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Introduction: Agricultural development in coastal saline-alkali lands is
constrained by freshwater scarcity. Utilizing brackish water for irrigation
presents a viable pathway to alleviate this pressure. Honeysuckle (Lonicera
japonica Thunb.), a salt-tolerant medicinal plant, holds promise for the
ecological restoration of these areas. However, the regulatory mechanisms by
which brackish water irrigation affects ionic homeostasis and physiological traits
in honeysuckle remain elusive.

Methods: A field experiment was conducted in the coastal saline-alkali soils of the
Yellow River Delta. A randomized complete block design was employed with four
brackish water irrigation regimes: T1 (rainfed control), T2 (40 mm), T3 (80 mm), and
T4 (120 mm). The effects of these irrigation treatments on ion dynamics within the
soil-plant system and the salt tolerance of honeysuckle were analyzed.

Results: With increasing brackish water irrigation, (1) significantly reduced cation
accumulation in the topsoil. Compared to T1, the soil Na* content under T2, T3, and
T4 decreased by 33.69%, 33.94%, and 56.53% in 2019, and by 29.53%, 41.46%, and
59.31% in 2020, respectively. Similarly, the soil K* content decreased by 3.20%,
27.48%, and 38.78% in 2019, and by 33.58%, 46.77%, and 52.80% in 2020 under the
same treatments. (2) In honeysuckle, selective sodium partitioning and potassium
homeostasis enhanced the leaf K*/Na* ratio. The ratio in T4 was 165.45%, 89.90%,
and 48.89% higher than in T1, T2, and T3, respectively—a response driven by a
59.27% reduction in leaf Na+ and a 7.24% increase in leaf K* in T4. (3) alleviated salt-
induced oxidative stress in the leaves, reducing the malondialdehyde (MDA) content
from 228.46 nmoleg™® (T1) to 143.81 nmoleg™® (T4) and decreasing hydrogen
peroxide (H,O,) by 43.42%. Concurrently, the whole-plant biomass under T4
(829.56 g) exhibited an 8.8-fold increase versus T1 (94.05 g), while the total Na*
accumulation per plant increased from 351.66 mg (T1) to 1391.97 mg (T4).
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Discussion: The findings demonstrate that brackish water irrigation mitigates Na*
accumulation in the root zone through leaching. Honeysuckle maintains ionic
homeostasis by restricting Na™ uptake at the root level, facilitating selective Na™
translocation in stems, and regulating the K*/Na™ ratio in leaves. This coordinated
physiological strategy ultimately enhances biomass.

KEYWORDS

honeysuckle, brackish water irrigation, Yellow River Delta, coastal saline-alkali land,
ionic balance, sodium partitioning, Potassium homeostasis

1 Introduction

Approximately 800 million hectares of saline-alkali soils are
distributed globally across arid/semi-arid regions and coastal zones,
presenting dual challenges of freshwater scarcity and secondary
salinization (Montanarella et al., 2015; Baloch et al,, 2023). This
degradation process degrades soil structure, reduces agricultural
productivity, and impedes sustainable farming practices (Kamran
et al, 2021). Developing innovative scalable strategies for saline-
alkali land rehabilitation has therefore become a critical priority for
global food security. Current remediation approaches encompass
physical interventions, chemical amendments, and biological
restoration. However, these methods present persistent limitations,
including secondary contamination risks and inefficient long-term
efficacy (Daba, 2025). In contrast brackish water irrigation—
leveraging hydrological regulation—has emerged as a promising
alternative due to its “documented salt-salt-suppression”
mechanism. By modulating soil ion composition, brackish water
irrigation selectively reduces sodium accumulation in the root area
(Shehzad et al., 2020), while maintaining potassium, simultaneously,
avoiding excessive freshwater consumption and offering a sustainable
pathway for coastal saline-alkali soil remediation.

Brackish water irrigation ameliorates soil salinity through multiple
ionic redistribution mechanisms. Soil salts undergo transport via soil
moisture dynamics during irrigation cycles. When irrigated with
brackish water of moderate salinity, surface soil Na" and CI°
concentrations decline progressive with successive applications (Liu
et al, 2023). Through brackish water leaching processes, surface
sodium ions are mobilized and subsequently leached into deeper
soil layers (Zhang and Shen, 2022), thereby decreasing salt
accumulation in the root zone (Liu et al, 2016). This process not
only reduces Na" concentration but also optimizes soil profile ionic
distribution under precision management (Yin et al., 2022).
Compared with glycophytes, halophytes sequester excess Na®
through vacuolar compartmentalization, synthesize compatible
solutes, and restrict root Na® uptake (Karakas et al, 2021).
Compartmentalizing Na* provides a low-cost osmoticum that
mitigates salt-induced water deficit (Munns and Tester, 2008),
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establishing salt-tolerant plants as preferred agents for saline
soil restoration.

