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Plant height is a critical agronomic trait in spinach (Spinacia oleracea L.),
influencing both mechanical harvesting efficiency and overall yield. In this
study, plant height variation was evaluated in 307 United States Department of
Agriculture (USDA) germplasm accessions, which were phenotyped and
genotyped using 15,058 single-nucleotide polymorphisms (SNPs) obtained
from whole-genome resequencing. A genome-wide association study (GWAS)
was conducted using the General Linear Model (GLM), Mixed Linear Model
(MLM), Multiple Loci Mixed Model (MLMM), Fixed and Random Model
Circulating Probability Unification (FarmCPU), and Bayesian-information and
Linkage-disequilibrium lIteratively Nested Keyway (BLINK) models implemented
in the Genomic Association and Prediction Integrated Tool version 3 (GAPIT3).
Ten SNPs were significantly associated with plant height: (i) SOVchr1_10780051
(10,780,051 bp) on chromosome (chr) 1; (ii) SOVchr2_68062488 (68,062,488 bp)
on chr 2; (iii) SOVchr4_38323167 (38,323,167 bp), SOVchr4_188084317
(188,084,317 bp), and SOVchr4_188084338 (188,084,338 bp) on chr 4; (iv)
SOVchr5_70192260 (70,192,260 bp) and SOVchr5_105368320 (105,368,320
bp) on chr 5; and (v) SOVchr6_8139833 (8,139,833 bp), SOVchr6_90951127
(90,951,127 bp), and SOVchr6_91175684 (91,175,684 bp) on chr 6. Genomic
prediction (GP) models were applied to estimate genomic estimated breeding
values (GEBV) for plant height, achieving an r-value of 0.55 using GWAS-derived
SNP markers in cross-population prediction. The integration of GWAS and GP
provides insights into the genetic architecture of plant height in spinach and
supports marker-assisted breeding strategies to enhance crop management and
economic returns.
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Introduction

Spinach (Spinacia oleracea L.) is a highly nutritious leafy
vegetable, widely cultivated in the United States and globally (Shi
et al,, 2016; Tang et al,, 2015). Its increasing demand is driven by
consumer awareness of its rich nutritional profile, including
essential vitamins, minerals, antioxidants, and bioactive
compounds such as carotenoids and flavonoids (Frary et al., 2010;
Rashid et al,, 2020). Among its key agronomic traits, plant height
plays a crucial role in spinach production and management (Jones
et al, 2019). Taller spinach plants are likely easier for harvesting
machinery to reach and cut cleanly, thereby reducing yield loss and
improving throughput. For leafy vegetables harvested using
horizontal or topper-style cutters, increased plant height can
result in less missed crop and better compatibility with
mechanical harvesting. Taller plants and a higher position of the
first primary branch have been shown to significantly improve
machine-harvest efficiency in green chile cultivars (Joukhadar et al,
2018). In legumes, the trait ‘height to first pod’ (HFP) is critical, as
pods must be positioned above the cutterbar height to avoid harvest
loss. Improved HFP correlates with reduced seed loss during
mechanical harvesting (Kuzbakova et al., 2022). Height to first
pod: A review of genetic and breeding approaches to improve
combine harvesting in legume crops. Front Plant Sci. 13:948099.
doi: 10.3389/fpls.2022.948099. However, optimizing plant height
requires a balance, as taller plants must also resist lodging—a
condition where plants collapse under adverse weather, leading to
yield loss (Jones et al., 2019).

Plant height in spinach, like in other major crops such as rice
and maize, is a polygenic trait governed by multiple genetic factors
(Huang and Han, 2016). Traditional quantitative trait loci (QTL)
mapping approaches have been useful in identifying large-effect loci
but often fail to detect small-effect loci that collectively influence
complex traits (Yu and Buckler, 2006). This limitation underscores
the need for genome-wide approaches such as genome-wide
association studies (GWAS) and genomic prediction (GP), which
enable the identification of multiple loci contributing to plant height
and improve breeding efficiency through genome-wide
marker predictions.

The substantial phenotypic variation observed in spinach plant
height reflects its rich genetic diversity, making it an excellent
candidate for advanced genomic studies and breeding efforts
(Huang and Han, 2016; Yu and Buckler, 2006). GWAS has been
a powerful tool for dissecting complex traits by identifying
associations between single-nucleotide polymorphism (SNP) and
phenotypic variation. In spinach, GWAS has successfully identified
genetic loci controlling plant height, downy mildew resistance, and
leaf morphology (Cai et al., 2018). By leveraging high-density SNP
markers, GWAS facilitates the discovery of key genetic regions
associated with important traits, supporting marker-assisted
selection (MAS) in breeding programs. For instance, previous
studies have identified height-related SNPs on chromosomes 2
and 6, linked to increased plant tallness (Shi et al., 2016). The
high resolution of GWAS enables the detection of both major and
minor loci, enhancing genetic improvement strategies without
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compromising other critical traits such as leaf texture, flavor, or
pest resistance (Jones et al., 2019). The integration of GWAS with
traditional breeding methods can significantly improve selection
efficiency (Korte and Farlow, 2013), supporting the development of
spinach varieties optimized for both agricultural productivity and
consumer preferences.

