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Transport and regulatory
mechanisms of boron in plants

Dan Zhou, Rui Luo, Bojun Ma* and Xifeng Chen*

College of Life Sciences, Zhejiang Normal University, Jinhua, China

Boron (B) is a vital micronutrient necessary for the proper development of plants.
However, B exhibits a very narrow concentration range between deficiency and
toxicity in plants, making precise regulatory control over its uptake, translocation,
and cellular efflux critical for maintaining overall B homeostasis. Genetic analyses
of Arabidopsis thaliana show that boron uptake and translocation are mediated
by two families of transmembrane transporter proteins: NIPs (nodulin-26-like
intrinsic proteins), which facilitate the permeation of boric acid, and BORs,
responsible for exporting borate from cells. Importantly, the identification and
characterization of NIPs and BORs have been essential for elucidating B
homeostasis and its physiological roles not only in Arabidopsis but also in
diverse plant species. Furthermore, the homeostasis of B is maintained by
multi-level regulation of its transport proteins, including transcriptional
modulation, mRNA stability, translational repression, and endocytic
degradation. Moreover, modulating B transport gene expression to enhance
tolerance to B deficiency or toxicity can improve plant growth under unfavorable
B nutrient conditions. Therefore, generating B-efficient or B-tolerant plants is a
cost-effective and sustainable agricultural strategy. In this review, we discuss the
physiological roles of B transport proteins and their regulatory mechanisms,
focusing on intracellular localization and abundance.
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1 Introduction

Nutrients are categorized as either macronutrients or micronutrients based on the
quantities required for growth. These nutrients play a crucial role in regulating cellular
electrochemical balance, function as biochemical cofactors, and serve as structural
components within biomolecules and complexes (Baxter, 2009). Boron (B) is an essential
micronutrient for normal development of plants, naturally present in the soil as boric acid
(H5BO;) or borate [B(OH,)] depending on the pH of the soil solution (Warrington, 1923;
Lilay et al.,, 2024). Under physiological conditions, B is present primarily as boric acid in
solution; boric acid is a weak Lewis acid with a pKa of 9.24, [B(OH); +H,0 = B(OH),” +H"]
(Power and Woods, 1997). Boron plays varied and complex roles in plant development, as
shown by the diverse phenotypes of deficient plants. One of the primary functions of B is to
facilitate the cross-linking of the pectic polysaccharide RG-II within cell walls (Kobayashi
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et al., 1996; Ishii and Matsunaga, 1996; Ishii et al., 1999; O’Neill et al.,
2001), where over 90% of the RG-II in the plant cell wall is cross-
linked by B (O'Neill et al., 2004; Matsunaga et al., 2004). In addition,
it has been proposed that B serves as a component of both the plasma
membrane (PM) and the cytoskeleton of the cell (Bassil et al., 2004;
Voxeur and Fry, 2014).

There is a narrow range of B concentrations that supports plant
growth, outside this range B can be toxic or cause deficiency
symptoms. B deficiency symptoms primarily occur during plant
growth, leading to inhibited expansion of young leaves, reduced
root elongation, and loss of fertility (Dell and Huang, 1997;
Shorrocks, 1997). On the other hand, B toxicity disrupts cellular
metabolism, induces oxidative stress, promotes membrane lipid
peroxidation, and triggers DNA damage, often leading to tissue
necrosis (Reid et al.,, 2004; Sakamoto et al., 2011). Therefore, to
prevent B deficiency or toxicity, plants require B transport systems
in response to B levels. Since B cannot be readily re-translocated
from mature to developing organs, B must be continuously
absorbed from soil and transport to growing tissues in plants
(Brown and Shelp, 1997). There were three distinct mechanisms
reported for plants to acquire B from soil: (1) passive diffusion of
uncharged boric acid under sufficient or high B availability; (2)
active uptake, primarily under B-deficient conditions; and (3)
facilitated diffusion mediated by channel proteins (Wimmer and
Eichert, 2013). Recent findings have provided important insights
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into B transport in plants, along with advances in understanding its
regulation. Here, we investigate B transport mechanisms, focusing
on the key transporters involved, their physiological functions, and
regulatory pathways.

2 Boron channels and transporters
2.1 Characterization of boron transporters

B transport processes have traditionally been regarded as
predominantly passive (Marschner, 1995). This perspective is
largely due to the fact that boric acid, which is a principal form
of B under physiological conditions, exists as an uncharged
molecule that readily diffuses across the plasma membrane
(Takano et al., 2008). However, several physiological experiments
have identified active mechanisms for B transport. Dannel et al.
(2000) demonstrated that B transport in sunflower (Helianthus
annuus) occurs via carrier or channel-mediated processes. Major
breakthroughs in understanding B transport mechanisms began
with the identification of Arabidopsis BOR1 (AtBORI) as the first
known biological B transporter (Takano et al., 2002). Regarding the
uptake and translocation of B in plants, this process is ensured by
two transmembrane transporter protein families (Figure 1):
(1) channel proteins from the NIPs (nodulin-26 like intrinsic
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Overview of boron transporters in plants. Under low B conditions, AtNIP5;1 imports boric acid into epidermal, cortical, and endodermal cells, while
AtBOR1 export boric acid/borate from stelar cells via xylem loading. Under excess B conditions, AtBOR4 enhances plant tolerance by mediating B
export from roots to the soil. B is transported from roots to nodal regions via xylem, then unloaded and transferred across companion and phloem
parenchyma cells to the phloem through AtNIP6;1. In rice, OsNIP3;1 is polarly localized at the xylem parenchyma cells and mediates the unloading
of B from the xylem for intervascular transfer. The efflux of B for this intervascular transfer is then mediated by OsBOR1. Additionally, OsNIP3;1,
located at the phloem cells, also facilitates B influx into the phloem for preferential distribution. Under physiological conditions, boric acid enters
cells via specific channels. In the slightly alkaline cytosol (pH ~7.5), it is converted into borate anions and exported by borate uniporters. These
anions are then reconverted to boric acid in the lower-pH (5-6) apoplast. NIPs and BORs from different plant species are listed in the colored boxes.
At, Arabidopsis thaliana; Bna, Brassica napus; Cm, Citrus macrophylla; Os, Oryza sativa; PPC/CC, phloem parenchyma cells/companion cells; Ta,

Triticum aestivum; Vv, Vitis vinifera.
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proteins) family, which are boric acid channels that enable the
passive transmembrane flow of uncharged boric acid, driven by
concentration gradients; and (2) efflux transporters belonging to the
BOR family, which mediate the efflux of borate ions (Miwa and
Fujiwara, 2010).

