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Introduction: Microplastics (MPs), ubiquitous and insidious pollutants pervading
agricultural systems, pose an escalating threat to global food security. This makes
the development of nondestructive methods for the early detection of MPs stress
in rice seedling an urgent scientific imperative.

Method: Rice seedlings were cultivated under exposure to polyethylene
terephthalate (PET), polystyrene (PS), and polyvinyl chloride (PVC) MPs at
concentrations of 0 (control), 10, and 100 mg/L. Based on the stress-induced
alterations in root exudates composition, a novel detection method for MPs
stress in rice seedlings was developed using excitation-emission matrix
fluorescence (EEMF) spectra combined with deep learning.

Results: Analysis of the original EEMF spectra revealed discernible differences.
Feature extraction was performed using both the peak method and the PARAFAC
method. Spectral changes in seedlings exposed to the low MP concentration (10
mg/L) were relatively minor compared to the control group. In contrast,
exposure to the high concentration (100 mg/L) induced significant alterations
in humic acid-like and amino acid-like substances. Subsequently, enhanced
Vision Transformer (VIT) models were developed utilizing three distinct data
representations: full EEMF spectra, emission spectra at specific excitation
wavelengths, and extracted characteristic fluorescence values. The optimal
model achieved 100% classification accuracy. Furthermore, SHapley Additive
exPlanations (SHAP) analysis was employed to evaluate feature importance,
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identifying both humic acid-like and marine humic acid-like components as
major contributors to the model's predictions.

Conclusion: In summary, this study establishes a novel, non-destructive, and
interpretable framework for the early detection of MPs stress in rice seedlings
based on EEMF spectra of root exudates combined with deep learning.

KEYWORDS

deep learning, excitation emission matrix fluorescence spectra, microplastics, rice
seedling, root exudates

1 Introduction

In recent years, microplastics (MPs) pollution has become a
global problem, and its potential health risks garnering
unprecedented attention (Zhang et al, 2022). Among affected
ecosystems, agricultural systems have become significant
accumulation sites for MPs (Yadav et al., 2022). Rice, as a critical
global food crop, directly influences food security and human well-
being through its plant health (Edwards et al., 2024). thus, the safety
of its growth environment is paramount. The threat of MPs to crops
like rice constitutes an understudied endogenous stress
(Mamathaxim et al., 2023). Researches show these particles (< 5
mm) accumulate in soil/water, impairing roots development,
inhibiting water/nutrient uptake, inducing oxidative stress,
damaging cell structures, and ultimately reducing biomass, yield,
and quality (Yu et al., 2021). Critically, rice can absorb MPs and
associated toxins (e.g., heavy metals, persistent organic pollutants),
enabling transfer into grains via the food chain (Cao et al., 2021).
Human consumption of contaminated rice poses severe long-term
risks, including bioaccumulation in organs and exposure to
carcinogenic/mutagenic additives that disrupt endocrine systems
(Tang et al., 2024). Because the seedling stage represents rice’s most
stress-sensitive life phase, early detection of MPs stress at this
juncture holds critical scientific and practical significance.

At present, microscopes, mass spectrometry, spectroscopy and
other emerging technologies offer high sensitivity for MPs and
enable in-situ analysis (Ye et al., 2022). However, their destructive
sampling, complex pretreatment and technical expertise requirements
hider non-destructive plant monitoring. Root exudates specifically refer
to various organic substances released by plants into the rhizosphere
environment through active metabolism or passive exudation (Vives-
Peris et al., 2020). Studies have shown that when plants are exposed to
abiotic stresses such as heavy metal pollution and MPs invasion, root
exudates will show specific changes (Chai and Schachtman, 2022).
These dynamic responses range from pollutant detoxification through
chelation to antimicrobial compound release, reflecting plants’
rhizosphere-modulating survival strategies (Huang et al, 2014).
Notably, there have been studies exploring the effects of polystyrene
(PS), polyethylene (PE), and polypropylene (PP) MPs on the root
exudates of tomatoes under hydroponic conditions (Shi et al., 2023). It
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has been found that MPs promoted the secretion of organic acids,
malic acid, and myristic acid, etc. PS MPs stress lettuce leads to an
increase in the biosynthesis of ascorbic acid, terpenoids and flavonoids
in root exudates (Wang et al, 2023). MPs stress interferes with the
normal metabolic process of root secretions in tomato (Shi et al., 2023),
resulting in abnormalities of substances such as amino acids, organic
acids and phenolic compounds to cope with adverse stress. This would
provide the possibility for detecting MPs stress with root exudates as
characteristic markers.

