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Plant height is a critical agronomic trait in spinach (Spinacia oleracea L.),

influencing both mechanical harvesting efficiency and overall yield. In this

study, plant height variation was evaluated in 307 United States Department of

Agriculture (USDA) germplasm accessions, which were phenotyped and

genotyped using 15,058 single-nucleotide polymorphisms (SNPs) obtained

from whole-genome resequencing. A genome-wide association study (GWAS)

was conducted using the General Linear Model (GLM), Mixed Linear Model

(MLM), Multiple Loci Mixed Model (MLMM), Fixed and Random Model

Circulating Probability Unification (FarmCPU), and Bayesian-information and

Linkage-disequilibrium Iteratively Nested Keyway (BLINK) models implemented

in the Genomic Association and Prediction Integrated Tool version 3 (GAPIT3).

Ten SNPs were significantly associated with plant height: (i) SOVchr1_10780051

(10,780,051 bp) on chromosome (chr) 1; (ii) SOVchr2_68062488 (68,062,488 bp)

on chr 2; (iii) SOVchr4_38323167 (38,323,167 bp), SOVchr4_188084317

(188,084,317 bp), and SOVchr4_188084338 (188,084,338 bp) on chr 4; (iv)

SOVchr5_70192260 (70,192,260 bp) and SOVchr5_105368320 (105,368,320

bp) on chr 5; and (v) SOVchr6_8139833 (8,139,833 bp), SOVchr6_90951127

(90,951,127 bp), and SOVchr6_91175684 (91,175,684 bp) on chr 6. Genomic

prediction (GP) models were applied to estimate genomic estimated breeding

values (GEBV) for plant height, achieving an r-value of 0.55 using GWAS-derived

SNP markers in cross-population prediction. The integration of GWAS and GP

provides insights into the genetic architecture of plant height in spinach and

supports marker-assisted breeding strategies to enhance crop management and

economic returns.
KEYWORDS

genome-wide association study (GWAS), genomic prediction (GP), plant height, single-
nucleotide polymorphism (SNP), Spinacia oleracea L., spinach, tallness
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Introduction

Spinach (Spinacia oleracea L.) is a highly nutritious leafy

vegetable, widely cultivated in the United States and globally (Shi

et al., 2016; Tang et al., 2015). Its increasing demand is driven by

consumer awareness of its rich nutritional profile, including

essential vitamins, minerals, antioxidants, and bioactive

compounds such as carotenoids and flavonoids (Frary et al., 2010;

Rashid et al., 2020). Among its key agronomic traits, plant height

plays a crucial role in spinach production and management (Jones

et al., 2019). Taller spinach plants are likely easier for harvesting

machinery to reach and cut cleanly, thereby reducing yield loss and

improving throughput. For leafy vegetables harvested using

horizontal or topper-style cutters, increased plant height can

result in less missed crop and better compatibility with

mechanical harvesting. Taller plants and a higher position of the

first primary branch have been shown to significantly improve

machine-harvest efficiency in green chile cultivars (Joukhadar et al.,

2018). In legumes, the trait ‘height to first pod’ (HFP) is critical, as

pods must be positioned above the cutterbar height to avoid harvest

loss. Improved HFP correlates with reduced seed loss during

mechanical harvesting (Kuzbakova et al., 2022). Height to first

pod: A review of genetic and breeding approaches to improve

combine harvesting in legume crops. Front Plant Sci. 13:948099.

doi: 10.3389/fpls.2022.948099. However, optimizing plant height

requires a balance, as taller plants must also resist lodging—a

condition where plants collapse under adverse weather, leading to

yield loss (Jones et al., 2019).

Plant height in spinach, like in other major crops such as rice

and maize, is a polygenic trait governed by multiple genetic factors

(Huang and Han, 2016). Traditional quantitative trait loci (QTL)

mapping approaches have been useful in identifying large-effect loci

but often fail to detect small-effect loci that collectively influence

complex traits (Yu and Buckler, 2006). This limitation underscores

the need for genome-wide approaches such as genome-wide

association studies (GWAS) and genomic prediction (GP), which

enable the identification of multiple loci contributing to plant height

and improve breeding efficiency through genome-wide

marker predictions.

The substantial phenotypic variation observed in spinach plant

height reflects its rich genetic diversity, making it an excellent

candidate for advanced genomic studies and breeding efforts

(Huang and Han, 2016; Yu and Buckler, 2006). GWAS has been

a powerful tool for dissecting complex traits by identifying

associations between single-nucleotide polymorphism (SNP) and

phenotypic variation. In spinach, GWAS has successfully identified

genetic loci controlling plant height, downy mildew resistance, and

leaf morphology (Cai et al., 2018). By leveraging high-density SNP

markers, GWAS facilitates the discovery of key genetic regions

associated with important traits, supporting marker-assisted

selection (MAS) in breeding programs. For instance, previous

studies have identified height-related SNPs on chromosomes 2

and 6, linked to increased plant tallness (Shi et al., 2016). The

high resolution of GWAS enables the detection of both major and

minor loci, enhancing genetic improvement strategies without
Frontiers in Plant Science 02
compromising other critical traits such as leaf texture, flavor, or

pest resistance (Jones et al., 2019). The integration of GWAS with

traditional breeding methods can significantly improve selection

efficiency (Korte and Farlow, 2013), supporting the development of

spinach varieties optimized for both agricultural productivity and

consumer preferences.