Honeysuckle (Lonicera japonica Thunb.) is a perennial vine highly
valued for its medicinal properties, which exhibits robust
environmental adaptability and considerable saline-alkali tolerance,
making it highly valuable for ecological restoration. It contributes to
soil structure amelioration, salt absorption, and soil-water
conservation. Research showed that honeysuckle maintains
intracellular ion homeostasis through selective ion uptake in roots
tissues (Yan et al, 2016), and mitigates oxidative stress by enhancing
the synthesis of phenolic compounds (Yan et al., 2017). The ability of
honeysuckle to sustain relatively normal physiological functions under
saline-alkaline stress highlights its strong capacity for homeostatic
regulation and physiological adaptation. Consequently, it serves as an
ideal model plant for investigating plant responses to saline-alkali soils.
Previous studies have predominantly focused on brackish water
irrigation for food crops such as rice and wheat, or salt-tolerant cash
crops like cotton and goji berries. However, research delving into the
ion response mechanisms of the medicinal plant honeysuckle (Lonicera
japonica Thunb.) remains limited. Furthermore, the association
between soil ions and plant ion homeostasis under brackish water
irrigation has not yet been systematically explored. Notably, medicinal
plants like honeysuckle (Lonicera japonica Thunb.) offer unique value
for saline-alkali remediation, combing exceptional edaphic adaptability
(tolerating drought and waterlogging) with high economic potential.
Under salt stress, plants can enhance Na* efflux through their root
systems, retain K* content, reduce Na™ accumulation in both roots and
shoots, and maintain ionic homeostasis and normal physiological
functions (Sun et al, 2009; Kong et al, 2012). This mitigates the
adverse effects of salt stress on plant growth and development. Under
salinity stress, honeysuckle stems exhibit limited Na* accumulation,
therefore, it cannot be used as a salt accumulator for desalination of
saline-alkali soils. However, under salt stress, honeysuckle can promote
root respiration, thereby facilitating calcite dissolution and increasing
soil Ca®* levels. This facilitates the displacement of Na* ions and
promotes their leaching into deeper soil layers, thus serving to
desalinate the rhizosphere environment (Yan et al., 2015a; Rahman
et al., 2021; Qadir et al,, 2001).
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Although existing research on brackish water irrigation
predominantly focuses on conventional crop systems, its synergistic
interactions with medicinal plants remain largely underexplored.
Previous studies have primarily focused on the effects of salt stress on
crop biomass, photosynthesis, and related parameters, lacking a delicate
characterization of ionic dynamics across root, stem, and leaf organs in
honeysuckle. This study bridges this critical knowledge gap through
rigorous field experiments conducted in China's Yellow River Delta
saline-alkali soils. We systematically quantify soil-root-shoot ion
dynamics under graded brackish water irrigation regimes and their
consequential impacts on foliar ionic composition and physiological
performance in honeysuckle (Lonicera japonica Thunb.). Our integrated
investigation elucidates honeysuckle’s desalination mechanisms to
pioneer sustainable brackish water utilization strategies, concurrently
alleviating freshwater scarcity in vulnerable coastal agroecosystems.
Ultimately, this phytoremediation approach delivers dual agro-
environmental benefits: reclaiming saline soils for enhanced
agricultural productivity and fostering environmental resilience,
thereby establishing synergistic ecological-economic sustainability.

2 Materials and methods
2.1 Experimental materials

In this study, the plant material consisted of two-year-old bare-
root seedlings of the tree-type honeysuckle (Lonicera japonica Thunb)
'‘Beihua No.1', supplied by Jiujianpeng Agricultural Technology Co.,
Ltd. in Shandong Province, China. Propagated by cuttings, this cultivar
reliably expresses key agronomic traits like an extended flowering
period and elevated bioactive compound content. Field trials were
conducted within a coastal saline-alkali soil demonstration area at the
Chinese Academy of Sciences Yellow River Delta Coastal Wetland
Ecological Experimental Station (37°45'50"N, 118°59'24"E), with
laboratory specimens maintained under controlled conditions. The
Yellow River Delta has a warm temperate continental monsoon
climate characterized by prevailing, southeasterly and northeasterly
winds. Between 1961 to 2020, mean annual precipitation reached
602.98 mm (range: 357.15-1279.24 mm), while regional evaporation
averaged about 1962 mm annually (He et al,, 2007). Seasonally the dry
period predominantly occurs from April to June, with 70% of
precipitation is concentrated during July to August (Figure 1).

Prior to establishing brackish water irrigation plots, the soil
underwent freshwater desalination pretreatment. Following rotary
tillage, the experimental plots were constructed, and each plot was
amended with cow dung as fertilizer (200 kghm™). Each 3 m x 4 m
rectangular plot was separated by 0.5 m buffer zones. In May 2019,
uniform, well-established seedlings were transplanted at 1 m x 1 m
spacing (12 plants plot). Post-transplantation management comprised
application of 40 kghm™ diammonium phosphate, freshwater
irrigation, and routine phytosanitary maintenance: organic fertilization
with cattle manure, manual weeding, and curative pesticide applications.

The experimental silt loam soil exhibited relatively uniform
horizontal distribution. Initial characterization confirmed salinity-
alkalinity parameters: electrical conductivity (EC) = 227 mS-cm™,
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sodium adsorption ratio (SAR) = 7.95, and pH = 7.75. Surface soil
demonstrated enrichment with Na® content substantially exceeding
K', Ca®", and Mg2+. The average content of Na*, K, Ca?* and Mngr in
0~80 cm soil is 1.18 mgg’, 0.04 mgg’, 0.19 mgg’, and 0.33 mgg’,
respectively. Irrigation water quality monitoring revealed brackish
characteristics: electrical conductivity (EC) values ranged between
4.17-519 mS-cm™ (2019) and 4.77-5.09 mS-cm™ (2020), while
salinity levels fluctuated from 2.31%o-2.48%o0 and 2.7%0-2.88%o in
respective years. The water was alkaline, with pH spanning 8.15-8.89 in
2019, whereas 2020 measurements showed a narrower range of 8.73-
8.89. The brackish water exhibited the following characteristics: total
nitrogen (TN) 0.83-3.42 mg-L’l, ammonium nitrogen (NH,"-N) 0.3-
2.4 mgL’, total phosphorus (TP) 0.03-0.28 mg-L"'. Major ion
concentrations were sodium (Na*) 1050 mgL™" on average (range:
608.9-1906.03 mg-L™"), potassium (K*) 14.07 mg-L™" on average (range:
12.54-15.30 mgL™"), calcium (Ca®*) 69.99 mgL™ on average
(range: 59.8-86.44 mgL™"), and magnesium (Mg’*) 2.68 mgL" on
average (range: 2.10-3.08 mg-L™").

