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Background: Rice blast, caused by Pyricularia oryzae (teleomorph:Magnaporthe

oryzae), is one of the most economically damaging diseases affecting rice

worldwide. While the evolutionary origins and genetic structures of Asian and

European P. oryzae populations are relatively well characterized, African isolates

remain underexplored. This knowledge gap impedes the development of

informed management strategies for rice blast in the region. The present study

was conducted to characterize the genetic origins, population structure,

admixture, demographic history, and effector gene diversity of P. oryzae

isolates in SSA, and to elucidate their evolutionary trajectories and implications

for disease management.

Methods: A total of 180 genome sequences (45 from SSA, 135 from other regions)

were analyzed using population genomic approaches. Phylogeographic

reconstructions, demographic modeling, and genome-wide association studies

were performed to trace migration events, quantify genetic diversity, and identify

candidate adaptation genes. Effector gene repertoires were also examined for

diversity and selection signatures.

Results: Our findings provide new dates for the divergence of SSA populations

from Asian populations. The introduction of P. oryzae into Africa occurred mainly

from China in the late 19th century, initially in West Africa (WA; Mali and Burkina

Faso), and subsequently in Uganda and Madagascar during the early 20th century,

before extending to the wider African region, with subsequent repeated

introductions. Tajima’s D and demographic modeling suggested complex

population dynamics shaped by migration and asymmetric founder events,
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highlighting considerably shared genetic ancestry between Asia and East Africa

(EA), in contrast with that between Asia andWA. Genome-wide association analysis

identified a specific set of single nucleotide polymorphism markers, along with

several candidate genes linked to adaptation. Effector analysis revealed that SSA

isolates harbor fewer effectors and exhibit lower genetic diversity than Asian

populations, with some effectors under positive selection, particularly in WA.

Discussion: P. oryzae populations in SSA are shaped by historical introductions,

founder events, and region-specific adaptation processes. While WA populations

have diverged significantly from their Asian ancestors, gene flow within SSA

connects regional populations, and effector gene diversity reflects both

conserved virulence strategies and adaptation to local hosts. Overall, this study

improves the existing knowledge on P. oryzae populations in SSA and underscore

the need for integrated management strategies that consider both historical and

contemporary pathogen dynamics in Africa.
KEYWORDS
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1 Introduction

Routine genomic surveillance of plant pathogens across diverse

geographic regions, along with equitable data sharing, is essential for

effective plant disease management and timely outbreak response.

However, most countries in Sub-Saharan Africa (SSA) remain

markedly underrepresented in large-scale pathogen genomic

studies, resulting in limited regional capacity for pathogen

monitoring and an increased vulnerability to emerging disease

threats (Mutiga et al., 2021; Conde et al., 2025). The dynamics of

plant diseases are shaped by intricate interactions between the host,

environment, and pathogen communities, with local adaptation and

evolutionary change often influencing disease emergence and severity

(Stukenbrock and McDonald, 2008; Mundt, 2014). Given that the

evolution of pathogens is frequently driven by localized ecological

and agricultural factors, region-specific genomic studies are critical

for validating biological processes and informing tailored disease

management strategies.

Rice blast, caused by Pyricularia oryzae (syn.Magnaporthe oryzae),

is among the most destructive and historically significant rice diseases

worldwide, having first been reported in China as early as 1637 (Agrios,

2005). The pathogen is now endemic in over 100 countries across Asia,

Africa, the Americas, Europe, and the Middle East (CABI, 2021;

Pedrozo et al., 2025). Yield losses due to blast range from 10–30%

under typical conditions but can reach 40–100% during severe

epidemics, not only in rice but also in wheat and turfgrass (Savary

et al., 2019; Vanaraj et al., 2013; Coelho et al., 2016; Skamnioti and

Gurr, 2009; Uddin et al., 1999). As a polycyclic pathogen, P. oryzae can

complete multiple infection cycles per season, amplifying its destructive

potential, especially in favorable or previously unexposed cropping

systems (Ribot et al., 2008). Recent trends in rice production, including

reduced water usage, expansion of high-yielding cultivars, and
02
increased fertilizer application, are intensifying selection pressures

and increasing pathogen evolution (Mutiga et al., 2021). Analogous

trends have been observed in other major crop diseases, such as the

emergence and global spread of the highly virulent Ug99 lineage of

wheat stem rust, where changes in agricultural practices and host

deployment have accelerated evolution and dispersal (Singh et al.,

2011). These examples underscore the urgent need for robust, ongoing

genomic surveillance of plant pathogens to detect shifts in genetic

diversity and inform sustainable crop protection strategies.

The genetic diversity of P. oryzae is shaped by mutation, genetic

drift, gene flow, sexual and asexual reproduction, and strong

selection from host resistance genes (McDonald and Linde, 2002).

These evolutionary forces not only drive pathogen adaptation and

virulence but also provide the foundation for reconstructing the

pathogen ’s demographic history, migration routes, and

mechanisms underlying virulence evolution. Southeast Asia has

been established as both a biodiversity hotspot and the likely center

of origin for P. oryzae, from which host-specific lineages have

radiated during historical host transitions (Saleh et al., 2014;

Couch et al., 2005). The rice-infecting lineage is thought to have

arisen approximately 1,000 years ago from a recombining grass-

infecting ancestor, following a single gain-of-function event for rice

pathogenicity (Gladieux et al., 2018). Genomic surveys have

subsequently revealed four major genetic groups within the rice-

infecting lineage, with distinct global distributions and reproductive

strategies: Group 1 is characterized by recombination and sexual

reproduction, while Groups 2, 3, and 4 are largely clonal and

female-infertile (Gladieux et al., 2018; Thierry et al., 2022).

Dating studies indicate that the major clonal expansions of P.

oryzae occurred within the last 100–200 years, originating from

genetically diverse populations in Southeast Asia (Duan et al., 2024;

Latorre et al., 2020). These expansions have shaped the current
frontiersin.org
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genetic profiles of Asian populations, resulting in the formation of

distinct genetic groups and a marked reduction in effector gene

repertoire compared to the ancestral, more diverse populations.

Bottleneck effects and founder events during such clonal expansions

lead to the loss of rare alleles and a narrowing of both adaptive and

neutral genetic variation, a trend reported in other plant pathogens

(Wilson et al., 2025; Saleh et al., 2014). Similar processes appear to

have influenced P. oryzae in regions outside Asia, including SSA,

where introductions are inferred to have been relatively recent

compared to the pathogen’s much earlier establishment and

diversification in Asia (Thierry et al., 2022). However, many

African countries remain severely undersampled, and most

studies have used low-resolution markers, limiting inferences

about population history and finer-scale structure (Kassankogno

et al., 2016; Onaga et al., 2015). A recent bibliometric review

highlighted that Africa has the lowest research output on rice

blast and related rice diseases compared to other continents

(Conde et al., 2025). As a result, significant knowledge gaps

persist about P. oryzae in Africa, compounding the lack of

comprehensive data needed for informed disease management.

Historical records first identified rice blast symptoms in SSA in

Uganda in 1922 (Small, 1922), with subsequent detections in Ghana

(1923), Kenya (1924), Congo (1932), Egypt (1935), and later in

Madagascar, Morocco, Senegal (1952), and South Africa (1956)

(Asuyama, 1965). More recently, global population studies

employing genotyping and lineage analysis, including some

genomes from West African countries, have revealed the presence

of all four major genetic groups of P. oryzae, underscoring the broad

and diverse nature of the pathogen population in Africa (Thierry

et al., 2022). Previous research using larger collections of SSA

isolates identified considerable genetic diversity and evidence of

population structure across SSA, with subtle differentiation

observed between East and West African populations (Odjo et al.,

2021; Kassankogno et al., 2016; Onaga et al., 2015; Mutiga et al.,

2017). However, many of these earlier studies relied on low-

resolution genetic markers, such as simple sequence repeats

(SSRs) or partial genome data, which only provide a limited view

of genetic diversity and are insufficient for reconstructing the

demographic and migration history of the pathogen. To

overcome these limitations, high-resolution whole-genome studies

are needed to clarify the relationships between African and Asian

populations, establish the timing and routes of introduction, and

guide effective disease control.