2.2 Functions of NIPs in B transport

The molecular mechanisms of B uptake and transport in plants
have been most extensively studied in Arabidopsis (Miwa and
Fujiwara, 2010; Onuh and Miwa, 2021). Major intrinsic proteins
(MIPs) family have been identified as boric acid channels (Wallace
et al,, 2006). Plant MIPs are classified into four distinct groups: the
tonoplast intrinsic proteins (TIPs), the plasma membrane intrinsic
proteins (PIPs), the nodulin 26 (NOD26)-like intrinsic proteins
(NIPs) and the small basic intrinsic proteins (SIPs) (Wallace et al.,
2006; Maurel et al.,, 2015). NIPs are further classified into
three subclasses (I-IIT) based on their pore structures, and the
physiological function of NIP I proteins remains unclear,
while NIP II and III are known to transport boric acid and
silicic acid, respectively (Wallace and Roberts, 2004; Danielson
and Johanson, 2010; Roberts and Routray, 2017). In Arabidopsis,
the NIP subfamily consists of nine genes (Johanson et al,
2001), including three members belonging to the NIP II
subgroup: AtNIP5;1, AtNIP6;1 and AtNIP7;1 (Wallace and
Roberts, 2005).

AtNIP5;1, a major boric acid channel played a crucial role in B
uptake from soil under B-limited conditions (Takano et al., 2006,
2010). AtNIP5;1 has been shown to be localized on plasma
membrane of lateral root cap (LRC) and epidermal cells (Takano
et al, 2010). A ThrProGly (TPG) repeat in the N-terminus of
ANIP5;1 was crucial for its polar localization and effective B
transport in roots (Wang et al., 2017). Expression of the AtNIP5;1
was transcriptionally enhanced 10-fold in response to B limitation
in roots (Takano et al., 2006). AtNIP6;1 was the most similar gene to
AtNIP5;1 among the nine NIP genes in Arabidopsis and played a
key role in the preferential translocation of B into young growing
leaves (Wallace and Roberts, 2005; Tanaka et al., 2008). Limitation
treatment and tracer experiments showed that B concentration were
significantly reduced in young rosette leaves and shoot apices
(reduced by 20% to 27%) under the conditions of B limitation in
atnip6;1 mutants, suggesting that AtNIP6;1 was required for
preferential distribution of B to sink tissues (e.g., young rosette
leaves, shoot apices; Tanaka et al., 2008). Both AtNIP5;1 and
AtNIP6;1 were the boric acid channels on plasma membrane, and
AtNIP6;1 was completely impermeable to water and involved in
xylem-phloem B transfer (Takano et al., 2006; Tanaka et al., 2008).
Unlike AtNIP5;1, B limitation resulted in a slight transcriptional
upregulation (1.4-fold) of AfNIP6;1 in stems, but no significant
difference was observed in shoots (Tanaka et al., 2008). AtNIP7;1
was also identified as a boric acid channel expressed in floral
anthers, functions as a water-tight boric acid permease and also
transports glycerol at a lower rate (Li et al., 2011; Routray
et al., 2018).
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To date, several AtNIP5;1 homologous genes have been
identified in different crops species, such as rice (Oryza sativa),
rapeseed (Brassica napus) and maize (Zea mays) (Wallace et al,
2006; Durbak et al., 2014; Hua et al., 2016; He et al., 2021a). Rice
OsNIP3;1 exhibited the highest degree of similarity to AtNIP5;1
(Wallace et al., 2006), and was expressed in the vascular bundles of
both leaf sheaths and blades, as well as in the root exodermis and
stele (Figure 2) (Hanaoka et al., 2014). In the nodes, OsNIP3;1 was
polarly localized at the xylem parenchyma cells of enlarged vascular
bundles (EVBs), facing toward the xylem vessels (Shao et al., 2018).
OsNIP3;1 RNAI plants showed disrupted B distribution between
leaf blades and sheaths (Hanaoka et al., 2014). Subsequently, it was
demonstrated that OsNIP3;1 mediated the unloading B from xylem
of EVBs in the nodes, thus promoting its preferential distribution to
developing tissues under B-limited conditions (Shao et al., 2018).
TLS1/ZmNIP3;1 protein possessed the ability to transport both
water and boric acid in Xenopus laevis oocytes, widely expressed
across multiple tissue types, with highest levels in floral tissues and
particularly in silks (Durbak et al., 2014; Leonard et al., 2014). Two
orthologous AtNIP5;1 genes, BnaA2.NIP5;1 and BnaA3.NIP5;1,
each with distinct functions, playing a crucial role in the growth
of B. napus under B deficiency (He et al., 2021b). BnaA2.NIP5;1 and
BnaA3.NIP5;1 functioned coordinately for efficient boron uptake.
BnaA2.NIP5;1 was primarily expressed in root epidermal cells,
mediated uptake, while BnaA3.NIP5;1 was polar-localized in the
distal part of LRC cells and promoted root growth under deficiency
to support translocation to the shoot (He et al., 2021a, 2021).

