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Introduction: Microplastics (MPs), ubiquitous and insidious pollutants pervading

agricultural systems, pose an escalating threat to global food security. This makes

the development of nondestructive methods for the early detection of MPs stress

in rice seedling an urgent scientific imperative.

Method: Rice seedlings were cultivated under exposure to polyethylene

terephthalate (PET), polystyrene (PS), and polyvinyl chloride (PVC) MPs at

concentrations of 0 (control), 10, and 100 mg/L. Based on the stress-induced

alterations in root exudates composition, a novel detection method for MPs

stress in rice seedlings was developed using excitation-emission matrix

fluorescence (EEMF) spectra combined with deep learning.

Results: Analysis of the original EEMF spectra revealed discernible differences.

Feature extraction was performed using both the peak method and the PARAFAC

method. Spectral changes in seedlings exposed to the low MP concentration (10

mg/L) were relatively minor compared to the control group. In contrast,

exposure to the high concentration (100 mg/L) induced significant alterations

in humic acid-like and amino acid-like substances. Subsequently, enhanced

Vision Transformer (VIT) models were developed utilizing three distinct data

representations: full EEMF spectra, emission spectra at specific excitation

wavelengths, and extracted characteristic fluorescence values. The optimal

model achieved 100% classification accuracy. Furthermore, SHapley Additive

exPlanations (SHAP) analysis was employed to evaluate feature importance,
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identifying both humic acid-like and marine humic acid-like components as

major contributors to the model’s predictions.

Conclusion: In summary, this study establishes a novel, non-destructive, and

interpretable framework for the early detection of MPs stress in rice seedlings

based on EEMF spectra of root exudates combined with deep learning.
KEYWORDS

deep learning, excitation emission matrix fluorescence spectra, microplastics, rice
seedling, root exudates
1 Introduction

In recent years, microplastics (MPs) pollution has become a

global problem, and its potential health risks garnering

unprecedented attention (Zhang et al., 2022). Among affected

ecosystems, agricultural systems have become significant

accumulation sites for MPs (Yadav et al., 2022). Rice, as a critical

global food crop, directly influences food security and human well-

being through its plant health (Edwards et al., 2024). thus, the safety

of its growth environment is paramount. The threat of MPs to crops

like rice constitutes an understudied endogenous stress

(Mamathaxim et al., 2023). Researches show these particles (< 5

mm) accumulate in soil/water, impairing roots development,

inhibiting water/nutrient uptake, inducing oxidative stress,

damaging cell structures, and ultimately reducing biomass, yield,

and quality (Yu et al., 2021). Critically, rice can absorb MPs and

associated toxins (e.g., heavy metals, persistent organic pollutants),

enabling transfer into grains via the food chain (Cao et al., 2021).

Human consumption of contaminated rice poses severe long-term

risks, including bioaccumulation in organs and exposure to

carcinogenic/mutagenic additives that disrupt endocrine systems

(Tang et al., 2024). Because the seedling stage represents rice’s most

stress-sensitive life phase, early detection of MPs stress at this

juncture holds critical scientific and practical significance.

At present, microscopes, mass spectrometry, spectroscopy and

other emerging technologies offer high sensitivity for MPs and

enable in-situ analysis (Ye et al., 2022). However, their destructive

sampling, complex pretreatment and technical expertise requirements

hider non-destructive plant monitoring. Root exudates specifically refer

to various organic substances released by plants into the rhizosphere

environment through active metabolism or passive exudation (Vives-

Peris et al., 2020). Studies have shown that when plants are exposed to

abiotic stresses such as heavy metal pollution and MPs invasion, root

exudates will show specific changes (Chai and Schachtman, 2022).

These dynamic responses range from pollutant detoxification through

chelation to antimicrobial compound release, reflecting plants’

rhizosphere-modulating survival strategies (Huang et al., 2014).

Notably, there have been studies exploring the effects of polystyrene

(PS), polyethylene (PE), and polypropylene (PP) MPs on the root

exudates of tomatoes under hydroponic conditions (Shi et al., 2023). It
02
has been found that MPs promoted the secretion of organic acids,

malic acid, and myristic acid, etc. PS MPs stress lettuce leads to an

increase in the biosynthesis of ascorbic acid, terpenoids and flavonoids

in root exudates (Wang et al., 2023). MPs stress interferes with the

normal metabolic process of root secretions in tomato (Shi et al., 2023),

resulting in abnormalities of substances such as amino acids, organic

acids and phenolic compounds to cope with adverse stress. This would

provide the possibility for detecting MPs stress with root exudates as

characteristic markers.