GS is an advanced breeding approach that utilizes genome-wide

markers to predict genetic potential before trait expression

(Goddard and Hayes, 2007). While GS has been successfully

implemented in maize, wheat, and rice to enhance yield, disease

resistance, and stress tolerance (Crossa et al., 2017), its application

in spinach remains limited (Bhattarai and Shi, 2021). Nevertheless,

studies in other crops highlight the potential of GS to accelerate

breeding cycles and improve cultivar development (Gaynor et al.,

2017). GS could be particularly valuable for optimizing plant height,

biomass, and leaf morphology by enabling early selection of superior

genotypes, reducing reliance on time-intensive field evaluations

(Heffner et al., 2009). Expanding the application of GS in spinach

breeding holds promise for improving agricultural efficiency and

developing high-performing cultivars suited to market demands. GP

as a GS parameter has been investigated in dozen of crops including

spinach (Shi et al., 2021, 2022). Genomic estimated breeding values

(GEBV) in GP is the key step in GS. Several approaches have been

proposed for GEBV such as Best Linear Unbiased Prediction

(BLUP) methods [(Genomic Best Linear Unbiased Prediction

(gBLUP), Ridge Regression Best Linear Unbiased Prediction (RR-

BLUP), Compressed Best Linear Unbiased Prediction (cBLUP), and

Super Best Linear Unbiased Prediction (sBLUP)] and Bayesian

methods (Bayes A (BA), Bayes B (BB), Bayes LASSO (BL), and

Bayesian Ridge Regression (BRR) (Bhattarai et al., 2022a, b; Shi

et al., 2021, 2022).

This study had two primary objectives: (1) to perform a GWAS

to identify SNP markers associated with plant height in spinach,

and (2) to implement GP models to assess the accuracy of these

markers in predicting plant height. We utilized a dataset of 15,058

high-quality SNPs obtained from whole-genome resequencing of

307 USDA-GRIN spinach accessions, forming the basis for GWAS

and GP analyses. Our findings contribute to a deeper understanding

of the genetic architecture of plant height in spinach and provide

valuable resources for breeding programs aimed at improving

mechanical harvesting efficiency and overall crop performance.
Materials and methods

Plant material

A total of 307 spinach accessions were obtained from the United

States Department of Agriculture (USDA) Germplasm Resources

Information Network (GRIN) spinach germplasm repository. These

accessions represented 30 countries, with the majority originating

from Turkey (n = 96), the United States (n = 52), Afghanistan (n =

21), North Macedonia (n = 18), China (n = 16), Iran (n = 13), and

Belgium (n = 11), collectively accounting for 74.9% of the total

collection. Phenotypic assessments for plant height were conducted,
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and whole-genome resequencing was performed to generate

genotypic data. Detailed information on these accessions is

provided in Supplementary Table S1.
Experimental design for plant height
measurement

Phenotypic data for plant height were collected from the 307

accessions at the USDA Agricultural Research Service (ARS) research

station in Salinas, CA (Chitwood et al., 2016). The experiment

utilized pasteurized sandy loam soil in a greenhouse setting. Each

accession was grown in plastic pots (10 × 10 × 10cm) filled with a 2:1

mixture of sand and soil (by volume). A randomized complete block

design (RCBD) with three replications was implemented, with 10

plants per accession. Plant height was measured 55 days after

planting as the distance from the soil surface to the highest leaf tip.

Descriptive statistics, including mean, range, standard deviation (SD),

and standard error (SE), were calculated using JMP Genomics v.17

(SAS Institute, Cary, NC). The trait distribution was visualized using

Genomic Association and Prediction Integrated Tool version 3

(GAPIT v.3), and the mean plant height per accession was used for

GWAS analysis.
DNA extraction and whole-genome
sequencing

Firstly, genomic DNA was extracted from freshly harvested

leaves pooled from 5 to 10 plants per accession using the CTAB

(hexadecyltrimethyl ammonium bromide) method. High-quality

DNA was fragmented into 350-bp segments using a Covaris

Ultrasonic Processor, and sequencing libraries were prepared

following a standardized protocol (Van Dijk et al., 2014). Whole-

genome resequencing (WGR) was performed using paired-end

sequencing on the Illumina NovaSeq platform at approximately

10× genome coverage per sample, generating about 10 gigabases of

sequence data per genotype. Sequencing was conducted by Beijing

Genomics Institute (BGI) (https://www.bgi.com/). Approximately 6

million raw SNPs across 470 spinach accessions were initially

identified by aligning the short reads to the Sp75 reference

genome; this data was provided by BGI.

Secondly, these reads were re-aligned to the Monoe-Viroflay

reference genome using the Texas A&M Bioinformatics Center

pipeline. The Monoe-Viroflay spinach genome (Collins et al.,

2019), obtained from SpinachBase (http://www.spinachbase.org/),

was used as the reference genome. Alignment was performed

using the Burrows-Wheeler Aligner (BWA v0.7.8-r455) (Li and

Durbin, 2009). BAM (Binary Alignment/Map) files were sorted, and

duplicate reads were removed using SAMtools (v0.1.19-44428cd)

(Li et al., 2009). BAM files from the same sample were merged using

the Picard toolkit (v1.111) (https://broadinstitute.github.io/

picard/). SNP and InDel (insertion and deletion variant) calling

was conducted using GATK (Genome Analysis Toolkit) (v3.5)
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(McKenna et al., 2010), yielding half a million raw SNPs from

470 spinach accessions provided by the Texas A&M

Bioinformatics Center.

Thirdly, for the subset of 307 accessions used in this study,

stringent filtering criteria were applied and keeping those SNPs

with: minor allele frequency (MAF) > 5%, missing data rate < 7%,

and heterozygosity rate < 15%. After filtering, 15,058 high-quality

SNPs remained, distributed across the six spinach chromosomes

(Figure 1). The SNP dataset has been published in the FigShare

database and is accessible via the following link: https://doi.org/

10.6084/m9.figshare.28603517.v1.
Principal component analysis and genetic
diversity

A model-based clustering method implemented in the

STRUCTURE 2.3.4 program (Pritchard et al., 2000) was

employed to infer the population structure of 307 spinach

accessions based on 6,000 SNPs, with 1,000 SNPs randomly

selected from each of the six spinach chromosomes. The burn-in

period was set at 20,000 iterations, followed by 10,000 Markov

Chain Monte Carlo iterations, using an admixture model with

correlated allele frequencies independent for each run (Lv et al.,

2012). Ten runs were performed for each simulated value of K,

ranging from 1 to 10. The statistical value DK was calculated for

each simulated K using the method of Evanno et al. (2005) to

determine the optimal K representing the major population

structure. Each spinach accession was subsequently assigned to a

cluster (Q) based on the probability of membership estimated by the

software, with a threshold probability of 0.50 or greater for

assignment. Finally, a bar plot with “Sort by Q” was generated to

visualize the population structure among spinach accessions at the

optimal K.