2.3 Functions of BORs in B transport

AtBORI1 was an efflux-type B transporter that expressed in
pericycle cells of the root stele (Figure 2), functioned in xylem
loading and essential for preventing B deficiency in shoots (Noguchi
et al, 2000; Takano et al., 2002). Subsequently, six AtBORI-
homology genes were identified in Arabidopsis (Frommer and
Wiren, 2002). AtBOR2, the most similar paralog of AtBORI,
functioned in root cell elongation under conditions of B
limitation (Miwa et al., 2013). The concentrations of shoot B were
lower in atbor2 mutant than that in wild-type plants, but a more
significant reduction was observed in atborl-3 under low-B
conditions (Miwa et al., 2013). Thus, the role of AtBOR2
contributed to the root-to-shoot translocation was minor than
that of AtBOR1 (Miwa et al,, 2013). Additionally, AtBOR4
encoded an efflux-type B transporter localized to the plasma
membrane of the distal side of epidermal cells in roots and
mitigated toxic levels of B in roots (Miwa et al., 2007; Miwa and
Fujiwara, 2011; Miwa et al., 2014).

To date, functional BOR genes have been identified from different
plants such as rice (Oryza sativa), wheat (Triticum aestivum), barley
(Hordeum vulgare) and maize (Zea mays) (Nakagawa et al., 2007; Reid,
2007; Sutton et al., 2007; Chatterjee et al., 2014). In rice, OsBORI, a
close paralog of AtBORI, functioned as an efflux transporter for B and
played a crucial role in both the xylem loading of B and its uptake into
roots (Nakagawa et al., 2007). This function, unlike AtBOR1’s exclusive
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Distribution of boron transporters in various tissues. Illustration of Arabidopsis and rice plants, featuring magnifications that highlight various organs.
The circled numbers adjacent to tissues indicated which transporters were predominantly expressed in each tissue. Note that not all tissues

expressed these transporters.

role in xylem loading, resembled the combined roles of AtBOR1 and
AtNIP5;1 in Arabidopsis. A recent study showed that OsBOR1 was
highly expressed in the nodes, where it mediated B efflux from cells
toward diffuse vascular bundles (DVBs) for delivering B to developing
tissues (Shao et al, 2021). OsBORI cooperated with OsNIP3;1 to
establish a coordinated system for the preferential distribution of B to
developing tissues (Shao et al,, 2021). In wheat, three functional BORs
(TaBORI1.1, TaBOR1.2 and TaBOR1.3) were reported to localize on the
plasma membrane in Arabidopsis leaf cells, and exhibit B efflux activity
in BY-2 cells (Leaungthitikanchana et al., 2013). In maize, the B efflux
transporter ROTTEN EAR (RTE) functioned as a co-ortholog of
AtBORI and was predominantly expressed in the cells surrounding
the xylem within both vegetative and reproductive tissues (Chatterjee
et al,, 2014); RTE2 encoded a protein similar to its paralog RTE and
could completely recover the deficiency of atborl mutant in
Arabidopsis (Chatterjee et al, 2017). RTE and RTE2 were all
predominantly localized on the plasma membrane (Chatterjee
et al., 2017).

AtBOR homologous genes have also been isolated from
dicotyledonous species, such as grapevine (Vitis vinifera), citrus
(Citrus macrophylla) and rapeseed (Brassica napus) (Pérez-Castro
et al., 2012; Sun et al., 2012; Cafion et al.,, 2013). CmBORI from
C. macrophylla and VvBORI from V. vinifera were both
homologous to AtBORI (Canon et al., 2013; Perez-Castro et al.,
2012). Functional assays in yeast showed that CmBORI1 mediated
B efflux (Canon et al, 2013), while VVBORI localized to the
proximal plasma membrane of root pericycle cells and restored
the wild-type phenotype in Arabidopsis atborl-3 mutants under
B deficiency (Pérez-Castro et al., 2012). In B. napus, BnaC4.BORI;1c
was widely expressed in shoot nodes and localized to the plasma
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membrane, displaying characteristics generally similar to
AtBORI1 (Zhang et al,, 2017); Nevertheless, BnaC4.BORI;1c
showed distinctive features compared with AtBORI, it was also
extensively expressed in immature floral buds, and preferential
distribution of B to the reproductive organs (Zhang et al., 2017).
Two homologous genes of AtBOR2 were identified in B. napus:
BnaC4.BOR2 and BnaA4.BOR2, both of which were mainly
localized to the plasma membrane and showed B transport
activity in yeast (Liu et al., 2024a, 2024). BnaC4.BOR2, expressed
in lateral root caps and steles, was involved in B absorption in roots
and its translocation to shoots (Liu et al., 2024b). BnaA4.BOR2 was
primarily expressed in the cortex and endodermis of the root tip
meristem zone, as well as in the mature endodermis, it facilitated
the transport of B from roots to shoots and its distribution within
shoots (Liu et al., 2024a).

Conversely, while boric acid is an essential plant micronutrient,
excess B inhibits plant growth, impairing various cellular functions
and often causes necrosis of tissues (CamachoCristobal et al., 2008;
Landi et al, 2019; Wu et al,, 2019). AtBOR4 mediated B efflux
and was located on the distal surface of epidermal cells, where
it reduced B concentrations in roots and shoots, thereby
protecting plants from B accumulation and toxicity (Miwa et al,
2007; Takeda and Matsuoka, 2008). Unlike AtBOR4, OsBOR4
in rice exhibited distinct functional characteristics, showed an
anther-specific expression pattern, and was involved in
maintaining boron homeostasis during fertilization (Tanaka et al,
2013). Moreover, in barley, borate exporters Botl/HVBOR2 was
responsible for the high B tolerance and protected plants from
B accumulation and subsequent toxicity (Miwa et al., 2007; Sutton
et al., 2007).
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3 Physiological functions of B
transporters

The roles of B in plant development seem to be diverse and
intricate, as demonstrated by the variety of phenotypes observed in
plants exhibiting deficiency. Depending on the growth stage or
period of plant undergoing the B deficiency, their vegetative and
reproductive development might be significantly or completely
suppressed. In higher plants, the symptoms of B deficiency vary
widely, including stunted root and shoot growth, curled and reddish
leaves, aborted floral buds, reduced pod formation, and poor seed
yield (Yang et al.,, 2013; Durbak et al., 2014).