Rice blast control in Africa, as elsewhere, relies primarily on the

deployment of resistant rice varieties. However, the durability of

resistance is frequently compromised by the rapid emergence of

new, resistance-breaking strains, a direct consequence of ongoing

pathogen evolution driven by mutation, gene flow, and selection

imposed by host resistance genes (McDonald and Linde, 2002). The

capacity for P. oryzae to gain, lose, or rearrange genes, particularly

those encoding effectors, enables it to evade host immunity and

adapt quickly to new resistant cultivars (Yoshida et al., 2016;

Chiapello et al., 2015). This dynamic nature of effector gene

evolution, through gene gain/loss, diversifying selection, and

genetic drift, means that previously effective resistance genes can
Frontiers in Plant Science 03
rapidly become obsolete as the pathogen adapts (Yoshida et al.,

2016). Given these challenges, regular monitoring of P. oryzae

populations, particularly with a focus on effector diversity and

evolution, is crucial to inform breeding programs and ensure

long-term disease management (Dong et al., 2015; Latorre et al.,

2020). Unfortunately, most effector diversity studies have

concentrated on Asian populations, with African strains

remaining severely underrepresented in global analyses. This data

gap constrains our ability to track virulence evolution, predict

resistance breakdown, or tailor management strategies to the

specific evolutionary dynamics present in Africa.

In this study, whole-genome sequences from 45 P. oryzae

isolates collected across 14 African countries were analyzed

alongside 135 genomes from other global regions to explore

population variation in SSA. Unlike earlier studies, different

evolutionary scenarios were tested to provide a more

comprehensive regional perspective on P. oryzae and to improve

understanding of its introduction and spread within SSA. In

addition, effector polymorphisms in SSA isolates were compared

at both continental and regional levels. Although SSA isolates

clustered with Asian strains, varying degrees of divergence were

exhibited, alongside distinct patterns of effector gene presence/

absence and evidence of selection. These results improve our

understanding of P. oryzae populations in SSA and highlight the

need for continous monitoring of genetic variations that could

cause disease epidemics.
2 Materials and methods

2.1 Collection of P. oryzae isolates and
DNA extraction

In this study, 45 isolates were collected from 14 African

countries, including Burundi (4), Kenya (2), Rwanda (3),

Tanzania (9), Uganda (5), Benin (4), Burkina Faso (4), Ghana (2),

Mali (2), Nigeria (4), Togo (3), Madagascar (1), Morocco (1), and

Côte d’Ivoire (2). Additional isolates were obtained from Asia (4)

and Latin America (3). The metadata for the isolates, including

those downloaded from public INSDC databases, are provided in

Supplementary Table S1. Infected leaves were collected from rice

fields, dried, and stored on filter paper at 4 °C before isolation.

Leaves with single lesions were placed on glass rods in Petri dishes

containing wet filter paper and incubated at 25–26 °C until

sporulation was achieved. Sporulating lesions were examined

under a stereomicroscope, and conidia were aseptically

transferred with a transfer needle to prune agar (PA) medium

(composed of three pieces of prunes, 1 g yeast extract, 21 g Gulaman

bar, 5 g alpha-lactose monohydrate, and 1 L distilled H2O) (Meng

et al., 2020). Spores were then harvested in distilled water, and

individual germinating conidia were aseptically transferred and

subcultured in PA medium. After seven days, agar disks cut from

PA were subcultured on Malt Extract Agar. Fungal growth and

DNA extraction were performed as previously described (Mutiga

et al., 2017). The quality of DNA was checked using a NanoDrop
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1000 instrument (Thermo Fisher Scientific) and agarose

gel electrophoresis.
2.2 Generation of genomic datasets

The sequence datasets used in this study were obtained from P.

oryzae isolates collected in the field or downloaded from the public

INSDC databases. For the isolates sampled from the field, DNA

samples were submitted and library construction was performed by

the Beijing Genomic Institute (Shenzhen, China) using Illumina

paired-end reads with an insert size of 350 bp. Sequencing was

performed on Illumina HiSeq4000, with sequencing parameters set

to an average coverage of 50x to 70x. Sequencing quality was

confirmed using the fastqc algorithm, and the data were trimmed

by removing low-quality sequences and adapter sequences with

Trimmomatic 0.36 (Bolger et al., 2014). The whole-genome

sequence of P. oryzae 70–15 strain, reference assembly MG8 with

accession number GCA_000002495 (Dean et al., 2005), was used as

the reference template for mapping using BWA–mem 0.7.17 (Li

and Durbin, 2009), under default parameters. Mapped reads were

sorted with Samtools 1.3.1 (Li et al., 2009). Duplicate reads were

removed using theMarkDuplicates command, and all reads in a file

were assigned to a single new read-group using the

AddOrReplaceReadGroups command with Picard 2.7 (http://

broadinstitute.github.io/picard). Single nucleotide polymorphisms

(SNPs) for each strain were identified using the HaplotypeCaller

command implemented in the Genome Analyses Toolkit 4

(GATK4.1.6.3) (McKenna et al., 2010). Subsequently, the

GenotypeGVCFs command in GATK was simultaneously applied

to the genotype polymorphic sequence variants for all strains. Hard-

filtering was performed for raw SNP calls using the SelectVariants

and VariantFiltration functions in GATK (De Summa et al., 2017).

The following parameters were used for variant calling: QD < 5.0,

QUAL < 5000.0, MQ < 20.0, ReadPosRankSum < -4.0,

ReadPosRankSum > 4.0, MQRankSum < -2.0, MQRankSum >

2.0, BaseQRankSum < -2.0, BaseQRankSum > 2.0. The final SNP

dataset was further filtered to only include biallelic variations. P.

oryzae isolates with a mapping rate of less than 80% to the reference

strain were excluded from the population genetic analyses; however,

all reads were used for effector mapping. Genomic datasets for 131

P. oryzae isolates from a global population (Gladieux et al., 2018b;

Zhong et al., 2017) were downloaded from the Sequence Read

Archive (http://www.ncbi.nlm.nih.gov/sra). A summary of the

sequencing yield and dataset coverage is presented in

Supplementary Table S2.
2.3 Phylogenetic and phylogeogoraphy
analysis

Phylogenetic relationships and phylogeography were

investigated using maximum likelihood (ML) and Bayesian

inferences with RAxML 8.2.9 (Stamatakis, 2014) and BEAST

v2.6.3 (Bouckaert et al., 2019), respectively. For the ML tree, the
Frontiers in Plant Science 04
statistical confidence for each node was set to 1000 bootstrap runs,

and the general time-reversible model of nucleotide substitution

with a gamma model of rate heterogeneity was used. The

phylogenetic tree was visualized using the ggtree R package (Yu

et al., 2017), and visualization was improved using iTOL v5 (Letunic

and Bork, 2021). For phylogeographic analysis, the most

appropriate substitution model, General Time-Reversible (GTR

+G+I), was identified by the jModelTest v2.1.10 program (Posada,

2008). Bayesian maximum-clade-credibility (MCC) phylogenetic

trees were constructed as described by Drummond and Rambaut

(2007). To infer the geographic origins of P. oryzae strains, location

and genetic group traits were analyzed using a discrete trait

diffusion model. To estimate the transition rates between different

locations, a Bayesian stochastic search variable selection (BSSVS)

with a symmetrical discrete trait substitution model (strict clock

assumption) was used. The Markov chain Monte Carlo (MCMC)

was run under an Extended Bayesian Skyline model for over 100

million generations, with sampling conducted every 1,000 states.

For the major parameters, an effective sample size (ESS > 200) was

observed. The ESS values were evaluated using TRACER v1.8.4, and

a cutoff value of 200 was applied to retain the concluding

simulations. TreeAnnotator v1.8.4 (after removal of 10% burn-in)

was used to generate the MCC tree. Ultimately, the resulting MCC

tree was visualized using FigTree v1.4.3 (http://tree.bio.ed.ac.uk/

software/figtree/). A posterior probability threshold (pp) higher

than 0.95 was used to assess the tree nodes with SPREAD3

(Bielejec et al., 2011). SPREAD3 was also used to calculate the

Bayes factors (BF) for pairwise diffusion rates between sites. Bayes

factors greater than 3 were considered statistically significant. The

simulations of 300 million iterations produced better results than

the 100 million simulations. Phylogenetic analysis results were

projected onto a map using Google Earth™ to enable

visualization and understanding of the relationship between

pathogen genomes and geographical locations. This was

accomplished by creating a Keyhole Markup Language (KML)

file, and importing and converting in shapefiles in QGIS. which

allowed visualization of P. oryzae spread and genetic relationships

on a map.

