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Introduction: Due to the small size of citrus stems, their color similarity to
the background, and their variable position relative to the fruit, accurately
locating picking points using robots in natural environments presents
significant challenges.

Methods: To address this issue, this study proposes a method for segmenting
citrus fruits and stems based on an improved YOLOv8n-seg model, combined
with geometric constraints for stem matching to achieve accurate localization of
picking points. First, all standard convolutions in the model are replaced with
GhostConv to reduce the number of model parameters. Furthermore, a
convolutional block attention module (CBAM) and a small-object detection
layer are introduced to enhance the model's feature representation and
segmentation accuracy for small objects. Then, by incorporating the positional
relationship between the fruit and the stem, constraints are defined to match the
target stem, and an algorithm is designed to determine the optimal picking point.
Results: Experimental results show that the improved YOLOv8n-seg model
achieves recall rates of 90.91% for fruits and stems, a mean average precision
(MAP50) of 94.43%, and an F1-score of 93.51%. The precision rates for fruit and
stem segmentation are 96.04% and 97.12%, respectively. The average detection
rate of picking points reaches 88.38%, with an average localization time of 373.25
milliseconds under GPU support, demonstrating high real-time performance.
Compared with other models, the improved YOLOv8n-seg model shows
significantly better performance.

Discussion: This study confirms the reliability and effectiveness of the proposed
citrus picking point localization method and lays a technical foundation for the
automated harvesting of citrus fruits.
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1 Introduction

Citrus is an important agricultural crop in China, widely
favored by consumers and holding a significant position in
international markets. Since 2007, China has ranked first globally
in both the planting area and yield of citrus fruits (Nie, 2023; Li
et al., 2025). With increasing market demand, the scale of citrus
cultivation continues to expand. However, citrus harvesting is still
predominantly manual (Sun et al., 2023), which presents issues such
as high labor intensity, low efficiency, and high costs (Xiao et al.,
2024; Choi et al., 2025; Zhang et al., 2025). In the context of an aging
population and a growing shortage of agricultural labor in China,
harvesting has become the most time-consuming, labor-intensive,
and costly stage in fruit production (Yin et al, 2023), severely
restricting industrial development and farmer income. Therefore,
promoting the mechanization and intelligent transformation of
citrus harvesting has become essential, and the development of
harvesting robots is a vital approach to addressing this issue.

In the complex natural environment of orchards, the key to
achieving efficient and non-destructive picking by harvesting robots
lies in the accurate recognition of fruits and their picking points
(Hou et al,, 2024; Liang et al., 2025). Currently, visual recognition in
harvesting robots is mainly realized through traditional image
processing methods and deep learning algorithms (Fu et al,
2024). Traditional image processing relies on manually extracted
image features for object recognition. (Xu and Lii, 2015). extracted
color features of bayberry images and used the Hough transform to
fit fruit contours for recognition. However, this method requires
high-quality images and can only identify a small number of fruits.
Although traditional methods have shown some success in fruit
recognition, they lack robustness and adaptability due to limited
feature extraction and susceptibility to changes in lighting,
background, and fruit color (Xiao et al., 2023; Liu et al., 2024; Li
et al., 2025). With the rapid development of machine vision, deep
learning techniques have been widely applied to fruit detection tasks
due to their high accuracy and efficiency (Li et al., 2025; Zhao et al,,
2025), such as blueberries (Wang et al., 2024), apples (Zhang and
Zhang, 2024), bananas (Wu et al.,, 2024), pears (Ren et al., 2025),
and tomatoes (Huang et al., 2025). Among these, the single-stage
object detection algorithm YOLO (Redmon et al, 2015) has
attracted significant attention in the field. This algorithm can
directly input standardized images into a convolutional neural
network for object detection. (Xu et al., 2023). proposed a high-
precision lightweight detection method based on YOLOv4, using
the lightweight feature extraction network GhostNet to enhance
citrus feature representation, achieving an accuracy of 93.45%. (Liu
et al,, 2024). developed a lightweight algorithm, Faster-YOLO-AP,
based on YOLOv8n-seg, which achieved efficient and accurate apple
detection. However, these studies mainly focus on fruit detection,
with picking points typically located on the fruit itself, which is
suitable for harvesting fruits with hard skins. For citrus fruits with
thin peels and soft flesh, picking directly from the fruit can easily
cause mechanical damage. Therefore, the picking point should be
positioned on the fruit stem to ensure the integrity of the fruit
during harvesting. Compared to fruit recognition, stem detection
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presents greater challenges due to the small size of the stem, its color
similarity to stems and leaves, and its low pixel ratio in the image,
which categorizes it as a typical small object. Against this
background, segmentation methods based on deep learning,
which offer more precise contour extraction, have become a focal
point for stem detection research. (Su et al., 2025). introduced the
AP-UNet model to accurately detect guava fruits and stems at night.
(Yang et al,, 2023). adopted the YOLOv5s-seg segmentation model
to detect strawberry stems on trellises, achieving a precision of
82.74%, recall of 82.01%, and mean average precision of 80.67%.
(Baek et al.,, 2025). proposed the AppleStem (AS)-YOLO model,
utilizing ghost bottlenecks and global attention mechanism to
segment apple stems. Compared to detection, segmentation
methods provide greater advantages in handling weak-feature and
small-scale targets, providing more precise information for the
determination of cutting locations by harvesting robots. Based on
this, this study proposes an improved YOLOv8-seg model to
enhance the segmentation performance for citrus stem.