GS is an advanced breeding approach that utilizes genome-wide
markers to predict genetic potential before trait expression
(Goddard and Hayes, 2007). While GS has been successfully
implemented in maize, wheat, and rice to enhance yield, disease
resistance, and stress tolerance (Crossa et al., 2017), its application
in spinach remains limited (Bhattarai and Shi, 2021). Nevertheless,
studies in other crops highlight the potential of GS to accelerate
breeding cycles and improve cultivar development (Gaynor et al,
2017). GS could be particularly valuable for optimizing plant height,
biomass, and leaf morphology by enabling early selection of superior
genotypes, reducing reliance on time-intensive field evaluations
(Heftner et al.,, 2009). Expanding the application of GS in spinach
breeding holds promise for improving agricultural efficiency and
developing high-performing cultivars suited to market demands. GP
as a GS parameter has been investigated in dozen of crops including
spinach (Shi et al,, 2021, 2022). Genomic estimated breeding values
(GEBV) in GP is the key step in GS. Several approaches have been
proposed for GEBV such as Best Linear Unbiased Prediction
(BLUP) methods [(Genomic Best Linear Unbiased Prediction
(gBLUP), Ridge Regression Best Linear Unbiased Prediction (RR-
BLUP), Compressed Best Linear Unbiased Prediction (cBLUP), and
Super Best Linear Unbiased Prediction (sBLUP)] and Bayesian
methods (Bayes A (BA), Bayes B (BB), Bayes LASSO (BL), and
Bayesian Ridge Regression (BRR) (Bhattarai et al.,, 2022a, b; Shi
et al,, 2021, 2022).

This study had two primary objectives: (1) to perform a GWAS
to identify SNP markers associated with plant height in spinach,
and (2) to implement GP models to assess the accuracy of these
markers in predicting plant height. We utilized a dataset of 15,058
high-quality SNPs obtained from whole-genome resequencing of
307 USDA-GRIN spinach accessions, forming the basis for GWAS
and GP analyses. Our findings contribute to a deeper understanding
of the genetic architecture of plant height in spinach and provide
valuable resources for breeding programs aimed at improving
mechanical harvesting efficiency and overall crop performance.

Materials and methods
Plant material

A total of 307 spinach accessions were obtained from the United
States Department of Agriculture (USDA) Germplasm Resources
Information Network (GRIN) spinach germplasm repository. These
accessions represented 30 countries, with the majority originating
from Turkey (n = 96), the United States (n = 52), Afghanistan (n =
21), North Macedonia (n = 18), China (n = 16), Iran (n = 13), and
Belgium (n = 11), collectively accounting for 74.9% of the total
collection. Phenotypic assessments for plant height were conducted,
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and whole-genome resequencing was performed to generate
genotypic data. Detailed information on these accessions is
provided in Supplementary Table S1.

Experimental design for plant height
measurement

Phenotypic data for plant height were collected from the 307
accessions at the USDA Agricultural Research Service (ARS) research
station in Salinas, CA (Chitwood et al,, 2016). The experiment
utilized pasteurized sandy loam soil in a greenhouse setting. Each
accession was grown in plastic pots (10 x 10 x 10cm) filled with a 2:1
mixture of sand and soil (by volume). A randomized complete block
design (RCBD) with three replications was implemented, with 10
plants per accession. Plant height was measured 55 days after
planting as the distance from the soil surface to the highest leaf tip.
Descriptive statistics, including mean, range, standard deviation (SD),
and standard error (SE), were calculated using JMP Genomics v.17
(SAS Institute, Cary, NC). The trait distribution was visualized using
Genomic Association and Prediction Integrated Tool version 3
(GAPIT v.3), and the mean plant height per accession was used for
GWAS analysis.

DNA extraction and whole-genome
sequencing

Firstly, genomic DNA was extracted from freshly harvested
leaves pooled from 5 to 10 plants per accession using the CTAB
(hexadecyltrimethyl ammonium bromide) method. High-quality
DNA was fragmented into 350-bp segments using a Covaris
Ultrasonic Processor, and sequencing libraries were prepared
following a standardized protocol (Van Dijk et al., 2014). Whole-
genome resequencing (WGR) was performed using paired-end
sequencing on the Illumina NovaSeq platform at approximately
10x genome coverage per sample, generating about 10 gigabases of
sequence data per genotype. Sequencing was conducted by Beijing
Genomics Institute (BGI) (https://www.bgi.com/). Approximately 6
million raw SNPs across 470 spinach accessions were initially
identified by aligning the short reads to the Sp75 reference
genome; this data was provided by BGI.

Secondly, these reads were re-aligned to the Monoe-Viroflay
reference genome using the Texas A&M Bioinformatics Center
pipeline. The Monoe-Viroflay spinach genome (Collins et al.,
2019), obtained from SpinachBase (http://www.spinachbase.org/),
was used as the reference genome. Alignment was performed
using the Burrows-Wheeler Aligner (BWA v0.7.8-r455) (Li and
Durbin, 2009). BAM (Binary Alignment/Map) files were sorted, and
duplicate reads were removed using SAMtools (v0.1.19-44428cd)
(Lietal, 2009). BAM files from the same sample were merged using
the Picard toolkit (v1.111) (https://broadinstitute.github.io/
picard/). SNP and InDel (insertion and deletion variant) calling
was conducted using GATK (Genome Analysis Toolkit) (v3.5)
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(McKenna et al, 2010), yielding half a million raw SNPs from
470 spinach accessions provided by the Texas A&M
Bioinformatics Center.

Thirdly, for the subset of 307 accessions used in this study,
stringent filtering criteria were applied and keeping those SNPs
with: minor allele frequency (MAF) > 5%, missing data rate < 7%,
and heterozygosity rate < 15%. After filtering, 15,058 high-quality
SNPs remained, distributed across the six spinach chromosomes
(Figure 1). The SNP dataset has been published in the FigShare
database and is accessible via the following link: https://doi.org/
10.6084/m9.figshare.28603517.v1.