To further support the phylogenomic relationships and probe

deeper into the genetic partitioning of the datasets, several

clustering approaches were used. The whole-genome neighbor-net

network analysis was employed using the neighbor-net method

implemented in SplitsTree 4.16.1 (Huson and Bryant, 2006).

Assignment tests were conducted using principal component

analysis (PCA; employing the genlight object and the glPCA

function from the adegenet package in R followed by

STRUCTURE v2.3.4 (Pritchard et al., 2000) and discriminant

analyses of principal components (dAPC) also using the

“adegenet” v1.31 R package (Jombart et al., 2008). STRUCTURE

was run for K values ranging from 1 to 10, with each K value

evaluated using 20,000 Monte Carlo Markov Chain (MCMC)

iterations, following a burn-in period of 10,000 iterations, across

ten replicate runs. As dAPC requires prior population information,

inferred population assignments from STRUCTURE and

phylogenetic relationships observed in the PCA were used. A
frontiersin.org
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dAPC was performed using the “dapc” function, whereas the

number of clusters (K) with the lowest Bayesian information

criterion (BIC) was determined using the “find.clusters” function

within the “adegenet” package. The R package factoextra was used

to validate the optimal number of clusters in a silhouette plot

(Kassambara, 2017).
2.4 Linkage disequilibrium, GWAS,
Admixture, and genetic diversity analysis

Following the identification of the optimal number of clusters,

isolates were reclassified into four populations according to their

region of origin: EA (EA), WA (WA), Asia (A), and the rest of the

world (ROW), and their ancestry was assessed. SNPs were filtered

from the original VCF file using three different cutoffs of presence

for all samples (1%, 5%, and 10%), and new VCF files were then

generated for each cutoff. To investigate the relatedness between

samples in the filtered SNP VCF files using the TASSEL package

(version 5.2.86, Bradbury et al., 2007), four principal components

were extracted, capturing the most significant variations in the

genetic data. The PCA results, specifically the scores of the samples

on the four principal components, were exported as a NumPy

matrix, which was then imported into a Python environment, where

visualization was carried out using the NumPy and Matplotlib

libraries. Variance of up to 60% was represented by PCs 1 and 2,

and four genetic groups were confirmed based on genetic

relatedness. Linkage disequilibrium (LD) between pairs of SNPs

from isolates across the four regions was assessed by calculating the

mean LD within 10 Kb end-to-end sliding windows genome-wide,

with each window centered on a given SNP. SNP pairs were

grouped into bins based on physical distance (in base pairs) or

chromosomal proximity. SNPs with low minor allele frequencies

(MAF ≥ 0.1) were excluded prior to binning and subsequent

analysis in conjunction with the PCA-derived genetic groups. For

each bin, the average r2 (half decay distance) was determined by

summing the r2 values for each pair of SNPs within the bin and

dividing by the total number of SNP pairs present in that bin. SNPs

were pooled across all chromosomes within each genome to

determine the overall average LD on a genome-wide scale. LD

between SNPs was assessed by plotting their average r2 values, with

minimal LD expected at r2 values of approximately 0.2. The binned

SNPs and PCA-derived pathogen genetic groups were subsequently

used as input for genome-wide association studies (GWAS) in

TASSEL to identify associations. The results of the GWAS were

then analyzed to identify a list of SNPs significantly associated with

pathogen groups, with LD decay taken into account to refine the

identification of truly associated SNPs. These SNPs were further

analyzed to identify a list of genes containing SNP variants, and a

VCF file with all required annotations was generated.

Admixture analysis was performed using the ADMIXTOOLS

package (version 7.0.2; Patterson et al., 2012) within R environment

(R Core Team, 2023). f2 statistics were calculated by measuring the

squared allele-frequency distance between pairs of genetic groups

subdivided into regions. As the f2-distances are squared Euclidean,
Frontiers in Plant Science 05
pairwise f2(Xi, Xj) values between all populations were calculated

and assembled into a matrix, resulting in a three-dimensional (3D)

array containing 24 distance matrices. From these matrices, 24 trees

were generated using the PHYLIP package (version 3.698;

Felsenstein, 1989), employing the neighbor-joining method

implemented in the neighbor program. To account for variability

across the matrices, a consensus tree was constructed from the 24

individual trees using the consense program in PHYLIP, following

standard consensus-building procedures (Felsenstein, 1989). To

further investigate population structure and admixture, we

performed the 3-Population Test (outgroup f3-statistics), as

implemented in ADMIXTOOLS. This test measures the amount

of shared genetic drift between two test populations relative to an

outgroup and is robust for detecting admixture events. For these

analyses, we used US 71, a Setaria-infecting P. oryzae strain, as the

outgroup, consistent with previous studies (Gladieux et al., 2018a).

The resulting f3-statistics were used to generate a pairwise genetic

similarity matrix, which was then subjected to complete linkage

hierarchical clustering using the hclust function in R. Cluster tree

was visualized with the ggtree package (Yu et al., 2017), and

additional graph depicting genetic distances between regions was

created using the ggplot2 package (Wickham, 2016).

The VCFTOOLS software, with the “-haploid” flag

(downloaded from https://github.com/jydu/vcftools), was used to

calculate Fst statistic, diversity index (Pi), and Tajima’s D (Tajima,

1989). Variations within the different genetic groups at the 10%

SNP presence cutoff were calculated, and boxplots for Pi index, Fst
statistic, and Tajima’s D were plotted. For Fst outlier analysis, Fst
values were estimated for each 10 kb-sized window, resulting in the

generation of an Fst value for each individual SNP by comparing

regional populations. Genes from each comparison (EA-WA, A-

EA, A-WA, and A-ROW) were extracted to predict their biological

role in pathogen adaptation.

2.5 Population genetic analyses of
demography

The demographic patterns of P. oryzae populations were

investigated based on the folded site frequency spectrum (SFS)

using the diffusion approximation framework implemented in ∂a∂i

(Gutenkunst et al., 2009). This model assumes that an ancestral

population of size X gives rise to two populations of size X1 and X2,

respectively, at a time of split Ts, after which several migration

scenarios are contrasted (Momigliano et al., 2021). The SFS,

representing the distribution of allele frequencies across SNPs, was

used to infer the demographic history of populations. The observed

SFS was compared to expected SFS values generated under different

demographic models, and the likelihood of each model, along with its

parameter values, was estimated using maximum likelihood methods.

Each geographic region (EA, WA, and Asia) was treated as a

subpopulation. The ROW subregion was excluded due to

insufficient sample size and potential population substructure,

which could bias the SFS and downstream inferences (Excoffier

et al., 2013). Multiple projection sizes were evaluated for each

population, and the projection that retained the largest number of
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SNPs without excessive missing data was selected for further analyses.

Demographic models were fitted to the observed SFS for each

population, including, Expansion (two-epoch), Growth, Bottle-

growth and bottleneck-expansion (three-epoch function)

(Gutenkunst et al., 2009). For each model, initial parameter values

were randomly drawn from uniform distributions within biologically

plausible bounds, following Gutenkunst et al. (2009). The model with

the highest log-likelihood was selected as the best-fit for each region.

To investigate historical relationships between population pairs, we

constructed two-dimensional (joint) SFS using pairs of regions: Asia-

EA, Asia-WA, and EA-WA. We fit two-population demographic

models, including split-migration and isolation-with-migration

scenarios, to each pairwise SFS (Gutenkunst et al., 2009; Excoffier

et al., 2013). Each model was optimized iteratively, and the best-fit

parameters were determined based on maximum likelihood criteria.