2.2 Experimental design

The brackish water irrigation experiment commenced in late June
2019 with four treatments: T1 (control, rainfed without irrigation), T2
(40 mm), T3 (80 mm), and T4 (120 mm). Employing a randomized
complete block design, each treatment had four replicates. Uniform
irrigation schedules and field management practices, including weeding
and insecticide application were maintained across treatment.
Irrigation events occurred on 25 June, 29 July, and 27 September
2019, followed by 29 April and 20 June 2020.

2.3 Soil sampling and physicochemical
property determination

Sampling occurred five days after each irrigation event during
irrigated months, and during the middle or late part of the month
during non-irrigation months. Composite sample were formed
three S-pattern, points per plot. Soil cores were stratified into 0-
20 cm, 20-40 cm, 40-60 cm, and 60-80 cm depths. Air-dried,
sieved, soils underwent aqueous extraction 5:1 water-to-soil ratio.
Homogenized suspensions were vortexed (30 min), diluted 20-fold
and filtered 0.45 wm. The quantification of Na*, K*, Mg2+, and Ca®*
was performed using ion chromatography (Michalski, 2006).

2.4 Monitoring of growth parameters in
honeysuckle (Lonicera japonica Thunb.)

2.4.1 Biomass

Plant sampling occurred in October 2020 at the end of the
growing season. Two representative plants from each treatment
group were selected and excavated. Leaf, stems, and roots fresh
weights were recorded upon excavation before oven-drying at 60°C
to constant weight for dry biomass determination (Dabo et al,
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FIGURE 1

Variations in annual precipitation (2019-2020) & mean air temperature (2020) over the Yellow River Delta.

1987). Root system analysis employed a 30 x 30 cm quadrat
positioned around root crown. Soil-root samples were collected at
10 cm intervals from 0-40 cm depth. All roots were thoroughly
washed, oven-dried at 60°C to constant mass, and weighed.

2.4.2 Base diameter, plant height and leaf area
index

Stem basal diameter was measured at 5 cm above the soil
surface using a vernier caliper. Plant height was determined as the
distance from the base to the apical growing point using a
measuring tape. The leaf area index (LAI) of individual plants
was measured with an LP-80 LAI meter. These measurements were
taken monthly in mid- to late-month periods, aligning with the soil
sampling schedule. For each quadrat, all plants were measured for
basal diameter, plant height, and LAI, and the mean values were
used as representative quadrat-level data.

2.4.3 Determination of Na* and K* content

Na* and K* contents in roots, stems, and leaves of October 2020
honeysuckle samples were quantified. Dried plant tissue (0.1 g) was
powdered, transferred to sealed tubes, and boiled in 25 ml deionized
water at 100°C for 2 hours. Aqueous extracts were analyzed by
flame atomic absorption spectrophotometry (Song et al., 2011).

2.4.4 Determination of malondialdehyde and
hydrogen peroxide H,O, contents

Fresh leaf sample (0.2 g) was flash-frozen in liquid nitrogen and
mechanically homogenized in 4 mL 0.1% trichloroacetic acid (TCA).
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After centrifugation (12,000 x g for 10 min at 4°C) the supernatant
was collected for subsequent analyses. Lipid peroxidation was
assessed by quantifying malondialdehyde (MDA) content through
the thiobarbituric acid (TBA) reaction (Heath and Packer, 1968). For
hydrogen peroxide (H,O,) determination, 1 ml supernatant was
reacted with 1 ml 0.1 mM potassium phosphate buffer (pH 7.0)
and 2 ml of 1 mM potassium iodide (KI), with absorbance
measurement at 390 nm (Alexieva et al., 2001).

2.5 Data processing and analysis

2.5.1 Translocation factor of honeysuckle
Na" accumulation
= (leaf dry weight x leaf Na* concentration)
+ (stem dry weight x stem Na* concentration)

+ (root dry weight x root Na* concentration) (1)
TF1 = stem Na*concentration /root Na* concentration  (2)

TF2 = leaf Na'concentration/root Na* concentration  (3)

The unit of Na, accumulation is mgeplant ; (Equation 1). TF1
represents the Na+ translocation factor from roots to stem in
honeysuckle (Equation 2), TF2 represents the Na, translocation
factor from roots to leaves (Equation 3) (Yan et al., 2015b).
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2.5.2 Statistical analysis