Excitation emission matrix fluorescence (EEMF) spectra is a

novel fluorescence analysis technology capturing fluorescence

intensity across simultaneous excitation/emission wavelength

scans, exceling at characterizing multi-component mixtures (Wei

et al., 2025). It detects stress-induced fluorescent-substance changes

in root exudates, revealing physiological states of MPs-stressed rice

seedlings (Fan et al., 2025) (Zhu et al., 2019). studied the

phenomenon of metal complexation between root exudates of

avicennia marina by EEMF spectra and found that the

fluorescence intensity of fulvic acid increased with the increase of

external salt content (Liu et al., 2018). analyzed the soluble organic

components extracted from large plants using EEMF spectra

technology and found that they mainly contained fulvic acid,

humus-like and protein-like fluorescent substances. Therefore,

EEMF-based monitoring of root exudate fluorescence offers

significant promise for MPs stress detection.

To achieve non-destructive, accurate, and interpretable

detection of MPs stress, this study employed machine learning

and deep learning techniques to extract key features from EEMF

spectra of rice seedling root exudates, construct detection models,

and analyze feature importance. The peak method was first

employed to rapidly identify characteristic response regions in

MPs-stressed root exudates for preliminary spectral feature

recognition (Komatsu et al., 2025). Subsequently, Parallel Factor

Analysis (PARAFAC) decomposition was applied to resolve key

fluorescent components within complex three-dimensional EEMF

spectra, effectively isolating target signals (Murphy et al., 2013). To

full leverage global spectral information and establish a high-

precision detection model, a deep learning model is implemented

for feature extraction and classification. Finally, the SHAP

interpretability framework quantified features importance to
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clarify the decision-making pathways and identify the most

indicative stress biomarkers (Choi et al., 2025).

This study aims to establish a non-destructive detection method

for MPs stress in rice seedlings using EEMF spectra of root

exudates. The specific objectives are to characterize MPs-induced

variations in EEMF spectral profiles; extract characteristic

fluorescent substances through feature extraction methods;

develop a deep learning-based detection model for MPs-stressed

seedlings, and quantify feature importance via explainable artificial

intelligence analysis. To our knowledge, this represents the first

investigation detecting rice seedlings under MPs stress through

EEMF spectra of root exudates. The proposed methodology may

extend to detecting other emerging environmental pollutants.
2 Materials and methods

2.1 Sample preparation

Microplastics of polyethylene terephthalate (PET), polystyrene

(PS), and polyvinyl chloride (PVC), purchased from HengfaSuhua

(Guangdong, China), were characterized using a dynamic light

scattering (DLS) particle size analyzer (Zetasizer Nano ZS90, UK),

revealing a particle size distribution concentrated within 3-6 mm.

Rice (Liangyou Y900) was cultivated according to the method of

(Xie et al., 2024), whereby fifty seeds were placed in each glass petri

dish and subsequently treated with suspensions of PET, PS, or PVC

MPs at concentrations of 10 mg/L or 100 mg/L, while rice cultivated

with sterile water served as the control group. Six replicates were

prepared for each treatment. Under 7 days dark conditions, 5 mL of

the respective MP suspension or sterile water was added to each

dish daily for rice germination. Then, the seedlings were transferred

to an environment with a 14 h light/10 h dark photoperiod for

further cultivation over 5 weeks. At the end of 5 week, seedlings

were removed from the hydroponic solution, and their roots were

thoroughly rinsed with deionized water. Subsequently, the rinsed

rice seedlings were transferred to conical flasks containing 50 mL of

sterile water and left to stand in darkness for 4-6 hours to collect of

root exudates.
2.2 Collection of EEMF spectra

The EEMF spectra of root exudates were collected using a

Shanghai Lingguang F98 fluorescence spectrometer equipped with a

150 W xenon lamp and a standard right-angle optical assembly.

Instrument parameters were configured as follows: excitation

wavelengths ranged 220–550 nm at 5 nm intervals, emission

wavelengths ranged 240–750 nm at 1 nm intervals, the scan speed

was set to 30,000 nm/min, and the pulse width modulation (PMT)

voltage was maintained at 850 V. 3-4 mL root exudates was

transferred into quartz colorimetric dish using a disposable

syringe to obtain EEMF spectra. The scanning time for a single

sample is approximately 4 minutes. To reduce noise interference,
Frontiers in Plant Science 03
three repeat measurements were performed per sample. EEMF

spectra were collected for 48 root exudates per experimental

group, yielding a total of 336 spectra.