For each fitted model, we compared the log-likelihood values to assess

relative model fit. Model adequacy was visually evaluated by plotting

the observed vs. expected SFS, as well as the distribution of residuals.

These plots allowed us to assess the extent to which the best-fit model

captured the main features of the data.

2.6 Effector mapping, distribution, and
diversity

To map candidate effectors in SSA P. oryzae genomes,

previously described methods and resources (Latorre et al., 2020)

were followed with modifications. Protein-coding genes, both

virulent and avirulent, from P. oryzae isolates infecting rice,

wheat, oat, millet, and wild grasses were used to generate

reference effector sequences (Petit-Houdenot et al., 2020).

Genome reads from 180 P. oryzae isolates were mapped to the

effector reference using bwa-mem 0.7.17 (Li and Durbin, 2009).

Mean gene coverage for each isolate was calculated with samtools

coverage (v1.10), using a minimum read depth of 3x. The total

number of mapped reads per gene was divided by gene length in the

reference (Li et al., 2009), and an 80% coverage threshold was set to

define effector presence. A binary presence/absence matrix was

generated. Only informative effector genes displaying presence/

absence polymorphisms were retained for clustering. Hierarchical

clustering was performed using the hclust function with complete

linkage, and distance matrices were computed in R with the ade4

package (Dray and Dufour, 2007), employing the dist.binary

function and Jaccard index. Principal component and effector

loading analyses were conducted as described previously (Latorre

et al., 2020). Effector bam files were converted into fastq format

using samtools 1.10 and bcftools 1.10 (Li et al., 2009) for variant

calling and diversity estimation. Sequences with zero presence,

ambiguous nucleotides (“N”), unknown bases, or heterozygous

positions were excluded. Effector alignments were generated using

MAFFT 7.453.0 (Katoh and Standley, 2013) with the G-INS-i

strategy and were manually curated. Effector diversity indices

were calculated with the R package pegas (Paradis, 2010), using

hap.div for allele diversity and nuc.div for nucleotide diversity (Pi).

Synonymous and nonsynonymous substitution rates, as well as

site-specific positive selection, were estimated using YN00 and
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CODEML from the PAML suite. Orthologous effector genes were

identified using BLAST, and sequence alignments were generated

for each set. For genes with at least two orthologs, we calculated

mean pairwise dN/dS ratios using KaKs_Calculator 2.0 (Wang

et al., 2010) with the Yn00 model (Yang et al., 2000).

Additionally, site-specific positive selection was evaluated using

CODEML (version 4.10.6) from the PAML suite. Likelihood ratio

tests (LRTs) were performed, comparing models M1 (neutral) vs.

M2 (selection) and M7 (beta) vs. M8 (beta&w), with statistical

significance determined by chi-square tests (P < 0.05). A gene was

considered under site-specific positive selection if both LRTs were

significant. Preliminary examination of effector sequences revealed

>99% identity among samples, and further analysis was performed

by repeating CODEML tests with an outgroup, Magnaporthe poae,

selected for sufficient evolutionary distance and homology.

Orthologous effector gene sequences from this outgroup were

analyzed individually. The dN/dS ratios were calculated only for

proteins with corresponding orthologs in Magnaporthe poae, and

region-wise comparisons were conducted for each effector gene.

Results were visualized using boxplots.
3 Results

3.1 Phylogenetic and phylogeography
analysis

To characterize the genetic composition of SSA populations of

P. oryzae, previous datasets (Gladieux et al., 2018a; Zhong et al.,

2017) were combined with genome sequences from newly collected

isolates in SSA rice-growing regions. In the entire collection, 66,744

SNPs were identified. The phylogenetic signal of SSA strains was

analyzed using ML. SSA genomes clustered within three well-

defined global genetic groups, as well as within a diverse Group 1

(Figure 1A). Most Group 1 isolates were more broadly related to

Groups 3 and 4, as indicated by shared branching points, whereas

Group 2 appeared to be relatively distant. Group 1 was represented

by five SSA isolates (SSA-1): a single isolate from East Africa

(Uganda; subclade 1) and four from West Africa (Mali, Togo,

Ghana, and Nigeria; subclade 2) that grouped together with Asian

isolates predominantly from Yunnan, China (13FM-5-1, 13FM-24-

1, CH1019 and CH0999). Most SSA isolates were assigned to Group

3 (SSA-3), which was detected across all SSA regions. Group 4

(SSA-4) included isolates from Tanzania, two from Burkina Faso,

and one each from Uganda and Kenya. Group 2 (SSA-2) was

restricted to East Africa and comprised mainly isolates from

Rwanda and Burundi, along with one isolate each from Uganda

and Morocco. The ML tree was compared with a tree reconstructed

using the maximum clade credibility (MCC) method in BEAST2.

The time-calibrated MCC phylogenetic tree closely resembled the

ML tree (Figure 1B). The most recent common ancestor (MRCA) of

the analyzed samples was estimated to have emerged around 1742

(95% highest probabil i ty density (HPD): 1700–1753)

(Supplementary Table S3). Divergence into clonal groups was

dated to approximately 1748, leading to emergence of Group 1
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FIGURE 1

(A) A maximum-likelihood phylogenetic tree generated using single nucleotide polymorphism (SNP) alignment of global isolates. Font colors on the
tree represent SSA isolates in different clusters (genetic groups) (B) Bayesian maximum clade credibility (MCC) tree from BEAST based on 66,744
SNPs among the global population; genetic groups are represented by the different colors. (C) A Google Earth map created using Keyhole Markup
Language file allowing for visualization of the spread of Pyricularia oryzae and genetic relationship between pathogen genomes and geographical
locations. (D) Cord diagram generated using a Bayesian stochastic search variable selection, with a symmetrical discrete trait substitution model
(strict clock assumption) to estimate the transition rates between groups (D) and different locations (E).
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and clonal Group 3. Another divergence, resulting in Group 2,

occurred in 1786, followed by the emergence of Group 4 in 1804.

The MRCA for SSA samples was traced to 1896 in Burkina Faso,

West Africa (95% HPD: 1891–1917), with subsequent emergence in

Mali between 1896 and 1900. For East Africa, the MRCA was

identified in Uganda in 1910 (95% HPD: 1905–1929), with

emergence in Madagascar seven years later (95% HPD: 1900–

1918). Through Google Earth visualization, we observed that

several SSA isolates were likely originated from China, while

others were inferred to have previously circulated in East Asian

countries, such as South Korea, before their emergence in SSA

(Figure 1C). Evidence of a reintroduction event involving China

and Burundi in the 1950s was observed, which was subsequently

followed by introductions to Ghana and Burkina Faso in the late

1960s. Substantial migration flux between EA andWA was detected

in the early 1990s, particularly involving Tanzania, Burundi, and

several West African countries.

To verify these geographic transitions, a discrete trait diffusion

model was implemented. A considerable representation of Group 1

alleles in Group 3 was observed, whereas Group 2 showed reduced

representation across all groups (Figure 1D). Most P. oryzae isolates

in SSA were consistently traced to migration from China and India

(Figure 1E). In EA, strong connections were found between Uganda

and Kenya, with each also maintaining separate links to Tanzania.

Within WA, Ghana exhibited a robust connection with Benin.

Madagascar displayed limited connectivity with other countries,

apart from a distinct link with Benin. Transition rates indicated that

Burundi acted as a repository for isolates from various countries,

particularly from Côte d’Ivoire, Burkina Faso, Ghana, China, the

Philippines, and Nigeria.
3.2 Population structure and admixture
analysis

Population structure and admixture analyses provide insights

into the genetic composition of populations, elucidating patterns of

relatedness, migration, and the degree of genetic exchange among

different groups. In this study, principal component analysis (PCA)

clustered the isolates into four groups, consistent with the

phylogenetic analysis (Figure 2A). The first principal component

accounted for the majority of variance (42.7%) and separated Group

1 isolates from those in other groups, while the second principal

component explained 13% of the variance and further distinguished

the four groups identified in the phylogenetic tree. In PC space,

isolates in Group 4 were effectively clustered above those in Group

1. Exceptions were observed for isolates HB-LTH18 from Hubei

and CH1016 from Yunnan, which, although grouped within Group

1 in the PCA, appeared closer to Group 3 in the phylogenetic

analysis. Similar clustering patterns were revealed by phylogenetic

network analysis using the neighbor-Net method, indicating that

both approaches captured consistent data structures (Figure 2B).