Mutations of B transporters in plant lead to significant
developmental defects (Table 1). AtBORI was crucial for xylem
loading, supporting normal shoot and reproductive development
under low B conditions (Noguchi et al., 1997, 2000; Takano et al.,
2002). The atborl-1 mutant exhibited impaired rosette leaf
expansion at 3 uM B and showed normal growth but female
sterility at 30 pM B, while the wild-type plants thrived under the
same conditions; both defects could be fully rescued by
supplementation with 100 uM B (Noguchi et al, 1997). The
atbor2-1 mutants under B deficiency exhibited impaired root cell
elongation due to reduced RG-II-B dimer formation, indicating that
a 50% RG-II cross-linking level was the minimum threshold for
normal root elongation (Miwa et al., 2013). Moreover, the borI-3/
bor2-1 double mutant displayed significantly more pronounced
growth defects in both roots and shoots under B-limited conditions
compared to the borI-3 or bor2-1 single mutant, indicating
partially redundant roles for AtBOR1 and AtBOR2 in root and
shoot development under B deficiency (Miwa et al., 2013; Chatterjee
etal,, 2017). Similarly, growth defects in both roots and shoots were
significantly diminished in loss-of-function mutants of AtNIP5;1, a
boric acid channel essential for B uptake that was necessary for
growth under B-limited conditions (Takano et al., 2006). Under
0.1uM B conditions, the atnip6;1 mutant plants exhibited smaller,
dark green color and irregular shape in young rosette leaves at
vegetative stages, and loss of apical dominance at reproductive
stages (Tanaka et al., 2008).

B deficiency not only impaired vegetative growth, including
inhibited root elongation and leaf expansion, but also severely
disrupted reproductive development, causing early defects in the
inflorescence meristem (IM) (Durbak et al., 2014). However, most
studies have primarily focused on roots, with limited analysis
dedicated to how these genes affect reproductive development. A
higher quantity of B is required during the reproductive
development phase in cereals (Shorrocks, 1997; Blevins and
Lukaszewski, 1998). This increased demand may be attributed to
pectin in the primary cell wall of grasses, whose content is initially
low but increases throughout reproductive development (Hu et al.,
1996; Matoh et al,, 1996). Such an increase in pectin content
impacts the key processes, including flowering, fruit set, and seed
formation (Dell and Huang, 1997; Huang et al., 2000). Since B is
essential for cross-linking RG-II chains, its availability in developing
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tissues is critical for reproductive processes like pollen germination
and pollen tube growth (Dell and Huang, 1997; Blevins and
Lukaszewski, 1998). AtNIP7;1 was primarily expressed in the
anthers of young flowers during a specific developmental phase,
particularly at floral stages 9 and 10 (Routray et al., 2018). AtNIP7;1
loss-of-function disrupted pollen morphology and lowered
germination rates under B deficiency, indicating that AtNIP7;1
was crucial for B transport during pollen development and
fertilization under low-B conditions (Routray et al., 2018).

Mutations in borate/boric acid transporters disrupt B homeostasis
globally, resulting in sterile phenotypes and reproductive growth
deficiencies observed in crops, including rice, maize and rapeseed.
Rice and other monocot cereals have a lower boron demand than
dicots due to the reduced levels of pectic compounds in their cell walls
(Matoh et al., 1996). In rice, B deficiency has a more pronounced
effect on reproductive growth than on vegetative growth (Uraguchi
and Fujiwara, 2011). Under B-deficient conditions, osbor] mutants
showed the sterile phenotype (Nakagawa et al., 2007). Furthermore,
heterozygous osbor4 mutants exhibited abnormal segregation ratios
in their progeny, and homozygous mutants displayed defects in
pollen tube germination and/or elongation, suggesting that OsBOR4
plays a role in fertilization, a process known to require adequate boron
nutrition, which is also consistent with its specific expression in
anthers (Tanaka et al, 2013). The rice gene Dwarf and Tiller-
Enhancing 1 (DTEI), an allele of OsNIP3;1, was identified as the
ortholog of AtNIP5;1, and regulates the B-dependent growth and
development (Liu et al, 2015). Loss of DTEI function leads to
vegetative and reproductive defects under low-B conditions,
including growth retardation, excessive tillering and impaired
pollen fertility (Liu et al., 2015). In maize, the early stages of tassel
and ear development were especially sensitive to B deficiency (Durbak
etal, 2014). Consistent with this notion, the maize RTE gene encoded
a functional ortholog of the AtBORI (Chatterjee et al., 2014). The rte
mutant exhibited developmental defects in both vegetative and
reproductive tissues, which impact both male and female
inflorescences due to an inability to maintain activity in the
inflorescence and axillary meristems (Chatterjee et al., 2014).
Exogenous B application restored reproductive growth phenotypes
in a dose-dependent manner (Chatterjee et al., 2014). Transmission
electron microscopy (TEM) analysis of rfe mutant ears revealed
developmental-stage-dependent defects in cell wall integrity,
indicating that B deficiency disrupted cell wall structure, caused
expansion defects and led to cell death in meristems and floral
organs (Chatterjee et al., 2014). Different from RTE, the disruption
of RTE2 did not affect vegetative or inflorescence development, rte2
mutant exhibited slightly shorter roots in B-deficient conditions
during early seedling growth (Chatterjee et al., 2017). However, the
rte/rte2 double mutant displayed more severe defects than its single
mutants, showing complete growth arrest under B-deficient soils
(Chatterjee et al., 2017). This B deficiency dependent phenotype
was observer in poor soils but not nutrient-rich conditions, and
could be fully rescued by boric acid supplementation (Chatterjee
et al., 2017).
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TABLE 1 Information and phenotypic characteristics of NIP and BOR Mutants in Plants.