Genetic diversity and principal component analysis (PCA) were

also conducted using the GAPIT v. 3 (Wang and Zhang, 2021;

https://zzlab.net/GAPIT/index.html). PCA was performed using

eigenvalue decomposition with component numbers ranging from

2 to 10. A neighbor-joining phylogenetic tree was constructed to

assess genetic relationships among the accessions.
Genome-wide association study

GWAS was conducted using five statistical models

implemented in GAPIT 3: the generalized linear model (GLM),

mixed linear model (MLM), multiple loci mixed model (MLMM),

Fixed and Random Model Circulating Probability Unification

(FarmCPU) (Liu et al., 2016), and the Bayesian-information and

Linkage-disequilibrium Iteratively Nested Keyway (BLINK)

(Huang et al., 2019) model (Wang and Zhang, 2021; https://

zzlab.net/GAPIT/index.html). Association significance was

determined using a Bonferroni-corrected threshold (0.05/total

SNPs), corresponding to a logarithm of odds (LOD) score of 5.48.
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Candidate gene identification

In this study, linkage disequilibrium (LD) with genetic distance

(cM) between SNP loci was evaluated using Haploview (Barrett

et al., 2005). Pairwise LD between SNPs was calculated as the

squared allele-frequency correlation (r²) using TASSEL 5 (Bradbury

et al., 2007). LD decay rates were estimated using 15,058 high-

quality SNP markers across 307 accessions in two ways: (1) for each

of the six chromosomes, as previously described (Zhou et al., 2015),

and (2) for specific regions surrounding associated SNP markers,

calculated by plotting r² values against physical distance (bp). The

LD decay rate of the population was defined as the chromosomal

distance at which the average r² declined to half of its maximum

value (Kim et al., 2007; Lam et al., 2010).

Candidate genes near significant SNPs were identified based on

the LD decay rate at each GWAS-identified SNP marker. When the

LD decay rate could not be reliably estimated for a marker region,

the chromosome-specific LD decay was used instead. LD heatmaps

for candidate genes were generated using Haploview (Barrett et al.,

2005) with Monoe-Viroflay genome annotations. Genome

annotation data were accessed through SpinachBase (http://

www.spinachbase.org/) or via FTP (http://spinachbase.org/ftp/

genome/Monoe-Viroflay/).
Genomic prediction for plant height

GP was performed using several models implemented in R

packages. RR-BLUP was conducted using the ‘rrBLUP’ package
Frontiers in Plant Science 04
(Endelman, 2011). Four Bayesian models—BA, BB, BL, and BRR—

were implemented using the ‘BGLR’ package (Barili et al., 2018;

Legarra et al., 2011). Additionally, Random Forest (RF) was applied

using the ‘randomForest’ package (Ogutu et al., 2011), and Support

Vector Machines (SVM) were implemented using the ‘kernlab’

package (Maenhout et al., 2007). These approaches have been

previously utilized in GS studies (Ravelombola et al., 2019, 2020,

2021; Shi et al., 2021, 2022).
Genomic prediction using different SNP
sets

We examined ten randomly selected subsets of SNPs, ranging

from 6 to 15,058 SNPs, designated as r6, r50, r100, r200, r500,

r1000, r2000, r5000, r10000, and all.15,058SNPs. Additionally, four

GWAS-derived SNP sets (m10: 10 markers; m2: 2 markers;

m6_2pca: 6 markers with PCA=2; m6_3pca: 6 markers with

PCA=3) were derived from a GWAS conducted on a panel of 307

accessions using five models—GLM, MLM, MLMM, FarmCPU,

and BLINK—implemented in GAPIT3. GEBVs were calculated for

each of the ten SNP sets (ten randomly selected SNP sets plus four

GWAS derived marker sets) across all seven GP models (BA, BB,

BL, BRR, rrBLUP, RF, and SVM). Each combination underwent 100

iterations, and the mean correlation coefficients (r-values) along

with standard errors (SE) were computed to assess model

performance. Boxplots illustrating the performance of GP models

across different SNP sets were generated using the ‘ggplot2’ package

in R (Wickham, 2016).
FIGURE 1

Distribution of the 15,058 high-quality SNPs within 1-Mb window sizes across six spinach chromosomes.
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GP by GWAS-derived SNP markers

GWAS-derived SNP markers from the whole
panel and cross-population prediction

First, GWAS was conducted using five models (GLM, MLM,

MLMM, FarmCPU, and BLINK), and the associated SNP markers

were identified from these models in the entire GWAS panel (307

spinach accessions). Secondly, GP was performed using the GWAS-

derived SNP markers to perform cross-population prediction

analysis with five-fold cross-validation (training:validation = 4:1)

using seven genomic prediction (GP) models: BA, BB, BL, BRR,

rrBLUP, RF, and SVM.