Excitation emission matrix fluorescence (EEMF) spectra is a
novel fluorescence analysis technology capturing fluorescence
intensity across simultaneous excitation/emission wavelength
scans, exceling at characterizing multi-component mixtures (Wei
etal., 2025). It detects stress-induced fluorescent-substance changes
in root exudates, revealing physiological states of MPs-stressed rice
seedlings (Fan et al, 2025) (Zhu et al, 2019). studied the
phenomenon of metal complexation between root exudates of
avicennia marina by EEMF spectra and found that the
fluorescence intensity of fulvic acid increased with the increase of
external salt content (Liu et al., 2018). analyzed the soluble organic
components extracted from large plants using EEMF spectra
technology and found that they mainly contained fulvic acid,
humus-like and protein-like fluorescent substances. Therefore,
EEMF-based monitoring of root exudate fluorescence offers
significant promise for MPs stress detection.

To achieve non-destructive, accurate, and interpretable
detection of MPs stress, this study employed machine learning
and deep learning techniques to extract key features from EEMF
spectra of rice seedling root exudates, construct detection models,
and analyze feature importance. The peak method was first
employed to rapidly identify characteristic response regions in
MPs-stressed root exudates for preliminary spectral feature
recognition (Komatsu et al., 2025). Subsequently, Parallel Factor
Analysis (PARAFAC) decomposition was applied to resolve key
fluorescent components within complex three-dimensional EEMF
spectra, effectively isolating target signals (Murphy et al., 2013). To
full leverage global spectral information and establish a high-
precision detection model, a deep learning model is implemented
for feature extraction and classification. Finally, the SHAP
interpretability framework quantified features importance to
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clarify the decision-making pathways and identify the most
indicative stress biomarkers (Choi et al., 2025).

This study aims to establish a non-destructive detection method
for MPs stress in rice seedlings using EEMF spectra of root
exudates. The specific objectives are to characterize MPs-induced
variations in EEMF spectral profiles; extract characteristic
fluorescent substances through feature extraction methods;
develop a deep learning-based detection model for MPs-stressed
seedlings, and quantify feature importance via explainable artificial
intelligence analysis. To our knowledge, this represents the first
investigation detecting rice seedlings under MPs stress through
EEMEF spectra of root exudates. The proposed methodology may
extend to detecting other emerging environmental pollutants.

2 Materials and methods
2.1 Sample preparation

Microplastics of polyethylene terephthalate (PET), polystyrene
(PS), and polyvinyl chloride (PVC), purchased from HengfaSuhua
(Guangdong, China), were characterized using a dynamic light
scattering (DLS) particle size analyzer (Zetasizer Nano ZS90, UK),
revealing a particle size distribution concentrated within 3-6 pum.
Rice (Liangyou Y900) was cultivated according to the method of
(Xie et al., 2024), whereby fifty seeds were placed in each glass petri
dish and subsequently treated with suspensions of PET, PS, or PVC
MPs at concentrations of 10 mg/L or 100 mg/L, while rice cultivated
with sterile water served as the control group. Six replicates were
prepared for each treatment. Under 7 days dark conditions, 5 mL of
the respective MP suspension or sterile water was added to each
dish daily for rice germination. Then, the seedlings were transferred
to an environment with a 14 h light/10 h dark photoperiod for
further cultivation over 5 weeks. At the end of 5 week, seedlings
were removed from the hydroponic solution, and their roots were
thoroughly rinsed with deionized water. Subsequently, the rinsed
rice seedlings were transferred to conical flasks containing 50 mL of
sterile water and left to stand in darkness for 4-6 hours to collect of
root exudates.