Most existing stem picking point detection methods infer stem
positions based on fruit locations, showing good adaptability for
crops like kiwifruit, lychee, and apples, where stems are generally
located directly above the fruit (Li et al., 2022). (Li et al., 2025).
determined stem picking points for kiwifruit by searching for fruit
pixel features along the stem’s vertical extension and establishing a
subordinate relationship between fruit and stem. (Xie et al., 2024).
proposed a compound model-based visual localization method,
using object detection and instance segmentation to continuously
detect strawberries and segment their stems, identifying picking
points and stem tilt angles. (Zhang et al., 2024). optimized the
YOLOV5s model to detect mango stems via segmentation for cluster
harvesting. These studies effectively realized stem detection and
picking point localization based on the physical connection between
fruit and stem. However, due to tree structure and gravity, citrus
fruits often hang at inclined angles ranging from 30° to 60°, or even
upside down, resulting in significant stem position variability and
increased detection difficulty.

In summary, this study focuses on the dwarf-cultivated citrus
variety “Dafen No. 4” and proposes a segmentation method based on
an improved YOLOv8n-seg model to enhance the detection accuracy
of citrus fruit and stems in natural environments. Based on this, a stem
matching method using geometric constraints is designed to establish
the correspondence between fruit and stem, identify the target stem,
extract the skeleton line, and develop an algorithm to localize the
optimal picking point. This method provides both theoretical and
technical support for improving the robustness and practicality of
intelligent orchard harvesting systems.

2 Materials and methods
2.1 Citrus dataset construction
2.1.1 Image acquisition

All citrus images used in this study were collected from the
citrus cultivation area of the Wuhan Academy of Agricultural
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Sciences, Hubei Province, China (latitude 30°43’30” N, longitude
114°30’15” E). The cultivated variety used for image acquisition was
‘Dafen No. 4’. Images were captured using an Intel RealSense D435i
depth camera with a resolution of 1920x1080 pixels. All data were
collected during daytime to avoid insufficient lighting conditions
that could negatively affect image quality and subsequent visual
processing. During image acquisition, the relative position between
the camera and the canopy surface of the citrus trees was carefully
controlled to maintain a parallel distance of 0.3 to 0.6 meters. This
ensured that the captured images accurately reflected the natural
growth state of the fruit. Considering the complexity of the orchard
environment and the safety of the research personnel, data
collection was not conducted under extreme weather conditions
such as heavy rainfall or low-light at night. This approach was
adopted to minimize the impact of adverse conditions factors on
data quality.

After image collection, the raw images were screened to remove
blurred, duplicate, or other invalid images. A total of 1,568 clear
original citrus images were retained. Representative samples are
shown in Figure 1. To enhance the diversity of the dataset and
improve the model’s robustness under complex conditions such as
varying shooting angles, different levels of occlusion, and motion
blur, several data augmentation techniques were applied. These
included flipping, rotation, translation, brightness adjustment, noise
addition, and Gaussian blurring, expanding the dataset to 4,023
images. Subsequently, a secondary screening was performed to
eliminate lower-quality images, resulting in a final dataset of
4,000 high-quality citrus images.

2.1.2 Image annotation

In this study, Labelme software was used to manually annotate
the images, establishing two categories: Citrus Fruit (Citrus) and
Citrus Stem (Stem). During annotation, fruits and stems that were
severely occluded or difficult to identify due to poor lighting were
not annotated. To ensure data consistency and proper
correspondence, a one-to-one annotation strategy was adopted
for fruits and their associated stems. As shown in Figure 2,
annotation was performed using polygonal outlines to trace the
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contours of both the citrus fruits and stems. All annotation files
were then converted into TXT format to be compatible with the
input format required by the segmentation network model. Finally,
the dataset was randomly divided into training, validation, and test
sets in an 8:1:1 ratio. This ensured balanced data distribution during
model training and improved the model’s generalization ability.
Following the dataset partitioning, a statistical analysis of class
distribution was conducted across the training, validation, and test
sets. The results indicate that the proportions of citrus fruits and
stems are comparable across the three subsets, reflecting a well-
balanced and consistent data distribution. Table 1 presents the
distribution of the citrus image dataset.

