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Postharvest processing critically determines the quality of Codonopsis pilosula,
yet the molecular mechanisms underlying the traditional “rubbing—sweating”
technique remain unclear. We hypothesized that rubbing—sweating imposes
stronger abiotic stress than shade drying, thereby activating stress-responsive
pathways and enhancing the accumulation of bioactive constituents. To test this,
freshly harvested roots were processed by shade drying (SD) and rubbing-
sweating drying (RD), and compared with fresh controls (FC) in terms of
chemical composition, antioxidant enzyme activity, and transcriptomic profiles.
After 6 days, RD significantly increased lobetyolin content by 15.3% relative to FC
and 9.7% relative to SD (p<0.01), while polysaccharides reached 19.5% in RD
versus 10.6% in FC (p<0.05). Antioxidant enzymes also exhibited marked
increases under RD, with catalase activity elevated by 235% compared to FC.
Transcriptome sequencing revealed 17,338 DEGs in RD vs. SD and 11,007 in RD
vs. FC, enriched in MAPK signaling, hormone transduction, and aromatic amino
acid biosynthesis. These findings support our hypothesis that rubbing—sweating
enhances the medicinal quality of C. pilosula through stress-induced activation
of metabolic pathways. This work provides the first transcriptomic evidence for
the molecular basis of this traditional technique, offering new insights for
optimizing and modernizing postharvest processing.
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1 Introduction

In recent years, rising living standards and advancements in the
pharmaceutical industry have led to a growing annual demand for
high-quality traditional Chinese medicinal (TCM) materials with
health-promoting properties. The quality of TCM is determined by
a complex interplay of factors, including the growing environment,
cultivation practices, and duration of growth, as well as appropriate
post-harvest processing methods at the production site, which are
critical to the final quality of the medicinal materials (Li et al., 2020;
Chen et al, 2023). Common traditional post-harvest processing
methods for Chinese medicinal materials include steaming, boiling,
blanching, smoking and “Rubbing-sweating” (Zhang et al., 2024; Xu
et al., 2025). However, some of these methods are labor-intensive,
time-consuming, and technically complex, rendering them
increasingly incompatible with the modernization needs of the
traditional Chinese medicine (TCM) industry. Therefore, it is
essential to conduct in-depth investigations into traditional
processing techniques to elucidate their underlying scientific
mechanisms. Such research can offer valuable insights for
developing processing methods that not only improve the quality
of medicinal materials but also align with the demands of modern
industrial production.

Codonopsis Radix (Dangshen) refers to the dried roots of
perennial species in the Campanulaceae family, including
Codonopsis pilosula (Franch.) Nannf., C. pilosula Nannf. var.
modesta (Nannf.) L.T. Shen, and C. tangshen Oliv (Liang et al,
2024). Due to its functions in strengthening the spleen, moistening
the lungs, nourishing the blood, promoting the generation of bodily
fluids, modulating immune function, and exhibiting antitumor
properties (Zou et al., 2014; Bai et al,, 2018), C. pilosula has been
used for centuries in both food and traditional folk medicine across
Asian countries, including China, Japan, and Korea (Luan et al,
2021). In the traditional production areas of C. pilosula, a distinctive
post-harvest processing technique known as “Rubbing-sweating”
has gradually evolved through long-term practice. Locally, it is
widely believed that C. pilosula processed using this method
possesses a superior commercial appearance and enhanced
quality. The traditional rubbing and sweating process consists of
the following steps: (1) Freshly harvested roots are cleaned to
remove impurities and shade-dried for 2-3 days until their
texture changes from hard to pliable; (2) The roots are bundled
and vigorously rubbed by hand or with mechanical assistance to
make the tissues denser and firmer; (3) The rubbed roots are heaped
and covered with straw mats to allow surface moisture to condense.
This sweating step lasts 1-2 days, with careful monitoring to
prevent mold or spoilage; (4) The roots are then sun-dried for 1-
2 days. Steps (2) and (3) are typically repeated 2-3 times until the
roots are fully dried (Liang et al., 2024).

Freshly harvested plant tissues—particularly roots and
rhizomes—retain substantial physiological activity for a period
following harvest. During this time, they can respond to external
stimuli by initiating a series of physiological and biochemical
reactions, thereby influencing metabolic processes and the
accumulation of secondary metabolites within the plant (Qi et al,
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2024). Studies have demonstrated that appropriate postharvest
processing methods can significantly enhance the accumulation of
volatile C6-compounds in oolong tea (Zhou et al., 2020). Similarly,
postharvest high-temperature treatment of jujube fruit (soaking in
50°C water for 4 minutes) has been shown to effectively delay
senescence and decay (Yang et al., 2021). In addition, the traditional
“sweating” process has been employed in the postharvest handling
of several Chinese medicinal materials, including Magnolia
officinalis, Salvia miltiorrhiza, and Gentiana macrophylla. Some
researchers have suggested that sweating alters the composition of
microbial communities in M. officinalis, thereby increasing the
content of active compounds such as magnolol and honokiol in
the final product (Wu et al., 2019). Others have found that sweating
significantly promotes the production of intermediate metabolites
involved in the biosynthesis of tanshinones and salvianolic acids in
S. miltiorrhiza, contributing to the accumulation of these bioactive
components and improving the quality of the dried material (Cao
et al,, 2020). Furthermore, sweating has been reported to enhance
the biosynthesis of phenylalanine, tyrosine, and tryptophan, as well
as polyphenol and terpene biosynthesis in G. macrophylla, thus
promoting the accumulation of key active ingredients and
improving the overall quality of the herb (Sun et al., 2023).

At present, it remains unclear how the traditional “rubbing-
sweating” process affects the active components of C. pilosula and
its molecular regulatory mechanism. We hypothesized that the
“rubbing-sweating” treatment might enhance the quality of C.
pilosula by inducing the stress response signaling pathway and
promoting the accumulation of bioactive compounds. To verify this
hypothesis, this study compared the differences in chemical
components, antioxidant enzyme activities, and transcriptome
profiles among fresh C. pilosula, shade-dried C. pilosula, and C.
pilosula treated with the “rubbing-sweating” process. The aim of
this study was to clarify the molecular mechanism by which the
“rubbing-sweating” treatment improves the quality of C. pilosula,
providing a theoretical basis for the optimization of traditional
processing techniques and the development of modern
drying technologies.

2 Materials and methods
2.1 Plant material and experimental design

Root samples of C. pilosula were collected from Wen County,
Gansu Province, China (32.944° N, 104.683° E), and were of
uniform age (3 years). Botanical identification was performed by
Professor Chen Yuan from the College of Agronomy, Gansu
Agricultural University, who confirmed the samples as members
of the Campanulaceae family, specifically Codonopsis pilosula
(Franch.) Nannf.

The collected C. pilosula samples, selected for uniform size,
were divided into three groups, each consisting of 12 roots. One
group was designated as the control (fresh C. pilosula, FC), while the
other two groups were subjected to shade-drying (SD) and
“Rubbing-sweating” drying (RD) treatments, respectively. For
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subsequent analyses, three biological replicates were established per
treatment, with each replicate comprising pooled tissues from four
randomly selected roots.