2.2 Collection of EEMF spectra

The EEMF spectra of root exudates were collected using a
Shanghai Lingguang F98 fluorescence spectrometer equipped with a
150 W xenon lamp and a standard right-angle optical assembly.
Instrument parameters were configured as follows: excitation
wavelengths ranged 220-550 nm at 5 nm intervals, emission
wavelengths ranged 240-750 nm at 1 nm intervals, the scan speed
was set to 30,000 nm/min, and the pulse width modulation (PMT)
voltage was maintained at 850 V. 3-4 mL root exudates was
transferred into quartz colorimetric dish using a disposable
syringe to obtain EEMF spectra. The scanning time for a single
sample is approximately 4 minutes. To reduce noise interference,
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three repeat measurements were performed per sample. EEMF
spectra were collected for 48 root exudates per experimental
group, yielding a total of 336 spectra.

Rayleigh and Raman scattering (Engelen et al., 2007) existed in
EEMF spectra due to molecular polarization induced by incident
light, and scatter removal was performed (Figure 1). As shown in
Figure la, Raman scattering occurs at Stokes/anti-Stokes lines,
which caused by inelastic collisions between photons and
molecular vibrations/rotations. Rayleigh scattering exhibiting the
same wavelength as the excitation light originate from elastic
collisions, which is intense but lacks chemical information.
Second-order scattering signals of both are weak. Fluorescence
intensity values within the scatter regions were masked as Not a
Number (NaN), as depicted in Figure 1b. Subsequently, linear
interpolation and moving average smoothing were applied to
these regions. Furthermore, since emitted photons possess lower
energy than excitation photons, the region where emission
wavelength is less than excitation wavelength was set to zero
(Figure 1c). Meanwhile, the emission spectrum at an excitation
wavelength of 350 nm is presented to demonstrate the one-
dimensional spectral processing. The original emission spectrum
(Figure 1d) exhibited first-order Rayleigh scattering near 350 nm,
first-order Raman scattering near 400 nm, and second-order
Rayleigh scattering near 700 nm. Results after scatter removal,
linear interpolation, and mean filtering are shown in Figure le).
Finally, regions where emission wavelengths below 350 nm were set
to zero, yielding the smoothed emission spectrum (Figure 1f).

2.3 Feature extraction

2.3.1 Peak method

Peak method extracts the fluorescence intensity of specific peak
locations/regions and characterizes fluorescence components of
EEMF spectra (Komatsu et al., 2025). In this study, the EEMF
spectra of rice root exudates revealed multiple characteristic peaks,
which were associated with complex organic compounds present,
including amino acids, phenolic compounds, and humic acids. To
analyze the fluorescence characteristics of the root exudates, seven
primary fluorescent substances were selected for investigation. The
locations of the respective fluorescence peaks and detailed
information on their corresponding substances are presented in
Table 1. The peak method effectively reveals variations in the
content of different fluorescent components, making it an efficient
approach for the rapid fingerprinting of root exudates.

2.3.2 PARAFAC

Parallel Factor Analysis (PARAFAC) is applied to EEMF
spectra to provide a robust analytical methodology for resolving
complex fluorescence signatures within root exudates (Yu et al.,
2019). The entire EEMF spectral dataset (sample x excitation
wavelength x emission wavelength) is decomposed by PARAFAC
into chemically interpretable components. This multi-channel
technology addresses the spectral overlap of co-fluorescent
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Pretreatment for removing fluorescence scattering peaks. (a) Original EEMF spectra, (b) Remove scattering, (c) Fitted EEMF spectra, (d) Original
emission spectra, (e) Scattering removal and interpolated spectra, and (f) Smoothed spectra.

moieties by extracting the pure excitation and emission loadings for
each component, along with their relative concentrations in the
samples. It is crucial that PARAFAC utilizes the intrinsic trilinear of
EEMF data to achieve this separation without the need for prior
assumptions about spectral distribution. The number of
components is determined through split-half analysis and core
consistency diagnostic. Therefore, complex spectral data are
transformed by PARAFAC into quantitative fingerprints of root
exudate composition, providing a powerful tool for investigating
rhizospheric stress mechanisms in rice seedlings under MPs stress.

TABLE 1 Characteristic fluorescence peaks and their assignments.