Systematic statistical analyses evaluated brackish water
irrigation effects on soil-plant responses. Three core aspects
were assessed via one-way ANOVA and Duncan multiple
comparison method: (1) spatial cation redistribution in soil
matrices, (2) Na" partitioning across honeysuckle root-stem-
tissues, and (3) biomass allocation dynamics coupled with
oxidative stress biomarkers (MDA and H,O, concentrations).
Statistical analyses used SPSS (o = 0.05, 95% confidence
interval). A multi-way ANOVA was employed to examine the
effects of rainfall, treatment, year, and their interactions on the
concentrations of Na*, K*, Mg*", and Ca”" at four soil depths (20
cm, 40 cm, 60 cm, and 80 cm). The data for K, Mg*", and Ca®" at
20 cm, Ca®" at 40 cm, K" and Mg®" at 60 cm, and K* and Mg*" at
80 cm were subjected to logarithmic transformation. The NMDS
analysis incorporated key parameters including root Na™ content,
stem Na* content, leaf Na* content, root biomass, stem biomass,
leaf biomass, total biomass, MDA, and H,0,. The metaMDS
yielded a stress value of 0.009, PERMANOVA confirmed
significant treatment effects (F = 123.328, P = 0.001). Figures
were generated using in Origin and Bioinformatic Cloud.

3 Results

3.1 Brackish water irrigation effects on soil
cation dynamics

In the topsoil layer, the contents of the four cations showed a
significant decreasing trend with increasing volumes of brackish
water irrigation in both 2019 and 2020 (Figures 2). Treatment, year,
and their interaction all exerted highly significant effects on surface
soil ion concentrations (Supplementary Table S1). Compared to T1,
the Na* content in T2, T3, and T4 decreased by 33.69%, 33.94%,
and 56.53% in 2019, and by 29.53%, 41.46% and 59.31% in 2020,
respectively. The K" content under T2, T3, and T4 treatments
decreased by 3.20%, 27.48%, and 38.78% in 2019, and by 33.58%,
46.77% and 52.80% in 2020, respectively, compared to T1. The
contents of Mg®" and Ca*" also decreased over the two years as
irrigation volume increased, with significant differences observed
among the various treatments.

As soil depth increased, the contents of all four cations exhibited
a decreasing trend under the non-irrigation treatment. Under
irrigation treatments, Na* content increased to varying degrees
with depth in both 2019 and 2020, whereas K* content decreased
across all treatments. Mg®* content showed a decreasing trend in
the T2 treatment in 2020 but increased in the other treatments with
increasing soil depth. The variation in Ca** content was more
dynamic: overall, it displayed an increasing trend across treatments
in 2019, while in 2020, it increased under the T4 treatment but
decreased under T2 and T3 treatments. With increasing soil depth,
the influences of rainfall and year progressively decreased, and their
interactions became more complex or non-significant. In contrast,
the treatment effect on soil ions remained highly significant
(Supplementary Table S1).
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Under different brackish water irrigation volumes, the four cations
exhibited distinct seasonal and spatial variations in both 2019 and 2020
(Figures 3, 4). Rainfall, treatment, and year each independently exerted a
highly significant influence on the cations in the surface soil layer
(Supplementary Table S1). In the months of June, August, and October,
the cation contents decreased with increasing irrigation volume across
all soil layers. In both years, the cation contents in the topsoil were
relatively high in June. Compared to June, the contents of all cations
decreased significantly in August of both 2019 and 2020. By October,
the cation concentrations in the topsoil had increased relative to August.
Rainfall, year, and their interactions exerted highly significant effects on
the seasonal variations in ion concentrations (Supplementary Table S1).
Under the non-irrigation treatment, the ion content in October 2019
was higher than that in June, whereas in 2020, it was lower than in June.
Under irrigation treatments, in October 2019, the Na* content under
the T3 treatment was higher than in June, and the K" content under T2
and T3 treatments in October was also higher than in June, while the
other treatments remained lower than the June levels. In contrast, in
2020, the topsoil ion contents in October were generally lower than
those in June.

3.2 Brackish water irrigation effects on ion
accumulation in honeysuckle

Brackish water irrigation significantly altered Na" distribution
patterns in honeysuckle tissues, with root-to-leaf gradients showing
progressive depletion as irrigation volume increased (Figure 5). Root
Na® decreased incrementally across treatments, T1 accumulated
63.61%, 70.05%, and 75.80% higher than T2, T3, and T4, respectively.
Significant differences in Na" were observed between the T1 stem and
T2, T3, T4 (P < 0.05). Compared to T1, leaf Na" in T2, T3, and T4
decreased by 25.09%, 40.60%, and 59.27%, respectively (Figure 6).

Increasing brackish water irrigation progressively reduced Na*
content in honeysuckle. Conversely, while root K* declined with
irrigation intensity, stem and leaf K" levels exhibited progressive
increases. Under each treatment, stem K' remained persistently
lower than roots and leaves (Figure 6). Elevated irrigation amounts
proportionally increased tssues K*/Na* ratio (Figure 7). Root tissues
showed the high K'/Na" ratio under T4 (12.88). Leaf displayed
significant treatment differences, with K'/Na" ratio escalating with
irrigation levels. Specifically, T4 exhibited 165.45%, 89.90%, and
48.89% higher ratio than T1, T2, and T3, respectively.