GWAS-derived SNP markers from 80% of the
whole panel

Both cross- and across-population predictions were performed

for tallness using GWAS-derived associated SNP markers. The entire

panel (307 accessions) was divided into two subsets: 80% as the

training population (TP) (246 accessions) and 20% as the validation

population (VP) (61 accessions). GWAS was performed on the 246

accessions using the GLM, MLM, FarmCPU, and BLINK models in

GAPIT3. Associated SNPs with a LOD score (-log(P)) > 4.0 were

selected from the four models and used to run the GP model 100

times, calculating GEBVs and estimating the average r-value each

time. This process was repeated five times, and the mean r-value

across the five replications was obtained as the prediction accuracy

(average r-value). Three GP types were tested: ‘Across-prediction’,

‘Cross-prediction’, and ‘Cross_self.prediction’.
Fron
i. Across_prediction uses GWAS-derived SNP markers from

the training set (80% of the population, 246 accessions) to

predict the validation set (20% – 61 accessions).

ii. Cross_prediction uses all associated SNP markers from the

five repeats to predict the entire population (307 accessions).
tiers in Plant Science 05
iii. Cross_self.prediction uses GWAS-derived SNPmarkers from

the training set (80% of the population) to predict itself.
Additionally, GP was performed with five GP models (RF, BA,

BB, BL, and BRR), and GEBVs were calculated for all models. Each

replication in each model was run 100 times, and mean r-values

along with SE were computed. Boxplots illustrating GP model

performance across SNP sets were generated using ggplot2 in R.

GWAS-derived SNP markers using GAGBLUP in
GAPIT3

GP was conducted using the GAGBLUP (BLINK) model in

GAPIT3 on the entire population of 307 accessions, referred to as

the reference prediction (cross_self.prediction), where the 307

accessions were used as both the training population (TP) and

validation population (VP). Additionally, following the same

approach as described above, the entire panel (307 accessions)

was divided into two subsets: 80% as the TP (246 accessions) and

20% as the VP (61 accessions). GWAS was performed using the

BLINK model only in GAPIT3, and the associated SNPs with a

LOD score (-log(P)) > 5.48 were selected to run the GAGBLUP

model in GAPIT3. Both across- and cross-population predictions

were performed. The across-population prediction (Across-

prediction) was performed using the associated SNP markers

from the TP (246 accessions) to predict the GEBVs in the VP (61

accessions). Cross-population prediction was performed using the

associated SNP markers from the TP (246 accessions) to predict the

GEBVs in the TP itself (246 accessions).
Results

Phenotyping of tallness

Phenotypic data for plant height (tallness) across the 307

spinach accessions (Supplementary Table S1) exhibited a near-

normal distribution (Figure 2), with heights ranging from 4.5 to

16.2cm. The shortest accession, PI 303138, measured 4.5cm, while

the tallest, PI 177557, reached 16.2cm, approximately 11.7cm taller

(Supplementary Figures S1A–C). The mean plant height was 8.8cm

“standard deviation (SD) = 1.9”, with a coefficient of variation of

21.3%. The observed variation in plant height demonstrates the

suitability of this panel for GWAS.

Seven accessions—PI 445784, PI 192945, PI 664497, PI 478393,

PI 177558, and PI 433209—were identified as exceptionally tall,

each exceeding 13cm in height (Supplementary Figures S1E–G).

These accessions represent valuable genetic resources for breeding

programs aimed at enhancing plant height in spinach.
PCA and phylogenetic analysis

Population structure analysis of the 307 spinach accessions

revealed two major clusters (Q1 and Q2) based on GAPIT3 and

STRUCTURE 2.3.4. A peak in Delta K values from STRUCTURE
FIGURE 2

Distribution of plant tallness in the 307 spinach accessions.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1654904
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Alatawi et al. 10.3389/fpls.2025.1654904
(Supplementary Figure S2a-A) confirmed at least two distinct

genetic groups. GAPIT3 results are shown in a 3D PCA plot

(Figure 3A), PCA eigenvalue plot (Figure 3B), and phylogenetic

trees (Figures 3C, D). A secondary peak in Delta K (Supplementary

Figure S2a-B) suggested three subpopulations (Q1, Q2, Q3, plus a

mixed group). The corresponding PCA and phylogenetic results are

presented in Supplementary Figures S2b (A–D), while detailed two-

ring phylogenetic trees for all accessions are shown in

Supplementary Figures S2a (C, D). Both two-subpopulation

(Q=2) and three-subpopulation (Q=3) models were therefore

applied in GWAS to identify SNPs associated with tallness.
Association study

In this study, association analyses for plant height (tallness)

were performed using five models—GLM, MLM, MLMM,

FarmCPU, and BLINK—in GAPIT3 with PCA set to 2 and 3. QQ

plots comparing observed and expected LOD (−log10(P-value))

distributions showed significant deviations, which were consistent

across multiple models in the 307 spinach accessions (Figure 4

right, Supplementary Figure S3 right). These results indicate the
Frontiers in Plant Science 06
presence of SNP associations with plant height in the

analyzed population.

The association analysis results for the tallness trait were

visualized in Manhattan plots (Figure 4, left; Supplementary

Figure S3, left) using five models implemented in GAPIT3: GLM,

MLM, MLMM, FarmCPU, and BLINK. In the plots, each SNP is

represented as a point, with chromosomal positions shown on the

x-axis and –log10(P-value) on the y-axis. SNPs with LOD values

greater than the significance threshold of 5.48 were considered

significantly associated with the tallness trait. Across the five

models, ten SNPs were identified as significantly associated with

the tallness trait, each exceeding the threshold in at least one model

under both runs with PCA=2 and PCA=3 (Table 1).

Notably, SOVchr6_8139833 consistently exhibited a LOD value

greater than 5.48 across three models (BLINK, GLM, and MLMM)

under both PCA=2 and PCA=3. It also showed LOD values of 6.92

(MLM, PCA=2) and 5.47 (MLM, PCA=3), along with high PVE

values of up to 26.91% in MLMM (PCA=2) and 25.42% in GLM

(PCA=3), indicating a strong and stable association. In contrast,

lower LOD values of 3.43 (PCA=3) and 2.73 (PCA=2) were observed

in the FarmCPU model (Table 1). Similarly, SOVchr4_188084338

was strongly associated in the BLINK model (LOD=5.74), while the
FIGURE 3

Population genetic diversity analysis in the association panel consisted of 307 USDA spinach germplasm accessions. (A) 3D graphical plot of the
principal component analysis (PCA), (B) PCA.eigenValue plot drawn by GAPIT 3, and Phylogenetic trees [(C) fan and (D) unrooted] drawn by
neighbor-joining method in two sub-populations.
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other models reported moderate LOD values (> 4.85) when PCA=3.