Family

BOR

Plant source

Mutants

borl-1

Mutants
type

B concentration

Phenotype

Impaired rosette leaf expansion with reduced vegetative growth and repressed apical

References

EMS Low-B (3uM) i
borl-2 dominance Noguchi et al., 1997;
AtBORI Tak: t al.,, 2002,
Sufficient-B (30uM) Normal growth but female sterility ! anozeo l?)
borl-3 T-DNA insertion
High-B (100pM) Normal
bor2-1 ' . Low-B (0.1 uM) Inhibited shoot and root growth Kasai et al, 2011; Miwa
AtBOR2 T-DNA insertion
Arabidopsis bor2-2 Sufficient-B (301tM) Normal etal, 2013
thaliana
(Arabidopsis) Low-B (0.1 Double mutant exhibited much more severe growth defects in both roots and shoots
AtBOR1/ borl-3/bor2-1 Single mutant ow-B (0.1 uM) compared to the single mutants Kasai et al., 2011; Miwa
AtBOR2 double mutant hybridization et al, 2013
Sufficient-B (30pM) Normal
T-DNA insertion Low-B (0.1 uM) Normal
bord-1 (bord-1, bord-2) Lv et al, 2017; Mi
ord-1, bord- . vetal, ; Miwa
AtBOR4 bord-2 Sufficient-B (30uM) Normal
bord-4 Transposon et al, 2014
(bord-4) Toxic-B (6 mM) Reduction shoot and root growth
osborl-1 ' ' Low-B (0.03 uM) Inhibited vegetative growth accompanied by sterility
OsBOR1 borl-2 Tos17 insertion Nakagawa et al., 2007
Oryza sativa 0sbori- Sufficient-B (18uM) Normal
(Rice)
bor4 h tants exhibited fe tub d less efficient tube elongati
OsBOR4 osbord Tos17 insertion Natural conditions osbord homozygous mutants exiibl e. ewer u €8 and fess eficient tube elongation on Tanaka et al., 2013
wild-type stigmas
Low-B (20 uM) Exhibited stunted tassels with refluced branching and aF)s'ent spikelets; leaves necrotic
and wrinkled post-floral transition
Chatterj t al., 2014,
RTE rotten ear (rte) EMS . ) N ) atterjee et a
Sufficient-B (100uM) Restored vegetative growth and male fertility; rte ears developed but failed to set kernels 2017
High-B (200uM) Normal
Zea mays (Maize)
RTE2 rte2 Transposon Low-B Significantly shorter primary roots in seedlings Chatterjee et al., 2017
. Exhibited stunted growth with chlorotic, translucent leaves; rudimentary ears; reduced
tesrte2 doubl Singl tant Sufficient-B (0.35 ppm) .
RTE/RTE2 rte;rte2 double in, ? fﬂu ‘an root system and premature lethality after 7-8 leaves Chatterjee et al., 2017
mutant hybridization
High-B Normal
Low-B Exhibited stunted growth with dark green, crimped leaves, inhibited roots at seedling
RNAi-1 - ik . . . . .
BnaC4.BORI; I RNA: ; RNA interference stage; inhibited inflorescence with exposed stigmas, dried buds, and low seed yield Zhang et al., 2017
Brassi -
rassica napus Sufficient-B Showed abnormal flowers with stigma exsertion
(Rapeseed)
BraAd.BOR2 CR#1 CRISPR/Cas9 Low-B (0.25 M) Exhibited curly'dark green l.eaves and stunted. growth; abnormal inﬂorescen.ces with Liu et al, 2024a
CR#2 exposed stigmas and withered buds, leading to severely reduced seed yield

(Continued)
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TABLE 1 Continued

Family

NIP

Gene

Plant source
name

Mutants

Mutants
type

B concentration

High-B (100 uM)

Phenotype

Normal

Significantly restricted growth with shorter primary roots, reduced shoot dry weight,

References

CR#1 Low-B Lo . . . s
BnaC4.BOR2 CR#2 CRISPR/Cas9 diminished seed yield, and impaired pollen viability Liu et al,, 2024b
CR#3 High-B Normal
- Low-B (3 uM/10uM) Displayed cessation f)f maindro.o‘t1 gfrow.'th; fimall rose(’;te.sl;' bushy stature with short e et 00
AINIP5:1 p 8 T-DNA insertion internodes; defective flowers and siliques - 8
nip5;1-2 2010
Sufficient-B (30uM) Normal
. . . Low-B . . . .
Arabidopsis nip6;1-1 0.1 uM/1 uM Exhibited darker, smaller, irregular rosette leaves and loss of apical dominance
thaliana AtNIP6;1 nip6;1-2 T-DNA Insertion 01 uM) Tanaka et al., 2008
(Arabidopsis) nip6;1-3 High-B (100 M) Normal
- Low-B (03 uM) Exhibited severely stunted siliques, .disr.upted pollen morphology, and reduced
AtNIP7;1 nip7,'1 5 T-DNA Insertion germination rates Routray et al., 2018
High-B (100 uM) Normal
Oryza sativa DTE1/ OsNIP3;1 RNAi RNA interference Low-B (0 uM) Exhibited retarded growth, an increased number of tillers, and impaired pollen fertility Hanaoka et al, 2014;
(Rice) OsNIP5;1 dtel Natural selection Sufficient-B (18 pM) Normal Liu et al, 2015
Exhibited a smaller SAM, progressively narrower leaves, and premature termination of
Low-B owth Durbak et al., 2014;
TLSI tassel-less1 (tls1) EMS er
Matthesa et al., 2018
Zea mays (Maize) Natural conditions Consistent early defects in tassel and ear development
tlsI;rte Single mutant o . . L .
TLS1/RTE . Low-B (in Missouri ) Compared with tls1, not significantly enhanced in the tlsI;rte double mutant Leonard et al., 2014
double mutant hybridization
Low-B (0.25 uM) Exhibited curved leaves, stubby roots, reduced biomass; ultimately fewer pods and seeds
BnaA3.NIP5;1 | sRNAi®**NP51 | RNA interference He et al,, 2021b
Brassica napus High-B (100 uM) Normal
(Rapeseed) BnaA2.NIP5:1 Low-B (0.25 uM) Exhibited multiple branches and necrosis in the apical meristem
. ’ mRNAiPNP%1s | RNA interference He et al., 2021a
/BnaA3.NIP5;1