Principal component analysis and genetic
diversity

A model-based clustering method implemented in the
STRUCTURE 2.3.4 program (Pritchard et al., 2000) was
employed to infer the population structure of 307 spinach
accessions based on 6,000 SNPs, with 1,000 SNPs randomly
selected from each of the six spinach chromosomes. The burn-in
period was set at 20,000 iterations, followed by 10,000 Markov
Chain Monte Carlo iterations, using an admixture model with
correlated allele frequencies independent for each run (Lv et al,
2012). Ten runs were performed for each simulated value of K,
ranging from 1 to 10. The statistical value AK was calculated for
each simulated K using the method of Evanno et al. (2005) to
determine the optimal K representing the major population
structure. Each spinach accession was subsequently assigned to a
cluster (Q) based on the probability of membership estimated by the
software, with a threshold probability of 0.50 or greater for
assignment. Finally, a bar plot with “Sort by Q” was generated to
visualize the population structure among spinach accessions at the
optimal K.

Genetic diversity and principal component analysis (PCA) were
also conducted using the GAPIT v. 3 (Wang and Zhang, 2021;
https://zzlab.net/ GAPIT/index.html). PCA was performed using
eigenvalue decomposition with component numbers ranging from
2 to 10. A neighbor-joining phylogenetic tree was constructed to
assess genetic relationships among the accessions.

Genome-wide association study

GWAS was conducted using five statistical models
implemented in GAPIT 3: the generalized linear model (GLM),
mixed linear model (MLM), multiple loci mixed model (MLMM),
Fixed and Random Model Circulating Probability Unification
(FarmCPU) (Liu et al,, 2016), and the Bayesian-information and
Linkage-disequilibrium Iteratively Nested Keyway (BLINK)
(Huang et al., 2019) model (Wang and Zhang, 2021; https://
zzlab.net/GAPIT/index.html). Association significance was
determined using a Bonferroni-corrected threshold (0.05/total
SNPs), corresponding to a logarithm of odds (LOD) score of 5.48.
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FIGURE 1

Distribution of the 15,058 high-quality SNPs within 1-Mb window sizes across six spinach chromosomes.

Candidate gene identification

In this study, linkage disequilibrium (LD) with genetic distance
(cM) between SNP loci was evaluated using Haploview (Barrett
et al, 2005). Pairwise LD between SNPs was calculated as the
squared allele-frequency correlation (r?) using TASSEL 5 (Bradbury
et al, 2007). LD decay rates were estimated using 15,058 high-
quality SNP markers across 307 accessions in two ways: (1) for each
of the six chromosomes, as previously described (Zhou et al., 2015),
and (2) for specific regions surrounding associated SNP markers,
calculated by plotting r* values against physical distance (bp). The
LD decay rate of the population was defined as the chromosomal
distance at which the average r* declined to half of its maximum
value (Kim et al., 2007; Lam et al., 2010).

Candidate genes near significant SNPs were identified based on
the LD decay rate at each GWAS-identified SNP marker. When the
LD decay rate could not be reliably estimated for a marker region,
the chromosome-specific LD decay was used instead. LD heatmaps
for candidate genes were generated using Haploview (Barrett et al.,
2005) with Monoe-Viroflay genome annotations. Genome
annotation data were accessed through SpinachBase (http://
www.spinachbase.org/) or via FTP (http://spinachbase.org/ftp/
genome/Monoe-Viroflay/).

Genomic prediction for plant height

GP was performed using several models implemented in R
packages. RR-BLUP was conducted using the ‘rrBLUP’ package
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(Endelman, 2011). Four Bayesian models—BA, BB, BL, and BRR—
were implemented using the ‘BGLR’ package (Barili et al., 2018;
Legarra et al,, 2011). Additionally, Random Forest (RF) was applied
using the ‘randomForest’ package (Ogutu et al., 2011), and Support
Vector Machines (SVM) were implemented using the ‘kernlab’
package (Maenhout et al., 2007). These approaches have been
previously utilized in GS studies (Ravelombola et al., 2019, 2020,
2021; Shi et al., 2021, 2022).

Genomic prediction using different SNP
sets

We examined ten randomly selected subsets of SNPs, ranging
from 6 to 15,058 SNPs, designated as r6, r50, r100, r200, r500,
r1000, r2000, r5000, r10000, and all.15,058SNPs. Additionally, four
GWAS-derived SNP sets (m10: 10 markers; m2: 2 markers;
m6_2pca: 6 markers with PCA=2; m6_3pca: 6 markers with
PCA=3) were derived from a GWAS conducted on a panel of 307
accessions using five models—GLM, MLM, MLMM, FarmCPU,
and BLINK—implemented in GAPIT3. GEBVs were calculated for
each of the ten SNP sets (ten randomly selected SNP sets plus four
GWAS derived marker sets) across all seven GP models (BA, BB,
BL, BRR, rrBLUP, RF, and SVM). Each combination underwent 100
iterations, and the mean correlation coefficients (r-values) along
with standard errors (SE) were computed to assess model
performance. Boxplots illustrating the performance of GP models
across different SNP sets were generated using the ‘ggplot2’ package
in R (Wickham, 2016).
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FIGURE 2
Distribution of plant tallness in the 307 spinach accessions.

GP by GWAS-derived SNP markers

GWAS-derived SNP markers from the whole
panel and cross-population prediction

First, GWAS was conducted using five models (GLM, MLM,
MLMM, FarmCPU, and BLINK), and the associated SNP markers
were identified from these models in the entire GWAS panel (307
spinach accessions). Secondly, GP was performed using the GWAS-
derived SNP markers to perform cross-population prediction
analysis with five-fold cross-validation (training:validation = 4:1)
using seven genomic prediction (GP) models: BA, BB, BL, BRR,
rrBLUP, RF, and SVM.