3.3 Effects of brackish water irrigation on
MDA and H,O, in honeysuckle

With expanding use of brackish water irrigation, honeysuckle
leaves exhibited a gradual decrease in both MDA and H,O,
contents (Figure 8). T1 showed 10.28%, 14.90%, and 37.05%
higher MDA than T2, T3, and T4, with marked reduction across
treatments. T1 showed 15.69%, 28.14%, and 43.42% higher H,0,
than T2, T3, and T4, respectively. Significant differences were
observed between T1 and T3, T4, but not between T1 and T2.
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FIGURE 2
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FIGURE 3

Spatiotemporal distribution of soil cations under different brackish water irrigation treatments in 2019 (Mean + SE, n = 4). T1 (control, no irrigation); T2 (40
mm); T3 (80 mm); T4 (120 mm). Subpanels (a), (b), (c), and (d) represent the contents of Na*, K¥, Mg?*, and Ca>* in different months of 2019, respectively.

3.4 Brackish water irrigation effects on significant increases (Supplementary Figure S1), significant
biomass and Na™ translocation in differences were observed between treatment T4 and treatments
honeysuck[e T3, T2, T1. Biomass increased dependently with brackish water

irrigation intensity (Table 1). T4 achieved 829.560 g total biomass
As the irrigation of brackish water irrigation increased, the basal ~ 8.82,5.09, and 1.97-fold higher than T1, T2, and T3. Root, stem, and
diameter, plant height, and leaf area index of honeysuckle showed  leaf biomass peaked under T4 treatments. Root biomass in these
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Spatiotemporal distribution of soil cations under different brackish water irrigation treatments in 2020 (Mean + SE, n = 4). T1 (control, no irrigation);

T2 (40 mm); T3 (80 mm); T4 (120 mm). Subpanels (a), (b), (c), and (d) represent the contents of Na*

respectively.

treatments exceeded T1 by 33.62% (T2), 180.74% (T3) and 325.31%
(T4). Stem biomass in T2, T3, and T4 increased by 138.22%,
515.88%, and 1028.54%, respectively, compared with T1. T2, T3,
and T4 leaf biomass increased by 140.69%, 507.02%, and 918.94%,
respectively, compared to T1. T4 was significantly higher than the
other three groups, followed by T3 which showed significantly
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, K*, Mg?*, and Ca?* in different months of 2020,

higher values than T1 and T2 but remained significantly lower than
T4. No significant difference was observed between T1 and T2, both
of which were significantly lower than T3 and T4.

The overall Na*
significantly with rising irrigation volume (Table 1). Compared to
T1, T2, T3, and T4 showed increases of 39.40%, 199.33%, and

accumulation in honeysuckle increased
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Effects of different brackish water irrigation levels on Na* distribution in honeysuckle organs (Mean + SE, n = 4). T1 (control, no irrigation); T2 (40
mm); T3 (80 mm); T4 (120 mm). Uppercase letters indicate significant differences among different organs under the same treatment; lowercase
letters denote significant differences among different treatments for the same organ (P< 0.05).

296.39%, respectively. T4 exhibited the highest accumulation,
followed by T3. No significant difference was observed between
T1 and T2, and both were significantly lower than T3 and T4.
Significant differences were observed in the Na* transporter factor
(TF) of honeysuckle between non-irrigated and irrigated treatments
(Table 1). Root-to-stem Na* translocation factor (TF1) was
significantly depressed in T1 versus other treatments. T2, T3, and
T4 showed 175.9%, 179.3%, and 170.7% increases respectively
compared to T1 (P < 0.05). The root-to-leaf translocation factor
(TF2) increased by 104%, 96%, and 66.7% in T2, T3, and T4,
respectively, compared to T1. Under irrigation treatments, TF1 and
TF2 tended to decrease with increasing irrigation amounts,
although the differences were not significant.

3.5 NMDS and correlation analysis of
brackish water irrigation

The ordination revealed a clear separation among the four
treatments without overlap, indicating distinct differences. T1 and
T4 formed tight clusters along the NMDS2 axis, suggesting high
within-treatment homogeneity. In contrast, T2 and T3 exhibited a
more dispersed distribution, reflecting a certain degree of
heterogeneity among their replicates. Notably, T1 and T4 were
positioned farthest apart on NMDSI1, demonstrating the most
pronounced difference. The closer proximity of T2 and T3 on the
ordination plot indicates a smaller difference between
them (Figure 9).

Figure 10 depicts the correlations among surface soil cations
(Na*, K*, Mg*", Ca®"), the concentrations of Na* and K" in various
honeysuckle organs, organ biomass and total biomass, MDA and
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H,O, content, leaf area index, basal diameter, plant height, and Na™
accumulation. The Na® content in the surface soil showed a
significant positive correlation with the contents of K%, Mgzﬂ and
Ca®* (P < 0.01), indicating ionic co-variation. The K*/Na* ratio in
the organs was positively correlated with biomass (P < 0.01).
Biomass was significantly positively correlated with Na*
accumulation (P < 0.01). MDA content exhibited significant
positive correlations with surface soil Na*, K*, Mg**, and Ca**
(P < 0.01). The leaf K'/Na"* ratio showed significant positive
correlations with both the leaf area index and Na* accumulation.
The K* content in the stems showed a highly significant negative
correlation (P < 0.01) with the Na™ content in all honeysuckle
organs. Furthermore, the K*/Na" ratio across all organs was
negatively correlated with both the surface soil cation (Na*, K7,
Mg**, Ca®") content (P < 0.01) and MDA (P < 0.01).