Subsequent analysis with STRUCTURE showed that SSA isolates

clustered with Asian populations across all groups (Figure 2C). As

the number of genetic groups (K) increased to 10, a gradual
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seperation appeared between Asian and SSA populations in each

group, particularly in group 1 and 2. Discriminant analysis of

principal components (dAPC) supported a model with K = 4

genetic clusters, as determined by both BIC and silhouette plot

cross-validation (Supplementary Figure S1).

Admixture analysis was performed to determine the regional

ancestry of the isolates, using genetic distances calculated from f2

statistics between all pairs of genetic groups (G1–4) subdivided by

region. A total of 24 trees were generated from the f2 statistics-

derived distances, and a consensus tree was constructed

(Figure 2D). The foundational population for Group 3 was

identified as Group 1 from Southeast Asia (SEA). Before the

formation of the final SSA-3 (EA and WA) cluster, two distinct

intermediate clusters from South Asia and East Asia were observed.

The origins of SSA Group 4 (SSA-4) were traced to the lineage of

Group 1 in China, which appeared to have originated from a

broader Group 1 population. WA Group 1 was found to have

diverged before the emergence of Group 4 strains that are were

detected in other regions, including South America, North America,

East Asia, Europe, WA and EA. EA. The ancestral Group 1, from

which EA Group 1 diverged, was positioned at the base of the

branch that was linked with Group 2. A weak connection was

detected between EA Group 1 and other SSA groups, even within

Uganda. Similarly, Group 2, which was found to have emerged from

the same ancestral population as EA Group 1, was observed to be

distant from Groups 3 and 4.

Further analysis using f3-statistics was conducted to evaluate

the genetic similarity between two populations, as inferred with a

distant outgroup. Positive f3 values (Z-score > 2) were observed for

all genetic groups (Supplementary Table S4). At the regional level,

higher f3 statistics were found between EA and WA and between

Asia and ROW (Figure 2E).
3.3 Linkage disequilibrium and GWAS
analysis

To investigate the extent of clonal reproduction in our

collection, linkage disequilibrium (LD) decay was evaluated by

calculating the squared correlation coefficient (r²) between pairs

of SNPs using the TASSEL interface (Bradbury et al., 2007). The

majority of SNPs were found to be in complete disequilibrium, and

no LD decay was observed until r² dropped below 0.2

(Supplementary Figure S2A). To further investigate the genetic

basis of SNP variation, GWAS was performed, and Manhattan plots

were generated to visualize significant SNPs exceeding the threshold

of −log10(p) > 40 (Supplementary Figure S2B). Subsequently, a list

of genes containing these significant SNPs was compiled, followed

by annotation and GO analysis of the associated gene set

(Supplementary Table S5). The SNPs with the strongest

association on chromosome 1 were linked to MGG02124, which

encodes a K+ transporter involved in inorganic ion transmembrane

transport (GO:0098660). Additional genes identified included the

ammonium transporters MEP1 (MGG00595, MGG00537) and an

MFS transporter (MGG00416) on chromosome 5; the secreted
frontiersin.org

https://doi.org/10.3389/fpls.2025.1650532
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Onaga et al. 10.3389/fpls.2025.1650532
FIGURE 2

(A) A two-dimension principal correspondence analysis showing the distribution of genetic variability in the Pyricularia oryzae datasets.
(B) Phylogenetic network analysis of global P. oryzae populations using the neighbor net method showing the four inferred genetic groups. The
color denotes the four genetic groups as inferred using the PCA in panel A and confirmed via the clustering analysis in Supplementary Figures S1B,
C. (C) STRUCTURE results showing the membership probability for each P. oryzae genome from K = 2 to K = 10 populations. (D) A consensus tree
generated using f2 statistics between all pairs of groups subdivided into regions using the PHYLIP package. (E) A 3-Population test or outgroup
f3-statistics implemented in AdmixTools to estimate the genetic similarity between isolates relative to an outgroup; genetic distance between
regions are presented in a graphical form.
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chitin deacylase MoCDA1 (MGG14966) on chromosome 6; and

MGG02986 on chromosome 7, encoding the DNA polymerase zeta

catalytic subunit (REV3), which is essential for DNA replication

and repair, particularly in regions of damaged or repetitive DNA.

Other notable genes included effector-encoding genes such as

MGG_01753, associated with the epigenetic regulator, MoSET1.
3.4 Genomic landscape of differentiation
and genetic diversity

Nucleotide diversity (Pi), fixation index (Fst), and Tajima’s D

are widely used in population genetics to characterize population

structure and evolutionary dynamics. In our genome-wide analysis,

average Pi in Group 1 (Pi = 1.3e-04) was higher than that observed

in Groups 2 (Pi = 2.5e-05), 3 (Pi = 2.1e-05), and 4 (Pi = 2.45e-05)

(Figure 3A; Supplementary Table S6). On a regional scale, Pi was
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observed to display a heterogeneous distribution, with high

nucleotide diversity interspersed with stretches of low diversity

(Figure 3B). Higher Pi was observed in WA Group 1 compared

to all other regions and groups. In all regions, lower Pi was observed

for Groups 2 and 3.

Low fixation index (Fst) values were observed both across

regions (Fst = 0.05) and within each genetic group (Fst = 0.03–

0.08) (Figure 3C). In contrast, significantly higher Fst values were

detected between genetic groups (Fst = 0.25–0.72). Group 1 was

found to be highly differentiated from the other groups, with the

highest Fst values observed between Groups 1, 2, and 3, while the

lowest Fst was recorded between Groups 1 and 4. On a regional

scale, significant genetic differentiation was found between WA and

Asia, as well as between WA and ROW, with Fst values of 0.22 and

0.42, respectively (Figure 3D). Moderate Fst values were observed

between EA and Asia and between EA and ROW (both 0.12),

whereas the Fst between Asia and ROW was low (0.04).
FIGURE 3

Patterns of diversity across rice-infecting genetic groups in Sub-Saharan Africa (SSA) and Asia. (A) Nucleotide diversity (Pi) was calculated for each
group. (B) Nucleotide diversity (Pi) compared at the regional level. (C) Fixation index (Fst) between different Pyricularia oryzae genetic groups across
different regions. (D) Fst between different regions.
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To further understand signatures of population differentiation,

pairwise Fst values for all individual SNPs were calculated using a

10% SNP threshold across the regions (Asia, EA, WA, and ROW).

Outlier SNPs were identified in Manhattan plots, using a weighted

Fst threshold of 0.2. Markedly elevated Fst values were observed

between WA and Asia, with 1,814 SNPs exceeding the 0.2 threshold

(Figure 4A). In comparison, only 368 SNPs exceeded this threshold

between EA and WA (Figure 4B). The differentiation among Asia,

EA, and ROW was minimal, with fewer than 30 SNPs above the 0.2

threshold (Figures 4C, D). Common SNPs from the highest Fst bins

across all chromosomes were pooled to compile a list of linked

genes, followed by annotation and GO analysis of the associated

gene set. Thirty-eight candidate genes were identified as common

between Asia-EA and Asia-WA comparisons (Supplementary Table

S7) and were linked to diverse functional categories, including ion

transport, fungal hyphal growth, conidiation, lipid metabolism,

ubiquitination, and fertility. GO term enrichment revealed

biological processes such as iron-sulfur cluster assembly

(GO:0016226), cellular response to starvation (GO:0009267),

cellular response to nutrient levels (GO:0031669), proteasome-

mediated ubiquitin-dependent gene expression (GO:0043161,

GO:0010467), ncRNA metabolic process (GO:0034660), protein

maturation by [4Fe-4S] cluster (GO:0106035), ncRNA processing

(GO:0034470), and RNA modification (GO:0009451).
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Estimates of Tajima’s D helped to detect deviations from

neutrality. Positive Tajima’s D were observed in SSA-1 and SSA-

2, but were predominantly around zero (Figure 5A). In SSA-4,

Tajima’s D was closer to neutrality, consistent with neutral

expectations. In contrast, SSA-3 exhibited negative Tajima’s D

values, similar to those observed in Asian genetic groups 1, 2, 3

(Asia-1, Asia-2, and Asia-3, Tajima’s D = −0.6 to −1.2), except for

Asian genetic group (Asia-4), which showed a value close to zero

(Supplementary Table S8). Sliding window analysis revealed minor

deviations from neutrality across the genome, with more

pronounced deviations observed on chromosomes 4, 5, and 7

(Supplementary Figure S3), with specific loci potentially involved

in adaptation or evolutionary processes in Group 2, highlighted on

chromosome 7 (Figure 5B). Region-specific analyses revealed that

Group 1 in WA exhibited a positive Tajima’s D relative to other

regions, with a median greater than 1 (Figure 5C). Group 2 in EA

also showed high Tajima’s D, although most SNPs fell within the

negative range. In Asia-3, Tajima’s D was variable, with most values

falling between 0 and 2, while values for West Africa (WA) and EA

hovered around 0. In Group 4, Tajima’s D for EA was marginally

positive, while in Asia it was negative, with most values near zero.