GWAS-derived SNP markers from 80% of the
whole panel

Both cross- and across-population predictions were performed
for tallness using GWAS-derived associated SNP markers. The entire
panel (307 accessions) was divided into two subsets: 80% as the
training population (TP) (246 accessions) and 20% as the validation
population (VP) (61 accessions). GWAS was performed on the 246
accessions using the GLM, MLM, FarmCPU, and BLINK models in
GAPIT3. Associated SNPs with a LOD score (-log(P)) > 4.0 were
selected from the four models and used to run the GP model 100
times, calculating GEBVs and estimating the average r-value each
time. This process was repeated five times, and the mean r-value
across the five replications was obtained as the prediction accuracy
(average r-value). Three GP types were tested: ‘Across-prediction’,
‘Cross-prediction’, and ‘Cross_self.prediction’.

i. Across_prediction uses GWAS-derived SNP markers from
the training set (80% of the population, 246 accessions) to
predict the validation set (20% — 61 accessions).

ii. Cross_prediction uses all associated SNP markers from the
five repeats to predict the entire population (307 accessions).
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iii. Cross_self.prediction uses GWAS-derived SNP markers from
the training set (80% of the population) to predict itself.

Additionally, GP was performed with five GP models (RF, BA,
BB, BL, and BRR), and GEBVs were calculated for all models. Each
replication in each model was run 100 times, and mean r-values
along with SE were computed. Boxplots illustrating GP model
performance across SNP sets were generated using ggplot2 in R.

GWAS-derived SNP markers using GAGBLUP in
GAPIT3

GP was conducted using the GAGBLUP (BLINK) model in
GAPIT3 on the entire population of 307 accessions, referred to as
the reference prediction (cross_self.prediction), where the 307
accessions were used as both the training population (TP) and
validation population (VP). Additionally, following the same
approach as described above, the entire panel (307 accessions)
was divided into two subsets: 80% as the TP (246 accessions) and
20% as the VP (61 accessions). GWAS was performed using the
BLINK model only in GAPIT3, and the associated SNPs with a
LOD score (-log(P)) > 5.48 were selected to run the GAGBLUP
model in GAPIT3. Both across- and cross-population predictions
were performed. The across-population prediction (Across-
prediction) was performed using the associated SNP markers
from the TP (246 accessions) to predict the GEBVs in the VP (61
accessions). Cross-population prediction was performed using the
associated SNP markers from the TP (246 accessions) to predict the
GEBVs in the TP itself (246 accessions).

Results
Phenotyping of tallness

Phenotypic data for plant height (tallness) across the 307
spinach accessions (Supplementary Table SI) exhibited a near-
normal distribution (Figure 2), with heights ranging from 4.5 to
16.2cm. The shortest accession, PI 303138, measured 4.5cm, while
the tallest, PI 177557, reached 16.2cm, approximately 11.7cm taller
(Supplementary Figures STA-C). The mean plant height was 8.8cm
“standard deviation (SD) = 1.9”, with a coefficient of variation of
21.3%. The observed variation in plant height demonstrates the
suitability of this panel for GWAS.

Seven accessions—PI 445784, PI 192945, PI 664497, P1 478393,
PI 177558, and PI 433209—were identified as exceptionally tall,
each exceeding 13cm in height (Supplementary Figures SIE-G).
These accessions represent valuable genetic resources for breeding
programs aimed at enhancing plant height in spinach.

PCA and phylogenetic analysis

Population structure analysis of the 307 spinach accessions
revealed two major clusters (Q1 and Q2) based on GAPIT3 and
STRUCTURE 2.3.4. A peak in Delta K values from STRUCTURE
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(Supplementary Figure S2a-A) confirmed at least two distinct
genetic groups. GAPIT3 results are shown in a 3D PCA plot
(Figure 3A), PCA eigenvalue plot (Figure 3B), and phylogenetic
trees (Figures 3C, D). A secondary peak in Delta K (Supplementary
Figure S2a-B) suggested three subpopulations (Q1, Q2, Q3, plus a
mixed group). The corresponding PCA and phylogenetic results are
presented in Supplementary Figures S2b (A-D), while detailed two-
ring phylogenetic trees for all accessions are shown in
Supplementary Figures S2a (C, D). Both two-subpopulation
(Q=2) and three-subpopulation (Q=3) models were therefore
applied in GWAS to identify SNPs associated with tallness.

Association study

In this study, association analyses for plant height (tallness)
were performed using five models—GLM, MLM, MLMM,
FarmCPU, and BLINK—in GAPIT3 with PCA set to 2 and 3. QQ
plots comparing observed and expected LOD (-logl0(P-value))
distributions showed significant deviations, which were consistent
across multiple models in the 307 spinach accessions (Figure 4
right, Supplementary Figure S3 right). These results indicate the
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presence of SNP associations with plant height in the
analyzed population.

The association analysis results for the tallness trait were
visualized in Manhattan plots (Figure 4, left; Supplementary
Figure S3, left) using five models implemented in GAPIT3: GLM,
MLM, MLMM, FarmCPU, and BLINK. In the plots, each SNP is
represented as a point, with chromosomal positions shown on the
x-axis and -logl0(P-value) on the y-axis. SNPs with LOD values
greater than the significance threshold of 5.48 were considered
significantly associated with the tallness trait. Across the five
models, ten SNPs were identified as significantly associated with
the tallness trait, each exceeding the threshold in at least one model
under both runs with PCA=2 and PCA=3 (Table 1).