Dafen No. 4 is a newly emerging citrus variety with high-quality
peel and pulp characteristics. To enable non-destructive harvesting
without damaging the peel or injuring the pulp, the picking robot is
required to perform the cutting operation on the stem at a certain
distance from the fruit. As the stems of this variety are generally
long, annotating the entire stem would not only increase the
complexity of data annotation but also introduce redundant
information. Therefore, in this study, image annotation focuses
only on the area near the connection between the fruit and the stem.
The central part of the segmented stem mask is selected as the
picking point region. This strategy effectively captures the relevant
features of the picking point while simplifying the annotation task,
providing valuable data support for model training and picking
point localization.

2.2 Citrus fruit and stem segmentation
network

2.2.1 YOLOvV8-seg segmentation model
YOLOvV8-seg is an advanced instance segmentation model
developed by the Ultralytics team as part of the YOLO series. It
inherits the efficiency and speed of its predecessors, while
incorporating several architectural optimizations. The overall
architecture consists of four components: the Input layer,
Backbone, Neck, and Head. Compared to the earlier YOLOV5-seg

(A)

FIGURE 1

(B)

Example of a citrus image. (A) No occlusion (B) Occlusion (C) Sufficient illumination.
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(A)

Data annotation. (A) Original image (B) Annotation visualization.

FIGURE 2

(B)

model, YOLOvV8-seg replaces the original C3 module with a C2f
module, enhancing feature reuse and gradient flow, thereby
improving feature representation. In addition, it removes
convolution operations in the upsampling stage and employs a
decoupled detection head, which separates classification and
bounding box regression tasks to improve detection performance.
YOLOVS8-seg also supports pixel-level multi-object segmentation,
making it suitable for tasks that demand precise object contours.
The primary reason for selecting YOLOV8-seg as the baseline model
in this study, rather than adopting a newer version, lies in its
relatively stable architecture, well-established performance, and
extensive validation. These characteristics provide a reliable
foundation for subsequent network structure optimization and
functional module integration.

2.2.2 Improved YOLOv8n-seg segmentation
model

YOLOv8n-seg, as the lightest segmentation model in the
YOLOVS series, offers fast inference speed and high detection
accuracy. However, in practical orchard environments, the
segmentation of citrus fruits and stems still faces numerous
challenges. The small size of stems, their color similarity to the
background, frequent occlusions, and varying lighting conditions all
increase the difficulty of accurate target segmentation. To address
these issues, this study proposes targeted structural improvements

TABLE 1 Distribution of citrus image datasets.

Number of = Number of Number of
images/ citrus fruits/  citrus stems/
pieces pieces pieces

Training set 3200 5330 ‘ 4645

Verification set | 400 650 ‘ 550

Test set 400 655 ‘ 560

Total 4000 6635 ‘ 5755
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to the YOLOv8n-seg model based on the specific perception
requirements of citrus harvesting tasks, aiming to enhance the
model’s ability to segment critical regions. First, the GhostConv
module is introduced to replace the original standard convolution,
reducing the number of model parameters and achieving a
lightweight network structure suitable for resource-constrained
agricultural scenarios. Second, the CBAM attention mechanism is
embedded into the backbone to strengthen the model’s
responsiveness to key features such as stems, thereby improving
segmentation accuracy under complex backgrounds or partial
occlusion conditions. Finally, a small-object detection layer is
added to enhance the model’s multi-scale perception capability,
further improving the detection of small stem targets and thereby
increasing the completeness and robustness of picking point
localization. The improved YOLOv8n-seg network architecture is
illustrated in Figure 3.

(1) Lightweight network reconstruction.

Traditional convolution operations typically stack multiple
convolutional kernels and apply them to all channels of the input
feature map. While this approach allows for the extraction of rich
image features, it results in slow computation and a large number of
parameters, which limits the deployment efficiency of models on
resource-constrained devices. To alleviate this burden, previous
studies have proposed lightweight convolutional networks such as
ShuffleNet and MobileNet by optimizing convolutional structures
for more efficient computation (Howard et al., 2017; Zhang et al,,
2017). However, traditional convolution operations still consume
significant memory resources. To address this issue, the present
study introduces the GhostConv module (Han et al., 2020) as a
replacement for standard convolution operations, aiming to
improve feature representation efficiency and reduce the overall
complexity of the network.

As shown in Figure 4, the GhostConv module mainly consists of
three main steps. First, some feature maps are generated using
standard convolution operations. Then, a series of linear
transformations are applied to these feature maps to produce
additional feature maps. Finally, both sets of feature maps are
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FIGURE 3

Architecture of the improved YOLOv8n-seg model.

concatenated to form the complete output. This structure effectively
reduces the computational cost associated with learning non-critical
image features, thereby improving the feature representation
efficiency of the network while maintaining model accuracy and
reducing parameter count.