High-B (100 uM)

Normal

EMS, Ethylmethane sulphonate.
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The maize TLSI was an allele of ZmNIP3;1, which predominantly
expressed in floral tissues, particularly within the silks, tassel-lessI
(tIsI) mutant displayed defects in vegetative and inflorescence
development (Leonard et al.,, 2014). Under normal conditions, IsI
mutants exhibited early abnormalities in tassel and ear formation
(Durbak et al., 2014; Leonard et al., 2014). However, under low B
conditions, they additionally showed impaired vegetative growth,
characterized by a smaller shoot apical meristem (SAM),
progressively narrower leaves, and premature growth termination
(Durbak et al., 2014). The developmental phenotypic defects of tlsI
mutant could be rescued by application of sufficient B (Leonard et al.,
2014; Durbak et al, 2014). The tlsI mutant displayed impaired
vegetative-to-reproductive transition and floral meristem
development, accompanied by reduced RG-II cross-linking in
immature inflorescence cell walls (Leonard et al, 2014; Durbak
et al., 2014). Moreover, light intensity affected the tisI phenotypes:
the combination of high-pressure sodium and metal halide (MH)
lamps reduced the tassel phenotype severity in the tlsI mutant under
low-boron conditions by significantly increasing both transpiration
and boron content (Matthesa et al., 2018).

B. napus is a vital oil crop with high B demand and great
sensitivity to B deficiency (Xu et al., 2002). Under B deficiency,
B. napus exhibits severe growth defects in both vegetative (inhibited
root growth, leaf curling and necrosis) and reproductive (branch
proliferation and stigma protrusion) organs, ultimately leading to
substantial yield loss (Wang et al., 2017). BnaC4.BORI;1c RNAi
plants caused severe inhibition of inflorescence growth, including
exposed stigma, dried-up and dropped floral buds and significantly
lower seed yield (Zhang et al, 2017). Mutations in either
BnaC4.BOR2 or BnaA4.BOR2 increased B deficiency sensitivity in
B. napus, inhibited root growth, reduced root and shoot biomass,
and severely impaired inflorescence development under low B
condition (Liu et al., 2024a, 2024). These defects caused
substantial yield losses, highlighting the gene’s critical role in
flower organ development and seed production under low-B
conditions (Liu et al., 2024a, 2024). BnaA3.NIP5;1 RNAi plants
exhibited severe developmental defects, including curved leaves and
stubby roots, and caused a more than 85% decrease in seed yield per
plant under low boron conditions, indicating that BnaA3.NIP5;1
was essential for seed production in B. napus under boron
limitation (He et al., 2021a, 2021). Compared with the
BnaA3.NIP5;1 single RNAI plants, the multiple-target knockdown
lines of both BnaA2.NIP5;1 and BnaA3.NIP5;1 (mRNAiP*NIP51s)
exhibited more severe defects, such as multiple branches and apical
meristem necrosis (He et al., 2021b).

In grapevine, VVBORI expression level was in a stage-dependent
manner during grapevine reproductive growth, with a peak in
flowers at anthesis (Perez-Castro et al, 2012). B accumulation
during grapevine fruit development exhibited a biphasic pattern,
peaking during the rapid growth phases (pre-veraison and post-
veraison) while declining during the growth-arrested stage (Pérez-
Castro et al., 2012). VvBORI gene expression preceded B content
increases, showing significant stage-to-stage correlation between
transcriptional levels and subsequent B accumulation (Pérez-
Castro et al., 2012).
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4 Molecular mechanisms of plant
responses to boron deficiency and
toxicity stress

Due to the dual effects of B deficiency and toxicity on plant growth
and development, it is important for plants to maintain B homeostasis
for proper growth, and the regulation of the B transport process plays
a crucial role in B homeostasis. The accumulation of B transporters is
regulated by the availability of B through various regulatory
mechanisms. Multiple transcriptional and post-transcriptional
regulatory mechanisms have been identified to medicate acclimation
to nutrient-rich (high-B) conditions (Figure 3). These mechanisms,
regulated by B availability, ensure precise control of B uptake to
prevent both toxicity and deficiency.

4.1 Endocytic degradation of AtBORs
regulates boron levels

The mRNA levels of AtBORI remained largely stable across the
tested B conditions, and B translocation from roots to shoots increased
under low B and decreased rapidly under high B treatment, suggesting
there was post-transcriptional control of AtBOR1 (Takano et al,
2005). The trafficking of AtBORI1 shifted from PM-endosome
recycling under B deficiency to endocytosis and vacuolar
degradation under high B conditions, thereby regulating B
homeostasis (Takano et al, 2010; Kasai et al,, 2011). A series of
forward studies demonstrated that DYNAMIN-RELATED PROTEIN
1A (DRP1A) and the clathrin adaptor protein ADAPTOR PROTEIN
2 (AP2)-mediated endocytosis maintained the polar localization of
BORI, thereby supporting plant growth under low-B conditions
(Yoshinari et al., 2016, 2019). In contrast, boron-induced vacuolar
sorting of BOR1 was DRP1-dependent but occurred through an AP2-
independent endocytic pathway (Yoshinari et al., 2016, 2019).
Additionally, K63-linked polyubiquitination of BORI1 at lysine 590
proved essential for its high B-induced endocytosis and degradation
(Yoshinari et al, 2021a). GNOM, a guanine-nucleotide exchange
factor (ARF-GEF), mediated endocytosis that contributed to
maintaining BOR1 polar localization under boron-limited
conditions (Yoshinari et al,, 2021b). Similarly, AtBOR2, which was
degraded under high B conditions, exhibited cycling behavior between
the plasma membrane and endosomes under low B conditions,
mirroring the dynamics of AtBOR1 (Miwa et al., 2013). In addition,
OsBORI1 underwent gradual degradation in response to high B,
however, its degradation pathway differs from that of AtBORI
(Shao et al., 2021).

