGURE 6

Relationship between citrus fruits and their stems. (A) One stem corresponds to two fruits; (B) fruits are clustered with stem occlusion; (C) no fruit
below the stem.
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environment using the PyTorch 2.5.1 deep learning framework,

configured with Python 3.8, and supported by CUDA 11.8 and

cuDNN 9.1.0 for GPU parallel computing. Detailed training

parameters of the model are listed in Table 2.
3.2 Segmentation evaluation metrics

In this study, the model performance was evaluated using

several metrics, including Precision (P), Recall (R), mean Average

Precision at IoU threshold 0.5 (mAP0.5), F1-score, number of

parameters, and model size. Precision measures the accuracy of

the segmentation results, representing the proportion of correctly

predicted target pixels among all pixels predicted as target regions.

Recall indicates the completeness of the segmentation, referring to

the proportion of correctly identified target pixels among all actual
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target pixels. Average Precision is the mean of precision values at

different recall levels. The mAP0.5 represents the average AP across

all classes when the Intersection over Union (IoU) threshold is set to

0.5, and it is used to comprehensively assess the overall performance

of the model in citrus fruit and stem segmentation tasks. The F1-

score is the harmonic mean of precision and recall, reflecting the

model’s balanced performance in terms of accuracy and

completeness. The corresponding formulas are defined as follows:

Precision =
TP

TP + FP

Recall =
TP

TP + FN

AP =
Z 1

0
P(R)dR
FIGURE 7

Visualization of citrus fruit–stem matching: (A) Original image; (B) Matching result image.
FIGURE 8

Flowchart of the picking point localization strategy. (A) Stem region of interest; (B) Image binarization; (C) Morphological processing; (D) Skeleton
extraction; (E) Picking point localization.
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mAP =
1
No

N

i=1
APi

F1 =
2PR
P + R
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In the above formula, TP is the count of correctly predicted

positives; FP is the count of negatives wrongly predicted as

positives; FN is the count of positives wrongly predicted as

negatives; N is the number of classes, which is 2 in this study.
3.3 Segmentation evaluation metrics

To visually demonstrate the performance of the model in citrus

image segmentation, three representative images were randomly

selected from the test set for comparative analysis, as shown in

Figure 9. It can be observed that the improved YOLOv8n-seg model

outperforms the original model in both object detection and

segmentation performance. Specifically, the enhanced model is

capable of identifying target regions missed by the original model,

resulting in more complete segmentation outputs. In addition, the

improved model exhibits generally higher confidence scores in the
TABLE 2 Model training parameters.

Parameter category Parameter setting

Initial learning rate 0.01

Number of iteration rounds 200

Batch size 8

Picture size 640×640

Optimizer Stochastic gradient descent(SGD)

Momentum parameter 0.937
FIGURE 9

Comparison of segmentation results. (A) Original image; (B) Segmentation result using the original YOLOv8n-seg model; (C) Segmentation result
using the improved YOLOv8n-seg model.
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segmentation results, demonstrating stronger discriminative

capability and localization accuracy, thereby enhancing the

reliability and practical applicability of the segmentation outcomes.
3.4 Ablation study

To verify the impact of each module on model performance,

ablation experiments were conducted on the small object detection

layer, the lightweight GhostConv module, and the CBAM attention

mechanism. The results are shown in Table 3. The baseline model

without any improvements achieved an overall precision of 93.08%.

The segmentation precision for fruits and stems was 96.25% and

89.91%, respectively. The recall reached 88.83%, mAP50 was

91.71%, and the F1-score was 90.81%.

After adding the small object detection layer, all performance

metrics improved. Precision, recall, mAP50, and F1-score increased

to 95.36%, 90.35%, 93.71%, and 92.64%, respectively. The stem

segmentation precision rose to 94.21%. Although the model size

slightly increased, the parameter count changed marginally, and the

performance gain was significant, indicating the module’s

effectiveness in enhancing small object segmentation.