(2) Incorporation of attention mechanism.

In the complex environment of orchards, factors such as
varying lighting conditions, occlusion by branches and leaves, and

unstructured backgrounds introduce significant interference,
resulting in a large amount of irrelevant information in the
images. These challenges severely affect the model’s ability to
accurately recognize target objects. Attention mechanisms, which
assign adaptive weights to feature maps, enable the model to
dynamically select and enhance key information. This can
effectively improve the model’s discriminative capacity under
complex background conditions. Therefore, in this study, the

FIGURE 4
Structure of the GhostConv module.

Frontiers in Plant Science

Identity

05 frontiersin.org


https://doi.org/10.3389/fpls.2025.1655093
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Li et al.

CBAM (Woo et al., 2018) is integrated into the backbone of the
YOLOV8n-seg model to enhance the network’s ability to represent
target regions. The CBAM module is composed of a channel
attention module (CAM) followed by a spatial attention module
(SAM). CAM captures the importance of different channels by
applying both global average pooling and max pooling,
emphasizing features related to fruits and stems. SAM models the
spatial attention distribution using the feature map compressed
along the channel dimension, improving the model’s response to
the edges of small targets under complex backgrounds. While
maintaining a lightweight architecture, the CBAM module
enhances the network’s perception of target regions. Figure 5
shows the structural diagram of the CBAM module. Given an
input feature map FER“™*Y, CBAM sequentially derives the
CAM map McER! and the SAM map MER™™>W, The
overall process is as follows:

F'=Mq(F)®F

F = MS(F/)®FI

Here, ® denotes element-wise multiplication. F’ represents the
intermediate feature map after channel attention adjustment, and
F” is the final enhanced output feature map.

(3) Introduction of small object detection layer.

To enhance the model’s ability to detect and segment small-
scale targets such as citrus stems, this study introduces an additional
shallow detection path on top of the original three-scale
segmentation structure (P3, P4, P5) of YOLOv8n-seg. This new
path constructs a fourth output branch by incorporating
upsampling and feature fusion operations on shallow feature
maps, aiming to compensate for the original segmentation head’s
limited perception of small targets. Specifically, this path leverages
the rich spatial structure information in low-level feature maps and
enhances it by fusing semantic features from deeper layers, thereby
improving the model’s perception consistency across different
object scales. Considering that citrus stems are small, slender, and
prone to occlusion by branches and leaves, this architectural design
enhances the model’s representational capacity for such targets,

10.3389/fpls.2025.1655093

resulting in more stable segmentation performance under complex
backgrounds. Moreover, the added module maintains the
lightweight nature of the overall network, facilitating deployment
on resource-constrained intelligent agricultural machinery with
high practical applicability.

2.3 Citrus stem picking point localization
method

2.3.1 Target stem determination strategy

As described in Section 2.2.2, after the citrus fruit and stem are
segmented, it is necessary to further determine whether the detected
stem region is the target stem connected to the corresponding fruit
in order to accurately identify the picking position. However, as
shown in Figure 6, complex situations commonly occur in the tree
canopy, including multiple fruits on a single stem, fruit clusters,
occlusion by stems, and fruitless stems. These factors make it
difficult to directly establish the correspondence between fruits
and stems. To address this challenge, this study proposes a stem
matching method based on geometric constraints. First, the
segmented stem region is fitted with a straight line using the least
squares method to estimate its general geometric direction. Then,
the Euclidean distance from each fruit centroid to the fitted line is
calculated, and the stem with the shortest distance is selected as the
preliminary candidate. Finally, by comparing the maximum
distance from the centroid to the fruit contour with the minimum
distance from the centroid to the fitted stem line, the final target
stem is identified.

First, linear fitting is performed on the segmented stem regions
to extract their geometric directional features. The least squares
method is used to fit a straight line to the contour points of each
stem. Suppose there are N stems in the image, forming a
setB = {L,}¥,. Bach stem [; is represented by a fitted line with
slope a; and intercept b;. The equation of the fitted line for the i-
th stem is expressed as: y=ax+b;.