This SNP also exceeded the significance threshold in MLMM

(LOD=5.71) and MLM (LOD=5.85), but showed lower values in

GLM (LOD=4.94) and very weak signals in BLINK and FarmCPU (<

0.5) (Table 1), suggesting an association with tallness that is less

consistent across models. Additional significant associations

were detected for SOVchr4_38323167 and SOVchr4_188084317

on chromosome 4, as well as SOVchr6_90951127 and

SOVchr6_91175684 on chromosome 6, highlighting their potential

roles in the genetic regulation of plant height in spinach.

Furthermore, SOVchr1_10780051, SOVchr2_68062488,

SOVchr5_70192260, and SOVchr5_105368320 were significantly

associated in the FarmCPU model, each exceeding the LOD

threshold of 5.48 (Table 1). Collectively, the identification of these

ten SNPs, particularly those surpassing the stringent threshold on

chromosomes 1, 2, 4, 5, and 6, underscores their importance as

genetic markers linked to tallness. These findings provide valuable

insights into the genetic architecture of plant height in spinach and

offer promising targets for marker-assisted breeding. The distribution

of the ten associated SNP markers among the 307 spinach accessions

revealed distinct phenotypic differences in plant height across allele

combinations (Supplementary Figure S4), further reinforcing their

relevance to this trait.
Candidate gene identification/detection

LD decay analysis revealed rates of 170 kb, 140 kb, 330 kb, 50

kb, 210 kb, and 160 kb for chromosomes 1, 2, 3, 4, 5, and 6,
Frontiers in Plant Science 07
respectively (Supplementary Figure S5A). The LD decay of the ten

SNP markers associated with tallness ranged from 10 kb

to 100 kb (Supplementary Figure S5B). For three SNPs on

chromosome 4 (SOVchr4_38323167, SOVchr4_188084317, and

SOVchr4_188084338), LD decay could not be reliably estimated;

therefore, all genes within 50 kb (chromosome 4’s LD decay) were

included. In total, 33 genes located within the LD regions of the ten

associated SNPs are listed in Supplementary Table S2.

Based on proximity to associated SNP markers, nine genes were

identified as candidate genes for tallness (Table 2). These include:
i. SOV1g002210 (RNase H domain-containing protein),

located at 10,770,653–10,770,964 bp on chromosome 1,

<10 kb from SNP SOVchr1_10780051. RNase H domain-

containing proteins, such as Rht8 in wheat, regulate plant

height through gibberellin (GA) biosynthesis, modulating

stem elongation and contributing to semi-dwarf

phenotypes (Zhou et al., 2023).

ii. SOV2g015180 (CCHC-type domain-containing protein),

at 68,078,694–68,081,726 bp on chromosome 2, <17 kb

from SNP SOVchr2_68062488. CCHC-type zinc finger

proteins (CCHC-ZFPs) are involved in plant growth,

development, and environmental adaptation (Sun

et al., 2022).

iii. SOV4g016060 (U6 snRNA-associated Sm-like protein

LSm5), at 38,326,318–38,334,619 bp on chromosome 4,

near SNP SOVchr4_38323167.

iv. SOV4g059190 (outer envelope membrane protein 7-like)

and SOV4g059200 (epimerase domain-containing
FIGURE 4

Multiple Manhattan plots (left) and QQ plots (right) generated using GLM, MLM, MLMM, FarmCPU, and BLINK models in GAPIT3 for the tallness trait
in 307 spinach accessions with PCA=2.
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TABLE 1 Ten SNP markers associated with the tallness trait in spinach, identified using five models in GAPIT3 (GLM, MLM, MLMM, FarmCPU, and BLINK) with both PCA=2 and PCA=3.

LOD = [-log10(P-value)]

Allele
(Short)

Allele
(Tall)

PVE (%) (Model)
Model

(LOD>5.48)
Q-matrix
(PCA)t-test

LM MLM

.72 2.74 1.80 G A 5.06(FarmCPU) farmcpu PCA=2

.51 2.97 1.09 A G FarmCPU PCA=3

.63 4.30 2.09 A G 5.45 FarmCPU,BLINK PCA=3

.02 5.74 3.59 T G
24.57 (blink)

29.15(Farmcpu)
blink.farmcpu.glm PCA=2

.94 4.85
2.55 T C

8.00(blin) BLINK PCA=3

.09 5.65 24.42(mlmm,glm) mlmm.glm(mlm=5.09) PCA=2

.08 1.50 1.31 C A FarmCPU PCA=3

.69 2.36 1.97 A G 6.54(farmcpu) farmcpu PCA=2

.10 5.47

5.19 G T

6.11(blink)
25.42(glm)

BLINK,GLM PCA=3

.57 6.92
20.43 (blink)

20.52(mlmm,glm)
26.91(mlm)

blink.mlmm.
mlm.glm

PCA=2

.98 2.90 2.14 A C 6.74(farmcpu) farmcpu PCA=2

.90 3.76
2.12 G C

4.07(blink) FarmCPU,BLINK PCA=3

.50 3.30 blink=5.16 PCA=2
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SNP Chr Pos MAF% GAPIT3

BLINK FarmCPU MLMM G

SOVchr1_10780051 1 10780051 10.7 2.28 5.71 2.29 2

SOVchr2_68062488 2 68062488 11.2 3.35 5.67 2.88 3

SOVchr4_38323167 4 38323167 10.9 5.57 6.47 4.68 4

SOVchr4_188084317 4 188084317 12.5 7.20 8.09 0.39 5

SOVchr4_188084338 4 188084338 11.1
5.74 5.28 5.24 4

0.49 0.25 5.71 5

SOVchr5_70192260 5 70192260 15.6 2.04 5.53 1.12 1

SOVchr5_105368320 5 105368320 11.9 2.45 6.05 2.52 2

SOVchr6_8139833 6 8139833 12.7

7.64 3.43 6.56 6

8.53 2.73 7.20 5

SOVchr6_90951127 6 90951127 16.6 1.08 6.57 3.74 2

SOVchr6_91175684 6 91175684 12.4
5.60 6.04 4.31 3

5.16 0.13 4.15 3

Results from a t-test and the percentage of phenotypic variance explained (PVE%) are also presented.
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TABLE 2 Nine candidate genes identified within the specific LD decay regions corresponding to eight of the ten associated SNP markers (listed in Table 1) for the tallness trait in spinach.