4 Discussion

4.1 Effects of brackish water irrigation on
ionic homeostasis in soil and honeysuckle
plants

The variations in soil ion content observed in 2019 and 2020
demonstrate that brackish water irrigation significantly reduced ion
levels in the surface soil, achieving effective leaching of salts in both
years (Figure 2). Substantial seasonal variations occurred,
characterized by salt accumulation in spring, desalination in
summer, and slight salt accumulation in autumn. This dynamic
process was strongly governed by rainfall, year, and their
interaction. Existing studies indicate that increasing brackish
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Effects of different brackish water irrigation amounts on Na* and K* contents in honeysuckle (Mean + SE, n = 4). T1 (control, no irrigation); T2 (40
mm); T3 (80 mm); T4 (120 mm). Different letters indicate significant differences between treatments (P < 0.05).

water irrigation volume facilitates downward migration of peak salt
accumulation within the soil profile (Zhang and Shen, 2022; Wei
et al, 2019; Lou et al, 2025). Irrigation with brackish water
increased moisture in soil macropores, promoting soil solution
flow and leaching topsoil cations downward (Wang et al., 2019;
Gongalves et al., 2010). Soil Na* exhibits relatively weak adsorption
forces on soil particle surfaces, rendering it highly leachable and
prone to downward migration (Chen et al,, 2022a; Libutti et al,
2019). In surface soil layer, Na" content showed significant positive
correlations with K*, Ca®", and Mg** (Figure 10). Brackish water
typically contains Ca** and Mg”*, which compete with Na* for
adsorption sites on soil colloid (FAO and AWC, 2023). Due to their
higher valence, Ca®" and Mg*" exhibit stronger colloidal adsorption
capacity (Zhang and Norton, 2002), gradually displacing adsorbed
Na® and K" ions into soil solution. Subsequent irrigation leaching
facilitates Na* and K" removal, promoting their release
(Abdelghany et al., 2022; Xue et al,, 2022). Meanwhile, Mg** and
Ca®" undergo continuous adsorption-desorption equilibrium on
colloidal surfaces. This complex interplay can induce simultaneous
variations in multiple cations, manifesting as positive correlation (Li
et al.,, 2019; Jin et al,, 2022). The treatment and its interaction with
year exerted significant effects on the concentrations of multiple
ions, providing statistical support for the impact of annual
irrigation practices on the adsorption-displacement-leaching
mechanism, thereby collectively modulating the coordinated
variations of multiple cations.

Soil ionic changes directly influenced plant ion uptake. Brackish
water irrigation significantly reduced Na® accumulation in
honeysuckle roots stem, and leaves (Figure 6). While previous
studies reported increased tissue Na™ with higher brackish water
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salinity or irrigation input (Sedaghathoor and Abbasnia Zare, 2019;
Jin et al., 2022; Munns and Tester, 2008; Abd El Baki et al., 2025),
our study revealed that Na* in the organs of honeysuckle decreased
with increasing irrigation volume. Given consistent irrigation water
mineralization, increased water input raised topsoil moisture,
diluting Na®™ concentration. Concurrent downward leaching
reduced topsoil Na® content, thus decreasing plant uptake
(Berrueta et al., 2023; Valdez-Aguilar et al., 2009). In
honeysuckle, root K" decreased with irrigation volume, whereas
stem K" increased and leaf K* remained stable (Figure 6). The K*/
Na" ratio increased progressively, particularly in roots (Figure 7).
Elevated irrigation volume enhanced Na' influx into root cells,
neutralizing negative charges and triggering membrane
depolarization that induced K" efflux (Sedaghathoor and
Abbasnia Zare, 2019). Na* content across different organs of
honeysuckle showed a significant negative correlation with K"
content in the stems (Figure 10). Competition for identical
binding sites enables Na* exclusion from xylem via HKT
transporters, reducing stem Na® accumulation while facilitating
preferential K™ uptake (Munns and Tester, 2008; Horie et al., 2009;
Fu et al., 2025).

The key to plant salt tolerance lies in restricting Na" influx,
selectively absorbing K*, maintaining optimal K*/Na" ratio, and
thereby sustaining growth (Qu and Han, 2022; Pramila et al., 2019).
The K'/Na* ratio in all organs was significantly negatively
correlated (P < 0.01) with topsoil Na*, K*, Mg*", and Ca*"
content (Figure 10). Brackish water irrigation decreased topsoil
cation content and improved ion selectivity honeysuckle. This
enhancement promoted intracellular K™ homeostasis and Na™
exclusion, thereby increasing the plant's K*/Na" ratio (Liu et al,
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Indicators

Base diameter (mm)

T1

15.505 +0.18 ¢

T2

18.022 +0.31 b

T3

18.755 £0.29 b

10.3389/fpls.2025.1655009

TABLE 1 Effects of different brackish water irrigation levels on biomass and translocation factor in honeysuckle (mean + SE, n = 4).

T4

21.376 +0.44 a

Plant height (cm)

42.786 £1.25 ¢

49.331 £1.67 b

53.618 +1.72 b

61.402 +1.06 a

Leaf area index 0.776 +0.04 ¢ 1.103 +0.07 ¢ 1.618 +0.12 b 2.565 +0.16 a
124.863 +6.
Root biomass (g) 29.358 +2.16 Cc 39.228 +5.7 Cc 82.42 +7.20 Cb 96 D
a

Stem biomass (g)
Leaf biomass (g)

Total biomass (g)

Na* accumulation (mgplant'l)

TF1

41.573 +3.08 Bc

23.115 +1.62 Cc

94.045 +5.40 Ad

351.166 +20.85 ¢

0.58 +0.05 b

99.034 +5.06 Bc

47.313 +11.41 Cc

185.574 +£18.63 Ac

489.520 +34.31 ¢

1.60 £0.05 a

256.041 +31.88 Bb

140.105 +2.67 Cb

478.565 +35.53 Ab

1051.129 +69.78 b

1.62 £0.05 a

469.169 +21.98 Ba

235.528 +12.21 Ca

829.560 £32.55 Aa

1391.971 +41.19 a

1.57 £0.09 a

TF2

0.75 +0.06 b

1.53 £0.15 a

1.47 £0.11 a

1.25+0.13 a

Uppercase letters indicate significant differences among different organs under the same treatment, while lowercase letters denote significant differences among different treatments within the
same organ (P< 0.05) (Mean * SE, n = 4). These measurements were conducted during the final sampling at the end of the growing season.