Next, to accurately obtain the centroid coordinates of the citrus
fruits, it is necessary to parse the label files generated by the

Input Feature F Attention

Module

Spatial
Attention

Refined Feature

FIGURE 5
Architecture of the CBAM.
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(A)

FIGURE 6

(B) ©

Relationship between citrus fruits and their stems. (A) One stem corresponds to two fruits; (B) fruits are clustered with stem occlusion; (C) no fruit

below the stem.

improved YOLOv8n-seg model and extract the fruit segmentation
masks. Since fruits may be clustered or touching, directly
calculating the centroid could lead to miscounting the number of
fruits. Within the detected citrus region R, which contains M pixels,
the centroid coordinates (x., y.) are calculated as follows:

1 1
Xe = ME(x,y)eRx’ Ye = ME(X,}/)ER)}

To establish the correspondence between fruits and stems, it is
necessary to calculate the distance from the fruit centroid (x,, y.) to
all fitted stem lines. The calculation formula is as follows:

— |aixc_yc +bi|
Vai+1

Obviously, the smaller the distance d;, the more likely the stem /;

d;

corresponds to the target stem of the fruit. Let the minimum
distance be denoted as d;. Then, the candidate target stem should
satisfy the following equation, and the corresponding stem I,;, is
selected as the candidate target stem:

Lin = arg min, ¢ pd;

Let the set of boundary points on the fruit’s maximum contour
be D = {(xj, yj)};\fl Then, the shortest distance from the centroid to
the boundary is defined as:

d = min o\ (e~ %) + (e - )

Since the boundary points of the fruit contour represent its
maximum physical extent, the maximum distance d from the fruit
centroid to the contour boundary can be used as a constraint for
matching. This ensures that the matched stem is structurally
connected to the corresponding fruit. The constraint helps
eliminate stems that are not clearly associated with any fruit,
thereby improving the accuracy of the matching process. If the
shortest distance d; from the fruit centroid to the fitted stem line
satisfies the condition d;< d, the stem is considered to be validly
matched with the fruit and identified as the target stem. Otherwise,
it is regarded as unmatched. A visual example of citrus fruit and
stem matching is shown in Figure 7. In Figure 7B, the green lines

Frontiers in Plant Science

(Stem 1 and Stem 2) represent the stem orientations estimated using
the least squares fitting method. The red lines indicate the shortest
distance from the centroid of each fruit to its corresponding stem
direction, while the cyan lines represent the maximum distance
from the fruit centroid to its contour boundary. Based on these
geometric constraints, the structural association between each fruit
and stem can be determined. The figure illustrates the matching
relationships, such as “Citrus 1 - Stem 1” and “Citrus 2 - Stem 2,”
providing an intuitive visualization of the fruit-to-stem
matching process.

2.3.2 Stem picking point localization

After matching the target stem using the geometric constraint
method, further localization of the picking point on the target stem
is necessary to achieve automated harvesting. First, the stem
segmentation mask output by the YOLOv8n-seg model is used to
extract the region of interest (ROI), which is then converted into a
corresponding binary image. This image is then processed using
morphological opening operations to eliminate falsely connected
regions and edge noise, thereby enhancing the main structure of the
stem. Next, an image thinning algorithm is applied to extract the
skeleton of the preprocessed image, allowing for simplification of
the stem’s structural information by identifying its central axis.
Based on this skeleton, the midpoint of the centerline is selected as
the picking point, and its spatial coordinates are obtained through
coordinate transformation. The flowchart of the picking point
localization strategy is shown in Figure 8.

3 Experimental results

3.1 Experimental environment and
parameter configuration

The model training and testing in this study were conducted
under the same environment. The host operating system was
Windows 11, with a Gen Intel(R) Core(TM) i7-12650H CPU @
2.3GHz, 32 GB RAM, and an NVIDIA GeForce RTX 4060 Laptop
GPU. The neural network was trained in an Anaconda 3 virtual
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(A)

FIGURE 7

(B)

Visualization of citrus fruit—stem matching: (A) Original image; (B) Matching result image

environment using the PyTorch 2.5.1 deep learning framework,
configured with Python 3.8, and supported by CUDA 11.8 and
cuDNN 9.1.0 for GPU parallel computing. Detailed training
parameters of the model are listed in Table 2.

3.2 Segmentation evaluation metrics

In this study, the model performance was evaluated using
several metrics, including Precision (P), Recall (R), mean Average
Precision at IoU threshold 0.5 (mAPO0.5), Fl-score, number of
parameters, and model size. Precision measures the accuracy of
the segmentation results, representing the proportion of correctly
predicted target pixels among all pixels predicted as target regions.
Recall indicates the completeness of the segmentation, referring to
the proportion of correctly identified target pixels among all actual

I )u >n ’I )I

(A) (B)

FIGURE 8

©)

target pixels. Average Precision is the mean of precision values at
different recall levels. The mAPO.5 represents the average AP across
all classes when the Intersection over Union (IoU) threshold is set to
0.5, and it is used to comprehensively assess the overall performance
of the model in citrus fruit and stem segmentation tasks. The F1-
score is the harmonic mean of precision and recall, reflecting the
model’s balanced performance in terms of accuracy and
completeness. The corresponding formulas are defined as follows:

. TP
Precision = ———
TP + FP
TP
Recall = ———
TPy AN

AP = / 1 P(R)dR
0

(D) (E)

Flowchart of the picking point localization strategy. (A) Stem region of interest; (B) Image binarization; (C) Morphological processing; (D) Skeleton

extraction; (E) Picking point localization
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TABLE 2 Model training parameters.