Start_pos End_pos Gene
Annotation_gene_name SNP Chr

Pos
(bp)

From gene
start (bp)

From gene
end (bp)

Comment

RNase H domain-containing protein SOVchr1_10780051 1 10780051 9398 9087 <10kb

CCHC-type domain-containing protein SOVchr2_68062488 2 68062488 -16206 -19238 <17kb

U6 snRNA-associated Sm-like protein
LSm5

SOVchr4_38323167 4 38323167 -3151 -11452 <4kb

outer envelope membrane protein 7-like
SOVchr4_188084338 4 188084338 3698 1843 <2kb

SOVchr4_188084317 4 188084317 3677 1822 <2kb

Epimerase domain-containing protein
SOVchr4_188084338 4 188084338 -946 -2699 <1kb

SOVchr4_188084317 4 188084317 -967 -2720 <1kb

Cleavage and polyadenylation specificity
factor subunit 2

SOVchr5_70192260 5 70192260 4012 130 130bp

F-box domain-containing protein
SOVchr6_8139833 6 8139833

-120833 -125639 <121kb

F-box domain-containing protein -126343 -127745 <127kb

LETM1 and EF-hand domain-containing
protein 1 mitochondrial

SOVchr6_91175684 6 91175684 -395 -3593 395bp
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Gene Chr
(bp) (bp) size (bp)

SOV1g002210 1 10770653 10770964 311

SOV2g015180 2 68078694 68081726 3033

SOV4g016060 4 38326318 38334619 8302

SOV4g059190 4 188080640 188082495 1856

SOV4g059200 4 188085284 188087037 1754

SOV5g028680 5 70188248 70192130 3883

SOV6g002670 6 8260666 8265472 4807

SOV6g002680 6 8266176 8267578 1403

SOV6g020520 6 91176079 91179277 3198
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Fron
protein), at 188,080,640–188,082,495 bp and 188,085,284–

1 8 8 , 0 8 7 , 0 3 7 b p o n c h r om o s om e 4 , n e a r

SNP SOVchr4_188084338.

v. SOV6g002670 and SOV6g002680 (F-box domain-

containing proteins), at 8,260,666–8,265,472 bp and

8,266,176–8,267,578 bp on chromosome 6, ~121–127 kb

from SNP SOVchr6_8139833. F-box proteins regulate

plant height via the ubiquitin–proteasome system,

modulating hormone signaling and stem elongation

(Hua et al., 2020; Xu et al., 2021).

vi. SOV5g028680 (cleavage and polyadenylation specificity

factor subunit 2) on chromosome 5, 70,188,248–

70,192,130 bp, near SNP SOVchr5_70192260.

vii. SOV6g020520 (LETM1 and EF-hand domain-containing

protein 1, mitochondrial) on chromosome 6, 91,176,079–

91,179,277 bp, near SNP SOVchr6_91175684.
LD heatmaps of the regions surrounding these nine candidate

genes (Supplementary Figure S6) showed that no SNPs were located

within the genes or in the same LD regions, highlighting their

potential regulatory roles in tallness.
Genomic prediction for genomic selection
of tallness trait

Genomic prediction using different SNP sets
All seven GP models—BA, BB, BL, BRR, rrBLUP, RF, and SVM

—showed similar r-values across SNP sets, ranging from r6 to

all.15058SNPs, with r-values averaging from 0.08 (r6) to 0.15

(all.15058SNPs). These results demonstrated that r-values

increased as more SNPs were used (Supplementary Table S3;
tiers in Plant Science 10
Figure 5; Supplementary Figure S7). However, the overall

prediction accuracy remained low, as indicated by these r-values.
GP by GWAS-derived SNP markers

GWAS-derived SNP markers from whole panel
and self-prediction

Four GWAS-derived SNP sets were evaluated: m2 (2 markers),

m6_2pca (6 markers with PCA=2), m6_3pca (6 markers with

PCA=3), and m10 (10 markers). These sets showed relatively

high r-values (Figure 6; Supplementary Table S3), with average r-

values of 0.36, 0.44, 0.49, and 0.50 for m2, m6_2pca, m6_3pca, and

m10, respectively, thereby validating their association with the

tallness trait within the panel. However, these r-values are

expected to decline when the markers are applied in across-

population predictions.

GWAS-derived SNP markers from 80% of the
whole panel

Across all scenarios, GWAS-derived SNP markers from 80% of

the whole panel generally produced moderate prediction accuracies,

with an average r-value of 0.51, ranging from 0.47 in the RF model

to 0.54 in the BRR model in cross-population predictions. In cross-

self-population predictions, the average r-value increased to 0.55,

ranging from 0.46 in RF to 0.58 in BA, BL, and BRR. However,

prediction accuracy dropped significantly in across-population

predictions, with an average r-value of only 0.12, ranging from

0.10 in RF to 0.12 in the other four Bayesian models

(Supplementary Table S4; Figure 7). These findings confirm that

the GWAS-derived SNP markers are associated with the tallness

trait, but they do not support the application of GS for improving
FIGURE 5

Genomic prediction (r-value) for the tallness trait in 307 spinach accessions using ten different SNP sets, ranging from 6 to 15,058 randomly selected
SNPs, in cross-prediction. Prediction accuracy was estimated using seven models: BA, BB, BL, BRR, RF, rrBLUP, and SVM.
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tallness in spinach breeding programs, primarily due to the low

predictive ability observed in across-population predictions

(Supplementary Table S4; Figure 7).