2020). Under high salinity, plants maintain low cytosolic Na*
concentrations by limiting Na™ influx and enhancing efflux,

growth (Mohammad, 2011). This suggests a potential three-tiered
ion partitioning mechanism in honeysuckle. As irrigation increased,
preserving high K*/Na™ ratio essential for normal growth. Crucial ~ root Na* content decreased markedly, whereas K* content declined
roles in these processes are mediated by plasma membrane SOS1  only slightly. Stem Na™ levels remained relatively stable, but K*
Na'/H" antiporter, high-affinity K transporters, and tonoplast — accumulation rose significantly. Concurrently, leaf Na* content
exchangers Na*/H* exchangers (Zhu, 2001; Almeida et al,, 2017;
Blumwald and Poole, 1985). Although constitutive SOS1/NHX

activity in glycophytes is relatively low, NaCl stress induces

decreased, accompanied by an increase in K". These observations
reveal a coordinated three-tiered ion regulation strategy: selective
root absorption (restricting Na* uptake), stem-specific storage (Na*
translocation and sequestration), and leaf ion homeostasis
maintenance (strict K'/Na* regulation).

expression. This induction facilitates vacuolar Na®
compartmentalization, reducing cytosolic toxicity and promoting
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FIGURE 7
Effects of brackish water irrigation amounts on Potassium-Sodium Balance in honeysuckle plants (Mean + SE, n = 4). T1 (control, no irrigation); T2
(40 mm); T3 (80 mm); T4 (120 mm). Different letters indicate significant differences between treatments (P< 0.05).
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4.2 Effects of brackish water irrigation on
oxidative damage and biomass in
honeysuckle

Notably, MDA and H,0, levels progress declined with increasing
brackish water irrigation (Figure 8). As a reliable indicator of cellular
stress severity, MDA reflects membrane lipid peroxidation (Peng
et al, 2022). Contrary to studies showing elevated brackish water
mineralization exacerbating salt stress and increasing these oxidative
markers, our findings diverge from conventional patterns (Feng et al.,
2024; Fal et al,, 2022). The MDA content was significantly negatively
correlated (P < 0.01) with the K'/Na" ratio across all organs
(Figure 10), aligning with ionic homeostasis correlations observed
in salt-stressed cucumber (Coskun et al., 2016). The reduced
oxidative damage in honeysuckle is mediated by: (i) enhanced Na*
leaching in surface soil alleviating salt stress; and (ii) activated
antioxidant defense systems effectively scavenging excess ROS
mitigating oxidative damage (Coskun et al., 2016).

In this study, base diameter, plant height, leaf area index and
honeysuckle roots, stems, and leaf biomass increased significantly
with irrigation volume (Table 1). This could be attributed to
brackish water irrigation altering the ionic equilibrium between
soil and plant, increasing the K'/Na' ratio in plant tissues.
Enhanced ratio improved water and nutrient uptake, promoting
boosting biomass accumulation (Turcios et al., 2021; Zhang et al,
2017). K'/Na" ratio positively correlated with biomass Maintaining
elevated K'/Na" ratio stimulates key plant growth and metabolism
enzymes (Zhang et al.,, 2023), enhances photosynthetic efficiency
(Munns, 2002), facilitate protein synthesis (Chen et al., 2013), and
optimizes antioxidant system function (Chen et al., 2022b),
collectively promoting plant growth. Biomass showed a significant
positive correlation (P < 0.01) with the whole-plant Na*
accumulation in honeysuckle (Figure 10). With increased

10.3389/fpls.2025.1655009

irrigation, the plant likely compartmentalizes Na* in vacuoles to
maintain cytosolic K" homeostasis (Pan et al., 2016; Guo et al., 2022;
Turcios et al, 2021; Yan et al, 2017). Therefore, the increased
whole-plant Na* accumulation should not be simply interpreted as
"salt injury accumulation"; rather, it is a necessary byproduct of a
Na" inclusion strategy. This strategy allows honeysuckle to utilize
the water and nutrients from brackish water irrigation to enhance
biomass. The rise in biomass is thus a result of enhanced salt
tolerance, and the concurrent increase in Na® accumulation is an
indicator of successful salt handling and growth.TF1 and TEF2
increased significantly with brackish water irrigation compared to
the non-irrigation control, likely due to elevated ATP production
energizing root transporters (e.g., SOS1 Na™/H" antiporters) for
efficient Na* exclusion or shoot translocation (Keisham et al., 2018;
Karahara and Horie, 2021).