Notably, SOVchr6_8139833 consistently exhibited a LOD value
greater than 5.48 across three models (BLINK, GLM, and MLMM)
under both PCA=2 and PCA=3. It also showed LOD values of 6.92
(MLM, PCA=2) and 547 (MLM, PCA=3), along with high PVE
values of up to 26.91% in MLMM (PCA=2) and 25.42% in GLM
(PCA=3), indicating a strong and stable association. In contrast,
lower LOD values of 3.43 (PCA=3) and 2.73 (PCA=2) were observed
in the FarmCPU model (Table 1). Similarly, SOVchr4 188084338
was strongly associated in the BLINK model (LOD=5.74), while the
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Multiple Manhattan plots (left) and QQ plots (right) generated using GLM, MLM, MLMM, FarmCPU, and BLINK models in GAPIT3 for the tallness trait

in 307 spinach accessions with PCA=2.

other models reported moderate LOD values (> 4.85) when PCA=3.
This SNP also exceeded the significance threshold in MLMM
(LOD=5.71) and MLM (LOD=5.85), but showed lower values in
GLM (LOD=4.94) and very weak signals in BLINK and FarmCPU (<
0.5) (Table 1), suggesting an association with tallness that is less
consistent across models. Additional significant associations
were detected for SOVchr4 38323167 and SOVchr4_ 188084317
on chromosome 4, as well as SOVchr6_90951127 and
SOVchr6_91175684 on chromosome 6, highlighting their potential
roles in the genetic regulation of plant height in spinach.
Furthermore, SOVchrl_10780051, SOVchr2_ 68062488,
SOVchr5_70192260, and SOVchr5_105368320 were significantly
associated in the FarmCPU model, each exceeding the LOD
threshold of 5.48 (Table 1). Collectively, the identification of these
ten SNPs, particularly those surpassing the stringent threshold on
chromosomes 1, 2, 4, 5, and 6, underscores their importance as
genetic markers linked to tallness. These findings provide valuable
insights into the genetic architecture of plant height in spinach and
offer promising targets for marker-assisted breeding. The distribution
of the ten associated SNP markers among the 307 spinach accessions
revealed distinct phenotypic differences in plant height across allele
combinations (Supplementary Figure S4), further reinforcing their
relevance to this trait.

Candidate gene identification/detection

LD decay analysis revealed rates of 170 kb, 140 kb, 330 kb, 50
kb, 210 kb, and 160 kb for chromosomes 1, 2, 3, 4, 5, and 6,
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respectively (Supplementary Figure S5A). The LD decay of the ten
SNP markers associated with tallness ranged from 10 kb
to 100 kb (Supplementary Figure S5B). For three SNPs on
chromosome 4 (SOVchr4_38323167, SOVchr4_188084317, and
SOVchr4_188084338), LD decay could not be reliably estimated;
therefore, all genes within 50 kb (chromosome 4’s LD decay) were
included. In total, 33 genes located within the LD regions of the ten
associated SNPs are listed in Supplementary Table S2.

Based on proximity to associated SNP markers, nine genes were
identified as candidate genes for tallness (Table 2). These include:

i. SOV1g002210 (RNase H domain-containing protein),
located at 10,770,653-10,770,964 bp on chromosome 1,
<10 kb from SNP SOVchr1_10780051. RNase H domain-
containing proteins, such as Rht8 in wheat, regulate plant
height through gibberellin (GA) biosynthesis, modulating
stem elongation and contributing to semi-dwarf
phenotypes (Zhou et al., 2023).

SOV2g015180 (CCHC-type domain-containing protein),
at 68,078,694-68,081,726 bp on chromosome 2, <17 kb
from SNP SOVchr2_68062488. CCHC-type zinc finger
proteins (CCHC-ZFPs) are involved in plant growth,
development, and environmental adaptation (Sun
et al., 2022).

SOV4g016060 (U6 snRNA-associated Sm-like protein
LSmb5), at 38,326,318-38,334,619 bp on chromosome 4,
near SNP SOVchr4_38323167.

SOV4g059190 (outer envelope membrane protein 7-like)
and SOV4g059200 (epimerase domain-containing

ii.

iii.

iv.
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TABLE 1 Ten SNP markers associated with the tallness trait in spinach, identified using five models in GAPIT3 (GLM, MLM, MLMM, FarmCPU, and BLINK) with both PCA=2 and PCA=3.

LOD = [-log10(P-value)]

Allele Allele Model
Pos MAF% GAPIT3 PVE (%) (Model
° t-test (Short) (Tall) ( °) ( ) (LOD>548)
BLINK FarmCPU MLMM GLM MLM
SOVchr1_10780051 10780051 10.7 2.28 5.71 2.29 2.72 2.74 1.80 5.06(FarmCPU) farmcpu PCA=2
SOVchr2_68062488 68062488 11.2 3.35 5.67 2.88 3.51 2.97 1.09 FarmCPU PCA=3
SOVchr4_38323167 38323167 10.9 5.57 6.47 4.68 4.63 4.30 2.09 5.45 FarmCPU,BLINK PCA=3
24. link
SOVchr4_188084317 188084317 12.5 7.20 8.09 0.39 5.02 5.74 3.59 57 (blink) blink.farmcpu.glm PCA=2
29.15(Farmcpu)
5.74 5.28 5.24 4.94 4.85 8.00(blin) BLINK PCA=3
SOVchr4_188084338 188084338 11.1 2.55
0.49 0.25 571 5.09 5.65 24.42(mlmm,glm) mlmm.glm(mlm=>5.09) PCA=2
SOVchr5_70192260 70192260 15.6 2.04 553 1.12 1.08 1.50 1.31 FarmCPU PCA=3
SOVchr5_105368320 105368320 11.9 245 6.05 2.52 2.69 2.36 1.97 6.54(farmcpu) farmcpu PCA=2
6.11(blink;
7.64 343 6.56 6.10 547 (blink) BLINK,GLM PCA=3
25.42(glm)
SOVchr6_8139833 8139833 12.7 5.19 20.43 (blink) Wikl
1NK.. mm.
8.53 2.73 7.20 5.57 6.92 20.52(mlmm,glm) PCA=2
mlm.glm
26.91(mlm)
SOVchr6_90951127 90951127 16.6 1.08 6.57 3.74 2.98 2.90 2.14 6.74(farmcpu) farmcpu PCA=2
5.60 6.04 431 3.90 3.76 4.07(blink) FarmCPU,BLINK PCA=3
SOVchr6_91175684 91175684 12.4 2.12
5.16 0.13 4.15 3.50 3.30 blink=5.16 PCA=2

Results from a t-test and the percentage of phenotypic variance explained (PVE%) are also presented.
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TABLE 2 Nine candidate genes identified within the specific LD decay regions corresponding to eight of the ten associated SNP markers (listed in Table 1) for the tallness trait in spinach.