GWAS-derived SNP markers using GAGBLUP in
GAPIT3

GP was conducted using the GAGBLUP (BLINK) model in

GAPIT3 (Figure 8). The reference prediction (self-prediction =

All.population.set) and cross-population prediction yielded r-values

of 0.41 and 0.39, respectively (Figure 8). However, the r-value

dropped significantly to 0.13 in across-population predictions.

These findings suggest that GP using only the significant SNP

markers identified by GAGBLUP may not be highly effective for

selecting the tallness trait in spinach through GS across populations.
Genetic prediction using difference
genomic models

Building on the GWAS-derived SNP marker sets, we further

evaluated prediction accuracy using seven GP models (BA, BB, BL,

BRR, rrBLUP, RF, and SVM) under both cross- and across-

population analyses. Overall, all models exhibited comparable r-

values (Supplementary Tables S3, S4; Figures 5–7; Supplementary

Figure S7), with some variation depending on the marker set.
Fron
i. For the ten randomly selected SNP sets, all models yielded

average r-values of 0.11 or 0.12 (Supplementary Table S3;

Figure 5; Supplementary Figure S7).

ii. For the four GWAS-derived SNP sets (m10: 10 markers;

m2: 2 markers; m6_2pca: 6 markers with PCA=2;

m6_3pca: 6 markers with PCA=3), BA, BB, BL, BRR,

and rrBLUP produced similar average r-values ranging

from 0.46 to 0.48, whereas RF and SVM were slightly
tiers in Plant Science 11
lower, with 0.44 and 0.38, respectively (Supplementary

Table S3; Figure 6).
These results indicate that rrBLUP and the four Bayesian

models (BA, BB, BL, and BRR) are particularly well-suited for

predicting tallness in spinach and are recommended for GS of this

trait in spinach molecular breeding programs.
Discussion

Phenotyping of tallness

The 307 spinach accessions exhibited significant phenotypic

variation in tallness, highlighting the complexity and quantitative

nature of this trait. In addition, the observed range, spanning 4.5cm

to 16.2cm, indicates a broad genetic base, which is essential for

successful GWAS and breeding programs aimed at improving plant

height. This diversity is consistent with findings in other crops, such

as rice and maize, where height is influenced by multiple genes with

small effects (Huang and Han, 2016; Yu and Buckler, 2006).

Polygenic traits often result in continuous phenotypic variation,

which is exactly what we observed in this spinach population.

The identification of particularly tall accessions, such as

PI445784 and PI192945, suggests the presence of favorable alleles

in these accessions that could be valuable in breeding programs.

This finding aligns with studies on wheat and barley, where specific

alleles have been identified and exploited to successfully enhance

plant height (Chitwood et al., 2016).

The coefficient of variation of 21.3% further indicates

substantial phenotypic variability, which is beneficial for selection

and increases the likelihood of detecting significant genetic

associations. Similar levels of variability have proven

advantageous in other crops, supporting the use of diverse panels
FIGURE 6

Genomic prediction (r-value) of four GWAS-derived SNP marker sets (m10, 10 markers; m2, 2 markers; m6_2pca, 6 markers with PCA=2; m6_3pca,
6 markers with PCA=3). Prediction was conducted through cross-population analysis with five-fold cross-validation (training:validation = 4:1) using
seven genomic prediction (GP) models: BA, BB, BL, BRR, rrBLUP, RF, and SVM.
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in GWAS to identify key loci associated with target traits (Magar

et al., 2021). Thus, the observation of substantial variability in this

study confirms the suitability of this spinach panel for uncovering

the genetic underpinnings of tallness and paves the way for more

effective breeding strategies.
PCA and phylogenetic analysis

The population structure and genetic diversity of spinach have

been extensively explored using various methodologies, including

SNP markers and phylogenetic analyses (Shi et al., 2016). Spinach

exhibits significant variability in key traits essential for breeding and
Frontiers in Plant Science 12
crop improvement, such as plant height and leaf morphology

(Rashid et al., 2020b). In this study, we utilized high-density SNP

data and PCA to assess the genetic diversity of 307 spinach

accessions. The results revealed three distinct sub-populations,

consistent with earlier studies that highlighted the complex

genetic structure of spinach germplasm (Patterson et al., 2006;

Saitou and Nei, 1987).
Association study

In the association study on spinach tallness, which utilized

multiple models (GLM, MLM, MLMM, FarmCPU, and BLINK)
FIGURE 7

Genomic prediction (GP) accuracy (r-value) for tallness using GWAS-derived SNP markers. Three prediction strategies were applied: (i)
Across_prediction – Using GWAS-derived SNP markers from the training set (80% of the population, 246 accessions) to predict the validation set
(20%, 61 accessions); (ii) Cross_prediction – Using all associated SNP markers to predict the entire population (307 accessions); and (iii)
Cross_self_prediction – Using GWAS-derived SNP markers from the training set (80%) to predict the training set itself.
FIGURE 8

Genomic prediction (GP) (r-value) for tallness using the GAGBLUP (BLINK) model in GAPIT3.
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within the GAPIT3 framework, we detected consistent deviations in

the QQ plots, suggesting that the identified SNPs likely contribute

to the observed phenotypic variation in height. This finding echoes

previous research on other crops, such as rice, maize, and wheat,

where plant height has been demonstrated as a complex polygenic

trait influenced by multiple loci (Huang and Han, 2016; Yu and

Buckler, 2006). The identification of significant SNPs in these crops

has been crucial not only for understanding the genetic basis of

height but also for guiding breeding programs aimed at improving

this trait. Specifically, certain alleles have been exploited to enhance

barley stature, further illustrating the value of SNP identification for

crop improvement (Chitwood et al., 2016).