2.1.1 Fresh C. pilosula

The freshly harvested C. pilosula samples were immediately
stored at —80°C to preserve them for subsequent analysis.

2.1.2 "Rubbing-sweating” dried C. pilosula

The samples were kept indoors and manually rubbed every
three days. After each rubbing session, the roots were covered with a
breathable tarp for 12 hours to facilitate sweating, followed by air-
drying for two days to promote moisture loss and prevent mold
growth. This cycle was repeated three times. The ambient
temperature was maintained at 2-10°C throughout the process.

2.1.3 Shade-dried C. pilosula

The samples were placed in a cool, shaded environment under
the same conditions as the RD group, except without rubbing or
sweating. They were dried continuously for 12 days, with air-drying
every three days to facilitate moisture loss and prevent
mold formation.

To investigate transcriptomic changes during the drying
process, samples were collected after four days of treatment. Each
sample weighed 9 g and was immediately stored in an ultra-low-
temperature freezer (—80°C) for further analysis. Voucher
specimens of C. pilosula used in this study were deposited in the
Herbarium of Gansu Agricultural University (College of
Agronomy) to facilitate future research and verification.

2.2 Detection of chemical composition

Freeze-dried C. pilosula tissue (2 g) was ground into a fine
powder and extracted with 20 mL of 50% ethanol using ultrasonic
assistance at 60°C for 60 minutes. The extract was then centrifuged
at 1000 rpm for 5 minutes, and the resulting supernatant was
filtered through a 0.22 pm organic membrane filter. The filtrate was
subsequently analyzed using a high-performance liquid
chromatography with photodiode array detection (HPLC-PDA)
system. Quantitative determination of five major chemical
constituents—adenosine, protocatechuic acid, tryptophan,
syringin, and lobetyolin—was performed using an Agilent 1260
liquid chromatograph equipped with a Kromasil C; reversed-phase
column (4.6 mm x 250 mm). The mobile phase consisted of 0.5%
formic acid aqueous solution (solvent A) and acetonitrile (solvent
B), delivered at a flow rate of 1 mL-min™". The gradient elution
program was as follows: 0-5 min, 5% B; 5-10 min, 5-8% B; 10-15
min, 8% B; 15-25 min, 8-14% B; 25-30 min, 14-20% B; 30-40 min,
20-30% B; and 40-50 min, 30-50% B. The injection volume was 10
UL, and detection was carried out at 260 nm.

The contents of polysaccharides, proteins, and ash were
determined in accordance with AOAC standard methods (Iyda
et al, 2019; Yang et al., 2019).
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2.3 Superoxide dismutase, peroxidase,
catalase, and ascorbate peroxidase activity
assay

A total of 1.00 g of fresh C. pilosula tissue powder was mixed with
9 mL of normal saline for enzymatic extraction. The mixture was
centrifuged at 2,500 rpm for 10 minutes at 4°C, and the resulting
supernatant was collected for the determination of superoxide
dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate
peroxidase (APX) activities. Enzyme activity assay kits were
purchased from Nanjing Jiancheng Bioengineering Institute.

2.4 Transcriptome data determination

2.4.1 RNA abstraction and quality evaluation

Samples from FC, SD (6 days), and RD (6 days) groups (0.5 g
fresh weight each) were selected for total RNA extraction using
TRIzol reagent (Invitrogen, Carlsbad, CA, USA), following the
manufacturer’s instructions. The integrity and concentration of
the extracted RNA were assessed using a 2100 Bioanalyzer
(Agilent Technologies, Santa Clara, CA, USA) and quantified
using a NanoDrop ND-2000 spectrophotometer (Thermo
Scientific, Wilmington, DE, USA). High-quality RNA was
subsequently used for library construction.

2.4.2 Complementary DNA library transcription
group fabrication and sequencing

RNA purification, reverse transcription, library construction,
and sequencing were performed by EMajorbio Bio-Pharm
Biotechnology Co., Ltd. (Shanghai, China). RNA-seq libraries
were prepared using the TruSeqTM RNA Sample Preparation Kit
(Ilumina, USA). Poly(A) mRNA was isolated from total RNA using
oligo(dT)-attached magnetic beads, followed by fragmentation
using a fragmentation buffer. The resulting short RNA fragments
were used as templates to synthesize double-stranded
complementary DNA (ds-cDNA) using the SuperScript Double-
Stranded cDNA Synthesis Kit (Invitrogen) and RHP reagents
(Illumina). Subsequently, the ¢cDNA underwent end repair,
phosphorylation, and addition of a single ‘A’ base according to
Mumina’s library preparation protocol. Libraries were size-selected
for cDNA fragments of 200-300 bp using 2% low-range ultra
agarose (LRUA) gel and amplified via PCR using Phusion High-
Fidelity DNA Polymerase for 15 cycles. After quantification using
the TBS-380 fluorometer, the libraries were sequenced on an
Mumina HiSeq X Ten or NovaSeq 6000 platform to generate 2 x
150 bp paired-end reads.

2.4.3 De novo assembling and annotation

The original paired end reads were treated with trimming and
QC by SeqPrep and Sickle. Afterwards, the cleaning data from the
samples were adopted to perform de novo assembling with Trinity
(Grabherr et al., 2011). The entire assembling transcription products
were retrieved against the National Center for Biotechnology
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Information (NCBI) protein NR (https://www.ncbinlm.nih.gov/
public/, July 2023), GO (http://www.geneontology.org/, July
2023), and KEGG (http://www.genome.jp/kegg/, September 2023)
data centers via BLASTX (2.9.0) to determine the proteins with the
greatest sequential resemblance compared to the aforementioned
transcription products to search the functional notations and a
representative cut-off E-values<1.0 x 107> was set. BLAST2GO
software (Agu 2018) was adopted to acquire gene ontology (GO)
notations of distinctive assembling transcription products for the
description of biology activities, molecule roles and cell
constituents. Metabolism pathway assay was completed via the
KEGG method (Conesa et al., 2005).

2.4.4 Differential expression analysis and
functional enrichment

To identify differentially expressed genes (DEGs) between
groups, transcript expression levels were calculated using the
transcripts per million (TPM) method. Gene abundances were
quantified using RSEM (Li and Dewey, 2011). Differential
expression analysis was conducted using either DESeq2 (Love
et al., 2014) or DEGseq (Wang et al., 2010). Genes with |log, fold
change| > 1 and false discovery rate (FDR)<0.05 (DESeq2) or
FDR<0.001 (DEGseq) were considered significantly differentially
expressed. Furthermore, functional enrichment analyses, including
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway analyses, were performed to identify
significantly enriched GO terms and metabolic pathways.
Enrichment was evaluated using a Bonferroni-corrected p-
value<0.05 compared with the whole transcriptome background.
GO and KEGG analyses were conducted using GOATOOLS
(https://pypi.org/project/goatools/, Version 1.4.4) and the Python
SciPy library (https://docs.scipy.org/doc/, Version
1.10.0), respectively.