The conceptual diagram illustrates how precipitation and
brackish water irrigation collectively reduce soil surface salinity,
enhancing root development and aboveground biomass (Figure 11).
This combined leaching effect substantially reduces surface salt
accumulation, significantly decreasing Na' in honeysuckle while
maintaining ionic homeostasis. Consequently, elevated high K'/
Na' ratio reduces oxidative damage, and promotes plant growth.
Brackish water irrigation facilitates deep salt ions leaching through
the soil profile, causing substantial reductions in major cations (e.g.,
Na®, K) in surface soil and optimizing salt distribution.
Honeysuckle cultivation in the Yellow River Delta enhances
adaptation to local climatic and brackish irrigation environments,
maintaining high K*/Na™ ratio that reduces oxidative damage,
promotes biomass accumulation, and improve saline soil
restoration capacity. The synergistic mode alleviates agricultural
water scarcity while enhancing saline-alkali soils remediation and
productivity, establishing a pathway for coastal saline-alkali land
ecological restoration.
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Effects of different brackish water irrigation levels on MDA and H,O, contents in honeysuckle plants (Mean + SE, n = 4). T1 (control, no irrigation); T2
(40 mm); T3 (80 mm); T4 (120 mm). Different letters indicate significant differences between treatments (P < 0.05).
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4.3 Limitations and future research
directions

This field cultivation study examined ionic homeostasis in
coastal saline-alkali soils and basic growth responses of Lonicera
japonica to brackish water irrigation. While generating significant
findings, research limitations stem from field environmental
variability, warranting further investigation:

1. Despite being supported by data from two consecutive
growing seasons (2019-2020), the relatively short
duration of our study presents a limitation. Soil salinity
dynamics under brackish water irrigation are inherently
long-term. Although we observed a consistent positive
trend of leaching harmful ions from the topsoil, our two-
year dataset may not fully encompass long-term risks.
These include the potential accumulation of salts and
specific ions (e.g., sodium, chloride) in deeper soil layers
or groundwater, particularly over extended periods or
under more extreme climatic conditions such as
prolonged drought.

2. Effects on soil structure and microbial activity remain
unexamined. These factors critically influence plant
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development through soil structure governs water
retention and nutrient retention, and microbe-driven
nutrient transformations. Future work should investigate
how brackish irrigation alters coastal saline-alkali soil
structure-microbial community dynamics and their
interactive effects on plant growth and development.

3. Research should elucidate honeysuckle's physiological and
molecular adaptations to saline irrigation, particular
characterizing ion transport mechanisms, stress signaling
pathways, and gene regulatory networks under salt stress
conditions. Such insights will deepen mechanistic
understanding of honeysuckle's salinity adaptation and
inform salt-tolerant cultivar breeding.

Prolonged brackish water application may constrain system
architecture, alter soil physicochemical properties, and suppress
microbial functional activity (Arshad et al, 2022), ultimately
counteracting coastal saline soil remediation efforts. Long-term
use of brackish water for irrigation may saturate the buffering
capacity of deep soil, forming a salt reservoir above the
groundwater table (Yuan et al, 2019). Occasional heavy rainfall
or extensive freshwater leaching could then displace these salts
downward, eventually elevating groundwater salinity (Valenzuela
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Correlation analysis of soil ion content with growth and physiological indices of honeysuckle under different irrigation levels (Mean + SE, n =
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content; 19: H,O, content; 20: base diameter; 21: plant height; 22: leaf area index; 23: Na*™ accumulation.
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et al,, 2022). Additionally, salts leached into deeper layers may
return to the root zone through groundwater rise or capillary action,
posing a threat to crop growth (Li et al., 2024).

To mitigate these risks, we recommend: (1) Our study confirms
the short-term efficacy of brackish water irrigation in reducing topsoil
salinity, however, its long-term environmental impact remains
uncertain. Given this uncertainty, future investigations must
incorporate multi-annual monitoring. Such long-term data is critical
to determine whether the observed desalination is stable or masks
latent risks, such as the progressive accumulation of salts and specific
ions (e.g, sodium) in the subsoil or groundwater. Consequently,
sampling at key phenological stages (e.g., pre-planting, mid-growing,
and post-harvest) over consecutive years is indispensable for resolving
the dynamic interactions between irrigation, climate, and solute
transport. (2) regular monitoring of soil solution electrical
conductivity below 1 m depth; (3) alternating honeysuckle

Frontiers in Plant Science

cultivation with deeper-rooted halophytes (e.g., Salicornia europaea)
to transport excess salts back to the evaporation zone, maintaining
long-term salt balance (Shrivastava and Kumar, 2015; Ma et al,, 2013);
and (4) installing shallow and deep drainage ditches under site-specific
conditions to reduce salt accumulation.

5 Conclusion

Brackish water irrigation led to the leaching of Na™ and K* from
the topsoil, thereby reducing their content in the root zone. This
process alleviated salt accumulation near the roots and resulted in a
more favorable vertical salinity profile during the study period. It
effectively regulated ion homeostasis in honeysuckle which
significantly reduced Na® concentration, increased K"

concentration and the K'/Na* ratio, consequently enhanced
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Schematic diagram of ion distribution and transport mechanisms in soil and honeysuckle under brackish water irrigation.

biomass and total Na* accumulation, thereby alleviating oxidative
damage in the plant. These findings demonstrate honeysuckle's
moderate salt tolerance and significant potential for ecological
remediation in coastal saline-alkali soils. The study establishes a
scientific basis for optimizing regional water resource and
advancing sustainable agricultural in saline-alkali ecosystems.
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