The present GWAS identified ten SNPs that exceeded the

significance threshold, making them suitable candidates for

marker-assisted selection. Targeted breeding based on genetic

markers has been successfully applied in crops such as maize,

rice, and wheat to develop superior cultivars with improved yield

and adaptability (Collard and Mackill, 2008; Huang and Han, 2016;

Yu and Buckler, 2006).
Candidate gene identification/detection

In this study, nine candidate genes were identified within the

specific LD decay regions corresponding to eight of the ten

associated SNP markers for the tallness trait in spinach (Table 1

&), suggesting these genes may play important roles in controlling

plant height. Both SOV4g016060 (U6 snRNA-associated Sm-like

protein LSm5), located near SOVchr4_38323167 on chromosome 4,

and SOV5g028680 (cleavage and polyadenylation specificity factor

subunit 2), near SOVchr5_70192260 on chromosome 5, are

involved in Ribonucleic acid (RNA) processing—a critical

function previously linked to growth regulation in multiple crops.

For instance, in maize, genes involved in RNA processing have been

shown to influence plant height by regulating the expression of

growth-related genes (Huang and Han, 2016). Similarly, in rice,

RNA processing genes can affect both height and yield (Gong et al.,

2021). In barley, genes associated with RNA processing have been

found to regulate flowering time and overall plant stature (Nitcher

et al., 2013).

Two additional candidate genes on chromosome 4,

SOV4g059190 (outer envelope membrane protein 7-like) and

SOV4g059200 (epimerase domain-containing protein), both

located near SOVchr4_188084338, are associated with metabolic

and transport processes. These processes are crucial for cell

elongation and biomass accumulation, as previously evidenced in

rice and maize. In rice, genes related to metabolic pathways have

been linked to the regulation of internode elongation, a key factor in

determining plant height (Yu and Buckler, 2006). In maize, the

transport of nutrients and growth regulators is critical for the

development of tall plants (Hütsch and Schubert, 2018).

The candidate gene identified in this study, SOV6g020520

(LETM1 and EF-hand domain-conta in ing prote in 1

mitochondrial), located near SOVchr6_91175684 on chromosome

6, suggests a role for mitochondrial function in regulating spinach
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height. Mitochondria are essential for energy production, which is

necessary to sustain the metabolic demands of growing plants.

Studies in wheat and barley have demonstrated that mitochondrial

function is closely linked to plant vigor and height, with efficient

energy production supporting taller growth (Lozano et al., 2009).
Genomic prediction for genomic selection
of tallness trait

Integration of GP models into breeding programs has become

an essential tool for enhancing crop traits, such as plant height,

through GS. In this study, we evaluated the performance of seven

GP models in predicting tallness in 307 spinach accessions using

both randomly selected SNP sets and GWAS-derived SNP

marker sets.

The seven GP models—BA, BB, BL, BRR, rrBLUP, RF, and

SVM—showed similar r-values across SNP sets from r6 to

all.15058SNPs, averaging from 0.08 (r6) to 0.16 (r1000)

(Supplementary Table S3, Figure 5, Supplementary Figure S7).

The r-value generally increased as the number of SNPs in the set

increased, but the improvement plateaued after 1,000 SNPs. The

results demonstrated that increasing the number of SNPs from six

to 15,058 led to a progressive rise in prediction accuracy (r-value),

stabilizing around 1,000 SNPs across all models. These findings

underscore the necessity of utilizing a sufficient number of markers

to achieve reliable predictions, consistent with previous research

emphasizing the importance of genome-wide coverage for accurate

GP (Heslot et al., 2012). However, all r-values were low, indicating

that GP may not be efficient for predicting the tallness trait.

Despite the general trend of larger SNP sets yielding higher

prediction accuracy, the four GWAS-derived SNP sets—m2,

m6_2pca, m6_3pca, and m10—achieved relatively high average r-

values of 0.36, 0.44, 0.49, and 0.50, respectively (Supplementary

Table S3; Figure 6). Notably, even the two-SNP marker set (m2)

produced a relatively high average r-value of 0.36 across the seven

models. These findings indicate that a small number of strategically

selected SNPs can provide substantial predictive power, particularly

when the markers are tightly linked to the trait of interest (Zhao

et al., 2021). Similar results have been reported in other crops,

where GWAS-derived markers significantly enhanced prediction

models for complex traits (Minamikawa et al., 2021).

Among the seven GP models evaluated, rrBLUP and the four

Bayesian GS models (BA, BB, BL, and BRR) produced higher r-

values when using GWAS-derived SNP marker sets. The superior

performance of rrBLUP may be attributed to its strong capacity to

capture additive genetic variance, which is particularly important

for polygenic traits such as plant height, where numerous genes

with small effects collectively contribute to phenotypic variation

(Goddard and Hayes, 2007; Crossa et al., 2017). By contrast, the

Bayesian GS models exhibited less consistent trends in prediction

ability as marker numbers increased, compared with the other

models (Figure 5). This variability may reflect the influence of

model-specific assumptions and prior distributions inherent in

Bayesian frameworks, which may interact differently with varying
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SNP densities. Further investigation will be required to clarify

these dynamics.
Conclusion

Phenotypic evaluation revealed substantial variability in plant

height, with seven accessions exhibiting exceptional tallness

identified as promising candidates for breeding. Ten SNPs on

chromosomes 1, 2, 4, 5, and 6 were strongly associated with

tallness, with particularly notable contributions from markers on

chromosome 6. Within LD decay regions, nine candidate genes

related to F-box domain-containing proteins, RNA processing,

metabolic pathways, and mitochondrial function were identified,

providing valuable targets for further functional characterization.

Genomic prediction analyses demonstrated that rrBLUP, in

particular, achieved high predictive accuracy, even when using a

small GWAS-derived SNP set. This highlights the potential of these

markers for forecasting genetic potential for plant height.

Collectively, these findings provide breeders with valuable

molecular tools to facilitate targeted selection and genotyping,

supporting the development of spinach varieties optimized for

mechanical harvesting and market preferences. By integrating

genomic insights with conventional breeding approaches, this

study lays a foundation for sustainable and economically viable

strategies to improve spinach height.
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