2.5 Quantitative real-time PCR validation

Overall RNA was abstracted via Plant RNA Kit II (OMEGA,
Norcross, USA). The first normal cDNA was prepared from overall
RNA via a PrimeScriptTM RT Reagent Kit with gDNA Eraser
(Takara, Dalian, China). Actin was chosen to be an inner control.
The heat cycle procedurefor quantitative reverse transcription
polymerase chain reaction (QRT-PCR): incipient denaturating at
95°Cfor 2min, denaturating at 94°C for 30 s, annealing at 58°C for
30 s and elongation at 72°Cfor 38s, for an overall 40 cycles. The
primers adopted for QRT-PCR herein were presented by Supporting
Information (Supplementary Table S2). Each assay was completed
three times. The comparative expression level of every unigene was

—AACt

calculated via the 2 approach.

2.6 Statistical analysis

All experiments were performed with three independent
biological replicates per treatment, each consisting of pooled
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tissues from four roots, and with three technical replicates for
each assay. Data are presented as meantstandard error (SE).
Statistical analysis was performed using SPSS version 26.0 (SPSS
Inc., Chicago, IL, USA). Duncan’s multiple range test was used to
determine significant differences among groups, with different
uppercase letters indicating significance at p<0.01 and different
lowercase letters indicating significance at p<0.05. Graphs were
generated using OriginPro 2021 (OriginLab Corporation,
Northampton, MA, USA).

3 Results

3.1 Effect of dry method on the chemical
and nutritional compositions of C. pilosula

As shown in Figure 1, the levels of active ingredients in C.
pilosula changed significantly after a 6-day drying period (p<0.05).
The total content of five major active components was significantly
higher in the RD and SD samples compared to the FC samples, with
increases of 2.01% and 3.06%, respectively (p<0.05; Figure 1A). The
adenosine content in FC (38.30 1g/g) was significantly higher than
in RD (34.21 pg/g; p<0.05), but not significantly different from SD
(36.07 ug/g; p > 0.05; Figure 1B). Similarly, the protocatechuic acid
content in FC (92.90 ug/g) was significantly higher than in RD
(91.42 ug/g) and SD (92.19 pg/g) (p<0.05; Figure 1C). In contrast,
tryptophan content in SD (238.22 pg/g) was significantly higher
than in both FC (215.08 ug/g) and RD (216.75 ug/g) (p<0.05;
Figure 1D). For syringin, the content in FC (165.45 ng/g) and RD
(163.37 ug/g) was significantly higher than in SD (158.46 ug/g)
(p<0.05; Figure 1E). Notably, lobetyolin content was highest in RD
(141.18 ug/g), which was significantly higher than in FC
(122.44 pg/g) and SD (128.67 ug/g) (p<0.01; Figure 1F), with
increases of 15.31% and 9.72%, respectively. These findings
suggest that different drying treatments exert distinct effects on
the accumulation of active components in C. pilosula. Among them,
the “Rubbing-sweating” method appears to be particularly effective
in promoting lobetyolin accumulation.

The contents of polysaccharides (POL), protein, ash, total
polyphenols (TP), total flavonoids (TF), ethanol-soluble extract
(ASE), and water-soluble extract (WSE) in the samples are
presented in Figure 2 (Supplementary Table S1). The results
demonstrated that different drying treatments significantly
reduced the contents of protein, total phenolic compounds,
ethanol-soluble extracts, and water-soluble extracts in C. pilosula,
while significantly increasing the polysaccharide content.

Compared with the FC samples, the protein, ash, TP, ASE, and
WSE contents were significantly higher in FC (9.86%, 3.08%, 0.41%,
75.16%, and 76.40%, respectively) than in RD (7.61%, 2.09%, 0.38%,
62.51%, and 65.68%, respectively) and SD (8.94%, 2.91%, 0.33%,
59.59%, and 62.48%, respectively) (p<0.05).

Polysaccharides, which are considered one of the primary
bioactive constituents of C. pilosula, were notably increased by
both drying treatments. The POL content in RD (19.48%) and SD
(15.30%) was significantly higher than in FC (10.56%) (p<0.05).
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FIGURE 1

Five active ingredient analysis of Fresh (FC), “Rubbing-sweating” dry (RD) and Shade-dry (SD) C. pilosula. The error bars represent the means+SE
(n=3). Different letters indicate a significant difference (capital letters p<0.01, small letters p<0.05).

These results indicate that both RD and SD can enhance the
accumulation of polysaccharides in C. pilosula, with the RD
method being particularly effective.

3.2 Effect of dry method on SOD, POD,
CAT, and APX activity

In “Rubbing-sweating” dried C. pilosula tissues, the activities of
SOD and CAT reached 126.05 U/g FW and 227.42 U/g/min,
respectively, which were significantly higher than those in fresh
samples (49.09 U/g FW and 67.35 U/g/min) and shade-dried
samples (100.38 U/g FW and 161.44 U/g/min) (p<0.01). The APX
activities in “Rubbing-sweating” dried and shade-dried samples were
586.12 U/g FW and 578.46 U/g FW, respectively, both of which were
significantly higher than that in fresh samples (333.12 U/g FW)
(p<0.01). In addition, POD activity in “Rubbing-sweating” dried
tissues reached 1093.83 U/g/min, which was significantly higher
than that in fresh (365.07 U/g/min) and shade-dried (856.53 U/g/
min) samples (p<0.01). SOD, APX, CAT, and POD are critical
antioxidant enzymes involved in reactive oxygen species (ROS)
scavenging. The significant enhancement in their activities
following the RD treatment suggests that this traditional method
induces more intense external stress, likely triggering increased ROS

Frontiers in Plant Science

05

accumulation and, consequently, a stronger antioxidative response in
C. pilosula (Figure 3).

3.3 Sequencing and sequence assembly

During the drying process, plant tissues undergo gradual
senescence, accompanied by the degradation of proteins and
RNA. Therefore, analyzing C. pilosula tissues at the early stages of
drying is essential for elucidating the mechanisms underlying the
accumulation of active compounds. After 6 days of drying, both RD
and SD samples exhibited significant increases in active ingredient
content and antioxidant enzyme activities. Consequently,
transcriptomic analysis was performed on C. pilosula samples
subjected to 6 days of RD and SD treatment to further investigate
the molecular mechanisms involved in the accumulation of active
compounds during the drying process.

In this study, 44,687,908, 49,800,810, and 47,962,490 clean reads
were obtained from the FC, RD, and SD samples, respectively. After
removing low-quality sequences, adapters, and ambiguous reads, a total
of 399.11 million high-quality clean reads were acquired. These reads
were assembled into 194,009 transcripts with an average length of
1,440.03 bp and an N50 length of 2,636 bp. Subsequently, the
transcripts were further assembled into 102,614 unigenes, with an
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FIGURE 2

Sector bar chart of Polysaccharide (POL), protein, ash, total polyphenol (TP), ethanol-soluble extract (ASE), water-soluble extract (WSE) content in C. pilosula.
Note: The data are presented as the means+SD. FC, Fresh C. pilosula; RD, “rubbing-sweating” dried C. pilosula; SD, Shade-dried C. pilosula. With in each
column, the different superscripted small and capital letters Indicate significant and highly significant differences at p<0.05 and p<0.01, respectively.

average length of 1,033.70 bp and an N50 length of 1,904 bp. For all
samples, the mapping rate of clean reads to the reference database
ranged from 85.58% to 87.56% (Table 1).