Parameter category Parameter setting

Initial learning rate 0.01
Number of iteration rounds 200
Batch size 8
Picture size 640x640

Optimizer Stochastic gradient descent(SGD)

Momentum parameter 0.937

1 N
AP = —SAP,
m N; t

2PR
P+R

F1=

10.3389/fpls.2025.1655093

In the above formula, TP is the count of correctly predicted
positives; FP is the count of negatives wrongly predicted as
positives; FN is the count of positives wrongly predicted as
negatives; N is the number of classes, which is 2 in this study.

3.3 Segmentation evaluation metrics

To visually demonstrate the performance of the model in citrus
image segmentation, three representative images were randomly
selected from the test set for comparative analysis, as shown in
Figure 9. It can be observed that the improved YOLOv8n-seg model
outperforms the original model in both object detection and
segmentation performance. Specifically, the enhanced model is
capable of identifying target regions missed by the original model,
resulting in more complete segmentation outputs. In addition, the
improved model exhibits generally higher confidence scores in the

(A)

FIGURE 9

(B)

©

Comparison of segmentation results. (A) Original image; (B) Segmentation result using the original YOLOv8n-seg model; (C) Segmentation result

using the improved YOLOv8n-seg model.
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segmentation results, demonstrating stronger discriminative
capability and localization accuracy, thereby enhancing the
reliability and practical applicability of the segmentation outcomes.

3.4 Ablation study

To verify the impact of each module on model performance,
ablation experiments were conducted on the small object detection
layer, the lightweight GhostConv module, and the CBAM attention
mechanism. The results are shown in Table 3. The baseline model
without any improvements achieved an overall precision of 93.08%.
The segmentation precision for fruits and stems was 96.25% and
89.91%, respectively. The recall reached 88.83%, mAP50 was
91.71%, and the F1-score was 90.81%.

After adding the small object detection layer, all performance
metrics improved. Precision, recall, mAP50, and F1-score increased
to 95.36%, 90.35%, 93.71%, and 92.64%, respectively. The stem
segmentation precision rose to 94.21%. Although the model size
slightly increased, the parameter count changed marginally, and the
performance gain was significant, indicating the module’s
effectiveness in enhancing small object segmentation.
Subsequently, replacing standard convolution with the
GhostConv module reduced the number of parameters from
3.24M to 2.93M and the model size from 6.53MB to 5.96MB,
achieving a more lightweight architecture. While maintaining high
accuracy, recall and F1-score improved slightly. The segmentation
precision for fruits and stems reached 95.99% and 96.27%,
respectively, demonstrating a good balance between performance
and efficiency. Finally, incorporating the CBAM attention
mechanism further enhanced the model. The precision, recall,
mAP50, and Fl-score increased to 96.56%, 90.91%, 94.43%, and
93.51%, respectively. Fruit segmentation precision remained at
96.04%, while stem segmentation precision increased to 97.12%.

TABLE 3 Results of the ablation study.

10.3389/fpls.2025.1655093

Despite a slight increase in parameter count and model size, the
model remained lightweight and highly deployable.

3.5 Comparative experiments of different
algorithms

To validate the performance of the improved YOLOv8n-seg
model in citrus fruit and stem segmentation tasks, we conducted
comparative experiments against YOLOv5n-seg, YOLOv6n-seg,
YOLOV9s-seg, and the original lightweight YOLOv8n-seg model.
The results are shown in Table 4.

The improved YOLOv8n-seg model demonstrated superior
performance across key metrics in the segmentation task. The
model outperformed the baseline models in terms of precision,
recall, mAPO0.5, and F1-score, reaching 96.56 percent, 90.91 percent,
94.43 percent, and 93.51 percent, respectively. Compared with the
original YOLOv8n-seg model, these metrics increased by 3.48
percent, 2.08 percent, 2.72 percent, and 2.70 percent, respectively.
Furthermore, in comparison with the YOLOv5n-seg, YOLOv6n-
seg, and YOLOV9s-seg models, the mAPO0.5 of the improved model
increased by 5.36 percent, 2.67 percent, and 1.02 percent,
respectively, indicating enhanced segmentation performance. In
terms of model complexity, the improved YOLOv8n-seg achieved
a parameter count of 2.94 million and a model size of 5.98
megabytes, maintaining a lightweight architecture while
significantly improving performance. Compared with YOLOv5n-
seg, the model showed a slight increase in parameter size but
delivered substantial performance gains. Compared with the more
complex YOLOV9s-seg, the improved model achieved higher
segmentation accuracy with reduced complexity. The model
achieves favorable segmentation performance for citrus fruits and
stems, while maintaining a smaller model size and higher
detection accuracy.