Comparisons for Group 4 did not include WA and ROW due to

insufficient numbers of assigned isolates, which limited the ability to

conduct reliable analyses.
FIGURE 4

Manhattan plots representing the distribution of pairwise Fst values calculated for each 10 kb genomic window, with an Fst value assigned to each
SNP and comparing the distribution of genetic differentiation across the genome between regional populations. (A) WA vs Asia, (B) WA vs EA, (C) EA
vs Asia, and (D) Asia vs RoW.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1650532
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Onaga et al. 10.3389/fpls.2025.1650532
FIGURE 5

(A) Genome-wide Tajima’s D computations for genetic groups from SSA and Asia showing substantial differences within groups 1 and 2. To compare
the distribution in each genome-wide diversity test analysis for each genetic group within different regions, Mann–Whitney test was performed as
shown above in the boxplot. (B) Example of the dramatic change in Tajima’s D values on Pyricularia oryzae chromosome 7 within genetic group 2
from SSA and Asia. Sequence variation of P. oryzae genes within a 5 kb window representing color-coded single nucleotide polymorphisms (SNPs).
(C) Tajima’s D between between regions across genetic groups.
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3.5 Population genetic analyses of
demographic history

The impact of demographic history was modeled using two types

of analyses available in ∂a∂i. Initially, the demographic history of each

population was analyzed separately by fitting the default single-

population models: expansion (two-epoch function), growth,

bottleneck, and bottleneck-expansion (three-epoch function), using

an optimal projection size for the site frequency spectra (SFS).

However, none of these models were found to adequately fit the

data for any of the geographic regions analyzed. Subsequently, two-

dimensional demographic models, specifically the split-migration

and isolation-migration models, were examined. Among these, the

Isolation with Migration (IM) model was identified as providing the

best fit for the data and exhibited the highest likelihood values among

all paired population comparisons (Table 1). In each pairwise

comparison, SSA populations emerged from a small proportion of

the ancestral population. However, the founding population size of

EA was smaller than that of WA. The migration rate from Asia to EA

was higher (m12 = 7.29E-03, while m21 = 1.19E-03) than that from

Asia to WA (m12 = 1.75E-02, while m21 = 1.70E-02). Analysis of

migration between EA andWA yielded no results with the IMmodel;

therefore, the split-migration model was used, which provided a good

fit. The joint site frequency spectrum observed for EA-WA indicated

an asymmetric split between the two regions (Supplementary Figure

S4), consistent with the respective founding population sizes. EA and

WA had a higher migration rate (m = 0.01) compared to the Asia-EA

and Asia-WA population pairs.
3.6 Effector distribution and diversification
in SSA

The number and distribution of effector repertoires among

different groups and regions were compared by mapping 178

predicted effector references to the genome sequences of P. oryzae

isolates. The total number of effectors per isolate was found to range

from 110 to 127. The highest count was observed in isolate CH0333

(127 effectors), whereas the lowest was detected in IN0072 (110

effectors), with SSA isolates falling within this range. The total

effector content across the various genetic groups of P. oryzae is

presented in Figure 6A. When the genetic groups were ranked by

effector count, Group 1 was found to possess the largest number,
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followed by Group 2, while Group 4 displayed the lowest count

(Figure 6B). Variance in effector presence/absence was visualized

using a PCA biplot, which illustrated the contribution of individual

effectors to the principal components and their correlations

(Figure 6C). We observed that some effectors exerted a stronger

influence on the principal components, and through effector loading

analysis, 16 informative effectors were identified as accounting for 90%

(red line) of the cumulative distribution (Figure 6D). Visualization of

these effectors in a dendrogram revealed two main clusters, with

Group 2 forming a distinct cluster separate from Groups 1, 3, and 4

(Figure 6E). The presence/absence polymorphism of effectors was

evaluated across all genomes, and similar, though not identical,

patterns of effector repertoires were observed within each genetic

group (Supplementary Table S9).

To assess genetic diversity of P. oryzae effectors across regions,

consensus sequences for all effector genes were extracted and variants

identified. Overall diversity, measured as the probability of

encountering different effector gene variants, was higher in Asia

than in SSA across all genetic groups (Figure 7A). Within genetic

groups 1, 3, and 4, distinct subclusters of effector patterns from SSA P.

oryzae genomes were observed (Figure 7B). Sequence variation

among candidate effector repertoires was analyzed to detect

variation in genetic groups for SSA and Asia genomes. Variation in

effector genes was significantly higher in Asia than in SSA, as shown

in the box plot (Supplementary Figure S5A). A similar trend was

observed for effector nucleotide diversity (Supplementary Figure

S5B). Likelihood ratio tests showed that dN/dS ratios were largely

comparable among genetic groups, with the highest ratio observed in

Group 2 (Supplementary Figure S5C). Differences in the allelic

frequencies of effectors for each genetic group were visualized using

a heatmap (Supplementary Figure S6A), and this confirmed higher

allele frequencies in Asia compared to SSA, regardless of genetic

group. The number of effector genes with sites under positive

selection, as predicted by CODEML, increased to 36; however, only

six effectors exhibited multiple sites with dN/dS > 1 (Supplementary

Figure S6B). These included MGDIG41 (detected in all isolates),

Avr.Pita3 (with presence/absence polymorphism), FR13.0004761

(detected in all isolates), FR13.00128431 (with presence/absence

polymorphism), NA168 (detected in all isolates), and AvrPex75

(with presence/absence polymorphism). Two effectors,

INA168.G2457 and FR13.00128431, exhibited a wide range of dN/

dS values from 0 up to 99, followed by FR13.00094761 and

MGDIG41, which showed sparse dN/dS values within the same
TABLE 1 Maximum likelihood parameter estimates for the isolation with migration and split-migration models, for each population pair analyzed.

Dataset Model Theta Likelihood S Best-fit parameters

N1 Nu1 Nu2 T M M12 M21

Asia-EA
Isolation-
migration

3653.92 −10326.76 1.698 0.010 1.700 0.544 0.0070 0.0084 0.007 0.0012

Asia-WA
Isolation-
migration

4577.48 −10926.76 1.180 1.034 1.180 1.883 0.0052 0.0066 0.018 0.0170

EA-WA Split-migration 4218.07 −8745.71 – 0.014 0.010 0.002 0.0084 0.0102 - -
frontie
S, population size of the first population after split (population 2 has size 1-s); nu1, current size of population 1; nu2, current size of population 2; T, time of population split; m, migration rate;
m12, migration from population 2 to population 1; m21, migration from population 1 to population 2.
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range (Supplementary Figure S6C). Regional differences in positive

selection signatures occurred predominantly in Group 1, with WA
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isolates displaying a higher number of positively selected sites

compared to those from Asia and EA (Supplementary Figure S6D).
FIGURE 6

Effector repertoires in P. oryzae reveal distinct patterns of diversification in each genetic group. (A) An assortment of the total number of effectors
per isolate from the highest (CH0333 = 127) to the lowest (IN0072 = 110). (B) A box plot of the total effector content in each genetic group. To
compare the distribution of the total effector for every isolate in each of the four genetic groups, Mann–Whitney test was performed as shown
above for the boxplot. (C) Principal component analysis (PCA) biplot of effectors from the presence/absence matrix (Supplementary Table S9). The
effector loading vectors are indicated by the arrowheads. (D) A bar plot showing the product for each effector loading vectors. The redline reveals
90% of the cumulative sum from the data, or in this case, 16 effectors that can explain the distribution. (E) Complete hierarchical clustering
dendrogram of the 16 effectors based on the results presented in Supplementary Figure S6E. The distance matrix was computed using the Jaccard
index.
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4 Discussion

Population analyses is crucial for understanding the

evolutionary histories and forces shaping pathogen populations,

which in turn inform management strategies. The resolution and

accuracy of genetic diversity estimates and other population genetic

inferences have been greatly improved by the use of genomic

markers, allowing a finer dissection of pathogen population

structure, ancestry, and adaptive evolution.