The contigs from the nine transcriptome sequencing datasets
were integrated and assembled into a total of 102,614 unigenes.
Functional annotation of these unigenes was performed using
BLAST against seven public databases: GO, KEGG, eggNOG, NR,
Swiss-Prot, and Pfam. A total of 30,521, 13,041, 31,191, 38,642,
21,750, and 19,871 unigenes were successfully aligned to these
databases, respectively. In total, 39,037 unigenes (38.04% of all
unigenes) were annotated in at least one of the functional databases
(Table 2). This high annotation rate highlights the overall quality of
the sequencing data and the effectiveness of the assembly and
annotation process (Wang and Sun, 2009).

3.4 |dentification of DEGs and cluster
analysis

Principal component analysis (PCA) revealed that the
transcriptomes of FC, RD, and SD samples were clearly distinct
from one another (Figure 4A). The correlation coefficients (R?)
among the transcriptomes ranged from 0.352 to 1.000 (Figure 4B),
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indicating relatively consistent expression patterns among the nine
samples and indirectly confirming the reliability of the sequencing
and sampling procedures.

To identify DEGs associated with the different drying
treatments, three pairwise comparisons were performed: RD vs.
SD, RD vs. FC, and SD vs. FC. DEGs were defined as those with an
adjusted p-value < 0.05 and [log, fold change| > 1. A total of 17,338
DEGs (9,390 upregulated and 7,948 downregulated) were identified
in RD vs. SD; 11,007 DEGs (4,500 upregulated and 6,507
downregulated) in RD vs. FC; and 28,138 DEGs (14,963
upregulated and 13,175 downregulated) in SD vs. FC (Figure 4C).

Among the 35,211 unique DEGs identified across all comparisons,
3,779 DEGs were shared among all three comparisons, 16,983 DEGs
were shared between two comparisons, and 14,449 DEGs were specific
to only one comparison (Figure 4D).

3.5 Functional analysis of DEGs with
different dry process

To further elucidate the primary functions of the identified
DEGs, Gene Ontology (GO) term annotation and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway
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enrichment analyses were conducted. According to the GO
enrichment analysis results, DEGs were categorized into three
main GO domains: biological processes (BP), cellular components
(CC), and molecular functions (MF) (Figure 5). In the RD vs. SD
comparison, DEGs were significantly enriched in 7 biological
processes, 11 cellular components, and 2 molecular functions
(Figure 5A). For the RD vs. FC comparison, DEGs were primarily
enriched in 7 biological processes, 5 cellular components, and 8
molecular functions (Figure 5B). In the SD vs. FC comparison,
DEGs were enriched in 8 biological processes, 5 cellular
components, and 7 molecular functions (Figure 5C). GO
enrichment analysis indicated that processes such as the
regulation of RNA biosynthetic process, hormone-mediated
signaling pathway, and defense response; components including
the extracellular region and intracellular membrane-bounded
organelles; and functions such as DNA-binding transcription
factor activity, oxidoreductase activity, transcription regulator
activity, and molecular function inhibitor activity were
significantly associated with the DEGs. These findings suggest
that these biological pathways and molecular functions may play
crucial roles in metabolite transformation and the underlying
molecular mechanisms of C. pilosula during different postharvest
drying treatments.

The top 20 KEGG pathways identified from the three pairwise
comparisons are illustrated in Figure 6. In the RD vs. SD
comparison, a total of 3,554 DEGs were mapped to 134 KEGG
pathways, with two pathways—DNA replication and cysteine and
methionine metabolism—showing significant enrichment
(Figure 6A). In the RD vs. FC comparison, 2,418 DEGs were
enriched across 137 pathways, among which sixteen pathways
exhibited significant enrichment (Figure 6B). These included
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biosynthesis of various plant secondary metabolites, starch and
sucrose metabolism, plant hormone signal transduction, pentose
and glucuronate interconversions, monoterpenoid biosynthesis,
MAPK signaling pathway, phenylpropanoid biosynthesis, fructose
and mannose metabolism, cysteine and methionine metabolism,
among others.

For the SD vs. FC comparison, 5,010 DEGs were mapped to 139
pathways, with ten pathways significantly enriched (Figure 6C). Key
enriched pathways included plant hormone signal transduction,
starch and sucrose metabolism, MAPK signaling pathway, and
biosynthesis of various plant secondary metabolites. These
findings suggest that metabolic and signaling pathways related to
hormone regulation, carbohydrate metabolism, and secondary
metabolite biosynthesis play pivotal roles in mediating the effects
of traditional postharvest drying methods on the quality and
bioactivity of C. pilosula. These pathways likely contribute to the
enhanced accumulation of active compounds observed following
rubbing-sweating and shade drying treatments.

3.6 gqRT-PCR-based verification

To validate the RNA-sequencing (RNA-Seq) results, six DEGs
RP-1 (pathogenesis-related protein 1), ETR (Ethylene receptor),
GPX (glutathione peroxidase), PDHB (putative pyruvate
dehydrogenase), FAB2 (acyl-[acyl-carrier protein] desaturase),
SUS (sucrose synthase) related to C. pilosula substance stress
response, signal transduction and metabolism were selected for
qRT-PCR analysis. The results showed that The mRNA-Seq and
RT-PCR data were very closely correlated, and there was high
consistency in the up- and down-regulated expression of DEGs.
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TABLE 1 Summary of transcriptome sequencing data and transcriptome assembly.

Sample Raw read Cleanread Mapped reads Mapped ratio (? Error (%) Q20 (%) Q30 (%)
FC1 43651440 43292084 18897607 87.56 0.01 98.86 96.35
FC2 43624858 43262026 20421843 87.23 0.01 98.84 96.29
FC3 47892620 47509614 19204790 87.56 0.01 98.83 96.24
RD1 45431518 45053218 18876840 87.21 0.01 98.85 96.34
RD2 43277238 42904240 18801078 86.92 0.01 98.85 96.32
RD3 43599356 43231112 20551352 86.51 0.01 98.86 96.37
SD1 43539938 43167336 19326767 85.80 0.01 98.84 96.31
SD2 47243318 46825102 18412532 85.83 0.01 98.79 96.15
SD3 44250164 43867122 18499041 85.58 0.01 98.84 96.31
Total 402510450 399111854

Type Unigene Transcript
Total number 102614 194009
Total base 106071857 279379336
Largest length (bp) 18547 18547
Smallest length (bp) 201 201
Average length (bp) 1033.7 1440.03
N50 length (bp) 1904 2636
E90N50 length (bp) 3487 2975
Fragment mapped percent(%) 61.65 87.689
GC percent (%) 38.84 39.53
TransRate score 0.3118 0.44594

Raw reads: total number of sequencing reads before quality control; Clean reads: total number of sequencing reads after quality control; Mapped reads: number of clean reads successfully aligned
to the assembled transcripts; Mapped ratio: percentage of paired clean reads mapped to the assembled transcripts; Error (%): average base error rate of quality-controlled data; Q20 (%):
percentage of bases with a sequencing quality score higher than 99%; Q30 (%): percentage of bases with a sequencing quality score higher than 99.9%.