Subsequently, replacing standard convolution with the

GhostConv module reduced the number of parameters from

3.24M to 2.93M and the model size from 6.53MB to 5.96MB,

achieving a more lightweight architecture. While maintaining high

accuracy, recall and F1-score improved slightly. The segmentation

precision for fruits and stems reached 95.99% and 96.27%,

respectively, demonstrating a good balance between performance

and efficiency. Finally, incorporating the CBAM attention

mechanism further enhanced the model. The precision, recall,

mAP50, and F1-score increased to 96.56%, 90.91%, 94.43%, and

93.51%, respectively. Fruit segmentation precision remained at

96.04%, while stem segmentation precision increased to 97.12%.
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Despite a slight increase in parameter count and model size, the

model remained lightweight and highly deployable.
3.5 Comparative experiments of different
algorithms

To validate the performance of the improved YOLOv8n-seg

model in citrus fruit and stem segmentation tasks, we conducted

comparative experiments against YOLOv5n-seg, YOLOv6n-seg,

YOLOv9s-seg, and the original lightweight YOLOv8n-seg model.

The results are shown in Table 4.

The improved YOLOv8n-seg model demonstrated superior

performance across key metrics in the segmentation task. The

model outperformed the baseline models in terms of precision,

recall, mAP0.5, and F1-score, reaching 96.56 percent, 90.91 percent,

94.43 percent, and 93.51 percent, respectively. Compared with the

original YOLOv8n-seg model, these metrics increased by 3.48

percent, 2.08 percent, 2.72 percent, and 2.70 percent, respectively.

Furthermore, in comparison with the YOLOv5n-seg, YOLOv6n-

seg, and YOLOv9s-seg models, the mAP0.5 of the improved model

increased by 5.36 percent, 2.67 percent, and 1.02 percent,

respectively, indicating enhanced segmentation performance. In

terms of model complexity, the improved YOLOv8n-seg achieved

a parameter count of 2.94 million and a model size of 5.98

megabytes, maintaining a lightweight architecture while

significantly improving performance. Compared with YOLOv5n-

seg, the model showed a slight increase in parameter size but

delivered substantial performance gains. Compared with the more

complex YOLOv9s-seg, the improved model achieved higher

segmentation accuracy with reduced complexity. The model

achieves favorable segmentation performance for citrus fruits and

stems, while maintaining a smaller model size and higher

detection accuracy.
TABLE 4 Comparative results of different models.

Model P/% R/% mAP50/% F1/% Parameters/M Model size/MB

YOLOv5n-seg 91.31 86.17 89.07 88.51 2.76 5.51

YOLOv6n-seg 94.59 88.99 91.76 91.57 4.40 8.62

YOLOv9s-seg 94.01 90.67 93.41 92.24 7.55 15.20

YOLOv8n-seg 93.08 88.83 91.71 90.81 3.26 6.45

Improve YOLOv8n-seg 96.56 90.91 94.43 93.51 2.94 5.98
TABLE 3 Results of the ablation study.

Small target detection
layer

GhostConv CBAM
P/
%

PFruit/
%

PStem/
%

R/
%

mAP50/
%

F1/
%

Parameters/
M

Model size/
MB

— — — 93.08 96.25 89.91 88.83 91.71 90.81 3.26 6.45

✓ — — 95.36 96.51 94.21 90.35 93.71 92.64 3.24 6.53

✓ ✓ — 96.13 95.99 96.27 90.06 93.45 92.84 2.93 5.96

✓ ✓ ✓ 96.56 96.04 97.12 90.91 94.43 93.51 2.94 5.98
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3.6 Citrus picking point localization
experiments