In this study, we analyzed 180 genome sequences of P. oryzae,

including 45 newly sequenced isolates from SSA, to uncover

patterns of genetic variation, population structure, demographic

history and effector gene diversity. Our analyses revealed that SSA

populations have diverse ancestries, consistent with multiple

introduction events, a finding that corroborates previous studies

(Thierry et al., 2022). However, isolates from WA exhibited
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considerable genetic divergence from Asian populations

compared to other regions, suggesting region-specific

evolutionary trajectories. Phylogeographic reconstruction placed

the most recent common ancestor (MRCA) of all isolates in this

study around 1742 CE, considerably more recent than the global

evolutionary timeline of P. oryzae, which extends over 12,000 years

(Couch et al., 2005; Zhong et al., 2017; Latorre et al., 2020). To

reconstruct the pathways of pathogen migration, we employed

spatial simulations and Bayes factor analyses of diffusion rates,

supported by visualization tools such as Google Earth. Our results

revealed two primary migration waves from China to SSA: (1) a

direct introduction, and (2) a secondary, indirect route involving

intermediary countries. Most SSA introductions were traced

directly to China, most probably associated with the significance

of historical agricultural projects in facilitating pathogen dispersal, a

phenomenon also documented for other plant pathogens (Brasier,
FIGURE 7

Variation in the number and distribution of candidate effector repertoires in P. oryzae genetic groups collected from Sub-Saharan Africa (SSA). (A) A
box plot representing the average number of effector genes in each genetic group from SSA and Asia. To compare the distribution of each effector
content within the genetic group between different regions, Mann–Whitney test was performed as shown above for the boxplot. SSA1–4 and Asia1–
4 represent the genetic groups described in Figure 1. (B) A hierarchical heatmap representing the presence/absence patterns of candidate effectors.
SSA (triangles), Asia (circles), and RoW (squares) regions are depicted. Color labels in the tree represent the genetic group. Gray and white colors in
the heat map represent the presence/absence of effectors as <80% of coverage. Gene names (rows) and isolate names (columns) are described in
Supplementary Table S9. Subclusters in genetic groups 1, 3, and 4 are indicated as gray nodes in the tree. Complete-linkage clustering was
performed as visualized in the dendrogram.
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2008). A compelling case is provided by the genetic grouping of

Chinese and Ugandan isolates, notably E-UGD-32 from the TILDA

irrigation scheme, which was established with Chinese support in

the 1970s. This isolate clustered closely with Chinese isolates 13FM-

5–1 and 13FM-24–1 from Yunnan province. Group 1 isolates from

WA countries (e.g., Mali, Togo, Burkina Faso, Nigeria) also had

Asian ancestry genetic signatures, yet with considerable divergence

from contemporary Asian genomes. This suggests that after their

introduction, these populations have evolved independently, likely

influenced by region-specific host-pathogen interactions,

adaptation to local rice varieties, and demographic events.

The second, more recent migration wave is characterized by P.

oryzae isolates that were initially introduced to other countries, such

as South Korea, the Philippines, and India, from China, and

subsequently introduced into SSA. The genetic connection between

Mali isolates and both China and South Korea, for instance,

highlights the complexity of such pathogen movements. These

multidirectional introductions are plausibly linked to periods of

intensified human movement and trade, especially during and after

the European colonization of Africa. Colonial expansion not only

transformed agricultural practices but also led to the widespread

importation of Asian rice varieties (Reid, 2002; Vaughan et al., 2008;

Uma, 2022). Historical records show that rice became increasingly

important as a staple in several African countries during the colonial

era, which is in line with our phylogeographic inferences regarding

the timing of P. oryzae emergence in the region (Small, 1922). This

pattern mirrors the introduction of other significant plant pathogens,

such as Phytophthora infestans in the Cape Peninsula, a key node in

the Europe-India trade route (Blersch, 1890; Goss et al., 2014).

Together, these findings underscore how geopolitical and socio-

economic transformations inadvertently created opportunities for

pathogen migration and establishment in previously uninfected

regions (Stukenbrock and McDonald, 2008). Within SSA,

continued P. oryzae spread among countries appears to be driven

by the movement of planting materials and regional trade (Mutiga

et al., 2021). Notably, we observed significant transmission events

between Burkina Faso and Burundi, as well as connections between

Côte d’Ivoire, Nigeria, and Ghana with Burundi. Burundi’s central

position in the Great Lakes region may have contributed to its role as

a hub, while Madagascar’s relative isolation likely limited

international connections. Additional connections, such as those

between Ghana and Benin, and between Kenya and Uganda, with

both East African countries also showing links to Tanzania, further

underscore the networked nature of pathogen movement within SSA,

potentially aligned with trans-African transport corridors

(FAO, 2019).

Population structure analyses revealed that Groups 3 and 4 in

SSA are more closely related to Group 1 than to Group 2,

supporting previously proposed divergence patterns (Gladieux

et al., 2018b; Latorre et al., 2020). Group 3, comprising about

two-thirds of the regional population, displayed a wide geographic

spread and a coherent structure in STRUCTURE analysis, a pattern

indicative of successful regional expansion and relative clonal

stability. Such widespread distribution of a clonal lineage is a

hallmark of epidemic populations of plant pathogens, where a few
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highly adapted genotypes proliferate across large areas, often due to

their fitness advantages in prevailing agroecological and host

environments (McDonald and Linde, 2002; Saleh et al., 2014). In

contrast, WA Group 1 isolates showed increasing separation from

Asian groups at higher K values. This divergence suggests that,

following their initial introduction, WA Group 1 isolates have

undergone local evolution, possibly shaped by adaptation to local

rice varieties and reduced recent gene flow from Asia (Latorre et al.,

2020; Gladieux et al., 2018b). Conversely, Group 1 isolates from EA

consistently clustered with Asian populations even at higher K

values, indicating more recent transmission event from Asia into

EA or less disrupted genetic diversity compared to WA. These

patterns are further supported by f2 statistics, which revealed weak

genetic connectivity between EA and WA in Group 1 and a strong

relationship between the two regions in Group 3. The consensus f2

admixture tree placed EA Group 1 isolates at the base of a lineage

leading to Group 2, indicating that their ancestral lineage likely

served as the progenitor for Group 2 isolates. In contrast, WA

Group 1 isolates were positioned at the base of Group 4, which

traces back to the broader Group 1 lineage leading to group 3. This

divergence occurred considerably later than the split of EA Group 1

from the broader Asian Group 1. Group 3 was inferred to have

descended from Southeast Asian Group 1. Prior to the emergence of

SSA-3 (EA and WA) cluster, two distinct Asian subpopulations,

corresponding to South and East Asia, were evident, suggesting that

SSA-3 originated from a Southeast Asian lineage that had already

diverged into these subregions. This phylogenetic pattern provides

additional evidence that independent introductions and subsequent

local evolution, rather than a single pan-continental dispersal event,

have shaped the population structure of P. oryzae in SSA. This is

consistent with previous studies showing that multiple, temporally

and spatially separated pathogen introduction events, often driven

by human migration, long-distance trade, and shifting agricultural

practices, contribute to local adaptation and diversification

(Gladieux et al., 2018b; Latorre et al., 2020).