Rayleigh and Raman scattering (Engelen et al., 2007) existed in

EEMF spectra due to molecular polarization induced by incident

light, and scatter removal was performed (Figure 1). As shown in

Figure 1a, Raman scattering occurs at Stokes/anti-Stokes lines,

which caused by inelastic collisions between photons and

molecular vibrations/rotations. Rayleigh scattering exhibiting the

same wavelength as the excitation light originate from elastic

collisions, which is intense but lacks chemical information.

Second-order scattering signals of both are weak. Fluorescence

intensity values within the scatter regions were masked as Not a

Number (NaN), as depicted in Figure 1b. Subsequently, linear

interpolation and moving average smoothing were applied to

these regions. Furthermore, since emitted photons possess lower

energy than excitation photons, the region where emission

wavelength is less than excitation wavelength was set to zero

(Figure 1c). Meanwhile, the emission spectrum at an excitation

wavelength of 350 nm is presented to demonstrate the one-

dimensional spectral processing. The original emission spectrum

(Figure 1d) exhibited first-order Rayleigh scattering near 350 nm,

first-order Raman scattering near 400 nm, and second-order

Rayleigh scattering near 700 nm. Results after scatter removal,

linear interpolation, and mean filtering are shown in Figure 1e).

Finally, regions where emission wavelengths below 350 nm were set

to zero, yielding the smoothed emission spectrum (Figure 1f).
2.3 Feature extraction

2.3.1 Peak method
Peak method extracts the fluorescence intensity of specific peak

locations/regions and characterizes fluorescence components of

EEMF spectra (Komatsu et al., 2025). In this study, the EEMF

spectra of rice root exudates revealed multiple characteristic peaks,

which were associated with complex organic compounds present,

including amino acids, phenolic compounds, and humic acids. To

analyze the fluorescence characteristics of the root exudates, seven

primary fluorescent substances were selected for investigation. The

locations of the respective fluorescence peaks and detailed

information on their corresponding substances are presented in

Table 1. The peak method effectively reveals variations in the

content of different fluorescent components, making it an efficient

approach for the rapid fingerprinting of root exudates.

2.3.2 PARAFAC
Parallel Factor Analysis (PARAFAC) is applied to EEMF

spectra to provide a robust analytical methodology for resolving

complex fluorescence signatures within root exudates (Yu et al.,

2019). The entire EEMF spectral dataset (sample × excitation

wavelength × emission wavelength) is decomposed by PARAFAC

into chemically interpretable components. This multi-channel

technology addresses the spectral overlap of co-fluorescent
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moieties by extracting the pure excitation and emission loadings for

each component, along with their relative concentrations in the

samples. It is crucial that PARAFAC utilizes the intrinsic trilinear of

EEMF data to achieve this separation without the need for prior

assumptions about spectral distribution. The number of

components is determined through split-half analysis and core

consistency diagnostic. Therefore, complex spectral data are

transformed by PARAFAC into quantitative fingerprints of root

exudate composition, providing a powerful tool for investigating

rhizospheric stress mechanisms in rice seedlings under MPs stress.
Frontiers in Plant Science 04
2.4 Models development, evaluation, and
explanation

The EEMF spectra consists of a two-dimensional matrix with

excitation wavelengths ranging from 220-550 nm and emission

wavelengths ranging from 240-750 nm, while the emission spectra

at specific excitation wavelengths are one-dimensional spectral

lines. In order to simultaneously process one-dimensional and

two-dimensional data, an improved Vision Transformer (VIT)

model was proposed for detecting MPs stress concentration

(Figure 2a). The data is partitioned into fixed-size patches by the

VIT model and global information is captured using self-attention

mechanism. The data with both position information and slice

vectors is input into the Transformer encoder (Figure 2b), which is

mainly consists of two parts: Normalization (Norm) + Multi Head

Attention, and Normalization + Multi-Layer Perceptron (MLP).