Excitation Emission

Fluorescent
substance

Peak wavelength wavelength

(nm) (nm)

A 260 400-460 UV humic acid

M 290-310 370-410 Marine humic acid

C 320-360 420-460 Visible humic acid

D 390 509 Fulvic acid

B 275 305 Tyrosine-like compound
T 275 340 Tryptophan-like compound
N 280 370 Phytoplankton-

related compound
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2.4 Models development, evaluation, and
explanation

The EEMF spectra consists of a two-dimensional matrix with
excitation wavelengths ranging from 220-550 nm and emission
wavelengths ranging from 240-750 nm, while the emission spectra
at specific excitation wavelengths are one-dimensional spectral
lines. In order to simultaneously process one-dimensional and
two-dimensional data, an improved Vision Transformer (VIT)
model was proposed for detecting MPs stress concentration
(Figure 2a). The data is partitioned into fixed-size patches by the
VIT model and global information is captured using self-attention
mechanism. The data with both position information and slice
vectors is input into the Transformer encoder (Figure 2b), which is
mainly consists of two parts: Normalization (Norm) + Multi Head
Attention, and Normalization + Multi-Layer Perceptron (MLP).
Layer normalization is adopted by the improved model instead of
batch normalization commonly used in convolutional neural
networks, which can reduce fluctuations caused by differences in
value ranges. The query (Q), key (K), and value (V) obtained
through linear transformation of the input vector enter the Multi
Head Attention (Figure 2¢), which divides the model into multiple
subspaces and simultaneously focuses on information at different
levels. The Q, K, and V vectors are projected into the scaled dot-
product attention module (Figure 2d) through linear full
connection, which is the core component of the Transformer
model and is essential for enabling parallel data processing. By
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The framework of improved VIT model. (a) Proposed VIT model, (b) Transformer Encoder, (c) Multi-Head Attention, and (d) Scaled Dot-Product

Attention.

calculating the dot product of Q and K, dividing by \/d to achieve
scaling and ensure data stability, the Softmax function is used to
convert the scaled data into a probability distribution to determine
importance, and finally weighted and summed to obtain the output,
as shown in Equation 1.

T

N

Attention(Q, K, V) = softmax( %4 (1)
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Where, Q, K, and V represent the query matrix, key matrix, and
value matrix, respectively, and d is the dimension of the key vector.
The scaling factor Ldk can avoid gradient vanishing and exploding
problems, ensuring the stability of training.

The data processed by the Transformer encoder enters the
Multi-Layer Perceptron head (MLP head), which is responsible for
converting the encoder output into classification tasks. This module
consists of a linear layer and an activation layer. The input features
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are dimensionally mapped to a higher space through the linear
layer, and the activation layer with nonlinear functions acquires
more complex expression capabilities. Dropout technique is used to
prevent overfitting, and then mapped to the types of microplastic
stress concentrations through linear full connections.

To evaluate the feasibility of the proposed VIT model, simple
machine learning models (K-Nearest Neighbor (KNN)), and
integrated machine learning models (Random Forest (RF)) were
compared against it. Accuracy, specificity, and sensitivity were
adopted as evaluation criteria (Zhu et al., 2022). SHAP, a game
theory-based model interpretation framework, provides global and
local interpretations by quantifying feature contributions to
prediction outcomes (Choi et al., 2025). In this study, SHAP was

(a)

500 700

Emission wavelength (nm)

300

10.3389/fpls.2025.1653451

employed to analyze the contribution of individual wavelengths to
the model.

3 Results and discussion
3.1 EEMF spectral analysis

Figure 3 shows the EEMF spectra of root exudates of rice
seedling under stress from different MPs concentrations and
types. Three fluorescence peaks are identified within the raw
spectra, with excitation/emission wavelengths centered at 285/345
nm, 355/438 nm, and 423/450 nm, corresponding to the
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FIGURE 3

EEMF spectra of root exudates treated with different concentrations and types of MPs. (a) Control, (b) 10 mg/L PET, (c) 10 mg/L PS, (d) 10 mg/L PVC,

(e) 100 mg/L PET, (f) 100 mg/L PS, and (g) 100 mg/L PVC.
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tryptophan, visible humic acid, and pigment, respectively. The
changes in amino acids and humic acid related root exudates
provide a basis for detecting MPs stress. When the MPs
concentration increased from 10 mg/L to 100 mg/L, the
fluorescence intensity was enhanced, indicating that the stress
response of rice seedlings was strengthened with the increase of
MPs stress concentration. At a concentration of 10 mg/L, the EEMF
spectra exhibited minimal changes across all three MP types,
indicating negligible alterations in rice seedling root exudates
under low-concentration stress. However, at 100 mg/L, the
spectral shape remains consistent, but the fluorescence intensity is
relatively higher. PS causes the highest fluorescence intensity,
followed by PVC, with PET lowest. This might be related to the
differences in the content of root exudates caused by different types
of MPs. The characteristics such as the position, intensity, shape
and width of the peaks in EEMF spectra are closely related to the
chemical structure and properties of fluorescent substances (Park

10.3389/fpls.2025.1653451

and Snyder, 2018). Therefore, it is necessary to carry out feature
extraction and analysis.