To evaluate the adaptability and accuracy of the citrus picking

point localization method in complex real-world orchard

environments, RGB images captured under natural orchard

conditions using a D435i depth camera were selected for

localization experiments. A total of 100 images were randomly

sampled from the test dataset, comprising 155 annotated picking

points and covering diverse conditions including varying lighting,

viewing angles, and backgrounds. Images were categorized into

three scenarios based on the visibility of fruits and stems: no

occlusion, mild occlusion, and moderate occlusion. Mild

occlusion indicates that both fruits and stems have over 60%

visible area, while moderate occlusion refers to visibility between

30% and 60%. The citrus picking point localization results under

different scenarios are presented in Table 5. The improved

YOLOv8n-seg model correctly segmented 150 target stems, with

137 picking points accurately localized. Five localization errors were

caused by stem segmentation failures, and 13 failures were due to

stem occlusion, resulting in an average picking point detection rate

of 88.38%. Additionally, with GPU support, the system’s average

processing time from input image to completion of both

segmentation and picking point localization was 373.25

milliseconds, demonstrating strong real-time performance and

practical deployment potential.

Figure 10 illustrates representative examples of the picking

point localization results. As shown, the proposed algorithm

demonstrates high accuracy and stability across a variety of

complex backgrounds. It consistently maintains reliable

localization performance under diverse environmental conditions.

The algorithm effectively extracts the geometric structural features

between the citrus fruit and its stem, enabling accurate inference of

reasonable picking positions. These results highlight the method’s

strong robustness and adaptability to varying environments.

Experimental results indicate that the proposed approach exhibits

promising application potential in real orchard settings, with a

localization accuracy that meets the practical requirements for

citrus harvesting operations.

This study presents a visualization of typical failure cases in

picking point localization, as shown in Figure 11. The main causes

of localization failure are as follows: first, the stem is occluded by

leaves or fruits. Although the fruit is successfully segmented, the

connection between the fruit and its stem cannot be identified,

resulting in failure to infer the picking point, as illustrated in
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Figure 11a. Second, inaccurate stem segmentation occurs; even if

the stem is visible, segmentation errors affect the accuracy of picking

point localization, as shown in Figure 11b. These observations

indicate that occlusion and segmentation accuracy are key factors

affecting robustness. Future research could incorporate multi-view

image fusion or RGB-D information synergistic modeling to

mitigate the impact of occlusion. Meanwhile, optimizing the

segmentation algorithm by adopting more robust network

architectures could enhance the model’s generalization ability in

complex orchard environments.
4 Discussion

In recent years, with the rapid advancement of smart

agriculture, automated fruit picking technology has gradually

become a crucial component of orchard mechanization. However,

in natural environments, citrus fruits and stems exhibit complex

morphology and small dimensions, and are often subject to

occlusion and background interference. These challenges result in

limited accuracy and robustness for traditional object detection and

segmentation methods, especially in stem recognition and precise

picking point localization. Therefore, there is an urgent need for

efficient and reliable solutions tailored to these issues.

This study focuses on the dwarf cultivar “Dafen No. 4” citrus

and investigates segmentation methods for fruits and stems, as well

as strategies for accurate picking point localization. A comparative

analysis of various YOLO-based models was conducted on a citrus

dataset, leading to the selection of an improved YOLOv8n-seg

segmentation model for citrus recognition tasks. In related

research, (Qi et al., 2024). enhanced the feature extraction

capability and detection robustness of YOLOv8-seg by modifying

the neck structure with BiFPN-based cross-layer connections and

weighted fusion, and by replacing the SPPF module with a Soft-

SPPF module. Similarly, (Si et al., 2024). improved stem

segmentation performance under occlusion by incorporating a

GCT module into the backbone and an EMA mechanism into the

C2f module for enhanced multi-scale feature fusion. In this study,

conventional convolution layers were replaced with GhostConv

structures to reduce model parameters and size. Additionally, a

CBAM and a small-object detection layer were introduced to

improve the model’s sensitivity to critical regions and compensate

for its limitations in fine-structure detection. Compared with other

YOLO models (as shown in Table 4), the improved YOLOv8n-seg

model achieved a mAP50 of 94.4%, effectively balancing detection
TABLE 5 Experimental results of citrus picking point localization under different scenarios.