4.2 B-dependent regulation of mRNA
levels
In eukaryotes, short open reading frames (ORFs) in the 5-

untranslated region (5-UTR), known as upstream ORFs (uORFs),
are often affected the translation of the downstream ORF (Jackson
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FIGURE 3

Intracellular and signaling mechanisms involved in cellular-level boron homeostasis within root cells. Under low-B conditions, AtBOR1 underwent
continuous internalization from the plasma membrane into trans-Golgi network/early endosome (TGN/EE), where it was recycled back to the PM to
sustain B uptake. Moreover, the transcription factor BnaA9.WRKY47 specifically activated the expression of BnaA3.NIP5,1 by binding to the W box
elements. Under high-B conditions, AtBOR1 undergoes ubiquitination, the ubiquitinated BOR1 is transported from the TGN/EE into multi-vesicular
bodies/late endosomes (MVB/LE) by TOLs and endosomal sorting complex required for transport (ESCRT) machinery for vacuolar degradation,
preventing excessive B transport. The expression of BnaA3.NIP5,1 was repressed in response to boron deficiency. Additionally, ribosome stalling at
AUG-stops in the 5'-UTR of AtNIP5,1 increased under high-B conditions and was coupled with mRNA degradation. AtNGAL1 positively regulated the
expression of AtBOR1, AtNIP5;1, AtNIP6,1 and AtNIP7;1 in response to low B, and up-regulated AtBOR4 in response to high B.

etal., 2010; Hellens et al., 2016). The 5-UTR mediated B-dependent
AtNIP5;1 mRNA degradation for plant acclimation to high-B
conditions (Tanaka et al., 2011). AtNIP5;1 had two minimum
ORFs (AUG-stops) in its 5-UTR, and ribosome stalling at these
AUG-stops, which was enhanced under high-B conditions and led
to suppressed translation and mRNA degradation, depended on a
well-conserved region 12 to 19 nucleotides upstream that acted in
enhancing mRNA degradation but not in ribosome stalling (Tanaka
et al,, 2016). The 5-UTRs was highly conserved between OsNIP3;1
and AtNIP5;1 (Tanaka et al, 2011). In rice protoplasts, the
luciferase activity driven by the 5UTR of DTE1/OsNIP3;1
exhibited a dual B-dependent response, increasing at 1 pM B but
decreasing at 100 uM B, indicating the 5’UTR’s essential role in B-
responsive regulation and suggesting an AfNIP5;1-like mRNA
control mechanism to prevent excessive B accumulation under
high-B conditions (Liu et al., 2015).

In contrast, AtBORI protein abundance was regulated through
two distinct mechanisms: protein endocytic degradation and B-
dependent mRNA level regulation. When the B supply was
sufficient (100 uM), AtBORI1 level was down-regulated by
endocytic protein degradation (Takano et al., 2005; Kasai et al,
2011). However, at higher B concentrations, AtBOR1 level was
decreased further by both translational suppression and protein
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degradation to avoidance of B toxicity in plants (Aibara et al., 2018).
Furthermore, a ribosome profiling analysis revealed that transcripts
with reduced translation efficiency under high-B conditions were
rich in uORFs, and B played a general role in termination
of translation by high B induced global ribosome stalling at the
stop codon of main open reading frame (mORFs) (Sotta
et al,, 2021).

The abundance of B transporters in diverse plant species is
coordinately controlled through B-responsive mRNA regulation.
The OsBORI promoter exhibited a progressive shift in its cell-
specific activity between the stele and exodermis under varying B
conditions, which reflected its functional adaptation to B availability
(Nakagawa et al, 2007). The CTTTC tandem repeats in the
BnaA3.NIP5;1 5UTR negatively regulated its expression, and their
deletion enhanced BnaA3.NIP5;1 expression, which promoted root
growth and increased seed yield under B limitation (He et al., 2021a).
In roots, CmBORI expression remained unchanged under both B
deficiency and excess conditions, whereas in shoots, its expression
was upregulated under B deficiency but unaffected by excess B
(Canon et al, 2013). RT-qPCR analysis of TaBORIs revealed that
the accumulation of TaBORI.I and TaBORI1.3 mRNA was up-
regulated under B limitation, whereas TaBORI.2 mRNA
accumulation increased under excess B conditions compared with
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low or normal B conditions in roots (Leaungthitikanchana et al,
2013). In contrast, TaBORs and CmBORI exhibited distinct
regulation, implying functional diversification among BORI genes
(Canon et al., 2013; Leaungthitikanchana et al., 2013). This
divergence may reflect species-specific adaptations, particularly in
plants with complex genomes, where different BORI paralogs could
fulfill varied physiological roles.

Transcription factors play pivotal roles in multiple biological
processes by activating or repressing the transcription of target
genes (Levine and Davidson, 2005). Accumulating evidence has
highlighted the importance of transcription factors in responding to
nutrient conditions in plants. AtWRKY6 was the first transcription
factor reported to involve in the response to B deficiency, with its
promoter activity and transcription being induced by low B
conditions (Kasajima et al., 2010). BnaA9.WRKY47 positively
regulated low-B tolerance through up-regulating BnaA3.NIP5;1
expression to facilitate efficient B uptake (Feng et al., 2020). The
Arabidopsis homolog AtWRKY47 acted as a negative regulator that
involved in boron homeostasis (Feng et al., 2021). NGATHA-Like 1
(NGALI, also known as ABNORMAL SHOOT 2, ABS2) was a B-
responsive gene regulated in a B-dependent manner through AUG-
Stop, similar to AtNIP5;1 (Tanaka et al., 2016). NGALI positively
regulated the expression of AtBORI, AtNIP5;1, AtNIP6;1 and
AtNIP7;1 in response to low B, and up-regulated AtBOR4 in
response to high B to enhance B transport and distribution in
both conditions (Tsednee et al., 2022).