TABLE 2 Numbers of unigenes/transcript annotated using different
databases.

Unigene Transcript
Database Number Percent Number Percent
(%) (%)
GO 30521 29.74% 88372 45.55%
KEGG 13041 12.71% 45639 23.52%
eggNOG 31191 30.40% 94486 48.70%
NR 38642 37.66% 107869 55.60%
Swiss-Prot 21750 21.20% 73421 37.84%
Pfam 19871 19.36% 66588 34.32%
Total number of
annotated
Unigenes/ 39037 38.04% 108540 55.95%
Transcript
Total number of
Unigenes/ 102614 100.00% 194009 100.00%
Transcript
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This result supports the reliability of the RNA-Seq analysis,
indicating that transcription data were accurate and effective and
can be used for the gene expression profile analysis in different
drying processes of C. pilosula (Figure 7).

4 Discussion

4.1 Differences in chemical composition
and antioxidant enzyme activity of C.
pilosula under different drying treatments

Significant differences in the chemical and nutritional
compositions of C. pilosula were observed under different drying
methods (Figures 1 and 2). Compared with FC, both SD and RD
significantly increased the contents of bioactive constituents (p<0.01),
with the increase being more pronounced in RD. In particular, the
polysaccharide and lobetyolin contents in RD reached 19.50% and
141.18 ug/g, respectively, which were significantly higher than those
in FC (10.56% and 122.44 pg/g) and SD (15.30% and 128.67 ig/g)
(p<0.01). These results indicate that RD facilitates the accumulation
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transcriptome datasets in C. pilosula samples. (C) Histogram of DEGs identified in C. pilosula samples. (D) Venn diagram of DEGs identified in C.

pilosula samples.

of major active constituents, which may be associated with stress-
induced activation of secondary metabolism. This finding is
consistent with previous reports that postharvest processing
methods markedly improve the quality of other medicinal
materials, such as rhubarb and Radix Gentianae (Liang et al., 2021,
2022; Sun et al, 2023), further supporting the notion that abiotic
stress can enhance the biosynthesis and accumulation of key active
compounds in medicinal plants.

Analysis of antioxidant enzyme activities showed that after 6
days of RD and SD treatment, the activities of SOD, CAT, APX, and
POD were all significantly elevated (p<0.01), indicating that both
drying methods triggered oxidative stress responses in C. pilosula
tissues. Notably, the activities of SOD, CAT, and POD in RD were
significantly higher than those in SD (p<0.01), suggesting that RD
induced a stronger stress stimulus, leading to more pronounced
oxidative stress and activation of antioxidant defense systems. This
enhanced stress response may be closely related to the more
substantial accumulation of secondary metabolites observed
under RD.
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SD vs FC

RD vs FC

In summary, rubbing-sweating drying significantly increased
the contents of active constituents such as polysaccharides and
lobetyolin and markedly enhanced antioxidant enzyme activities.
These findings indicate that this drying method improves the
medicinal quality of C. pilosula by inducing stress responses and
activating relevant metabolic pathways. To systematically elucidate
the molecular mechanisms by which different drying methods affect
the quality of medicinal materials, transcriptomic analysis was
performed on day 6, when changes in active constituents and
antioxidant enzyme activities were most pronounced.

4.2 Differential gene expression related to
stress response

Reactive oxygen species (ROS) are oxygen-containing
molecules with higher chemical reactivity than molecular oxygen
and act as double-edged regulators in plants (Castro et al., 2021).
Excessive ROS accumulation damages proteins, lipids, and nucleic
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acids, leading to cell death, whereas controlled ROS production
functions as an essential signal to coordinate responses to biotic and
abiotic stress (Choudhury et al., 2017). The major ROS in plant cells
—singlet oxygen, superoxide anions, hydrogen peroxide, and
hydroxyl radicals—are primarily generated in chloroplasts,
mitochondria, and peroxisomes (Mittler, 2017; Mittler et al,
2022). Antioxidant defenses, including enzymatic (SOD, CAT,
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POD, APX) and non-enzymatic pathways such as the ascorbate-
glutathione (AsA-GSH) cycle, maintain redox homeostasis
(Hasanuzzaman et al., 2020; Tai et al., 2022; Li, 2023).
Peroxisomes play a particularly important role in regulating
oxidative metabolism. Peroxins, which are essential for peroxisome
biogenesis and function, maintain peroxisomal integrity and mediate
stress responses (Traver et al., 2022; Collin and Daszkowska-Golec,
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Bubble plot of the KEGG pathway enrichment statistics of DEGs.
(A) RD vs SD; (B) RD vs FC; (C) SD vs FC.

2025). In this study, the transcriptional levels of PEX12 and PEX14
were significantly upregulated in RD vs. SD, suggesting enhanced
peroxisomal activity under rubbing-sweating treatment. Meanwhile,
MPV17, a gene encoding a peroxisomal membrane protein involved
in ROS generation (Chen et al., 2024), was upregulated in RD vs. SD
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but downregulated in SD vs. FC, indicating that RD imposes
stronger oxidative stress than SD. Furthermore, genes encoding
peroxisomal enzymes such as glyoxylate aminotransferase (AGXT)
and hydroxyacid oxidase (HAO), both of which contribute to
adaptation under drought and salt stress (Hu et al., 2012; Zeier,
2013; Barqawi and Abulfaraj, 2023), were significantly upregulated
in RD vs. SD, but downregulated in SD vs. FC. In addition, PIPOX, a
key enzyme regulating pipecolic acid metabolism and plant
immunity (Zeier, 2013; Chen et al., 2018), was markedly
upregulated in both RD vs. SD and RD vs. FC, while no changes
were observed in SD vs. FC. Together, the coordinated upregulation
of PEX12, PEX14, MPV17, AGXT, HAO, and PIPOX in RD vs. SD
supports the conclusion that rubbing-sweating imposes greater
abiotic stress on C. pilosula tissues, triggering peroxisome-related
pathways and promoting ROS generation that likely activates
secondary metabolism (Figure 8).

Plants employ a range of antioxidant systems to mitigate ROS
toxicity. SOD catalyzes the dismutation of superoxide radicals to
H,0,, which is further decomposed by CAT and POD
(Hasanuzzaman et al., 2020). In this study, genes encoding SOD
were upregulated in RD vs. SD but downregulated in SD vs. FC,
indicating a stronger oxidative response under RD. POD and CAT
showed similar trends, supporting the notion of enhanced ROS
detoxification capacity under RD treatment. The AsA-GSH cycle
represents a critical pathway for maintaining redox balance in
chloroplasts, mitochondria, and cytosol (Tai et al., 2022).
Ascorbate peroxidase (APX) plays a complementary role by
catalyzing the reduction of H,O, using ascorbate (AsA) as an
electron donor, producing monodehydroascorbate (MDHA) and
H,O (Zhang et al., 2023; Caccamo et al., 2024). Within this cycle,
glutathione peroxidase (GPX) reduces H,O, using GSH, which is
regenerated via NADPH-dependent reactions. In this study, GPX-
related genes were significantly upregulated in both RD vs. FC and
SD vs. FC, suggesting activation under both drying conditions.
However, APX genes were particularly upregulated in RD vs. FC,
reinforcing the specific contribution of the AsA-GSH cycle to ROS
scavenging under rubbing-sweating treatment. Importantly, genes
encoding NADPH-generating enzymes such as IDHI, PGD, and
G6PD were significantly upregulated in RD vs. SD. These enzymes
are not only critical for regenerating reduced glutathione and
ascorbate (Huang et al, 2019; Hasanuzzaman et al., 2020), but
also central to the TCA cycle and pentose phosphate pathway,
thereby contributing to enhanced energy production and precursor
supply. Their upregulation indicates that RD treatment boosts
metabolic capacity to support both redox homeostasis and
secondary metabolite biosynthesis (Figure 8).