Small target detection Gh mAP50/ Parameters/ Model size/
layer ostConv % MB
— — — 93.08 | 96.25 89.91 88.83 | 91.71 90.81  3.26 645
v — — 9536 | 96,51 94.21 90.35 | 93.71 9264 324 6.53
v v — 96.13 | 95.99 96.27 90.06 | 93.45 9284 293 5.96
v v v 96.56 = 96.04 97.12 9091 = 94.43 9351 294 5.98
TABLE 4 Comparative results of different models.
Model P/% R/% mAP50/% F1/% Parameters/M  Model size/MB
YOLOV5n-seg 91.31 86.17 89.07 88.51 2.76 5.51
YOLOvé6n-seg 94.59 88.99 91.76 91.57 440 8.62
YOLOV9s-seg 94.01 90.67 93.41 9224 7.55 15.20
YOLOV8n-seg 93.08 88.83 91.71 90.81 326 6.45
Improve YOLOv8n-seg 96.56 90.91 94.43 93.51 2.94 5.98
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3.6 Citrus picking point localization
experiments

To evaluate the adaptability and accuracy of the citrus picking
point localization method in complex real-world orchard
environments, RGB images captured under natural orchard
conditions using a D435i depth camera were selected for
localization experiments. A total of 100 images were randomly
sampled from the test dataset, comprising 155 annotated picking
points and covering diverse conditions including varying lighting,
viewing angles, and backgrounds. Images were categorized into
three scenarios based on the visibility of fruits and stems: no
occlusion, mild occlusion, and moderate occlusion. Mild
occlusion indicates that both fruits and stems have over 60%
visible area, while moderate occlusion refers to visibility between
30% and 60%. The citrus picking point localization results under
different scenarios are presented in Table 5. The improved
YOLOvV8n-seg model correctly segmented 150 target stems, with
137 picking points accurately localized. Five localization errors were
caused by stem segmentation failures, and 13 failures were due to
stem occlusion, resulting in an average picking point detection rate
of 88.38%. Additionally, with GPU support, the system’s average
processing time from input image to completion of both
segmentation and picking point localization was 373.25
milliseconds, demonstrating strong real-time performance and
practical deployment potential.

Figure 10 illustrates representative examples of the picking
point localization results. As shown, the proposed algorithm
demonstrates high accuracy and stability across a variety of
complex backgrounds. It consistently maintains reliable
localization performance under diverse environmental conditions.
The algorithm effectively extracts the geometric structural features
between the citrus fruit and its stem, enabling accurate inference of
reasonable picking positions. These results highlight the method’s
strong robustness and adaptability to varying environments.
Experimental results indicate that the proposed approach exhibits
promising application potential in real orchard settings, with a
localization accuracy that meets the practical requirements for
citrus harvesting operations.

This study presents a visualization of typical failure cases in
picking point localization, as shown in Figure 11. The main causes
of localization failure are as follows: first, the stem is occluded by
leaves or fruits. Although the fruit is successfully segmented, the
connection between the fruit and its stem cannot be identified,
resulting in failure to infer the picking point, as illustrated in

10.3389/fpls.2025.1655093

Figure 11a. Second, inaccurate stem segmentation occurs; even if
the stem is visible, segmentation errors affect the accuracy of picking
point localization, as shown in Figure 11b. These observations
indicate that occlusion and segmentation accuracy are key factors
affecting robustness. Future research could incorporate multi-view
image fusion or RGB-D information synergistic modeling to
mitigate the impact of occlusion. Meanwhile, optimizing the
segmentation algorithm by adopting more robust network
architectures could enhance the model’s generalization ability in
complex orchard environments.

4 Discussion

In recent years, with the rapid advancement of smart
agriculture, automated fruit picking technology has gradually
become a crucial component of orchard mechanization. However,
in natural environments, citrus fruits and stems exhibit complex
morphology and small dimensions, and are often subject to
occlusion and background interference. These challenges result in
limited accuracy and robustness for traditional object detection and
segmentation methods, especially in stem recognition and precise
picking point localization. Therefore, there is an urgent need for
efficient and reliable solutions tailored to these issues.