5 Transgenic plant development to
address B deficiency and toxicity

The inadequate uptake of B due to poor soil quality has emerged
as a significant agricultural challenge in various regions worldwide,
and crops cultivated in B-deficient soils often experience reductions
in both yield and fruit quality (Shorrocks, 1997; Dell and Huang,
1997). Although B fertilizer can alleviate plant B deficiency, borate
rock is a non-renewable resource. To address this problem, molecular
breeding to enhance B-transporter activity represents a promising
strategy for combating B deficiency in crops. On the other hand, B
exhibits toxic effects when present in excessive amounts. The
generation of B-deficient or tolerant plants represents a cost-
effective and environmentally sustainable strategy for agriculture.
There were several reports on improvement of B deficiency
tolerance or toxicity by modulating expression of B channel genes
to improve plant growth under unfavorable B nutrient conditions.

5.1 Generation of transgenic plants to
mitigate B deficiency

Overexpression of AfBORI enhanced root-to-shoot translocation
of B, and improved shoot growth and fertility under B-deficient
conditions but not root growth (Miwa et al., 2006). This was
attributed to the degradation of AtBORI under high-B supply, and
enhanced the translocation of B from root-to-shoot under low-B
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conditions (Takano et al.,, 2005; Miwa et al., 2006). Furthermore,
tomato (Solanum lycopersicum) plants overexpressing AtBORI
maintained normal leaf development under B deficiency, and
elevated B accumulation in shoots and fruits (Uraguchi et al,
2014). In addition, overexpression of CmBORI in Arabidopsis
resulted in enhanced shoot growth with limited B supply, as did
overexpression of AtBORI (Canon et al., 2013). Moreover,
Overexpression of BnaC4.BORLIc in the B-inefficient B. napus
cultivar W10 alleviated shoot B-deficiency symptoms by improving
boron distribution from roots to shoots (Chen et al., 2018).

AtNIP5;1 was a major boric acid channel required for efficient
import of B into roots (Takano et al., 2006). Arabidopsis plants with
AtNIP5;1 activated by a T-DNA insertion with a enhancer improved
root growth under B limitation, but did not improved shoot growth
(Kato et al, 2009). Furthermore, introduction of Pro(ssinips;n):
NIP5;1 into the AtBORI1 over expressor improved root elongation,
fertility and short-term B uptake under low-B supply (Kato et al,
2009). Elevated BnaA3.NIP5;1 expression improved low-B tolerance
in transgenic lines at both seedling and mature stages, and field trials
demonstrated that the BnaA3.NIP5;19 allele significantly increased
seed yield under B deficiency conditions (He et al., 2021a).

5.2 Generation of transgenic plants to
combat B toxicity

Overexpression of AtBOR4 improved growth under conditions
of B toxicity through AtBOR4-mediated B efflux that decreased B
concentrations in roots and shoots (Miwa et al., 2007). AtBOR4-
overexpressing transgenic plants were more capable of expanding
leaves and accumulating chlorophyll in shoot tissues under high-B
concentration, suggesting overexpressed AtBOR4 alters B
distribution in leaves by exporting B from cytoplasm into
apoplasm for enhancing high-B tolerance in shoots (Miwa and
Fujiwara, 2011). Arabidopsis SHB1/HY1 gene, encoded HO1 (heme
oxygenase 1), was up-regulated under excessive B stimulation, and
the shbl seedlings exhibited root inhibition under excessive B
treatments (Lv et al., 2017). However, overexpressing SHBI/HYI
or applying the HO1 catalytic products could induced BOR4
transcription, reduced B accumulation in roots and restored
primary root growth that confers high B tolerance (Lv et al., 2017).

Moreover, in a B-stress tolerant cultivar ‘Sahara’ of barley, unlike
intolerant genotypes, which had four tandem copies of the BotI gene
with higher transcript levels, and BotI expression levels directly
correlating with tolerance across various landraces (Hayes and Reid,
2004; Reid, 2007; Sutton et al., 2007; Mickelbart et al., 2015).
Similarly, TaBOR2 and HvBOR2 reduced root B concentrations in
the tolerant cultivars, and their expression levels showed positive
correlations with tolerance (Reid, 2007; Sutton et al., 2007).

6 Conclusion

Boron is an essential micronutrient for plant growth. Regulating
the activity of transport proteins is essential for plants to adapt to
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changing nutrient availability. Plants use complex homeostasis
networks to regulate boron uptake, mobilization, distribution, and
storage to assure proper growth. While characterizing BOR and NIP
II family members has greatly advanced our understanding of
boron transport systems, further research on boron transport
mechanisms in cereals remains essential to optimize boron
nutrient use efficiency. The regulatory mechanisms of B transport
proteins include B-induced ribosome stalling and A¢NIP5;1 mRNA
degradation mediated by its 5UTR (Tanaka et al., 2011, 2016), as
well as B-triggered endocytosis and degradation of AtBORI
through its self-regulatory transceptor function (Takano et al,
2005, 20105 Yoshinari et al., 2021a). However, the involvement of
additional regulatory elements or mechanisms in boron transport
protein modulation remains unclear. Therefore, a systematic
characterization of these proteins, including their regulatory
components and interaction networks, is essential for future
research. Current research on boron efficiency in plants has
mainly focused on roots, leaving the mechanisms during
reproductive growth poorly understood. In particular, floral organ
responses to boron deficiency and their molecular regulation
require urgent investigation. The development of B-deficient and
B-tolerant transgenic plants by manipulating B transport proteins
presents a promising strategy to reduce fertilizer use and mitigate
toxicity risks. Current successes in creating plants that tolerate both
low and high B levels should be optimized for crop species,
promoting sustainable agriculture in areas affected by B deficiency

Oor excess.
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