Taken together, these results demonstrate that RD imposes
stronger oxidative stress on C. pilosula than SD, as evidenced by
elevated ROS generation and coordinated activation of peroxisome-
associated metabolic pathways, antioxidant enzymes, and the AsA-
GSH cycle. This enhanced stress response not only maintains
cellular redox balance but also drives increased metabolic activity
and the accumulation of bioactive compounds, thereby improving
the medicinal quality of C. pilosula.
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Validation of the expression patterns of DEGs selected from the RNA-Seq analysis by qRT-PCR. (A) AD versus SD; (B) RD versus FC; (C) SD versus
FC. RP-1, pathogenesis-related protein 1; ETR, Ethylene receptor; gpx, glutathione peroxidase; PDHB, putative pyruvate dehydrogenase; FAB2, acyl-

[acyl-carrier protein] desaturase; SUS, sucrose synthase.

4.3 Differential gene expression related to
signal transduction

Signal transduction is essential for plants to perceive
environmental stimuli and activate appropriate physiological and
molecular responses, thereby enhancing stress tolerance (Manna
et al,, 2023). Among the various pathways, the mitogen-activated
protein kinase (MAPK) cascade plays a central role in mediating
responses to both biotic and abiotic stresses. In this study, DEGs
within the MAPK pathway were mainly associated with defense
activation, H,0, production, and the regulation of
ROS homeostasis.

In plant immunity, the receptor FLS2 specifically recognizes
pathogen-associated peptides such as flg22, with BAK1 serving as a
co-receptor to initiate downstream immune signaling (Yuan et al.,
2021; Wang et al., 2024). PR-1, a key defense protein, subsequently
accumulates to inhibit pathogen proliferation (Zhang et al., 2022b).
Here, BAK1 and PR-1 were significantly upregulated in RD vs. SD,
while FLS2 and PR-1 were enhanced in RD vs. FC, suggesting that
mechanical stress during rubbing-sweating (RD) may disrupt cell
walls, enhance PAMP (pathogen-associated molecular patterns)
perception, and activate immune signaling. NDPK2 and ANP1
further regulate the MAPK cascade. NDPK2 promotes H,O,
accumulation and programmed cell death (Liu et al., 2025), while
ANPI1, as a MAPKKK, responds to oxidative stress to activate
downstream MAPK (Marti et al., 2021). Both were upregulated in
RD vs. SD but downregulated in SD vs. FC, indicating that RD
strongly induced oxidative signaling and stress-related cell death in
C. pilosula tissues. Calcium-mediated signaling also plays a crucial
role. Calmodulin (CALM) functions as a Ca®" sensor, regulating
RbohD activity, which transfers electrons from NADPH to oxygen
to generate ROS (Dubiella et al., 2013; Li et al., 2014; Seybold et al.,
2014). In this study, CALM and RbohD were significantly
upregulated in RD vs. SD, implying that RD enhanced Ca*"
influx and ROS production. Meanwhile, MYC2-related genes
were downregulated in SD vs. FC, indicating differential
activation of jasmonate signaling under shade drying. Together,
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these results suggest that RD treatment imposed stronger abiotic
stress, triggering Ca®>*-ROS signaling and potentially regulating
secondary metabolism (Figure 8).

Plant hormone signaling further contributes to stress responses.
In the abscisic acid (ABA) pathway, SnRK2 mediates responses to
drought, salinity, and other stresses (Zhao et al., 2023). In this study,
SnRK2, MKK3, and MPKI1 were significantly upregulated in RD vs.
SD, while MKK3 and MPK1 were downregulated in SD vs. FC. As
MKK3 activates downstream MAPKSs such as MPK1 and MPK7 to
regulate disease resistance (Zhou et al., 2019a; Li et al., 2022), these
results indicate that RD imposed stronger stress, thereby enhancing
ABA- and MAPK-mediated signaling. Ethylene signaling was also
activated under RD. RTEI regulates the receptor ETR1, which
controls CTRI activity to initiate downstream signaling (Chen
et al., 2022b). Both RTE1l and ETRI were significantly
upregulated in RD vs. SD, suggesting enhanced ethylene
signaling. Ethylene mediates responses to diverse stresses,
including drought, temperature, salinity, and mechanical damage
(Pérez-Llorca et al., 2023). Moreover, ChiB, a chitinase gene related
to ethylene-mediated defense, was upregulated in both RD vs. SD
and RD vs. FC, further supporting the view that the RD process
significantly enhances the defense capacity of C. pilosula tissues
(Vaghela et al., 2022). Jasmonate (JA) signaling also responded
strongly to RD. In this pathway, mechanical stress increases JA
levels, promoting COIl1-JA receptor complex formation,
degradation of JAZ repressors, and release of MYC2 to activate
defense-related and senescence-associated genes (Zhou et al,
2019b). In our study, COI1 and MYC2 were upregulated in RD
vs. SD, while MYC2 was suppressed in SD vs. FC. These findings
suggest that RD activated JA signaling more effectively than SD,
enhancing stress resistance but potentially accelerating
senescence (Figure 8).

Taken together, transcriptome data demonstrate that rubbing-
sweating more strongly activates signal transduction pathways than
shade drying. RD treatment upregulated multiple genes in MAPK
signaling and hormone pathways, including BAK1, PR-1, NDPK2,
ANP1, CALM, RbohD, SnRK2, MKK3, MPK1, RTEI, ETRI, ChiB,
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COI1, and MYC2. This indicates that RD imposes stronger abiotic
stresses—mechanical damage, hypoxia, and elevated temperature—
thereby stimulating immune responses, ROS production, and
hormone signaling. Such activation likely enhances stress
adaptation and secondary metabolite accumulation, contributing
to improved medicinal quality of C. pilosula. Nevertheless, the
pronounced stress response may also accelerate senescence and
programmed cell death, reflecting a trade-off between enhanced
quality and tissue longevity under traditional rubbing-
sweating processing.