This study focuses on the dwarf cultivar “Dafen No. 4” citrus
and investigates segmentation methods for fruits and stems, as well
as strategies for accurate picking point localization. A comparative
analysis of various YOLO-based models was conducted on a citrus
dataset, leading to the selection of an improved YOLOv8n-seg
segmentation model for citrus recognition tasks. In related
research, (Qi et al., 2024). enhanced the feature extraction
capability and detection robustness of YOLOv8-seg by modifying
the neck structure with BiFPN-based cross-layer connections and
weighted fusion, and by replacing the SPPF module with a Soft-
SPPF module. Similarly, (Si et al., 2024). improved stem
segmentation performance under occlusion by incorporating a
GCT module into the backbone and an EMA mechanism into the
C2f module for enhanced multi-scale feature fusion. In this study,
conventional convolution layers were replaced with GhostConv
structures to reduce model parameters and size. Additionally, a
CBAM and a small-object detection layer were introduced to
improve the model’s sensitivity to critical regions and compensate
for its limitations in fine-structure detection. Compared with other
YOLO models (as shown in Table 4), the improved YOLOv8n-seg
model achieved a mAP50 of 94.4%, effectively balancing detection

TABLE 5 Experimental results of citrus picking point localization under different scenarios.

Total Accurate picking Segmentation Stem occlusion Average localization
Scene type . e . ) .
targets point localization failures failures time (ms)
No obstruction 30 ‘ 32 29 1 2 328.33
Mild occlusion 30 ‘ 46 41 1 4 422.67
Moderate occlusion 40 ‘ 77 67 3 7 368.75
Total/Average 100 ‘ 155 137 5 13 373.25
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(A)

Visualization of citrus picking point localization in orchard environments. (A) Original images; (B) Model prediction results.

FIGURE 10

(B)

accuracy and model efficiency. Despite these improvements, the
model still faces challenges in complex scenarios such as severe
occlusion, low lighting conditions, and overlapping fruits. Further
work is required to enhance model robustness and address the
generalization limitations of the current dataset.

To improve the accuracy of citrus picking point localization, this
study builds upon the output of the improved YOLOv8n-seg model by
incorporating a stem matching strategy based on geometric constraints.

Frontiers in Plant Science

This method effectively reduces mismatches during stem recognition
by utilizing the relatively stable spatial relationship between the fruit
and its stem. Furthermore, the target stem region is structurally
simplified, and geometric features are extracted to derive the stem’s
central axis. The picking point is then determined based on this axis,
providing a structurally stable and low-error localization result. Unlike
traditional approaches that rely on the fruit center or rule-based
estimation, the proposed method aligns more closely with practical
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(A)

FIGURE 11

(B>

Examples of picking point localization failure in citrus. (A) Stem occlusion; (B) Stem segmentation error.

harvesting requirements and accurately reflects the spatial
characteristics of the stem. This localization strategy not only
improves the precision of picking point determination but also
provides a more reliable foundation for subsequent picking path
planning and robotic arm control.

5 Conclusion

In this study, a citrus fruit and stem segmentation method based
on an improved YOLOv8n-seg model was proposed. By integrating
geometric constraints for stem matching, accurate localization of
citrus picking points was achieved. The proposed method enhances
localization accuracy while maintaining model lightweight
characteristics, demonstrating strong robustness and practical
application potential. The main conclusions are as follows:

1. The YOLOv8n-seg model was improved by replacing the
original standard convolution layers with GhostConv

Frontiers in Plant Science

modules to achieve a more lightweight network structure.
In addition, the CBAM module and a small-object
detection layer were introduced to enhance feature
extraction for small targets. The improved model
achieved precision, recall, mAP50, and Fl-score of
96.56%, 90.91%, 94.43%, and 93.51%, respectively, for
citrus fruits and stems. Compared with the original
YOLOvV8n-seg model, these metrics increased by 3.48%,
2.08%, 2.72%, and 2.70%, respectively. Among lightweight
models including YOLOv5n-seg, YOLOv6n-seg,
YOLOV9s-seg, and YOLOv8n-seg, the proposed model
achieved the best segmentation performance.

. Based on the segmentation results, a stem matching

method guided by geometric constraints was proposed to
achieve accurate localization of citrus picking points. This
method establishes geometric relationships between fruits
and stems to accurately match the target stem regions. The
region of interest (ROI) corresponding to the matched stem
is then subjected to morphological processing to extract the
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stem skeleton, and the midpoint of the skeleton is
designated as the picking point. The approach was tested
on 100 citrus images with a resolution of 1920 x 1080
collected by the camera. The results show that the method
achieves an average picking point detection rate of 88.38%.
With GPU support, the system completes segmentation
and picking point localization in an average processing
time of 373.25 milliseconds, demonstrating high real-
time performance.

Overall, this study demonstrates promising progress in
improving the accuracy of citrus segmentation and the efficiency
of picking point localization. However, certain limitations remain in
practical applications. During the citrus ripening process, various
natural factors such as light conditions, nutrient distribution, and
ventilation contribute to significant differences in fruit maturity
even within the same orchard. These variations increase the
complexity of determining the appropriate time for harvesting.
Therefore, future research could focus on integrating citrus
maturity detection with picking point decision-making
algorithms. This approach would enable intelligent identification
of mature fruits, thereby enhancing the operational performance
and practical value of picking robots and supporting their large-
scale deployment in real orchard environments.
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