Start_pos = End_pos Gene . Pos From gene From gene
. Annotation_gene_name Comment
((s]9)] ((s]9)] size (bp) (bp) start (bp) end (bp)
SOV1g002210 10770653 10770964 311 RNase H domain-containing protein SOVchr1_10780051 10780051 9398 9087 <10kb
SOV2¢015180 68078694 68081726 3033 CCHC-type domain-containing protein | SOVchr2_68062488 68062488 -16206 -19238 <17kb
U6 snRNA-associated Sm-like protei
SOV4g016060 38326318 38334619 8302 - assocng;S MARC PO sovehra_38323167 38323167 3151 11452 <4kb
SOVchr4_188084338 188084338 3698 1843 <2kb
SOV4g059190 188080640 188082495 1856 outer envelope membrane protein 7-like
SOVchr4_188084317 188084317 3677 1822 <2kb
SOVchr4_188084338 188084338 -946 2699 <1kb
SOV4g059200 188085284 188087037 1754 Epimerase domain-containing protein
SOVchr4_188084317 188084317 -967 2720 <1kb
Cl d polyadenylati ifici
SOV5¢028680 70188248 70192130 3883 cavage and polyadenylation speclicity gy op. 15 70192260 70192260 4012 130 130bp
factor subunit 2
SOV6g002670 8260666 8265472 4807 F-box domain-containing protein -120833 -125639 <121kb
SOVchré_8139833 8139833
SOV64002680 8266176 8267578 1403 F-box domain-containing protein -126343 -127745 <127kb
LETM1 and EF-hand domain-containing
SOV64020520 91176079 91179277 3198 . i ) SOVchr6_91175684 91175684 -395 -3593 395bp
protein 1 mitochondrial
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FIGURE 5
Genomic prediction (r-value) for the tallness trait in 307 spinach accessions using ten different SNP sets, ranging from 6 to 15,058 randomly selected
SNPs, in cross-prediction. Prediction accuracy was estimated using seven models: BA, BB, BL, BRR, RF, rrBLUP, and SVM.
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protein), at 188,080,640-188,082,495 bp and 188,085,284
188,087,037 bp on chromosome 4, near
SNP SOVchr4_188084338.

SOV6g002670 and SOV6g002680 (F-box domain-
containing proteins), at 8,260,666-8,265,472 bp and
8,266,176-8,267,578 bp on chromosome 6, ~121-127 kb
from SNP SOVchr6_8139833. F-box proteins regulate
plant height via the ubiquitin-proteasome system,
modulating hormone signaling and stem elongation
(Hua et al., 2020; Xu et al., 2021).

SOV5g028680 (cleavage and polyadenylation specificity
factor subunit 2) on chromosome 5, 70,188,248~
70,192,130 bp, near SNP SOVchr5_70192260.
SOV6g020520 (LETM1 and EF-hand domain-containing
protein 1, mitochondrial) on chromosome 6, 91,176,079
91,179,277 bp, near SNP SOVchr6_91175684.

LD heatmaps of the regions surrounding these nine candidate

genes (Supplementary Figure 56) showed that no SNPs were located

within the genes or in the same LD regions, highlighting their

potential regulatory roles in tallness.

Genomic prediction for genomic selection
of tallness trait

Genomic prediction using different SNP sets

All seven GP models—BA, BB, BL, BRR, rrBLUP, RF, and SVM
—showed similar r-values across SNP sets, ranging from r6 to
all.15058SNPs, with r-values averaging from 0.08 (r6) to 0.15
(all.15058SNPs). These results demonstrated that r-values
increased as more SNPs were used (Supplementary Table S3;
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Figure 5; Supplementary Figure S7). However, the overall
prediction accuracy remained low, as indicated by these r-values.

GP by GWAS-derived SNP markers

GWAS-derived SNP markers from whole panel
and self-prediction

Four GWAS-derived SNP sets were evaluated: m2 (2 markers),
m6_2pca (6 markers with PCA=2), m6_3pca (6 markers with
PCA=3), and m10 (10 markers). These sets showed relatively
high r-values (Figure 6; Supplementary Table S3), with average r-
values of 0.36, 0.44, 0.49, and 0.50 for m2, m6_2pca, m6_3pca, and
mlO0, respectively, thereby validating their association with the
tallness trait within the panel. However, these r-values are
expected to decline when the markers are applied in across-
population predictions.