Layer normalization is adopted by the improved model instead of

batch normalization commonly used in convolutional neural

networks, which can reduce fluctuations caused by differences in

value ranges. The query (Q), key (K), and value (V) obtained

through linear transformation of the input vector enter the Multi

Head Attention (Figure 2c), which divides the model into multiple

subspaces and simultaneously focuses on information at different

levels. The Q, K, and V vectors are projected into the scaled dot-

product attention module (Figure 2d) through linear full

connection, which is the core component of the Transformer

model and is essential for enabling parallel data processing. By
TABLE 1 Characteristic fluorescence peaks and their assignments.

Peak
Excitation
wavelength

(nm)

Emission
wavelength

(nm)

Fluorescent
substance

A 260 400-460 UV humic acid

M 290-310 370-410 Marine humic acid

C 320-360 420-460 Visible humic acid

D 390 509 Fulvic acid

B 275 305 Tyrosine-like compound

T 275 340 Tryptophan-like compound

N 280 370
Phytoplankton-

related compound
FIGURE 1

Pretreatment for removing fluorescence scattering peaks. (a) Original EEMF spectra, (b) Remove scattering, (c) Fitted EEMF spectra, (d) Original
emission spectra, (e) Scattering removal and interpolated spectra, and (f) Smoothed spectra.
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calculating the dot product of Q and K, dividing by
ffiffiffiffiffi
dk

p
to achieve

scaling and ensure data stability, the Softmax function is used to

convert the scaled data into a probability distribution to determine

importance, and finally weighted and summed to obtain the output,

as shown in Equation 1.

Attention(Q,K ,V) = softmax(
QKT

ffiffiffiffiffi
dk

p )V (1)
Frontiers in Plant Science 05
Where, Q, K, and V represent the query matrix, key matrix, and

value matrix, respectively, and dk is the dimension of the key vector.

The scaling factor 1ffiffiffiffi
dk

p can avoid gradient vanishing and exploding

problems, ensuring the stability of training.

The data processed by the Transformer encoder enters the

Multi-Layer Perceptron head (MLP head), which is responsible for

converting the encoder output into classification tasks. This module

consists of a linear layer and an activation layer. The input features
FIGURE 2

The framework of improved VIT model. (a) Proposed VIT model, (b) Transformer Encoder, (c) Multi-Head Attention, and (d) Scaled Dot-Product
Attention.
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are dimensionally mapped to a higher space through the linear

layer, and the activation layer with nonlinear functions acquires

more complex expression capabilities. Dropout technique is used to

prevent overfitting, and then mapped to the types of microplastic

stress concentrations through linear full connections.

To evaluate the feasibility of the proposed VIT model, simple

machine learning models (K-Nearest Neighbor (KNN)), and

integrated machine learning models (Random Forest (RF)) were

compared against it. Accuracy, specificity, and sensitivity were

adopted as evaluation criteria (Zhu et al., 2022). SHAP, a game

theory-based model interpretation framework, provides global and

local interpretations by quantifying feature contributions to

prediction outcomes (Choi et al., 2025). In this study, SHAP was
Frontiers in Plant Science 06
employed to analyze the contribution of individual wavelengths to

the model.
3 Results and discussion

3.1 EEMF spectral analysis

Figure 3 shows the EEMF spectra of root exudates of rice

seedling under stress from different MPs concentrations and

types. Three fluorescence peaks are identified within the raw

spectra, with excitation/emission wavelengths centered at 285/345

nm, 355/438 nm, and 423/450 nm, corresponding to the
FIGURE 3

EEMF spectra of root exudates treated with different concentrations and types of MPs. (a) Control, (b) 10 mg/L PET, (c) 10 mg/L PS, (d) 10 mg/L PVC,
(e) 100 mg/L PET, (f) 100 mg/L PS, and (g) 100 mg/L PVC.
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tryptophan, visible humic acid, and pigment, respectively. The

changes in amino acids and humic acid related root exudates

provide a basis for detecting MPs stress. When the MPs

concentration increased from 10 mg/L to 100 mg/L, the

fluorescence intensity was enhanced, indicating that the stress

response of rice seedlings was strengthened with the increase of

MPs stress concentration. At a concentration of 10 mg/L, the EEMF

spectra exhibited minimal changes across all three MP types,

indicating negligible alterations in rice seedling root exudates

under low-concentration stress. However, at 100 mg/L, the

spectral shape remains consistent, but the fluorescence intensity is

relatively higher. PS causes the highest fluorescence intensity,

followed by PVC, with PET lowest. This might be related to the

differences in the content of root exudates caused by different types

of MPs. The characteristics such as the position, intensity, shape

and width of the peaks in EEMF spectra are closely related to the

chemical structure and properties of fluorescent substances (Park
Frontiers in Plant Science 07
and Snyder, 2018). Therefore, it is necessary to carry out feature

extraction and analysis.
3.2 Fluorescence feature analysis

3.2.1 Feature extraction of peak method
The intensity of fluorescence peaks was calculated using peak

method, including UV humic acid (A, Ex/Em=260/400-460 nm),

marine humic acid (M, Ex/Em=290-310/370-410 nm), visible

humic acid (C, Ex/Em=320-360/420-460 nm), tyrosine like (B,

Ex/Em=275/305 nm), tryptophan like (T, Ex/Em=275/340 nm),

phytoplankton related (N, Ex/Em=280/370 nm), and fulvic acid (D,

Ex/Em=390/509 nm). Figure 4 shows the mean intensities of each

fluorescence peak in the EEMF spectra of the seven sample groups.

Among them, orange represents the control group, while green,

purple, and yellow represent PET, PS, and PVC stress, respectively.
FIGURE 4

Feature extraction of peak method. (a) A, (b) M, (c) C, (d) B, (e) T, (f) N, and (g) D.
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Left and right sloping stripes represent the stress concentrations of

10 mg/L and 100 mg/L, respectively. Under low concentration (10

mg/L) stress, the fluorescence peak intensities of A, M, C, N, and D

were all lower than those of the control group. The fluorescence

peak intensities of B and T were higher than those of the control

group under PET stress, while they were lower than those under PS

and PVC stress. This indicates that low concentrations of PS and

PVC have a weak inhibitory effect on the release of amino acid

substances and may even promote their release. Under high

concentration stress (100 mg/L), all three MP types exhibited

elevated fluorescence peak intensities at regions A, M, C, B, T,

and N compared to controls, indicating concurrent inhibition of

root exudate production and enhanced spectral response. The

fluorescence peak intensity of D increased under PET and PVC

stress, while it decreased under PS stress. This phenomenon may be

related to the benzene ring structure of PS promoting the

antioxidant capacity of rice.

MPs stress changed the microbial community in the

rhizosphere environment of rice seedlings, affecting the content of

humic acid substances (A, M, C) in root exudates (Kang et al.,

2023). Tryptophan (T) and tyrosine (B) are respectively involved in

the synthesis of bioactive substances such as bioactive amines, plant

hormones, proteins and dopamine. MPs stress affects the

nutritional status of rice, leading to abnormal synthesis and

metabolism of amino acid substances. Phytoplankton related

substances (N) may be associated with phenolic compounds,

pigments, and organic acids with antioxidant effects (Lebel et al.,

2025). Rice promotes the exudates of phenolic substances and

flavonoids, enhancing the ability to resist oxidative stress and

environmental pressure. Fulvic acid (D), as an important organic

component in humus, has the functions of regulating pH,

promoting plant growth, eliminating free radicals and delaying

cell aging (Cai et al., 2024). MPs stress inhibited the metabolic

activities of rice cells, resulting in a reduction in the synthesis and

accumulation of fulvic acid (D) in the root environment. In

addition, MPs stress also induces rice seedling to secrete more

organic acids, phenolic compounds and other secondary

metabolites to cope with environmental stress.

Overall, low-concentration MPs stress promotes the production

of rice roots exudates, resulting in decrease in the intensity of

fluorescence peaks. However, high-concentration stress inhibits the

stress response of rice and the production of root exudates, thereby

enhancing the intensity of the fluorescence peak. This result

indicates that rice roots exudates have a significant impact on the

fluorescence characteristics of MPs stress concentrations, laying the

foundation for rapid detection.

3.2.2 Feature extraction of PARAFAC
Due to the complex composition of root exudates, the highly

overlapping EEMF spectra increase the difficulty of direct analysis

and quantitative analysis. PARAFAC, a multidimensional

decomposition method, resolves complex fluorescence signals into

independent factors, enabling direct identification and

quantification of specific compounds in samples. The residual

variation trends under 3-6 factors were compared, and the error
Frontiers in Plant Science 08
was minimized when the factor was 5. In addition, Split half analysis

shows that the similarity of PARAFAC with 5 factors is greater than

95%, therefore the 5 factors are the optimal results.

Five fluorescent components (labeled as C1-C5) obtained by

PARAFAC are shown in Figure 5. The excitation/emission peak of

C1 is located at 305 nm/425 nm, which may be related to

tryptophan (Cory and McKnight, 2005). When plants are

subjected to environmental stress, it usually promotes the

exudates of tryptophan by the plant roots to increase the

fluorescence intensity. Tryptophan and its derivatives play

significant roles in plant antioxidation and signal transduction,

which may indicate that rice roots enhance their stress resistance by

regulating metabolism. The excitation/emission peak of C2 is at 285

nm/355 nm, which is related to protein-like substances such as

tyrosine or phenylalanine (D’Andrilli et al., 2019). Rice roots

mitigate microplastic-induced damage by restructuring the

rhizosphere microbial community through enhanced protein

secretion, thereby stabilizing the root environment. The

excitation/emission peak of C3 is at 375 nm/475 nm, which may

be related to humic acid (Lin and Guo, 2020). Humic acid enhances

the adsorption capacity of MPs and reduces the direct contact of

MPs with root. The excitation/emission peak of C4 is at 360 nm/430

nm, which may be related to fulvic acid (Cai et al., 2024). Fulvic acid

with high biological activity, promotes the absorption and

utilization of nutrients by roots, and alleviates the inhibitory effect

of MPs stress on growth. In addition, fulvic acid also enhance the

metabolic activity of rhizosphere microorganisms to improve the

health status of the rhizosphere environment. The excitation

wavelengths of C5 are 290 nm, 400 nm and 470 nm respectively,

and the emission wavelengths are 495 nm and 685 nm. This multi

excitation/emission wavelength characteristic indicates that C5 is a

complex fluorescent component, which may contain the

superposition of flavonoids, humus-like substances, fulvic acid-

like substances, and residual fluorescent substances.

The variation of relative concentrations (fluorescence intensity)

of EEMF spectra is shown in the third column of Figure 5. Relative

concentrations of each component increased with the increase of

MPs concentration from 10 mg/L to 100 mg/L, which reflects that

MPs promote the accumulation of various fluorescent substances in

root exudates. In most cases, the relative concentrations of low

concentration stress were lower than that of the control group,

while the relative concentrations of high concentration were higher

than that of the control group, except in some special cases. This

phenomenon is consistent with the result of the peak method

analysis, which provides a basis for identifying MPs stress based

on the changes in the fluorescent components of the root secretions

of rice seedlings.
3.3 Microplastics detection models

In order to achieve rapid detection of MPs stress, detection

models were developed respectively using EEMF spectra, emission

spectra of characteristic excitation wavelengths, and characteristic

variables based on peak method and PARAFAC.
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3.3.1 Detection models of EEMF spectra
Three representative models ranging from simple to complex,

KNN, RF and VIT, were adopted to predict the MPs stress

concentration, and the results are shown in Table 2. The EEMF

spectra is reshaped into one-dimensional vectors and input into the

KNN and RF models for model establishment, and the two-

dimensional matrix of EEMF spectra is used for VIT model

development. As a simple model, the accuracy rate of KNN in
Frontiers in Plant Science 09
concentration detection is 93.85-98.32%. RF, as an ensemble

learning model, demonstrates strong robustness, with an accuracy

rate ranging from 97.77 to 99.44%. The most complex VIT model

performs the best, and the accuracy rate of the validation set

generally exceeds 98.88%, fully demonstrating its advantages.

Overall, models ranging from simple to complex all demonstrated

high classification performance, and the model complexity showed

a positive correlation trend with the accuracy rate. These results
FIGURE 5

Feature extraction of PARAFAC method.
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confirm that EEMF spectra of root exudates effectively distinguish

MP stress concentrations and demonstrate the discriminatory

capability of the proposed VIT model.

3.3.2 Detection model of characteristic excitation
wavelength

Due to the huge amount of EEMF spectra data, a single sample

contains 34,237 parameters (excitation wavelength 67× emission
Frontiers in Plant Science 10
wavelength 511), which poses a huge challenge for rapid detection.

The excitation wavelength can excite the fluorescence in the sample

and directly affect the generation and detection of fluorescence.

Therefore, determining the excitation wavelength characterizing

root exudates is a key step in actual detection. Figure 6 shows the

emission spectra at the excitation wavelength with an excitation

interval of 20nm. With the increase of the excitation wavelength,

the maximum intensity of the fluorescence peak gradually increases.

When the excitation wavelength is 350 nm, the fluorescence peak

reaches its strongest and then gradually weakens. Further analysis

revealed elevated fluorescence intensity in the high-concentration

MP group relative to controls across 250-410 nm excitation

wavelengths, while the low-concentration group showed

depressed intensity. Between 410 nm and 450nm, the fluorescence

intensities of the high-concentration and low-concentration groups

crossed. When the excitation wavelength is greater than 450 nm, the

control group is at the top, the low-concentration group is in the

middle, and the high-concentration group is at the bottom. This

regular change indicates that the selection of excitation wavelengths

has an important influence on distinguishing different MPs

stress concentrations.

Based on the emission spectra at different excitation

wavelengths ranging from 220 nm to 550 nm, a VIT model for

classifying the MPs stress concentration was established and the

accuracy variation trend of the validation set was analysed. The
FIGURE 6

Emission spectra at different excitation wavelengths.
TABLE 2 Detection accuracy of different models based on EEMF spectra.

MPs
types

Model
Calibration

set
Cross

validation
Validation

set

PET

KNN 99.52 97.77 98.32

RF 100 98.88 99.44

VIT 100 100 100

PS

KNN 99.28 98.11 98.32

RF 99.76 97.92 98.88

VIT 100 98.78 99.44

PVC

KNN 96.39 94.25 93.85

RF 98.80 98.00 97.77

VIT 99.28 97.67 98.88
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results are shown in Figure 7. Overall, the accuracy rates of the three

MPs prediction models show a consistent pattern with the variation

of excitation wavelengths. From 220 nm to 300 nm, the accuracy

gradually increases with the increase of the excitation wavelength. It

achieves a relatively high predictive ability within the range of 300

nm to 450 nm, approaching or reaching 100% multiple times.

Especially around 350 nm, the accuracy rates of the three MPs

detection were significantly close to the peak, indicating that 350

nm might be the key excitation wavelength for differentiating

MPs stress.
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3.3.3 Detection models of fluorescence feature
Peak method and PARAFAC extracted 7 and 5 features,

respectively, as inputs for the model to distinguish the MPs stress

concentration. The results are shown in Table 3. Both methods

demonstrated high classification performance in the detection of

three MPs types, but there were certain differences in accuracy and

stability. The peak method demonstrated perfect classification

performance in detection of stress concentration. The specificity,

sensitivity and accuracy were all 100%, indicating that it could

completely distinguish MPs stress of 0, 10 and 100 mg/L. The
FIGURE 7

Detection accuracy of models under different excitation wavelengths. (a) PET, (b) PS, and (c) PVC.
TABLE 3 Stressconcentration prediction based on peak method and PARAFAC.

MPs types Concentration
Peak PARAFAC

0 mg/L 10 mg/L 100 mg/L 0 mg/L 10 mg/L 100 mg/L

PET

0 mg/L 24 0 0 23 1 0

10 mg/L 0 24 0 0 24 0

100 mg/L 0 0 24 0 0 24

Specificity (%) 100 100 100 100 97.92 100

Sensitivity (%) 100 100 100 95.83 100 100

Accuracy (%) 100 98.61

PS

0 mg/L 24 0 0 21 0 3

10 mg/L 0 24 0 0 21 3

100 mg/L 0 0 24 0 0 24

Specificity (%) 100 100 100 100 100 87.5

Sensitivity (%) 100 100 100 87.5 87.5 100

Accuracy (%) 100 91.67

PVC

0 mg/L 24 0 0 22 2 0

10 mg/L 0 24 0 0 24 0

100 mg/L 0 0 24 0 0 24

Specificity (%) 100 100 100 100 95.83 100

Sensitivity (%) 100 100 100 91.67 100 100

Accuracy (%) 100 97.22
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specificity of the PARAFAC method in PET detection was 97.92-

100%, the sensitivity was 95.83-100%, the accuracy rate was 98.61%,

and only one sample was misjudged. The specificity of PS MP

detection was 87.5-100%, the sensitivity was 87.5-100%, and the

accuracy rate was 91.67%. There are cases where samples of 0 and

10 mg/L are mistakenly judged as 100 mg/L. In PVC MP detection,

there were two samples of 0 mg/L that were misjudged as 10 mg/L,

but still maintained relatively high classification performance. The

peak method demonstrated excellent performance in concentration

detection, with specificity, sensitivity and accuracy generally

reaching 100%. Although the overall performance of the

PARAFAC method was slightly lower than that of the peak

method, its accuracy still remained between 91.67% and 98.61%.
3.4 Model explanation

Due to the peak method achieved better model detection results,

the SHAP method was adopted to analyze the important variables
Frontiers in Plant Science 12
in the model. The importance distribution of characteristic

fluorescent markers of root exudates is shown in Figure 8. The

first row shows the overall importance distribution of stress

concentration detection, and the second to fourth rows show the

importance distribution of single categories with stress

concentrations of 0,10, and 100mg/L. For the PET MP detection,

the SHAP value of phytoplankton related substances (N) and visible

humic acid (C) was the highest, indicating that PET may stimulate

root exudates to release ester bond hydrolysis products and

promote alginic bilin-like substances (N) to alleviate oxidative

stress. Meanwhile, the complexation of humic acid (C) may be

involved in the surface modification of PET particles to reduce their

toxicity. In the PS MP detection, the dominant positions of Marine

humic acid (M) and visible humic acid (C) reflect that the benzene

ring structure of PS may induce the root system to secrete humic

acid components related to the degradation of aromatic rings, and

adsorb PS particles through p-p bond interactions. In the detection

of PVC MP, tryptophan (T) and Marine humic acid (M) are more

relied upon, suggesting that the chloride ions released by PVC may
FIGURE 8

Feature importance distribution based on SHAP values for (a) the overall dataset, (b) the control group, (c) the 10 mg/L group, and (d) the 100 mg/L
group.
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interfere with the tryptophan metabolic pathway, while promoting

the generation of halogenated humic acid (M) to facilitate the

synthesis of chlorine radicals.

In the single concentration importance distribution (Figure 8b-

d), the contribution of soil fulvic acid (D) decreased under high

concentration (100 mg/L) stress, possibly because high

concentration MPs inhibited the interaction between roots and

soil microorganisms and reduced the biosynthesis of fulvic acid (D).

The contribution of tyrosine (B) at low concentrations (10 mg/L)

indicates its function as an early stress signaling molecule. Overall, it

can be seen that humic acid (C) and Marine humic acid (M)

both make significant contributions. The core mechanism

may involve: The carboxyl and phenolic hydroxyl functional

groups of humic acid interact with the surface of MPs

through hydrogen bonds/coordination bonds, changing their

agglomeration state; The formation of humic acid-MPs

complexes affects the root system’s perception of MPs and the

transmission of defense signals. Furthermore, the universal

importance of tryptophan (T) suggests that it may coordinate

root development and stress response by regulating the auxin

signaling pathway.
4 Conclusions

This study proposed an interpretable and non-destructive

detection method for MPs stress in rice seedlings using EEMF

spectra of root exudates combined with deep learning. EEMF

spectra captured significant alterations in root exudates under

MPs stress, showing enhanced fluorescence intensity with

increasing MPs concentrations. Characteristic fluorescent

substances (humic acid-like, amino acid-like, and fulvic acid-like

components) were identified through peak analysis and PARAFAC

decomposition, revealing reduced relative concentrations at

low MPs levels (10 mg/L) and elevated concentrations at high

levels (100 mg/L) compared to controls. An optimized Vision

Transformer (VIT) model using EEMF spectra, characteristic

emission spectra, and fluorescence features achieved 100%

classification accuracy. SHAP interpretability analysis identified

humic acid-like (C) and marine humic acid-like (M) components

as primary biomarkers for MPs detection.

Beyond methodological innovation, this research delivers

tangible industrial and societal value. It establishes a field-

deployable framework for early stress diagnosis in crops,

enabling proactive interventions to safeguard food security. By

eliminating destructive sampling and complex lab procedures, the

approach offers agricultural and environmental monitoring

industries a rapid, cost-effective solution for detecting emerging

contaminants. Future work will transition this technology from

controlled hydroponic conditions to complex field environments

(soil systems, variable climates, and outdoor settings), accelerating

its practical adoption for precision agriculture and ecosystem

health assessment.
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