Scene type
Image
count

Total
targets

Accurate picking
point localization

Segmentation
failures

Stem occlusion
failures

Average localization
time (ms)

No obstruction 30 32 29 1 2 328.33

Mild occlusion 30 46 41 1 4 422.67

Moderate occlusion 40 77 67 3 7 368.75

Total/Average 100 155 137 5 13 373.25
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accuracy and model efficiency. Despite these improvements, the

model still faces challenges in complex scenarios such as severe

occlusion, low lighting conditions, and overlapping fruits. Further

work is required to enhance model robustness and address the

generalization limitations of the current dataset.

To improve the accuracy of citrus picking point localization, this

study builds upon the output of the improved YOLOv8n-seg model by

incorporating a stemmatching strategy based on geometric constraints.
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This method effectively reduces mismatches during stem recognition

by utilizing the relatively stable spatial relationship between the fruit

and its stem. Furthermore, the target stem region is structurally

simplified, and geometric features are extracted to derive the stem’s

central axis. The picking point is then determined based on this axis,

providing a structurally stable and low-error localization result. Unlike

traditional approaches that rely on the fruit center or rule-based

estimation, the proposed method aligns more closely with practical
FIGURE 10

Visualization of citrus picking point localization in orchard environments. (A) Original images; (B) Model prediction results.
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harvesting requirements and accurately reflects the spatial

characteristics of the stem. This localization strategy not only

improves the precision of picking point determination but also

provides a more reliable foundation for subsequent picking path

planning and robotic arm control.
5 Conclusion

In this study, a citrus fruit and stem segmentation method based

on an improved YOLOv8n-seg model was proposed. By integrating

geometric constraints for stem matching, accurate localization of

citrus picking points was achieved. The proposed method enhances

localization accuracy while maintaining model lightweight

characteristics, demonstrating strong robustness and practical

application potential. The main conclusions are as follows:
Fron
1. The YOLOv8n-seg model was improved by replacing the

original standard convolution layers with GhostConv
tiers in Plant Science 13
modules to achieve a more lightweight network structure.

In addition, the CBAM module and a small-object

detection layer were introduced to enhance feature

extraction for small targets. The improved model

achieved precision, recall, mAP50, and F1-score of

96.56%, 90.91%, 94.43%, and 93.51%, respectively, for

citrus fruits and stems. Compared with the original

YOLOv8n-seg model, these metrics increased by 3.48%,

2.08%, 2.72%, and 2.70%, respectively. Among lightweight

models including YOLOv5n-seg, YOLOv6n-seg,

YOLOv9s-seg, and YOLOv8n-seg, the proposed model

achieved the best segmentation performance.

2. Based on the segmentation results, a stem matching

method guided by geometric constraints was proposed to

achieve accurate localization of citrus picking points. This

method establishes geometric relationships between fruits

and stems to accurately match the target stem regions. The

region of interest (ROI) corresponding to the matched stem

is then subjected to morphological processing to extract the
FIGURE 11

Examples of picking point localization failure in citrus. (A) Stem occlusion; (B) Stem segmentation error.
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Fron
stem skeleton, and the midpoint of the skeleton is

designated as the picking point. The approach was tested

on 100 citrus images with a resolution of 1920 × 1080

collected by the camera. The results show that the method

achieves an average picking point detection rate of 88.38%.

With GPU support, the system completes segmentation

and picking point localization in an average processing

time of 373.25 milliseconds, demonstrating high real-

time performance.
Overall, this study demonstrates promising progress in

improving the accuracy of citrus segmentation and the efficiency

of picking point localization. However, certain limitations remain in

practical applications. During the citrus ripening process, various

natural factors such as light conditions, nutrient distribution, and

ventilation contribute to significant differences in fruit maturity

even within the same orchard. These variations increase the

complexity of determining the appropriate time for harvesting.

Therefore, future research could focus on integrating citrus

maturity detection with picking point decision-making

algorithms. This approach would enable intelligent identification

of mature fruits, thereby enhancing the operational performance

and practical value of picking robots and supporting their large-

scale deployment in real orchard environments.
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