Demographic modeling using dadi suggested that both WA and

EA descended from small founding populations, consistent with the

hypothesis that P. oryzae populations outside Asia originated from

a limited number of founders (Levy et al., 1991; Zeigler, 1998). Such

founder events can significantly reduce genetic diversity and

increase the influence of genetic drift, shaping the initial genetic

landscape of introduced populations (McDonald and Linde, 2002).

These founder effects may have played a crucial role in shaping the

genetic profiles, particularly in WA, compared to those of their

ancestral populations. Divergence time estimates indicate a more

recent separation between WA and Asia, and greater divergence in

WA. This greater differentiation in WA likely reflects not only the

historical impact of founder events but also ongoing processes of

local adaptation, which may have been driven by the region’s

unique host diversity fol lowing the introduction and

intensification of rice cultivation.

Genetic diversity metrics further support these conclusions:

WA isolates, especially those in Group 1, showed higher Pi and

positive Tajima’s D compared to their Asian and EA counterparts.

Elevated Pi suggests a broader spectrum of genetic variation within
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WA populations, while positive Tajima’s D is indicative of the

maintenance of multiple alleles at intermediate frequencies. Such

patterns can arise from balancing selection, where diverse host-

pathogen interactions favor the persistence of different alleles, or

from the retention of intermediate-frequency variants following

historical population bottlenecks (Tajima, 1989; Charlesworth,

2006). In plant pathogen systems, balancing selection is often

driven by the coexistence of varied host genotypes and fluctuating

selection pressures imposed by the deployment of resistance genes

(Stukenbrock and McDonald, 2008). These genetic diversity

patterns are further corroborated by genome-wide pairwise FST
analyses and cross-population scans, which revealed pronounced

genetic differentiation between WA and Asian populations.

Specifically, a higher number of outlier SNPs and candidate genes

potentially linked to adaptation were identified in WA isolates.

Previous studies have shown that such differentiation can be driven

by both geographic barriers and the distinct evolutionary

trajectories imposed by the independent domestication and

diversification of rice in WA (Mutiga et al., 2021). Consistent

with these findings, our analysis also revealed a higher number of

positively selected effector sites inWA isolates than in other regions,

further supporting the hypothesis that diversification of rice

cultivars in WA has driven local adaptation of P. oryzae. This is

consistent with broader findings that regions with greater host

diversity tend to harbor pathogens with more diverse and rapidly

evolving effector repertoires (Stukenbrock and McDonald, 2008).

The domestication of Oryza glaberrima in WA approximately 3200

BP likely provided a long-standing, genetically distinct host

environment, which was later complemented by the introduction

of Asian O. sativa (Linares, 2002). The coexistence and interaction

of these two rice species likely created selection pressures, favoring

localized adaptation and increased genetic divergence in WA P.

oryzae populations. Similar patterns of pathogen adaptation

following host diversification have been observed in other

agroecosystems, where the interplay between historical

introductions, host genetic resources, and local selection has

driven both population structure and evolutionary trajectories

(Stukenbrock and McDonald, 2008; Croll and Laine, 2016).

The relatively modest genetic differentiation observed betweenWA

and EA, as evidenced by lower FST values and fewer genomic outlier

regions, suggests more recent or ongoing gene flow and/or the

retention of shared ancestral alleles between these regional

populations. Such genetic connectivity is frequently maintained

through the regular exchange of rice germplasm and seeds, as well as

similar agroecological conditions and farming practices across

neighboring countries (Gladieux et al., 2018b; Thierry et al., 2022).

Previous studies have demonstrated that the movement of planting

materials, often facilitated by regional trade and agricultural

development programs, plays a central role in shaping the genetic

structure and connectivity of plant pathogen populations in Africa

(Mutiga et al., 2021). Consistent with this interpretation, both WA and

EA populations showed near-zero Tajima’s D values in clonal Groups 3

and 4, which is indicative of either weak balancing selection, where

multiple alleles are maintained within the population or demographic

neutrality, where neither strong expansion nor contraction dominates
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the population’s evolutionary trajectory (Charlesworth, 2006). Such

patterns are often observed in more established populations or where

there is ongoing gene flow and relatively stable host-pathogen

dynamics (Stukenbrock and McDonald, 2008). This observed genetic

similarity and neutrality in Tajima’s D in SSA Groups 3 and 4 may, in

part, be attributed to the widespread adoption of New Rice for Africa

(NERICA) varieties, which are interspecific hybrids containing alleles

from bothO. glaberrima andO. sativa. The expansion of NERICA and

similar varieties across both WA and EA has likely contributed to the

convergence of host environments, imposing similar selection

pressures on P. oryzae populations and resulting in parallel patterns

of genetic diversity and demographic stability.

Furthermore, most effector genes analyzed in this study

exhibited patterns consistent with purifying selection or

functional conservation, particularly within Groups 3 and 4. This

suggests that, despite geographic separation, the evolutionary forces

acting on effector repertoires are comparable in both WA and EA.

Such patterns align with previous findings that, while a subset of P.

oryzae effector genes evolves rapidly, presumably to escape

recognition by host immune systems, the majority remain highly

conserved due to their critical roles in pathogen virulence (Xue

et al., 2012; Kim et al., 2019). An exception to this trend was

observed in Group 2, where marked divergence in effector

repertoires was found relative to other groups. Similar patterns of

group-specific effector content have previously been reported in P.

oryzae lineages, highlighting the importance of lineage-specific

adaptation (Dong et al., 2015). We also found notable differences

in effector gene presence/absence between Asia-1 and SSA-1, and

the emergence of SSA specific subclusters within SSA-3. These SSA-

specific effector alleles may represent ancient variants retained in

African populations but lost in Asia, or recent adaptations to the

unique host diversity and agroecological conditions of SSA rice-

growing systems. This contrasting effector distributions between

Asian and SSA populations underscore the impact of local selection

pressures and historical contingency on the effectorome structure of

P. oryzae. MAX effectors, a prominent and highly variable effector

family in P. oryzae, are known to undergo rapid sequence evolution,

as evidenced by increased rates of non-synonymous substitutions

under diversifying selection (Le Naour—Vernet et al., 2023). Our

analyses found only a subset of MAX effectors that displayed

signatures of positive selection, such as INA168.G2457 and

FR13.00128431, which had highly variable dN/dS ratios.

Collectively, these results highlight the dual forces of purifying

selection and localized positive selection acting on the P. oryzae

effectorome in SSA. This interplay drives both the maintenance of

essential virulence functions and the rapid adaptation to the

changing host populations, underscoring the importance of

integrating effector diversity analyses into pathogen surveillance

and management strategies.

Our study is not without limitations. The sampling strategy

focused on epidemic hotspots and available archival samples,

potentially leading to underrepresentation of certain regions and

introducing biases in estimates of diversity and structure.

Additionally, many population genetic methods assume random

mating and sexual reproduction, while P. oryzae is predominantly
frontiersin.org

https://doi.org/10.3389/fpls.2025.1650532
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Onaga et al. 10.3389/fpls.2025.1650532
clonal, which may bias estimations of linkage disequilibrium and

effective population size. Although we have taken steps to minimize

such biases by using genome-wide markers and robust analytical

approaches, interpretations of our results, particularly, population

structure and demographic history should be made with caution.

In conclusion, our findings reveal a dynamic landscape of P.

oryzae evolution in SSA, shaped by historical introductions and

local adaptation. While WA and Asian populations of P. oryzae

have experienced significant divergence, populations within SSA

(WA and EA) remain more interconnected, underscoring the

importance of regional migration and common ancestry in

shaping present-day diversity. Patterns of effector gene diversity

and selection were identified, providing insights into historical

contingency on the effectorome structure of P. oryzae in SSA and

Asia. Collectively, these results highlight the need for integrated

strategies that account for both historical and contemporary

pathogen dynamics when designing biosecurity protocols and

disease management programs in Africa.
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SUPPLEMENTARY FIGURE 1

Four genetic groups inferred in global Pyricularia oryzae isolates based on the

whole genome single nucleotide polymorphisms. (A) