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of bioactive compounds
in Codonopsis pilosula:
a transcriptomic analysis
Wei Liang1*, Gang Bai1, Jiachen Sun2, Wenzhen Tao3, Qian Li1,
Pengbin Dong1, Hongyan Wang1, Jiali Cheng1, Fengxia Guo1*

and Yuan Chen1*

1State Key Laboratory of Arid Land Crop Science, College of Agronomy, College of Life Science and
Technology, Gansu Agricultural University, Lanzhou, China, 2School of Biotechnology and Food
Science, Tianjin University of Commerce, Tianjin, China, 3Jingyuan Road Community Health Center
Chengguan District, Lanzhou, China
Postharvest processing critically determines the quality of Codonopsis pilosula,

yet the molecular mechanisms underlying the traditional “rubbing–sweating”

technique remain unclear. We hypothesized that rubbing–sweating imposes

stronger abiotic stress than shade drying, thereby activating stress-responsive

pathways and enhancing the accumulation of bioactive constituents. To test this,

freshly harvested roots were processed by shade drying (SD) and rubbing–

sweating drying (RD), and compared with fresh controls (FC) in terms of

chemical composition, antioxidant enzyme activity, and transcriptomic profiles.

After 6 days, RD significantly increased lobetyolin content by 15.3% relative to FC

and 9.7% relative to SD (p<0.01), while polysaccharides reached 19.5% in RD

versus 10.6% in FC (p<0.05). Antioxidant enzymes also exhibited marked

increases under RD, with catalase activity elevated by 235% compared to FC.

Transcriptome sequencing revealed 17,338 DEGs in RD vs. SD and 11,007 in RD

vs. FC, enriched in MAPK signaling, hormone transduction, and aromatic amino

acid biosynthesis. These findings support our hypothesis that rubbing–sweating

enhances the medicinal quality of C. pilosula through stress-induced activation

of metabolic pathways. This work provides the first transcriptomic evidence for

the molecular basis of this traditional technique, offering new insights for

optimizing and modernizing postharvest processing.
KEYWORDS

Codonopsis Radix, rubbing-sweating dried, shade-dried, postharvest processing, stress
response genes, polysaccharide and lobetyolin biosynthesis
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1 Introduction

In recent years, rising living standards and advancements in the

pharmaceutical industry have led to a growing annual demand for

high-quality traditional Chinese medicinal (TCM) materials with

health-promoting properties. The quality of TCM is determined by

a complex interplay of factors, including the growing environment,

cultivation practices, and duration of growth, as well as appropriate

post-harvest processing methods at the production site, which are

critical to the final quality of the medicinal materials (Li et al., 2020;

Chen et al., 2023). Common traditional post-harvest processing

methods for Chinese medicinal materials include steaming, boiling,

blanching, smoking and “Rubbing-sweating” (Zhang et al., 2024; Xu

et al., 2025). However, some of these methods are labor-intensive,

time-consuming, and technically complex, rendering them

increasingly incompatible with the modernization needs of the

traditional Chinese medicine (TCM) industry. Therefore, it is

essential to conduct in-depth investigations into traditional

processing techniques to elucidate their underlying scientific

mechanisms. Such research can offer valuable insights for

developing processing methods that not only improve the quality

of medicinal materials but also align with the demands of modern

industrial production.

Codonopsis Radix (Dangshen) refers to the dried roots of

perennial species in the Campanulaceae family, including

Codonopsis pilosula (Franch.) Nannf., C. pilosula Nannf. var.

modesta (Nannf.) L.T. Shen, and C. tangshen Oliv (Liang et al.,

2024). Due to its functions in strengthening the spleen, moistening

the lungs, nourishing the blood, promoting the generation of bodily

fluids, modulating immune function, and exhibiting antitumor

properties (Zou et al., 2014; Bai et al., 2018), C. pilosula has been

used for centuries in both food and traditional folk medicine across

Asian countries, including China, Japan, and Korea (Luan et al.,

2021). In the traditional production areas of C. pilosula, a distinctive

post-harvest processing technique known as “Rubbing-sweating”

has gradually evolved through long-term practice. Locally, it is

widely believed that C. pilosula processed using this method

possesses a superior commercial appearance and enhanced

quality. The traditional rubbing and sweating process consists of

the following steps: (1) Freshly harvested roots are cleaned to

remove impurities and shade-dried for 2–3 days until their

texture changes from hard to pliable; (2) The roots are bundled

and vigorously rubbed by hand or with mechanical assistance to

make the tissues denser and firmer; (3) The rubbed roots are heaped

and covered with straw mats to allow surface moisture to condense.

This sweating step lasts 1–2 days, with careful monitoring to

prevent mold or spoilage; (4) The roots are then sun-dried for 1–

2 days. Steps (2) and (3) are typically repeated 2–3 times until the

roots are fully dried (Liang et al., 2024).

Freshly harvested plant tissues—particularly roots and

rhizomes—retain substantial physiological activity for a period

following harvest. During this time, they can respond to external

stimuli by initiating a series of physiological and biochemical

reactions, thereby influencing metabolic processes and the

accumulation of secondary metabolites within the plant (Qi et al.,
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2024). Studies have demonstrated that appropriate postharvest

processing methods can significantly enhance the accumulation of

volatile C6-compounds in oolong tea (Zhou et al., 2020). Similarly,

postharvest high-temperature treatment of jujube fruit (soaking in

50°C water for 4 minutes) has been shown to effectively delay

senescence and decay (Yang et al., 2021). In addition, the traditional

“sweating” process has been employed in the postharvest handling

of several Chinese medicinal materials, including Magnolia

officinalis, Salvia miltiorrhiza, and Gentiana macrophylla. Some

researchers have suggested that sweating alters the composition of

microbial communities in M. officinalis, thereby increasing the

content of active compounds such as magnolol and honokiol in

the final product (Wu et al., 2019). Others have found that sweating

significantly promotes the production of intermediate metabolites

involved in the biosynthesis of tanshinones and salvianolic acids in

S. miltiorrhiza, contributing to the accumulation of these bioactive

components and improving the quality of the dried material (Cao

et al., 2020). Furthermore, sweating has been reported to enhance

the biosynthesis of phenylalanine, tyrosine, and tryptophan, as well

as polyphenol and terpene biosynthesis in G. macrophylla, thus

promoting the accumulation of key active ingredients and

improving the overall quality of the herb (Sun et al., 2023).

At present, it remains unclear how the traditional “rubbing–

sweating” process affects the active components of C. pilosula and

its molecular regulatory mechanism. We hypothesized that the

“rubbing–sweating” treatment might enhance the quality of C.

pilosula by inducing the stress response signaling pathway and

promoting the accumulation of bioactive compounds. To verify this

hypothesis, this study compared the differences in chemical

components, antioxidant enzyme activities, and transcriptome

profiles among fresh C. pilosula, shade-dried C. pilosula, and C.

pilosula treated with the “rubbing–sweating” process. The aim of

this study was to clarify the molecular mechanism by which the

“rubbing–sweating” treatment improves the quality of C. pilosula,

providing a theoretical basis for the optimization of traditional

processing techniques and the development of modern

drying technologies.
2 Materials and methods

2.1 Plant material and experimental design

Root samples of C. pilosula were collected from Wen County,

Gansu Province, China (32.944° N, 104.683° E), and were of

uniform age (3 years). Botanical identification was performed by

Professor Chen Yuan from the College of Agronomy, Gansu

Agricultural University, who confirmed the samples as members

of the Campanulaceae family, specifically Codonopsis pilosula

(Franch.) Nannf.

The collected C. pilosula samples, selected for uniform size,

were divided into three groups, each consisting of 12 roots. One

group was designated as the control (fresh C. pilosula, FC), while the

other two groups were subjected to shade-drying (SD) and

“Rubbing-sweating” drying (RD) treatments, respectively. For
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subsequent analyses, three biological replicates were established per

treatment, with each replicate comprising pooled tissues from four

randomly selected roots.

2.1.1 Fresh C. pilosula
The freshly harvested C. pilosula samples were immediately

stored at −80°C to preserve them for subsequent analysis.

2.1.2 “Rubbing-sweating” dried C. pilosula
The samples were kept indoors and manually rubbed every

three days. After each rubbing session, the roots were covered with a

breathable tarp for 12 hours to facilitate sweating, followed by air-

drying for two days to promote moisture loss and prevent mold

growth. This cycle was repeated three times. The ambient

temperature was maintained at 2–10°C throughout the process.

2.1.3 Shade-dried C. pilosula
The samples were placed in a cool, shaded environment under

the same conditions as the RD group, except without rubbing or

sweating. They were dried continuously for 12 days, with air-drying

every three days to facilitate moisture loss and prevent

mold formation.

To investigate transcriptomic changes during the drying

process, samples were collected after four days of treatment. Each

sample weighed 9 g and was immediately stored in an ultra-low-

temperature freezer (−80°C) for further analysis. Voucher

specimens of C. pilosula used in this study were deposited in the

Herbarium of Gansu Agricultural University (College of

Agronomy) to facilitate future research and verification.
2.2 Detection of chemical composition

Freeze-dried C. pilosula tissue (2 g) was ground into a fine

powder and extracted with 20 mL of 50% ethanol using ultrasonic

assistance at 60°C for 60 minutes. The extract was then centrifuged

at 1000 rpm for 5 minutes, and the resulting supernatant was

filtered through a 0.22 mm organic membrane filter. The filtrate was

subsequently analyzed using a high-performance liquid

chromatography with photodiode array detection (HPLC-PDA)

system. Quantitative determination of five major chemical

constituents—adenosine, protocatechuic acid, tryptophan,

syringin, and lobetyolin—was performed using an Agilent 1260

liquid chromatograph equipped with a Kromasil C18 reversed-phase

column (4.6 mm × 250 mm). The mobile phase consisted of 0.5%

formic acid aqueous solution (solvent A) and acetonitrile (solvent

B), delivered at a flow rate of 1 mL·min-¹. The gradient elution

program was as follows: 0–5 min, 5% B; 5–10 min, 5–8% B; 10–15

min, 8% B; 15–25 min, 8–14% B; 25–30 min, 14–20% B; 30–40 min,

20–30% B; and 40–50 min, 30–50% B. The injection volume was 10

mL, and detection was carried out at 260 nm.

The contents of polysaccharides, proteins, and ash were

determined in accordance with AOAC standard methods (Iyda

et al., 2019; Yang et al., 2019).
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2.3 Superoxide dismutase, peroxidase,
catalase, and ascorbate peroxidase activity
assay

A total of 1.00 g of fresh C. pilosula tissue powder was mixed with

9 mL of normal saline for enzymatic extraction. The mixture was

centrifuged at 2,500 rpm for 10 minutes at 4°C, and the resulting

supernatant was collected for the determination of superoxide

dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate

peroxidase (APX) activities. Enzyme activity assay kits were

purchased from Nanjing Jiancheng Bioengineering Institute.
2.4 Transcriptome data determination

2.4.1 RNA abstraction and quality evaluation
Samples from FC, SD (6 days), and RD (6 days) groups (0.5 g

fresh weight each) were selected for total RNA extraction using

TRIzol reagent (Invitrogen, Carlsbad, CA, USA), following the

manufacturer’s instructions. The integrity and concentration of

the extracted RNA were assessed using a 2100 Bioanalyzer

(Agilent Technologies, Santa Clara, CA, USA) and quantified

using a NanoDrop ND-2000 spectrophotometer (Thermo

Scientific, Wilmington, DE, USA). High-quality RNA was

subsequently used for library construction.

2.4.2 Complementary DNA library transcription
group fabrication and sequencing

RNA purification, reverse transcription, library construction,

and sequencing were performed by EMajorbio Bio-Pharm

Biotechnology Co., Ltd. (Shanghai, China). RNA-seq libraries

were prepared using the TruSeq™ RNA Sample Preparation Kit

(Illumina, USA). Poly(A) mRNA was isolated from total RNA using

oligo(dT)-attached magnetic beads, followed by fragmentation

using a fragmentation buffer. The resulting short RNA fragments

were used as templates to synthesize double-stranded

complementary DNA (ds-cDNA) using the SuperScript Double-

Stranded cDNA Synthesis Kit (Invitrogen) and RHP reagents

(Illumina). Subsequently, the cDNA underwent end repair,

phosphorylation, and addition of a single ‘A’ base according to

Illumina’s library preparation protocol. Libraries were size-selected

for cDNA fragments of 200–300 bp using 2% low-range ultra

agarose (LRUA) gel and amplified via PCR using Phusion High-

Fidelity DNA Polymerase for 15 cycles. After quantification using

the TBS-380 fluorometer, the libraries were sequenced on an

Illumina HiSeq X Ten or NovaSeq 6000 platform to generate 2 ×

150 bp paired-end reads.

2.4.3 De novo assembling and annotation
The original paired end reads were treated with trimming and

QC by SeqPrep and Sickle. Afterwards, the cleaning data from the

samples were adopted to perform de novo assembling with Trinity

(Grabherr et al., 2011). The entire assembling transcription products

were retrieved against the National Center for Biotechnology
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Information (NCBI) protein NR (https://www.ncbi.nlm.nih.gov/

public/, July 2023), GO (http://www.geneontology.org/, July

2023), and KEGG (http://www.genome.jp/kegg/, September 2023)

data centers via BLASTX (2.9.0) to determine the proteins with the

greatest sequential resemblance compared to the aforementioned

transcription products to search the functional notations and a

representative cut-off E-values<1.0 × 10−5 was set. BLAST2GO

software (Agu 2018) was adopted to acquire gene ontology (GO)

notations of distinctive assembling transcription products for the

description of biology activities, molecule roles and cell

constituents. Metabolism pathway assay was completed via the

KEGG method (Conesa et al., 2005).

2.4.4 Differential expression analysis and
functional enrichment

To identify differentially expressed genes (DEGs) between

groups, transcript expression levels were calculated using the

transcripts per million (TPM) method. Gene abundances were

quantified using RSEM (Li and Dewey, 2011). Differential

expression analysis was conducted using either DESeq2 (Love

et al., 2014) or DEGseq (Wang et al., 2010). Genes with |log2 fold

change| ≥ 1 and false discovery rate (FDR)<0.05 (DESeq2) or

FDR<0.001 (DEGseq) were considered significantly differentially

expressed. Furthermore, functional enrichment analyses, including

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathway analyses, were performed to identify

significantly enriched GO terms and metabolic pathways.

Enrichment was evaluated using a Bonferroni-corrected p-

value<0.05 compared with the whole transcriptome background.

GO and KEGG analyses were conducted using GOATOOLS

(https://pypi.org/project/goatools/, Version 1.4.4) and the Python

Sc iPy l i b r a ry (h t tp s : / /doc s . s c ipy . o r g /doc / , Ve r s i on

1.10.0), respectively.
2.5 Quantitative real-time PCR validation

Overall RNA was abstracted via Plant RNA Kit II (OMEGA,

Norcross, USA). The first normal cDNA was prepared from overall

RNA via a PrimeScript™ RT Reagent Kit with gDNA Eraser

(Takara, Dalian, China). Actin was chosen to be an inner control.

The heat cycle procedurefor quantitative reverse transcription

polymerase chain reaction (qRT-PCR): incipient denaturating at

95°Cfor 2min, denaturating at 94°C for 30 s, annealing at 58°C for

30 s and elongation at 72°Cfor 38s, for an overall 40 cycles. The

primers adopted for qRT-PCR herein were presented by Supporting

Information (Supplementary Table S2). Each assay was completed

three times. The comparative expression level of every unigene was

calculated via the 2−DDCt approach.
2.6 Statistical analysis

All experiments were performed with three independent

biological replicates per treatment, each consisting of pooled
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tissues from four roots, and with three technical replicates for

each assay. Data are presented as mean±standard error (SE).

Statistical analysis was performed using SPSS version 26.0 (SPSS

Inc., Chicago, IL, USA). Duncan’s multiple range test was used to

determine significant differences among groups, with different

uppercase letters indicating significance at p<0.01 and different

lowercase letters indicating significance at p<0.05. Graphs were

generated using OriginPro 2021 (OriginLab Corporation,

Northampton, MA, USA).
3 Results

3.1 Effect of dry method on the chemical
and nutritional compositions of C. pilosula

As shown in Figure 1, the levels of active ingredients in C.

pilosula changed significantly after a 6-day drying period (p<0.05).

The total content of five major active components was significantly

higher in the RD and SD samples compared to the FC samples, with

increases of 2.01% and 3.06%, respectively (p<0.05; Figure 1A). The

adenosine content in FC (38.30 mg/g) was significantly higher than
in RD (34.21 mg/g; p<0.05), but not significantly different from SD

(36.07 mg/g; p > 0.05; Figure 1B). Similarly, the protocatechuic acid

content in FC (92.90 mg/g) was significantly higher than in RD

(91.42 mg/g) and SD (92.19 mg/g) (p<0.05; Figure 1C). In contrast,

tryptophan content in SD (238.22 mg/g) was significantly higher

than in both FC (215.08 mg/g) and RD (216.75 mg/g) (p<0.05;

Figure 1D). For syringin, the content in FC (165.45 mg/g) and RD

(163.37 mg/g) was significantly higher than in SD (158.46 mg/g)
(p<0.05; Figure 1E). Notably, lobetyolin content was highest in RD

(141.18 mg/g), which was significantly higher than in FC

(122.44 mg/g) and SD (128.67 mg/g) (p<0.01; Figure 1F), with

increases of 15.31% and 9.72%, respectively. These findings

suggest that different drying treatments exert distinct effects on

the accumulation of active components in C. pilosula. Among them,

the “Rubbing-sweating” method appears to be particularly effective

in promoting lobetyolin accumulation.

The contents of polysaccharides (POL), protein, ash, total

polyphenols (TP), total flavonoids (TF), ethanol-soluble extract

(ASE), and water-soluble extract (WSE) in the samples are

presented in Figure 2 (Supplementary Table S1). The results

demonstrated that different drying treatments significantly

reduced the contents of protein, total phenolic compounds,

ethanol-soluble extracts, and water-soluble extracts in C. pilosula,

while significantly increasing the polysaccharide content.

Compared with the FC samples, the protein, ash, TP, ASE, and

WSE contents were significantly higher in FC (9.86%, 3.08%, 0.41%,

75.16%, and 76.40%, respectively) than in RD (7.61%, 2.09%, 0.38%,

62.51%, and 65.68%, respectively) and SD (8.94%, 2.91%, 0.33%,

59.59%, and 62.48%, respectively) (p<0.05).

Polysaccharides, which are considered one of the primary

bioactive constituents of C. pilosula, were notably increased by

both drying treatments. The POL content in RD (19.48%) and SD

(15.30%) was significantly higher than in FC (10.56%) (p<0.05).
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These results indicate that both RD and SD can enhance the

accumulation of polysaccharides in C. pilosula, with the RD

method being particularly effective.
3.2 Effect of dry method on SOD, POD,
CAT, and APX activity

In “Rubbing-sweating” dried C. pilosula tissues, the activities of

SOD and CAT reached 126.05 U/g FW and 227.42 U/g/min,

respectively, which were significantly higher than those in fresh

samples (49.09 U/g FW and 67.35 U/g/min) and shade-dried

samples (100.38 U/g FW and 161.44 U/g/min) (p<0.01). The APX

activities in “Rubbing-sweating” dried and shade-dried samples were

586.12 U/g FW and 578.46 U/g FW, respectively, both of which were

significantly higher than that in fresh samples (333.12 U/g FW)

(p<0.01). In addition, POD activity in “Rubbing-sweating” dried

tissues reached 1093.83 U/g/min, which was significantly higher

than that in fresh (365.07 U/g/min) and shade-dried (856.53 U/g/

min) samples (p<0.01). SOD, APX, CAT, and POD are critical

antioxidant enzymes involved in reactive oxygen species (ROS)

scavenging. The significant enhancement in their activities

following the RD treatment suggests that this traditional method

induces more intense external stress, likely triggering increased ROS
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accumulation and, consequently, a stronger antioxidative response in

C. pilosula (Figure 3).
3.3 Sequencing and sequence assembly

During the drying process, plant tissues undergo gradual

senescence, accompanied by the degradation of proteins and

RNA. Therefore, analyzing C. pilosula tissues at the early stages of

drying is essential for elucidating the mechanisms underlying the

accumulation of active compounds. After 6 days of drying, both RD

and SD samples exhibited significant increases in active ingredient

content and antioxidant enzyme activities. Consequently,

transcriptomic analysis was performed on C. pilosula samples

subjected to 6 days of RD and SD treatment to further investigate

the molecular mechanisms involved in the accumulation of active

compounds during the drying process.

In this study, 44,687,908, 49,800,810, and 47,962,490 clean reads

were obtained from the FC, RD, and SD samples, respectively. After

removing low-quality sequences, adapters, and ambiguous reads, a total

of 399.11 million high-quality clean reads were acquired. These reads

were assembled into 194,009 transcripts with an average length of

1,440.03 bp and an N50 length of 2,636 bp. Subsequently, the

transcripts were further assembled into 102,614 unigenes, with an
FIGURE 1

Five active ingredient analysis of Fresh (FC), “Rubbing-sweating” dry (RD) and Shade-dry (SD) C. pilosula. The error bars represent the means±SE
(n=3). Different letters indicate a significant difference (capital letters p<0.01, small letters p<0.05).
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average length of 1,033.70 bp and an N50 length of 1,904 bp. For all

samples, the mapping rate of clean reads to the reference database

ranged from 85.58% to 87.56% (Table 1).

The contigs from the nine transcriptome sequencing datasets

were integrated and assembled into a total of 102,614 unigenes.

Functional annotation of these unigenes was performed using

BLAST against seven public databases: GO, KEGG, eggNOG, NR,

Swiss-Prot, and Pfam. A total of 30,521, 13,041, 31,191, 38,642,

21,750, and 19,871 unigenes were successfully aligned to these

databases, respectively. In total, 39,037 unigenes (38.04% of all

unigenes) were annotated in at least one of the functional databases

(Table 2). This high annotation rate highlights the overall quality of

the sequencing data and the effectiveness of the assembly and

annotation process (Wang and Sun, 2009).
3.4 Identification of DEGs and cluster
analysis

Principal component analysis (PCA) revealed that the

transcriptomes of FC, RD, and SD samples were clearly distinct

from one another (Figure 4A). The correlation coefficients (R²)

among the transcriptomes ranged from 0.352 to 1.000 (Figure 4B),
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indicating relatively consistent expression patterns among the nine

samples and indirectly confirming the reliability of the sequencing

and sampling procedures.

To identify DEGs associated with the different drying

treatments, three pairwise comparisons were performed: RD vs.

SD, RD vs. FC, and SD vs. FC. DEGs were defined as those with an

adjusted p-value ≤ 0.05 and |log2 fold change| ≥ 1. A total of 17,338

DEGs (9,390 upregulated and 7,948 downregulated) were identified

in RD vs. SD; 11,007 DEGs (4,500 upregulated and 6,507

downregulated) in RD vs. FC; and 28,138 DEGs (14,963

upregulated and 13,175 downregulated) in SD vs. FC (Figure 4C).

Among the 35,211 unique DEGs identified across all comparisons,

3,779 DEGs were shared among all three comparisons, 16,983 DEGs

were shared between two comparisons, and 14,449 DEGs were specific

to only one comparison (Figure 4D).
3.5 Functional analysis of DEGs with
different dry process

To further elucidate the primary functions of the identified

DEGs, Gene Ontology (GO) term annotation and Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathway
FIGURE 2

Sector bar chart of Polysaccharide (POL), protein, ash, total polyphenol (TP), ethanol-soluble extract (ASE), water-soluble extract (WSE) content in C. pilosula.
Note: The data are presented as the means±SD. FC, Fresh C. pilosula; RD, “rubbing-sweating” dried C. pilosula; SD, Shade-dried C. pilosula. With in each
column, the different superscripted small and capital letters Indicate significant and highly significant differences at p<0.05 and p<0.01, respectively.
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enrichment analyses were conducted. According to the GO

enrichment analysis results, DEGs were categorized into three

main GO domains: biological processes (BP), cellular components

(CC), and molecular functions (MF) (Figure 5). In the RD vs. SD

comparison, DEGs were significantly enriched in 7 biological

processes, 11 cellular components, and 2 molecular functions

(Figure 5A). For the RD vs. FC comparison, DEGs were primarily

enriched in 7 biological processes, 5 cellular components, and 8

molecular functions (Figure 5B). In the SD vs. FC comparison,

DEGs were enriched in 8 biological processes, 5 cellular

components, and 7 molecular functions (Figure 5C). GO

enrichment analysis indicated that processes such as the

regulation of RNA biosynthetic process, hormone-mediated

signaling pathway, and defense response; components including

the extracellular region and intracellular membrane-bounded

organelles; and functions such as DNA-binding transcription

factor activity, oxidoreductase activity, transcription regulator

activity, and molecular function inhibitor activity were

significantly associated with the DEGs. These findings suggest

that these biological pathways and molecular functions may play

crucial roles in metabolite transformation and the underlying

molecular mechanisms of C. pilosula during different postharvest

drying treatments.

The top 20 KEGG pathways identified from the three pairwise

comparisons are illustrated in Figure 6. In the RD vs. SD

comparison, a total of 3,554 DEGs were mapped to 134 KEGG

pathways, with two pathways—DNA replication and cysteine and

methionine metabolism—showing significant enrichment

(Figure 6A). In the RD vs. FC comparison, 2,418 DEGs were

enriched across 137 pathways, among which sixteen pathways

exhibited significant enrichment (Figure 6B). These included
Frontiers in Plant Science 07
biosynthesis of various plant secondary metabolites, starch and

sucrose metabolism, plant hormone signal transduction, pentose

and glucuronate interconversions, monoterpenoid biosynthesis,

MAPK signaling pathway, phenylpropanoid biosynthesis, fructose

and mannose metabolism, cysteine and methionine metabolism,

among others.

For the SD vs. FC comparison, 5,010 DEGs were mapped to 139

pathways, with ten pathways significantly enriched (Figure 6C). Key

enriched pathways included plant hormone signal transduction,

starch and sucrose metabolism, MAPK signaling pathway, and

biosynthesis of various plant secondary metabolites. These

findings suggest that metabolic and signaling pathways related to

hormone regulation, carbohydrate metabolism, and secondary

metabolite biosynthesis play pivotal roles in mediating the effects

of traditional postharvest drying methods on the quality and

bioactivity of C. pilosula. These pathways likely contribute to the

enhanced accumulation of active compounds observed following

rubbing-sweating and shade drying treatments.
3.6 qRT-PCR-based verification

To validate the RNA-sequencing (RNA-Seq) results, six DEGs

RP-1 (pathogenesis-related protein 1), ETR (Ethylene receptor),

GPX (glutathione peroxidase), PDHB (putative pyruvate

dehydrogenase), FAB2 (acyl-[acyl-carrier protein] desaturase),

SUS (sucrose synthase) related to C. pilosula substance stress

response, signal transduction and metabolism were selected for

qRT-PCR analysis. The results showed that The mRNA-Seq and

RT-PCR data were very closely correlated, and there was high

consistency in the up- and down-regulated expression of DEGs.
FIGURE 3

Activity of antioxidant-related enzymes. (A) SOD, CAT, and APX activity; (B) POD activity. The data are presented as the means±SD. With in each
column, the different superscripted small and capital letters Indicate significant and highly significant differences at p<0.05 and p<0.01, respectively.
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This result supports the reliability of the RNA-Seq analysis,

indicating that transcription data were accurate and effective and

can be used for the gene expression profile analysis in different

drying processes of C. pilosula (Figure 7).
4 Discussion

4.1 Differences in chemical composition
and antioxidant enzyme activity of C.
pilosula under different drying treatments

Significant differences in the chemical and nutritional

compositions of C. pilosula were observed under different drying

methods (Figures 1 and 2). Compared with FC, both SD and RD

significantly increased the contents of bioactive constituents (p<0.01),

with the increase being more pronounced in RD. In particular, the

polysaccharide and lobetyolin contents in RD reached 19.50% and

141.18 mg/g, respectively, which were significantly higher than those

in FC (10.56% and 122.44 mg/g) and SD (15.30% and 128.67 mg/g)
(p<0.01). These results indicate that RD facilitates the accumulation
TABLE 1 Summary of transcriptome sequencing data and transcriptome assembly.

Sample Raw read Clean read Mapped reads Mapped ratio (%) Error (%) Q20 (%) Q30 (%)

FC1 43651440 43292084 18897607 87.56 0.01 98.86 96.35

FC2 43624858 43262026 20421843 87.23 0.01 98.84 96.29

FC3 47892620 47509614 19204790 87.56 0.01 98.83 96.24

RD1 45431518 45053218 18876840 87.21 0.01 98.85 96.34

RD2 43277238 42904240 18801078 86.92 0.01 98.85 96.32

RD3 43599356 43231112 20551352 86.51 0.01 98.86 96.37

SD1 43539938 43167336 19326767 85.80 0.01 98.84 96.31

SD2 47243318 46825102 18412532 85.83 0.01 98.79 96.15

SD3 44250164 43867122 18499041 85.58 0.01 98.84 96.31

Total 402510450 399111854

Type Unigene Transcript

Total number 102614 194009

Total base 106071857 279379336

Largest length (bp) 18547 18547

Smallest length (bp) 201 201

Average length (bp) 1033.7 1440.03

N50 length (bp) 1904 2636

E90N50 length (bp) 3487 2975

Fragment mapped percent(%) 61.65 87.689

GC percent (%) 38.84 39.53

TransRate score 0.3118 0.44594
Raw reads: total number of sequencing reads before quality control; Clean reads: total number of sequencing reads after quality control; Mapped reads: number of clean reads successfully aligned
to the assembled transcripts; Mapped ratio: percentage of paired clean reads mapped to the assembled transcripts; Error (%): average base error rate of quality-controlled data; Q20 (%):
percentage of bases with a sequencing quality score higher than 99%; Q30 (%): percentage of bases with a sequencing quality score higher than 99.9%.
TABLE 2 Numbers of unigenes/transcript annotated using different
databases.

Database

Unigene Transcript

Number
Percent

(%)
Number

Percent
(%)

GO 30521 29.74% 88372 45.55%

KEGG 13041 12.71% 45639 23.52%

eggNOG 31191 30.40% 94486 48.70%

NR 38642 37.66% 107869 55.60%

Swiss-Prot 21750 21.20% 73421 37.84%

Pfam 19871 19.36% 66588 34.32%

Total number of
annotated
Unigenes/
Transcript

39037 38.04% 108540 55.95%

Total number of
Unigenes/
Transcript

102614 100.00% 194009 100.00%
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of major active constituents, which may be associated with stress-

induced activation of secondary metabolism. This finding is

consistent with previous reports that postharvest processing

methods markedly improve the quality of other medicinal

materials, such as rhubarb and Radix Gentianae (Liang et al., 2021,

2022; Sun et al., 2023), further supporting the notion that abiotic

stress can enhance the biosynthesis and accumulation of key active

compounds in medicinal plants.

Analysis of antioxidant enzyme activities showed that after 6

days of RD and SD treatment, the activities of SOD, CAT, APX, and

POD were all significantly elevated (p<0.01), indicating that both

drying methods triggered oxidative stress responses in C. pilosula

tissues. Notably, the activities of SOD, CAT, and POD in RD were

significantly higher than those in SD (p<0.01), suggesting that RD

induced a stronger stress stimulus, leading to more pronounced

oxidative stress and activation of antioxidant defense systems. This

enhanced stress response may be closely related to the more

substantial accumulation of secondary metabolites observed

under RD.
Frontiers in Plant Science 09
In summary, rubbing–sweating drying significantly increased

the contents of active constituents such as polysaccharides and

lobetyolin and markedly enhanced antioxidant enzyme activities.

These findings indicate that this drying method improves the

medicinal quality of C. pilosula by inducing stress responses and

activating relevant metabolic pathways. To systematically elucidate

the molecular mechanisms by which different drying methods affect

the quality of medicinal materials, transcriptomic analysis was

performed on day 6, when changes in active constituents and

antioxidant enzyme activities were most pronounced.
4.2 Differential gene expression related to
stress response

Reactive oxygen species (ROS) are oxygen-containing

molecules with higher chemical reactivity than molecular oxygen

and act as double-edged regulators in plants (Castro et al., 2021).

Excessive ROS accumulation damages proteins, lipids, and nucleic
FIGURE 4

Identification of DEGs in C. pilosula samples. (A) Principal component analysis. (B) Heatmap clustering analysis and correlation coefficient of
transcriptome datasets in C. pilosula samples. (C) Histogram of DEGs identified in C. pilosula samples. (D) Venn diagram of DEGs identified in C.
pilosula samples.
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acids, leading to cell death, whereas controlled ROS production

functions as an essential signal to coordinate responses to biotic and

abiotic stress (Choudhury et al., 2017). The major ROS in plant cells

—singlet oxygen, superoxide anions, hydrogen peroxide, and

hydroxyl radicals—are primarily generated in chloroplasts,

mitochondria, and peroxisomes (Mittler, 2017; Mittler et al.,

2022). Antioxidant defenses, including enzymatic (SOD, CAT,
Frontiers in Plant Science 10
POD, APX) and non-enzymatic pathways such as the ascorbate-

glutathione (AsA-GSH) cycle, maintain redox homeostasis

(Hasanuzzaman et al., 2020; Tai et al., 2022; Li, 2023).

Peroxisomes play a particularly important role in regulating

oxidative metabolism. Peroxins, which are essential for peroxisome

biogenesis and function, maintain peroxisomal integrity andmediate

stress responses (Traver et al., 2022; Collin and Daszkowska-Golec,
FIGURE 5

GO categories of the identified DEGs derived from C. pilosula samples. (A) RD vs SD; (B) RD vs FC; (C) SD vs FC.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1650787
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Liang et al. 10.3389/fpls.2025.1650787
2025). In this study, the transcriptional levels of PEX12 and PEX14

were significantly upregulated in RD vs. SD, suggesting enhanced

peroxisomal activity under rubbing-sweating treatment. Meanwhile,

MPV17, a gene encoding a peroxisomal membrane protein involved

in ROS generation (Chen et al., 2024), was upregulated in RD vs. SD
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but downregulated in SD vs. FC, indicating that RD imposes

stronger oxidative stress than SD. Furthermore, genes encoding

peroxisomal enzymes such as glyoxylate aminotransferase (AGXT)

and hydroxyacid oxidase (HAO), both of which contribute to

adaptation under drought and salt stress (Hu et al., 2012; Zeier,

2013; Barqawi and Abulfaraj, 2023), were significantly upregulated

in RD vs. SD, but downregulated in SD vs. FC. In addition, PIPOX, a

key enzyme regulating pipecolic acid metabolism and plant

immunity (Zeier, 2013; Chen et al., 2018), was markedly

upregulated in both RD vs. SD and RD vs. FC, while no changes

were observed in SD vs. FC. Together, the coordinated upregulation

of PEX12, PEX14, MPV17, AGXT, HAO, and PIPOX in RD vs. SD

supports the conclusion that rubbing-sweating imposes greater

abiotic stress on C. pilosula tissues, triggering peroxisome-related

pathways and promoting ROS generation that likely activates

secondary metabolism (Figure 8).

Plants employ a range of antioxidant systems to mitigate ROS

toxicity. SOD catalyzes the dismutation of superoxide radicals to

H2O2, which is further decomposed by CAT and POD

(Hasanuzzaman et al., 2020). In this study, genes encoding SOD

were upregulated in RD vs. SD but downregulated in SD vs. FC,

indicating a stronger oxidative response under RD. POD and CAT

showed similar trends, supporting the notion of enhanced ROS

detoxification capacity under RD treatment. The AsA-GSH cycle

represents a critical pathway for maintaining redox balance in

chloroplasts, mitochondria, and cytosol (Tai et al., 2022).

Ascorbate peroxidase (APX) plays a complementary role by

catalyzing the reduction of H2O2 using ascorbate (AsA) as an

electron donor, producing monodehydroascorbate (MDHA) and

H2O (Zhang et al., 2023; Caccamo et al., 2024). Within this cycle,

glutathione peroxidase (GPX) reduces H2O2 using GSH, which is

regenerated via NADPH-dependent reactions. In this study, GPX-

related genes were significantly upregulated in both RD vs. FC and

SD vs. FC, suggesting activation under both drying conditions.

However, APX genes were particularly upregulated in RD vs. FC,

reinforcing the specific contribution of the AsA-GSH cycle to ROS

scavenging under rubbing-sweating treatment. Importantly, genes

encoding NADPH-generating enzymes such as IDH1, PGD, and

G6PD were significantly upregulated in RD vs. SD. These enzymes

are not only critical for regenerating reduced glutathione and

ascorbate (Huang et al., 2019; Hasanuzzaman et al., 2020), but

also central to the TCA cycle and pentose phosphate pathway,

thereby contributing to enhanced energy production and precursor

supply. Their upregulation indicates that RD treatment boosts

metabolic capacity to support both redox homeostasis and

secondary metabolite biosynthesis (Figure 8).

Taken together, these results demonstrate that RD imposes

stronger oxidative stress on C. pilosula than SD, as evidenced by

elevated ROS generation and coordinated activation of peroxisome-

associated metabolic pathways, antioxidant enzymes, and the AsA-

GSH cycle. This enhanced stress response not only maintains

cellular redox balance but also drives increased metabolic activity

and the accumulation of bioactive compounds, thereby improving

the medicinal quality of C. pilosula.
FIGURE 6

Bubble plot of the KEGG pathway enrichment statistics of DEGs.
(A) RD vs SD; (B) RD vs FC; (C) SD vs FC.
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4.3 Differential gene expression related to
signal transduction

Signal transduction is essential for plants to perceive

environmental stimuli and activate appropriate physiological and

molecular responses, thereby enhancing stress tolerance (Manna

et al., 2023). Among the various pathways, the mitogen-activated

protein kinase (MAPK) cascade plays a central role in mediating

responses to both biotic and abiotic stresses. In this study, DEGs

within the MAPK pathway were mainly associated with defense

act iva t ion, H2O2 product ion , and the regulat ion of

ROS homeostasis.

In plant immunity, the receptor FLS2 specifically recognizes

pathogen-associated peptides such as flg22, with BAK1 serving as a

co-receptor to initiate downstream immune signaling (Yuan et al.,

2021; Wang et al., 2024). PR-1, a key defense protein, subsequently

accumulates to inhibit pathogen proliferation (Zhang et al., 2022b).

Here, BAK1 and PR-1 were significantly upregulated in RD vs. SD,

while FLS2 and PR-1 were enhanced in RD vs. FC, suggesting that

mechanical stress during rubbing-sweating (RD) may disrupt cell

walls, enhance PAMP (pathogen-associated molecular patterns)

perception, and activate immune signaling. NDPK2 and ANP1

further regulate the MAPK cascade. NDPK2 promotes H2O2

accumulation and programmed cell death (Liu et al., 2025), while

ANP1, as a MAPKKK, responds to oxidative stress to activate

downstream MAPK (Marti et al., 2021). Both were upregulated in

RD vs. SD but downregulated in SD vs. FC, indicating that RD

strongly induced oxidative signaling and stress-related cell death in

C. pilosula tissues. Calcium-mediated signaling also plays a crucial

role. Calmodulin (CALM) functions as a Ca²+ sensor, regulating

RbohD activity, which transfers electrons from NADPH to oxygen

to generate ROS (Dubiella et al., 2013; Li et al., 2014; Seybold et al.,

2014). In this study, CALM and RbohD were significantly

upregulated in RD vs. SD, implying that RD enhanced Ca²+

influx and ROS production. Meanwhile, MYC2-related genes

were downregulated in SD vs. FC, indicating differential

activation of jasmonate signaling under shade drying. Together,
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these results suggest that RD treatment imposed stronger abiotic

stress, triggering Ca²+–ROS signaling and potentially regulating

secondary metabolism (Figure 8).

Plant hormone signaling further contributes to stress responses.

In the abscisic acid (ABA) pathway, SnRK2 mediates responses to

drought, salinity, and other stresses (Zhao et al., 2023). In this study,

SnRK2, MKK3, and MPK1 were significantly upregulated in RD vs.

SD, while MKK3 and MPK1 were downregulated in SD vs. FC. As

MKK3 activates downstream MAPKs such as MPK1 and MPK7 to

regulate disease resistance (Zhou et al., 2019a; Li et al., 2022), these

results indicate that RD imposed stronger stress, thereby enhancing

ABA- and MAPK-mediated signaling. Ethylene signaling was also

activated under RD. RTE1 regulates the receptor ETR1, which

controls CTR1 activity to initiate downstream signaling (Chen

et al., 2022b). Both RTE1 and ETR1 were significantly

upregulated in RD vs. SD, suggesting enhanced ethylene

signaling. Ethylene mediates responses to diverse stresses,

including drought, temperature, salinity, and mechanical damage

(Pérez-Llorca et al., 2023). Moreover, ChiB, a chitinase gene related

to ethylene-mediated defense, was upregulated in both RD vs. SD

and RD vs. FC, further supporting the view that the RD process

significantly enhances the defense capacity of C. pilosula tissues

(Vaghela et al., 2022). Jasmonate (JA) signaling also responded

strongly to RD. In this pathway, mechanical stress increases JA

levels, promoting COI1–JA receptor complex formation,

degradation of JAZ repressors, and release of MYC2 to activate

defense-related and senescence-associated genes (Zhou et al.,

2019b). In our study, COI1 and MYC2 were upregulated in RD

vs. SD, while MYC2 was suppressed in SD vs. FC. These findings

suggest that RD activated JA signaling more effectively than SD,

enhancing stress resistance but potentially accelerating

senescence (Figure 8).

Taken together, transcriptome data demonstrate that rubbing-

sweating more strongly activates signal transduction pathways than

shade drying. RD treatment upregulated multiple genes in MAPK

signaling and hormone pathways, including BAK1, PR-1, NDPK2,

ANP1, CALM, RbohD, SnRK2, MKK3, MPK1, RTE1, ETR1, ChiB,
FIGURE 7

Validation of the expression patterns of DEGs selected from the RNA-Seq analysis by qRT-PCR. (A) AD versus SD; (B) RD versus FC; (C) SD versus
FC. RP-1, pathogenesis-related protein 1; ETR, Ethylene receptor; gpx, glutathione peroxidase; PDHB, putative pyruvate dehydrogenase; FAB2, acyl-
[acyl-carrier protein] desaturase; SUS, sucrose synthase.
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COI1, and MYC2. This indicates that RD imposes stronger abiotic

stresses—mechanical damage, hypoxia, and elevated temperature—

thereby stimulating immune responses, ROS production, and

hormone signaling. Such activation likely enhances stress

adaptation and secondary metabolite accumulation, contributing

to improved medicinal quality of C. pilosula. Nevertheless, the

pronounced stress response may also accelerate senescence and

programmed cell death, reflecting a trade-off between enhanced

quality and tissue longevity under traditional rubbing-

sweating processing.
4.4 Differential gene expression related to
phenylalanine, tyrosine and tryptophan
biosynthesis

C. pilosula, a traditional medicinal and edible herb, is rich in

amino acids that contribute significantly to its nutritional and

pharmacological value (Luan et al., 2021). Among them, the

aromatic amino acids (AAAs)—L-tryptophan (Trp), L-

phenylalanine (Phe), and L-tyrosine (Tyr)—are not only

indispensable for protein synthesis but also serve as precursors

for diverse natural products, influencing plant growth, defense, and

stress responses (Yokoyama, 2024). In this study, multiple genes

involved in AAA biosynthesis were differentially expressed under

different drying treatments. Their biosynthesis occurs in two main

stages: the conversion of D-erythrose 4-phosphate into chorismate

via the shikimate pathway, followed by chorismate-mediated

branching into distinct downstream pathways. The shikimate

pathway also generates antioxidants such as flavonoids, phenolics,

and lignin, which mitigate oxidative stress by scavenging ROS

(Tohge et al., 2013; Zhao et al., 2018). Within this pathway, aroF,

aroB, and aroDE encode key enzymes that catalyze the formation of

intermediates including 3-dehydroshikimate and chorismate.

Notably , 3-dehydroquinate synthase (aroB) regulates

protocatechuic acid biosynthesis, a phenolic compound that

reduces ROS levels and enhances stress resilience (Hao et al.,

2022; Zhang et al., 2022a). In wheat, aroDE is upregulated under

drought and salinity stress (Dugasa et al., 2020). Here, aroF, aroB,

and aroDE were significantly upregulated in RD vs. SD, suggesting

that rubbing-drying imposes stronger mechanical, hypoxic, and

dehydration stresses than SD. This activation likely promotes

chorismate synthesis, driving downstream AAA biosynthesis and

contributing to secondary metabolite accumulation.

Phe and Tyr are not only structural amino acids but also

precursors of diverse polyphenols with antioxidant properties

(Gechev et al., 2013; Sun et al., 2023). Both are implicated in

activating ROS-scavenging systems and alleviating oxidative

damage (Ramzan et al., 2023). In this study, genes including

ADT, hisC, GOT1, and TAT—encoding key enzymes for Phe and

Tyr biosynthesis—were significantly upregulated in RD vs. SD,

unchanged in RD vs. FC, and downregulated in SD vs. FC. These

patterns indicate that RD more effectively enhances Phe/Tyr

biosynthesis, potentially improving ROS detoxification and stress

tolerance in C. pilosula (Figure 9).
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For Trp biosynthesis, anthranilate synthase (trpG and trpE)

catalyzes the conversion of chorismate to anthranilate, initiating the

pathway. These genes are known to regulate root stress responses

and development (Tu et al., 2021). Shade treatment upregulates

trpG in walnut, increasing protein accumulation (Liang et al., 2023).

Other genes such as trpF, trpC, and trpB also participate in Trp

synthesis (Maeda and Dudareva, 2012). In our study, trpG, trpE,

trpF, trpC, and trpB were significantly upregulated in RD vs. SD but

downregulated in RD vs. FC, suggesting enhanced transcriptional

activation of the Trp pathway under rubbing stress. However,

despite this upregulation, Trp content was higher in SD than RD.

This discrepancy may reflect accelerated Trp turnover under stress:

as a precursor for indole-derived metabolites such as auxin (IAA),

serotonin, and alkaloids, Trp is rapidly consumed during stress

responses (Ljung, 2013; Ren et al., 2025). Thus, RD may promote

higher flux through the Trp pathway but reduce net accumulation

due to enhanced conversion into secondary metabolites (Figure 9).

Chorismate and its derivatives Phe, Tyr, and Trp are central

intermediates in numerous physiological processes, serving as

precursors of lignin, flavonoids, and auxins while sustaining

metabolic homeostasis and stress adaptation (Shende et al., 2024;

El-Azaz and Maeda, 2025). Our findings show that RD strongly

upregulated genes across this pathway, indicating that mechanical

and hypoxic stresses activate AAA biosynthesis and promote

secondary metabolite production. This enhanced metabolic

activity may increase the nutritional and medicinal value of C.

pilosula. Overall, the results highlight the dual role of RD-induced

stress: while it activates key biosynthetic pathways, leading to

enhanced accumulation of secondary metabolites and potential

improvement in medicinal quality, it also accelerates metabolic

turnover of certain compounds such as Trp. Therefore, the RD

process should be carefully optimized—by adjusting kneading

cycles and sweating duration—to balance stress-induced quality

enhancement with the risk of excessive nutrient loss.
4.5 Differential gene expression related to
lobetyolin biosynthesis

Lobetyolin, a characteristic polyacetylene compound in C. pilosula,

exhibits diverse pharmacological activities, including antioxidant, anti-

inflammatory, and immunomodulatory effects, and is therefore

regarded as an important quality marker (He et al., 2020; Xie et al.,

2023). However, its biosynthetic pathway remains poorly characterized.

Previous studies have suggested that lobetyolin may derive from

pyranose-form glucose metabolism (Bailly, 2021) or originate from

oleic acid through fatty acid metabolism, with intermediates such as

citric acid and linoleic acid serving as potential precursors (Xu et al.,

2024). Comparative analyses among C. pilosula varieties further

indicate that lobetyolin likely consists of a fatty acid chain conjugated

with a glycosyl moiety, reinforcing the role of fatty acid metabolism in

its biosynthesis (Aghkand et al., 2019; Ma et al., 2024). In the putative

pathway, pyruvate is converted into acetyl-CoA by PDHB and pdhC,

which then enters fatty acid metabolism. In this study, the genes

encoding PDHB and pdhCwere significantly upregulated in the RD vs.
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FC comparison, suggesting enhanced acetyl-CoA supply under

rubbing-drying. Acetyl-CoA is subsequently elongated and modified

through enzymes such as CEM1 and FATB, leading to palmitic acid

formation, which can be further desaturated by FAB2 to oleic acid.

Oleic acid is converted by FAD2 to linoleic acid, a key intermediate for
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polyacetylene biosynthesis (Xu et al., 2024). Here, CEM1 was

significantly upregulated in RD vs. FC, while both CEM1 and FATB

showed strong induction in SD vs. FC, indicating that fatty acid

metabolism is activated by both drying methods, though via slightly

different patterns. FAB2 expression was significantly upregulated in
FIGURE 8

Overview of DEGs related to stress response and signal transduction during the drying process of C. pilosula. (FLS2, LRR receptor-like serine/
threonine-protein kinase FLS2; BAK1, brassinosteroid insensitive 1-associated receptor kinase 1; PR-1, pathogenesis-related protein 1; NME,
nucleoside-diphosphate kinase;ANP1, mitogen-activated protein kinase kinase kinase ANP1; CALM, calmodulin; RBOH, respiratory burst oxidase;
SnRK2, serine/threonine-protein kinase SAPK7-like; MKK3, mitogen-activated protein kinase kinase 3; MPK1/7, mitogen-activated protein kinase 1/7;
TMEM, transmembrane protein; ETR, ethylene receptor; CHIB, endochitinase A; COI1, coronatine insensitive 1; JAZ, protein TIFY 6B isoform X1;
MYC2, transcription factor MYC2; PEX12, peroxin-12; MPV17, protein Mpv17; PEX14, peroxin-14; AGXT, serine–glyoxylate aminotransferase; HAO,
FMN-dependent dehydrogenase; PIPOX, sarcosine oxidase/L-pipecolate oxidase; SOD, superoxide dismutase; CAT, catalase; GPX, glutathione
peroxidase; IDH1, NADP-isocitrate dehydrogenase); PGD, 6-phosphogluconate dehydrogenase; G6PD, glucose-6-phosphate 1-dehydrogenase;
APX, ascorbate peroxidase).
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both RD vs. FC and SD vs. FC, while FAD2 was higher in RD vs. SD,

suggesting that RDmore strongly promotes the conversion of oleic acid

to linoleic acid. Taken together, these results suggest that lobetyolin

biosynthesis in C. pilosula is closely linked to fatty acid metabolism,

particularly the conversion of acetyl-CoA through sequential

desaturation steps leading to linoleic acid. Both SD and RD

enhanced the expression of key genes in this pathway, but RD

imposed stronger stress stimuli, thereby exerting a more pronounced

promotive effect on lobetyolin accumulation (Figure 9).

In addition to unsaturated fatty acid chains, lobetyolin

biosynthesis requires glycosylation mediated by glycosidic
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compounds (Xu et al., 2024). Within the starch and sucrose

metabolism pathway, sucrose is converted into UDP-glucose

through the actions of INV, scrK, pgm, UGP2, and SUS,

providing the essential glycosyl donor. UDP-glucose is

subsequently conjugated to lobetyol by glycosyltransferases (GTs),

yielding lobetyolin. In this study, pgm and SUS were significantly

upregulated in both RD vs. FC and SD vs. FC, while INV, scrK, and

UGP2 showed higher expression in RD vs. SD. These results

indicate that RD more strongly stimulates UDP-glucose

biosynthesis and related glycosylation processes than SD, thereby

facilitating lobetyolin formation (Figure 9).
FIGURE 9

Overview of DEGs related to phenylalanine, tyrosine and tryptophan biosynthesis during the drying process of C. pilosula. (aroDE, 3-dehydroquinate
dehydratase/shikimate dehydrogenase; aroB, 3-dehydroquinate synthase; aroF, phospho-2-dehydro-3-deoxyheptonate aldolase 2; ADT, arogenate/
prephenate dehydratase; hisC, histidinol-phosphate aminotransferase; GOT1, aspartate aminotransferase; TAT, tyrosine aminotransferase-like
isoform X1; trpG, anthranilate synthase beta subunit 1; trpE, anthranilate synthase alpha subunit 2; trpF, N-(5’-phosphoribosyl)anthranilate
isomerase 1; trpC, anthranilate synthase/indole-3-glycerol phosphate synthase; trpB, tryptophan synthase alpha chain; PDHB, putative pyruvate
dehydrogenase; pdhc, pyruvate dehydrogenase E2 component; CEM1, 3-oxoacyl-[acyl-carrier-protein] synthase II; FATB, palmitoyl-acyl carrier
protein thioesterase; FAB2, acyl-[acyl-carrier protein] desaturase; FAD2, Delta(12) fatty acid desaturase DES8.11; SUS, sucrose synthase; INV,
beta-fructofuranosidase; scrK, fructokinase-6; UGP2, UTP–glucose-1-phosphate uridylyltransferas; pgm, phosphoglucomutase; galE, UDP-glucose
4-epimerase; UGDH, UDPglucose 6-dehydrogenase; AXS, UDP-apiose/xylose synthase; RGP, UDP-arabinopyranose mutase; RHM, UDP-glucose
4,6-dehydratase; HK, hexokinase; GMPP, mannose-1-phosphate guanylyltransferase).
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Overall, lobetyolin biosynthesis in C. pilosula is closely

associated with genes from the TCA cycle, fatty acid metabolism,

and starch and sucrose metabolism. Transcriptomic analysis

demonstrated that drying methods differentially regulate these

pathways, with rubbing-drying exerting a stronger promotive

effect. These transcriptomic results were consistent with

quantitative content determination (Figure 1), confirming that

rubbing-drying enhances lobetyolin accumulation in C. pilosula.
4.6 Differential gene expression related to
C. pilosula polysaccharide biosynthesis

The biosynthesis of polysaccharides in plants mainly involves

starch/sucrose and amino sugar/nucleotide sugar metabolism.

Sucrose is first converted into UDP-glucose by sucrose synthase

(SUS), which provides precursors for multiple nucleotide sugars.

For example, GalE forms UDP-D-galacturonate, UGDH produces

UDP-glucuronic acid, AXS generates UDP-D-xylose, RGP forms

UDP-L-arabinofuranose, and RHM synthesizes UDP-L-rhamnose.

These activated sugars are incorporated into polysaccharide chains

by GTs, contributing to cell wall architecture, intracellular signaling,

and stress responses (Wang et al., 2017; Niu et al., 2020; Zhang et al.,

2020). Alternatively, sucrose can also be metabolized by SUS and

HK into D-mannose-6-phosphate, then converted into GDP-

mannose by GMPP, which also functions as a sugar donor in

polysaccharide biosynthesis.

In this study, genes encoding RGP and RHM were significantly

upregulated in RD vs. FC, while AXS, HK, and GMPP showed an

upward trend. Furthermore, galE, UGDH, AXS, RGP, RHM, and

GMPP were significantly upregulated in RD vs. SD, suggesting that

RD promotes polysaccharide biosynthesis more effectively than SD

or FC (Figure 9). Previous studies support this view: UGDH is

induced by drought in barley (Vitámvás et al., 2015), AXS enhances

oxidative stress resistance in rice (Ni et al., 2022), RGP contributes

to stress defense (Saqib et al., 2019), and GMPP improves salt

tolerance in rice (Chen et al., 2022a). These results indicate that RD

imposes stronger abiotic stress, including mechanical injury,

pathogen exposure, hypoxia, and elevated temperature, thereby

stimulating polysaccharide accumulation in C. pilosula.
5 Conclusion

In this study, the differences in key active compounds in C.

pilosula under shade drying and rubbing–sweating drying were

systematically analyzed. For the first time, the molecular

mechanisms underlying the accumulation of these compounds

during postharvest processing were explored using transcriptomic

approaches. The results demonstrated that both drying methods

enhanced the quality of C. pilosula to varying degrees, with

rubbing–sweating being more conducive to the accumulation of

major active constituents such as lobetyolin and polysaccharides.

Transcriptomic analysis further revealed that rubbing–sweating

more strongly activated the expression of genes involved in MAPK
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signaling and hormone transduction, thereby inducing stress

responses, defense mechanisms, and programmed cell death. In

addition, peroxisome-related pathways and the antioxidant enzyme

system were markedly upregulated, promoting redox homeostasis

and the biosynthesis of secondary metabolites. Compared with SD,

RD also enhanced the expression of genes related to phenylalanine,

tyrosine, tryptophan, lobetyolin, and polysaccharide biosynthesis,

suggesting that the enhanced quality results from stress-induced

activation of multiple metabolic pathways.

Although this study, for the first time, provides transcriptomic

evidence linking the rubbing and sweating treatment with the

improvement of C. pilosula quality, further in-depth investigation

is still required. Future research will integrate multi-omics data to

conduct joint analyses of DEGs and metabolites during the drying

process of C. pilosula, as well as perform functional validation of key

genes involved in critical pathways. On this basis, systematic

optimization of key processing parameters in producing areas

(such as rubbing intensity, rubbing frequency, sweating duration,

and environmental conditions) will be undertaken to establish

technical standards for C. pilosula processing, thereby

standardizing the processing workflow. This will provide both

scientific evidence and practical guidance to promote the

modernization and mechanization of C. pilosula processing.
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