3.2 Fluorescence feature analysis

3.2.1 Feature extraction of peak method

The intensity of fluorescence peaks was calculated using peak
method, including UV humic acid (A, Ex/Em=260/400-460 nm),
marine humic acid (M, Ex/Em=290-310/370-410 nm), visible
humic acid (C, Ex/Em=320-360/420-460 nm), tyrosine like (B,
Ex/Em=275/305 nm), tryptophan like (T, Ex/Em=275/340 nm),
phytoplankton related (N, Ex/Em=280/370 nm), and fulvic acid (D,
Ex/Em=390/509 nm). Figure 4 shows the mean intensities of each
fluorescence peak in the EEMF spectra of the seven sample groups.
Among them, orange represents the control group, while green,
purple, and yellow represent PET, PS, and PVC stress, respectively.
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FIGURE 4
Feature extraction of peak method. (a)
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Left and right sloping stripes represent the stress concentrations of
10 mg/L and 100 mg/L, respectively. Under low concentration (10
mg/L) stress, the fluorescence peak intensities of A, M, C, N, and D
were all lower than those of the control group. The fluorescence
peak intensities of B and T were higher than those of the control
group under PET stress, while they were lower than those under PS
and PVC stress. This indicates that low concentrations of PS and
PVC have a weak inhibitory effect on the release of amino acid
substances and may even promote their release. Under high
concentration stress (100 mg/L), all three MP types exhibited
elevated fluorescence peak intensities at regions A, M, C, B, T,
and N compared to controls, indicating concurrent inhibition of
root exudate production and enhanced spectral response. The
fluorescence peak intensity of D increased under PET and PVC
stress, while it decreased under PS stress. This phenomenon may be
related to the benzene ring structure of PS promoting the
antioxidant capacity of rice.

MPs stress changed the microbial community in the
rhizosphere environment of rice seedlings, affecting the content of
humic acid substances (A, M, C) in root exudates (Kang et al.,
2023). Tryptophan (T) and tyrosine (B) are respectively involved in
the synthesis of bioactive substances such as bioactive amines, plant
hormones, proteins and dopamine. MPs stress affects the
nutritional status of rice, leading to abnormal synthesis and
metabolism of amino acid substances. Phytoplankton related
substances (N) may be associated with phenolic compounds,
pigments, and organic acids with antioxidant effects (Lebel et al.,
2025). Rice promotes the exudates of phenolic substances and
flavonoids, enhancing the ability to resist oxidative stress and
environmental pressure. Fulvic acid (D), as an important organic
component in humus, has the functions of regulating pH,
promoting plant growth, eliminating free radicals and delaying
cell aging (Cai et al, 2024). MPs stress inhibited the metabolic
activities of rice cells, resulting in a reduction in the synthesis and
accumulation of fulvic acid (D) in the root environment. In
addition, MPs stress also induces rice seedling to secrete more
organic acids, phenolic compounds and other secondary
metabolites to cope with environmental stress.

Overall, low-concentration MPs stress promotes the production
of rice roots exudates, resulting in decrease in the intensity of
fluorescence peaks. However, high-concentration stress inhibits the
stress response of rice and the production of root exudates, thereby
enhancing the intensity of the fluorescence peak. This result
indicates that rice roots exudates have a significant impact on the
fluorescence characteristics of MPs stress concentrations, laying the
foundation for rapid detection.

3.2.2 Feature extraction of PARAFAC

Due to the complex composition of root exudates, the highly
overlapping EEMF spectra increase the difficulty of direct analysis
and quantitative analysis. PARAFAC, a multidimensional
decomposition method, resolves complex fluorescence signals into
independent factors, enabling direct identification and
quantification of specific compounds in samples. The residual
variation trends under 3-6 factors were compared, and the error
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was minimized when the factor was 5. In addition, Split half analysis
shows that the similarity of PARAFAC with 5 factors is greater than
95%, therefore the 5 factors are the optimal results.