4.4 Differential gene expression related to
phenylalanine, tyrosine and tryptophan
biosynthesis

C. pilosula, a traditional medicinal and edible herb, is rich in
amino acids that contribute significantly to its nutritional and
pharmacological value (Luan et al, 2021). Among them, the
aromatic amino acids (AAAs)—L-tryptophan (Trp), L-
phenylalanine (Phe), and L-tyrosine (Tyr)—are not only
indispensable for protein synthesis but also serve as precursors
for diverse natural products, influencing plant growth, defense, and
stress responses (Yokoyama, 2024). In this study, multiple genes
involved in AAA biosynthesis were differentially expressed under
different drying treatments. Their biosynthesis occurs in two main
stages: the conversion of D-erythrose 4-phosphate into chorismate
via the shikimate pathway, followed by chorismate-mediated
branching into distinct downstream pathways. The shikimate
pathway also generates antioxidants such as flavonoids, phenolics,
and lignin, which mitigate oxidative stress by scavenging ROS
(Tohge et al,, 2013; Zhao et al., 2018). Within this pathway, aroF,
aroB, and aroDE encode key enzymes that catalyze the formation of
intermediates including 3-dehydroshikimate and chorismate.
Notably, 3-dehydroquinate synthase (aroB) regulates
protocatechuic acid biosynthesis, a phenolic compound that
reduces ROS levels and enhances stress resilience (Hao et al,
20225 Zhang et al., 2022a). In wheat, aroDE is upregulated under
drought and salinity stress (Dugasa et al., 2020). Here, aroF, aroB,
and aroDE were significantly upregulated in RD vs. SD, suggesting
that rubbing-drying imposes stronger mechanical, hypoxic, and
dehydration stresses than SD. This activation likely promotes
chorismate synthesis, driving downstream AAA biosynthesis and
contributing to secondary metabolite accumulation.

Phe and Tyr are not only structural amino acids but also
precursors of diverse polyphenols with antioxidant properties
(Gechev et al, 2013; Sun et al, 2023). Both are implicated in
activating ROS-scavenging systems and alleviating oxidative
damage (Ramzan et al, 2023). In this study, genes including
ADT, hisC, GOT1, and TAT—encoding key enzymes for Phe and
Tyr biosynthesis—were significantly upregulated in RD vs. SD,
unchanged in RD vs. FC, and downregulated in SD vs. FC. These
patterns indicate that RD more effectively enhances Phe/Tyr
biosynthesis, potentially improving ROS detoxification and stress
tolerance in C. pilosula (Figure 9).
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For Trp biosynthesis, anthranilate synthase (trpG and trpE)
catalyzes the conversion of chorismate to anthranilate, initiating the
pathway. These genes are known to regulate root stress responses
and development (Tu et al, 2021). Shade treatment upregulates
trpG in walnut, increasing protein accumulation (Liang et al., 2023).
Other genes such as trpF, trpC, and trpB also participate in Trp
synthesis (Maeda and Dudareva, 2012). In our study, trpG, trpE,
trpF, trpC, and trpB were significantly upregulated in RD vs. SD but
downregulated in RD vs. FC, suggesting enhanced transcriptional
activation of the Trp pathway under rubbing stress. However,
despite this upregulation, Trp content was higher in SD than RD.
This discrepancy may reflect accelerated Trp turnover under stress:
as a precursor for indole-derived metabolites such as auxin (IAA),
serotonin, and alkaloids, Trp is rapidly consumed during stress
responses (Ljung, 2013; Ren et al., 2025). Thus, RD may promote
higher flux through the Trp pathway but reduce net accumulation
due to enhanced conversion into secondary metabolites (Figure 9).

Chorismate and its derivatives Phe, Tyr, and Trp are central
intermediates in numerous physiological processes, serving as
precursors of lignin, flavonoids, and auxins while sustaining
metabolic homeostasis and stress adaptation (Shende et al., 2024;
El-Azaz and Maeda, 2025). Our findings show that RD strongly
upregulated genes across this pathway, indicating that mechanical
and hypoxic stresses activate AAA biosynthesis and promote
secondary metabolite production. This enhanced metabolic
activity may increase the nutritional and medicinal value of C.
pilosula. Overall, the results highlight the dual role of RD-induced
stress: while it activates key biosynthetic pathways, leading to
enhanced accumulation of secondary metabolites and potential
improvement in medicinal quality, it also accelerates metabolic
turnover of certain compounds such as Trp. Therefore, the RD
process should be carefully optimized—by adjusting kneading
cycles and sweating duration—to balance stress-induced quality
enhancement with the risk of excessive nutrient loss.

4.5 Differential gene expression related to
lobetyolin biosynthesis

Lobetyolin, a characteristic polyacetylene compound in C. pilosula,
exhibits diverse pharmacological activities, including antioxidant, anti-
inflammatory, and immunomodulatory effects, and is therefore
regarded as an important quality marker (He et al,, 2020; Xie et al,
2023). However, its biosynthetic pathway remains poorly characterized.
Previous studies have suggested that lobetyolin may derive from
pyranose-form glucose metabolism (Bailly, 2021) or originate from
oleic acid through fatty acid metabolism, with intermediates such as
citric acid and linoleic acid serving as potential precursors (Xu et al,
2024). Comparative analyses among C. pilosula varieties further
indicate that lobetyolin likely consists of a fatty acid chain conjugated
with a glycosyl moiety, reinforcing the role of fatty acid metabolism in
its biosynthesis (Aghkand et al., 2019; Ma et al., 2024). In the putative
pathway, pyruvate is converted into acetyl-CoA by PDHB and pdhC,
which then enters fatty acid metabolism. In this study, the genes
encoding PDHB and pdhC were significantly upregulated in the RD vs.
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Overview of DEGs related to stress response and signal transduction during the drying process of C. pilosula. (FLS2, LRR receptor-like serine/
threonine-protein kinase FLS2; BAK1, brassinosteroid insensitive 1-associated receptor kinase 1; PR-1, pathogenesis-related protein 1; NME,
nucleoside-diphosphate kinase;ANP1, mitogen-activated protein kinase kinase kinase ANP1; CALM, calmodulin; RBOH, respiratory burst oxidase;
SnRK2, serine/threonine-protein kinase SAPK7-like; MKK3, mitogen-activated protein kinase kinase 3; MPK1/7, mitogen-activated protein kinase 1/7;
TMEM, transmembrane protein; ETR, ethylene receptor; CHIB, endochitinase A; COI1, coronatine insensitive 1; JAZ, protein TIFY 6B isoform X1;
MYC2, transcription factor MYC2; PEX12, peroxin-12; MPV17, protein Mpvl7; PEX14, peroxin-14; AGXT, serine—glyoxylate aminotransferase; HAO,
FMN-dependent dehydrogenase; PIPOX, sarcosine oxidase/L-pipecolate oxidase; SOD, superoxide dismutase; CAT, catalase; GPX, glutathione
peroxidase; IDH1, NADP-isocitrate dehydrogenase); PGD, 6-phosphogluconate dehydrogenase; G6PD, glucose-6-phosphate 1-dehydrogenase;
APX, ascorbate peroxidase).