GWAS-derived SNP markers from 80% of the
whole panel

Across all scenarios, GWAS-derived SNP markers from 80% of
the whole panel generally produced moderate prediction accuracies,
with an average r-value of 0.51, ranging from 0.47 in the RF model
to 0.54 in the BRR model in cross-population predictions. In cross-
self-population predictions, the average r-value increased to 0.55,
ranging from 0.46 in RF to 0.58 in BA, BL, and BRR. However,
prediction accuracy dropped significantly in across-population
predictions, with an average r-value of only 0.12, ranging from
0.10 in RF to 0.12 in the other four Bayesian models
(Supplementary Table S4; Figure 7). These findings confirm that
the GWAS-derived SNP markers are associated with the tallness
trait, but they do not support the application of GS for improving
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Genomic prediction (r-value) of four GWAS-derived SNP marker sets (m10, 10 markers; m2, 2 markers; m6_2pca, 6 markers with PCA=2; m6_3pca,
6 markers with PCA=3). Prediction was conducted through cross-population analysis with five-fold cross-validation (training:validation = 4:1) using
seven genomic prediction (GP) models: BA, BB, BL, BRR, rrBLUP, RF, and SVM.

tallness in spinach breeding programs, primarily due to the low
predictive ability observed in across-population predictions
(Supplementary Table S4; Figure 7).

GWAS-derived SNP markers using GAGBLUP in
GAPIT3

GP was conducted using the GAGBLUP (BLINK) model in
GAPIT3 (Figure 8). The reference prediction (self-prediction

All.population.set) and cross-population prediction yielded r-values
of 0.41 and 0.39, respectively (Figure 8). However, the r-value
dropped significantly to 0.13 in across-population predictions.
These findings suggest that GP using only the significant SNP
markers identified by GAGBLUP may not be highly effective for
selecting the tallness trait in spinach through GS across populations.

Genetic prediction using difference
genomic models

Building on the GWAS-derived SNP marker sets, we further
evaluated prediction accuracy using seven GP models (BA, BB, BL,
BRR, rrBLUP, RF, and SVM) under both cross- and across-
population analyses. Overall, all models exhibited comparable r-
values (Supplementary Tables S3, S4; Figures 5-7; Supplementary
Figure S7), with some variation depending on the marker set.

i. For the ten randomly selected SNP sets, all models yielded
average r-values of 0.11 or 0.12 (Supplementary Table S3;
Figure 5; Supplementary Figure S7).

For the four GWAS-derived SNP sets (m10: 10 markers;
m2: 2 markers; m6_2pca: 6 markers with PCA=2;
m6_3pca: 6 markers with PCA=3), BA, BB, BL, BRR,
and rrBLUP produced similar average r-values ranging
from 0.46 to 0.48, whereas RF and SVM were slightly

ii.
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lower, with 0.44 and 0.38, respectively (Supplementary
Table S3; Figure 6).

These results indicate that rrBLUP and the four Bayesian
models (BA, BB, BL, and BRR) are particularly well-suited for
predicting tallness in spinach and are recommended for GS of this
trait in spinach molecular breeding programs.

Discussion
Phenotyping of tallness

The 307 spinach accessions exhibited significant phenotypic
variation in tallness, highlighting the complexity and quantitative
nature of this trait. In addition, the observed range, spanning 4.5cm
to 16.2cm, indicates a broad genetic base, which is essential for
successful GWAS and breeding programs aimed at improving plant
height. This diversity is consistent with findings in other crops, such
as rice and maize, where height is influenced by multiple genes with
small effects (Huang and Han, 2016; Yu and Buckler, 2006).
Polygenic traits often result in continuous phenotypic variation,
which is exactly what we observed in this spinach population.

The identification of particularly tall accessions, such as
PI445784 and PI192945, suggests the presence of favorable alleles
in these accessions that could be valuable in breeding programs.
This finding aligns with studies on wheat and barley, where specific
alleles have been identified and exploited to successfully enhance
plant height (Chitwood et al., 2016).

The coefficient of variation of 21.3% further indicates
substantial phenotypic variability, which is beneficial for selection
and increases the likelihood of detecting significant genetic
associations. Similar levels of variability have proven
advantageous in other crops, supporting the use of diverse panels
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in GWAS to identify key loci associated with target traits (Magar
et al,, 2021). Thus, the observation of substantial variability in this
study confirms the suitability of this spinach panel for uncovering
the genetic underpinnings of tallness and paves the way for more
effective breeding strategies.

PCA and phylogenetic analysis

The population structure and genetic diversity of spinach have
been extensively explored using various methodologies, including
SNP markers and phylogenetic analyses (Shi et al., 2016). Spinach
exhibits significant variability in key traits essential for breeding and
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crop improvement, such as plant height and leaf morphology
(Rashid et al., 2020b). In this study, we utilized high-density SNP
data and PCA to assess the genetic diversity of 307 spinach
accessions. The results revealed three distinct sub-populations,
consistent with earlier studies that highlighted the complex
genetic structure of spinach germplasm (Patterson et al, 2006;
Saitou and Nei, 1987).

Association study
In the association study on spinach tallness, which utilized

multiple models (GLM, MLM, MLMM, FarmCPU, and BLINK)
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within the GAPIT3 framework, we detected consistent deviations in
the QQ plots, suggesting that the identified SNPs likely contribute
to the observed phenotypic variation in height. This finding echoes
previous research on other crops, such as rice, maize, and wheat,
where plant height has been demonstrated as a complex polygenic
trait influenced by multiple loci (Huang and Han, 2016; Yu and
Buckler, 2006). The identification of significant SNPs in these crops
has been crucial not only for understanding the genetic basis of
height but also for guiding breeding programs aimed at improving
this trait. Specifically, certain alleles have been exploited to enhance
barley stature, further illustrating the value of SNP identification for
crop improvement (Chitwood et al., 2016).

The present GWAS identified ten SNPs that exceeded the
significance threshold, making them suitable candidates for
marker-assisted selection. Targeted breeding based on genetic
markers has been successfully applied in crops such as maize,
rice, and wheat to develop superior cultivars with improved yield
and adaptability (Collard and Mackill, 2008; Huang and Han, 2016;
Yu and Buckler, 2006).

Candidate gene identification/detection

In this study, nine candidate genes were identified within the
specific LD decay regions corresponding to eight of the ten
associated SNP markers for the tallness trait in spinach (Table 1
&), suggesting these genes may play important roles in controlling
plant height. Both SOV4g016060 (U6 snRNA-associated Sm-like
protein LSm5), located near SOV chr4_38323167 on chromosome 4,
and SOV5g028680 (cleavage and polyadenylation specificity factor
subunit 2), near SOVchr5_70192260 on chromosome 5, are
involved in Ribonucleic acid (RNA) processing—a critical
function previously linked to growth regulation in multiple crops.
For instance, in maize, genes involved in RNA processing have been
shown to influence plant height by regulating the expression of
growth-related genes (Huang and Han, 2016). Similarly, in rice,
RNA processing genes can affect both height and yield (Gong et al.,
2021). In barley, genes associated with RNA processing have been
found to regulate flowering time and overall plant stature (Nitcher
et al., 2013).

Two additional candidate genes on chromosome 4,
SOV4g059190 (outer envelope membrane protein 7-like) and
SOV4g059200 (epimerase domain-containing protein), both
located near SOVchr4_188084338, are associated with metabolic
and transport processes. These processes are crucial for cell
elongation and biomass accumulation, as previously evidenced in
rice and maize. In rice, genes related to metabolic pathways have
been linked to the regulation of internode elongation, a key factor in
determining plant height (Yu and Buckler, 2006). In maize, the
transport of nutrients and growth regulators is critical for the
development of tall plants (Hiitsch and Schubert, 2018).

The candidate gene identified in this study, SOV6g020520
(LETM1 and EF-hand domain-containing protein 1
mitochondrial), located near SOVchr6_91175684 on chromosome
6, suggests a role for mitochondrial function in regulating spinach
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height. Mitochondria are essential for energy production, which is
necessary to sustain the metabolic demands of growing plants.
Studies in wheat and barley have demonstrated that mitochondrial
function is closely linked to plant vigor and height, with efficient
energy production supporting taller growth (Lozano et al., 2009).

Genomic prediction for genomic selection
of tallness trait

Integration of GP models into breeding programs has become
an essential tool for enhancing crop traits, such as plant height,
through GS. In this study, we evaluated the performance of seven
GP models in predicting tallness in 307 spinach accessions using
both randomly selected SNP sets and GWAS-derived SNP
marker sets.

The seven GP models—BA, BB, BL, BRR, rrBLUP, RF, and
SVM—showed similar r-values across SNP sets from r6 to
all.15058SNPs, averaging from 0.08 (r6) to 0.16 (r1000)
(Supplementary Table S3, Figure 5, Supplementary Figure S7).
The r-value generally increased as the number of SNPs in the set
increased, but the improvement plateaued after 1,000 SNPs. The
results demonstrated that increasing the number of SNPs from six
to 15,058 led to a progressive rise in prediction accuracy (r-value),
stabilizing around 1,000 SNPs across all models. These findings
underscore the necessity of utilizing a sufficient number of markers
to achieve reliable predictions, consistent with previous research
emphasizing the importance of genome-wide coverage for accurate
GP (Heslot et al., 2012). However, all r-values were low, indicating
that GP may not be efficient for predicting the tallness trait.

Despite the general trend of larger SNP sets yielding higher
prediction accuracy, the four GWAS-derived SNP sets—m?2,
m6_2pca, m6_3pca, and m10—achieved relatively high average r-
values of 0.36, 0.44, 0.49, and 0.50, respectively (Supplementary
Table S3; Figure 6). Notably, even the two-SNP marker set (m2)
produced a relatively high average r-value of 0.36 across the seven
models. These findings indicate that a small number of strategically
selected SNPs can provide substantial predictive power, particularly
when the markers are tightly linked to the trait of interest (Zhao
et al., 2021). Similar results have been reported in other crops,
where GWAS-derived markers significantly enhanced prediction
models for complex traits (Minamikawa et al., 2021).

Among the seven GP models evaluated, rrBLUP and the four
Bayesian GS models (BA, BB, BL, and BRR) produced higher r-
values when using GWAS-derived SNP marker sets. The superior
performance of rrBLUP may be attributed to its strong capacity to
capture additive genetic variance, which is particularly important
for polygenic traits such as plant height, where numerous genes
with small effects collectively contribute to phenotypic variation
(Goddard and Hayes, 2007; Crossa et al., 2017). By contrast, the
Bayesian GS models exhibited less consistent trends in prediction
ability as marker numbers increased, compared with the other
models (Figure 5). This variability may reflect the influence of
model-specific assumptions and prior distributions inherent in
Bayesian frameworks, which may interact differently with varying
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SNP densities. Further investigation will be required to clarify
these dynamics.

Conclusion

Phenotypic evaluation revealed substantial variability in plant
height, with seven accessions exhibiting exceptional tallness
identified as promising candidates for breeding. Ten SNPs on
chromosomes 1, 2, 4, 5, and 6 were strongly associated with
tallness, with particularly notable contributions from markers on
chromosome 6. Within LD decay regions, nine candidate genes
related to F-box domain-containing proteins, RNA processing,
metabolic pathways, and mitochondrial function were identified,
providing valuable targets for further functional characterization.
Genomic prediction analyses demonstrated that rrBLUP, in
particular, achieved high predictive accuracy, even when using a
small GWAS-derived SNP set. This highlights the potential of these
markers for forecasting genetic potential for plant height.
Collectively, these findings provide breeders with valuable
molecular tools to facilitate targeted selection and genotyping,
supporting the development of spinach varieties optimized for
mechanical harvesting and market preferences. By integrating
genomic insights with conventional breeding approaches, this
study lays a foundation for sustainable and economically viable
strategies to improve spinach height.
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