Five fluorescent components (labeled as C1-C5) obtained by
PARAFAC are shown in Figure 5. The excitation/emission peak of
Cl is located at 305 nm/425 nm, which may be related to
tryptophan (Cory and McKnight, 2005). When plants are
subjected to environmental stress, it usually promotes the
exudates of tryptophan by the plant roots to increase the
fluorescence intensity. Tryptophan and its derivatives play
significant roles in plant antioxidation and signal transduction,
which may indicate that rice roots enhance their stress resistance by
regulating metabolism. The excitation/emission peak of C2 is at 285
nm/355 nm, which is related to protein-like substances such as
tyrosine or phenylalanine (D’Andrilli et al., 2019). Rice roots
mitigate microplastic-induced damage by restructuring the
rhizosphere microbial community through enhanced protein
secretion, thereby stabilizing the root environment. The
excitation/emission peak of C3 is at 375 nm/475 nm, which may
be related to humic acid (Lin and Guo, 2020). Humic acid enhances
the adsorption capacity of MPs and reduces the direct contact of
MPs with root. The excitation/emission peak of C4 is at 360 nm/430
nm, which may be related to fulvic acid (Cai et al., 2024). Fulvic acid
with high biological activity, promotes the absorption and
utilization of nutrients by roots, and alleviates the inhibitory effect
of MPs stress on growth. In addition, fulvic acid also enhance the
metabolic activity of rhizosphere microorganisms to improve the
health status of the rhizosphere environment. The excitation
wavelengths of C5 are 290 nm, 400 nm and 470 nm respectively,
and the emission wavelengths are 495 nm and 685 nm. This multi
excitation/emission wavelength characteristic indicates that C5 is a
complex fluorescent component, which may contain the
superposition of flavonoids, humus-like substances, fulvic acid-
like substances, and residual fluorescent substances.

The variation of relative concentrations (fluorescence intensity)
of EEMF spectra is shown in the third column of Figure 5. Relative
concentrations of each component increased with the increase of
MPs concentration from 10 mg/L to 100 mg/L, which reflects that
MPs promote the accumulation of various fluorescent substances in
root exudates. In most cases, the relative concentrations of low
concentration stress were lower than that of the control group,
while the relative concentrations of high concentration were higher
than that of the control group, except in some special cases. This
phenomenon is consistent with the result of the peak method
analysis, which provides a basis for identifying MPs stress based
on the changes in the fluorescent components of the root secretions
of rice seedlings.

3.3 Microplastics detection models

In order to achieve rapid detection of MPs stress, detection
models were developed respectively using EEMF spectra, emission
spectra of characteristic excitation wavelengths, and characteristic
variables based on peak method and PARAFAC.
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FIGURE 5
Feature extraction of PARAFAC method.

3.3.1 Detection models of EEMF spectra

Three representative models ranging from simple to complex,
KNN, RF and VIT, were adopted to predict the MPs stress
concentration, and the results are shown in Table 2. The EEMF
spectra is reshaped into one-dimensional vectors and input into the
KNN and RF models for model establishment, and the two-
dimensional matrix of EEMF spectra is used for VIT model
development. As a simple model, the accuracy rate of KNN in

Frontiers in Plant Science

concentration detection is 93.85-98.32%. RF, as an ensemble
learning model, demonstrates strong robustness, with an accuracy
rate ranging from 97.77 to 99.44%. The most complex VIT model
performs the best, and the accuracy rate of the validation set
generally exceeds 98.88%, fully demonstrating its advantages.
Overall, models ranging from simple to complex all demonstrated
high classification performance, and the model complexity showed
a positive correlation trend with the accuracy rate. These results
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TABLE 2 Detection accuracy of different models based on EEMF spectra.

Validation
set

Cross
validation

Calibration
set

Model

KNN 99.52 97.77 98.32

PET RF 100 98.88 99.44
VIT 100 100 100

KNN 99.28 98.11 98.32

PS RF 99.76 97.92 98.88

VIT 100 98.78 99.44

KNN 96.39 94.25 93.85

pPVvC RF 98.80 98.00 97.77

VIT 99.28 97.67 98.88

confirm that EEMF spectra of root exudates effectively distinguish
MP stress concentrations and demonstrate the discriminatory
capability of the proposed VIT model.