FC comparison, suggesting enhanced acetyl-CoA supply under  polyacetylene biosynthesis (Xu et al, 2024). Here, CEM1 was
rubbing-drying. Acetyl-CoA is subsequently elongated and modified  significantly upregulated in RD vs. FC, while both CEM1 and FATB
through enzymes such as CEMI1 and FATB, leading to palmitic acid ~ showed strong induction in SD vs. FC, indicating that fatty acid
formation, which can be further desaturated by FAB2 to oleic acid.  metabolism is activated by both drying methods, though via slightly
Oleic acid is converted by FAD?2 to linoleic acid, a key intermediate for  different patterns. FAB2 expression was significantly upregulated in
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Overview of DEGs related to phenylalanine, tyrosine and tryptophan biosynthesis during the drying process of C. pilosula. (aroDE, 3-dehydroquinate
dehydratase/shikimate dehydrogenase; aroB, 3-dehydroquinate synthase; aroF, phospho-2-dehydro-3-deoxyheptonate aldolase 2; ADT, arogenate/
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isomerase 1; trpC, anthranilate synthase/indole-3-glycerol phosphate synthase; trpB, tryptophan synthase alpha chain; PDHB, putative pyruvate
dehydrogenase; pdhc, pyruvate dehydrogenase E2 component; CEM1, 3-oxoacyl-[acyl-carrier-protein] synthase II; FATB, palmitoyl-acyl carrier
protein thioesterase; FAB2, acyl-[acyl-carrier protein] desaturase; FAD2, Delta(12) fatty acid desaturase DES8.11; SUS, sucrose synthase; INV,
beta-fructofuranosidase; scrK, fructokinase-6; UGP2, UTP-glucose-1-phosphate uridylyltransferas; pgm, phosphoglucomutase; galE, UDP-glucose
4-epimerase; UGDH, UDPglucose 6-dehydrogenase; AXS, UDP-apiose/xylose synthase; RGP, UDP-arabinopyranose mutase; RHM, UDP-glucose
4,6-dehydratase; HK, hexokinase; GMPP, mannose-1-phosphate guanylyltransferase).

both RD vs. FC and SD vs. FC, while FAD2 was higher in RD vs. SD,
suggesting that RD more strongly promotes the conversion of oleic acid
to linoleic acid. Taken together, these results suggest that lobetyolin
biosynthesis in C. pilosula is closely linked to fatty acid metabolism,
particularly the conversion of acetyl-CoA through sequential
desaturation steps leading to linoleic acid. Both SD and RD
enhanced the expression of key genes in this pathway, but RD
imposed stronger stress stimuli, thereby exerting a more pronounced
promotive effect on lobetyolin accumulation (Figure 9).

In addition to unsaturated fatty acid chains, lobetyolin
biosynthesis requires glycosylation mediated by glycosidic

Frontiers in Plant Science

15

compounds (Xu et al., 2024). Within the starch and sucrose
metabolism pathway, sucrose is converted into UDP-glucose
through the actions of INV, scrK, pgm, UGP2, and SUS,
providing the essential glycosyl donor. UDP-glucose is
subsequently conjugated to lobetyol by glycosyltransferases (GTs),
yielding lobetyolin. In this study, pgm and SUS were significantly
upregulated in both RD vs. FC and SD vs. FC, while INV, scrK, and
UGP2 showed higher expression in RD vs. SD. These results
indicate that RD more strongly stimulates UDP-glucose
biosynthesis and related glycosylation processes than SD, thereby
facilitating lobetyolin formation (Figure 9).
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Overall, lobetyolin biosynthesis in C. pilosula is closely
associated with genes from the TCA cycle, fatty acid metabolism,
and starch and sucrose metabolism. Transcriptomic analysis
demonstrated that drying methods differentially regulate these
pathways, with rubbing-drying exerting a stronger promotive
effect. These transcriptomic results were consistent with
quantitative content determination (Figure 1), confirming that
rubbing-drying enhances lobetyolin accumulation in C. pilosula.

4.6 Differential gene expression related to
C. pilosula polysaccharide biosynthesis

The biosynthesis of polysaccharides in plants mainly involves
starch/sucrose and amino sugar/nucleotide sugar metabolism.
Sucrose is first converted into UDP-glucose by sucrose synthase
(SUS), which provides precursors for multiple nucleotide sugars.
For example, GalE forms UDP-D-galacturonate, UGDH produces
UDP-glucuronic acid, AXS generates UDP-D-xylose, RGP forms
UDP-L-arabinofuranose, and RHM synthesizes UDP-L-rhamnose.
These activated sugars are incorporated into polysaccharide chains
by GTs, contributing to cell wall architecture, intracellular signaling,
and stress responses (Wang et al., 2017; Niu et al., 2020; Zhang et al.,
2020). Alternatively, sucrose can also be metabolized by SUS and
HK into D-mannose-6-phosphate, then converted into GDP-
mannose by GMPP, which also functions as a sugar donor in
polysaccharide biosynthesis.

In this study, genes encoding RGP and RHM were significantly
upregulated in RD vs. FC, while AXS, HK, and GMPP showed an
upward trend. Furthermore, galE, UGDH, AXS, RGP, RHM, and
GMPP were significantly upregulated in RD vs. SD, suggesting that
RD promotes polysaccharide biosynthesis more effectively than SD
or FC (Figure 9). Previous studies support this view: UGDH is
induced by drought in barley (Vitamvas et al., 2015), AXS enhances
oxidative stress resistance in rice (Ni et al., 2022), RGP contributes
to stress defense (Saqib et al, 2019), and GMPP improves salt
tolerance in rice (Chen et al., 2022a). These results indicate that RD
imposes stronger abiotic stress, including mechanical injury,
pathogen exposure, hypoxia, and elevated temperature, thereby
stimulating polysaccharide accumulation in C. pilosula.

5 Conclusion

In this study, the differences in key active compounds in C.
pilosula under shade drying and rubbing-sweating drying were
systematically analyzed. For the first time, the molecular
mechanisms underlying the accumulation of these compounds
during postharvest processing were explored using transcriptomic
approaches. The results demonstrated that both drying methods
enhanced the quality of C. pilosula to varying degrees, with
rubbing-sweating being more conducive to the accumulation of
major active constituents such as lobetyolin and polysaccharides.

Transcriptomic analysis further revealed that rubbing-sweating
more strongly activated the expression of genes involved in MAPK
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signaling and hormone transduction, thereby inducing stress
responses, defense mechanisms, and programmed cell death. In
addition, peroxisome-related pathways and the antioxidant enzyme
system were markedly upregulated, promoting redox homeostasis
and the biosynthesis of secondary metabolites. Compared with SD,
RD also enhanced the expression of genes related to phenylalanine,
tyrosine, tryptophan, lobetyolin, and polysaccharide biosynthesis,
suggesting that the enhanced quality results from stress-induced
activation of multiple metabolic pathways.

Although this study, for the first time, provides transcriptomic
evidence linking the rubbing and sweating treatment with the
improvement of C. pilosula quality, further in-depth investigation
is still required. Future research will integrate multi-omics data to
conduct joint analyses of DEGs and metabolites during the drying
process of C. pilosula, as well as perform functional validation of key
genes involved in critical pathways. On this basis, systematic
optimization of key processing parameters in producing areas
(such as rubbing intensity, rubbing frequency, sweating duration,
and environmental conditions) will be undertaken to establish
technical standards for C. pilosula processing, thereby
standardizing the processing workflow. This will provide both
scientific evidence and practical guidance to promote the
modernization and mechanization of C. pilosula processing.
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