3.3.2 Detection model of characteristic excitation
wavelength

Due to the huge amount of EEMF spectra data, a single sample
contains 34,237 parameters (excitation wavelength 67x emission

10.3389/fpls.2025.1653451

wavelength 511), which poses a huge challenge for rapid detection.
The excitation wavelength can excite the fluorescence in the sample
and directly affect the generation and detection of fluorescence.
Therefore, determining the excitation wavelength characterizing
root exudates is a key step in actual detection. Figure 6 shows the
emission spectra at the excitation wavelength with an excitation
interval of 20nm. With the increase of the excitation wavelength,
the maximum intensity of the fluorescence peak gradually increases.
When the excitation wavelength is 350 nm, the fluorescence peak
reaches its strongest and then gradually weakens. Further analysis
revealed elevated fluorescence intensity in the high-concentration
MP group relative to controls across 250-410 nm excitation
wavelengths, while the low-concentration group showed
depressed intensity. Between 410 nm and 450nm, the fluorescence
intensities of the high-concentration and low-concentration groups
crossed. When the excitation wavelength is greater than 450 nm, the
control group is at the top, the low-concentration group is in the
middle, and the high-concentration group is at the bottom. This
regular change indicates that the selection of excitation wavelengths
has an important influence on distinguishing different MPs
stress concentrations.

Based on the emission spectra at different excitation
wavelengths ranging from 220 nm to 550 nm, a VIT model for
classifying the MPs stress concentration was established and the
accuracy variation trend of the validation set was analysed. The
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FIGURE 6
Emission spectra at different excitation wavelengths.
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results are shown in Figure 7. Overall, the accuracy rates of the three
MPs prediction models show a consistent pattern with the variation
of excitation wavelengths. From 220 nm to 300 nm, the accuracy
gradually increases with the increase of the excitation wavelength. It
achieves a relatively high predictive ability within the range of 300
nm to 450 nm, approaching or reaching 100% multiple times.
Especially around 350 nm, the accuracy rates of the three MPs
detection were significantly close to the peak, indicating that 350
nm might be the key excitation wavelength for differentiating
MPs stress.

3.3.3 Detection models of fluorescence feature
Peak method and PARAFAC extracted 7 and 5 features,
respectively, as inputs for the model to distinguish the MPs stress
concentration. The results are shown in Table 3. Both methods
demonstrated high classification performance in the detection of
three MPs types, but there were certain differences in accuracy and
stability. The peak method demonstrated perfect classification
performance in detection of stress concentration. The specificity,
sensitivity and accuracy were all 100%, indicating that it could
completely distinguish MPs stress of 0, 10 and 100 mg/L. The

TABLE 3 Stressconcentration prediction based on peak method and PARAFAC.

Peak PARAFAC
MPs types Concentration
0 mg/L 10 mg/L 100 mg/L 0 mg/L 10 mg/L 100 mg/L
0 mg/L 24 0 0 23 1 0
10 mg/L 0 24 0 0 24 0
100 mg/L 0 0 24 0 0 24
PET
Specificity (%) 100 100 100 100 97.92 100
Sensitivity (%) 100 100 100 95.83 100 100
Accuracy (%) 100 98.61
0 mg/L 24 0 0 21 0 3
10 mg/L 0 24 0 0 21 3
100 mg/L 0 0 24 0 0 24
PS
Specificity (%) 100 100 100 100 100 87.5
Sensitivity (%) 100 100 100 87.5 87.5 100
Accuracy (%) 100 91.67
0 mg/L 24 0 0 22 2 0
10 mg/L 0 24 0 0 24 0
100 mg/L 0 0 24 0 0 24
PVC
Specificity (%) 100 100 100 100 95.83 100
Sensitivity (%) 100 100 100 91.67 100 100
Accuracy (%) 100 97.22
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specificity of the PARAFAC method in PET detection was 97.92-
100%, the sensitivity was 95.83-100%, the accuracy rate was 98.61%,
and only one sample was misjudged. The specificity of PS MP
detection was 87.5-100%, the sensitivity was 87.5-100%, and the
accuracy rate was 91.67%. There are cases where samples of 0 and
10 mg/L are mistakenly judged as 100 mg/L. In PVC MP detection,
there were two samples of 0 mg/L that were misjudged as 10 mg/L,
but still maintained relatively high classification performance. The
peak method demonstrated excellent performance in concentration
detection, with specificity, sensitivity and accuracy generally
reaching 100%. Although the overall performance of the
PARAFAC method was slightly lower than that of the peak
method, its accuracy still remained between 91.67% and 98.61%.

3.4 Model explanation

Due to the peak method achieved better model detection results,
the SHAP method was adopted to analyze the important variables

10.3389/fpls.2025.1653451

in the model. The importance distribution of characteristic
fluorescent markers of root exudates is shown in Figure 8. The
first row shows the overall importance distribution of stress
concentration detection, and the second to fourth rows show the
importance distribution of single categories with stress
concentrations of 0,10, and 100mg/L. For the PET MP detection,
the SHAP value of phytoplankton related substances (N) and visible
humic acid (C) was the highest, indicating that PET may stimulate
root exudates to release ester bond hydrolysis products and
promote alginic bilin-like substances (N) to alleviate oxidative
stress. Meanwhile, the complexation of humic acid (C) may be
involved in the surface modification of PET particles to reduce their
toxicity. In the PS MP detection, the dominant positions of Marine
humic acid (M) and visible humic acid (C) reflect that the benzene
ring structure of PS may induce the root system to secrete humic
acid components related to the degradation of aromatic rings, and
adsorb PS particles through 7-7 bond interactions. In the detection
of PVC MP, tryptophan (T) and Marine humic acid (M) are more
relied upon, suggesting that the chloride ions released by PVC may
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FIGURE 8

Feature importance distribution based on SHAP values for (a) the overall dataset, (b) the control group, (c) the 10 mg/L group, and (d) the 100 mg/L
group.
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interfere with the tryptophan metabolic pathway, while promoting
the generation of halogenated humic acid (M) to facilitate the
synthesis of chlorine radicals.

In the single concentration importance distribution (Figure 8b-
d), the contribution of soil fulvic acid (D) decreased under high
concentration (100 mg/L) stress, possibly because high
concentration MPs inhibited the interaction between roots and
soil microorganisms and reduced the biosynthesis of fulvic acid (D).
The contribution of tyrosine (B) at low concentrations (10 mg/L)
indicates its function as an early stress signaling molecule. Overall, it
can be seen that humic acid (C) and Marine humic acid (M)
both make significant contributions. The core mechanism
may involve: The carboxyl and phenolic hydroxyl functional
groups of humic acid interact with the surface of MPs
through hydrogen bonds/coordination bonds, changing their
agglomeration state; The formation of humic acid-MPs
complexes affects the root system’s perception of MPs and the
transmission of defense signals. Furthermore, the universal
importance of tryptophan (T) suggests that it may coordinate
root development and stress response by regulating the auxin
signaling pathway.

4 Conclusions

This study proposed an interpretable and non-destructive
detection method for MPs stress in rice seedlings using EEMF
spectra of root exudates combined with deep learning. EEMF
spectra captured significant alterations in root exudates under
MPs stress, showing enhanced fluorescence intensity with
increasing MPs concentrations. Characteristic fluorescent
substances (humic acid-like, amino acid-like, and fulvic acid-like
components) were identified through peak analysis and PARAFAC
decomposition, revealing reduced relative concentrations at
low MPs levels (10 mg/L) and elevated concentrations at high
levels (100 mg/L) compared to controls. An optimized Vision
Transformer (VIT) model using EEMF spectra, characteristic
emission spectra, and fluorescence features achieved 100%
classification accuracy. SHAP interpretability analysis identified
humic acid-like (C) and marine humic acid-like (M) components
as primary biomarkers for MPs detection.

Beyond methodological innovation, this research delivers
tangible industrial and societal value. It establishes a field-
deployable framework for early stress diagnosis in crops,
enabling proactive interventions to safeguard food security. By
eliminating destructive sampling and complex lab procedures, the
approach offers agricultural and environmental monitoring
industries a rapid, cost-effective solution for detecting emerging
contaminants. Future work will transition this technology from
controlled hydroponic conditions to complex field environments
(soil systems, variable climates, and outdoor settings), accelerating
its practical adoption for precision agriculture and ecosystem
health assessment.
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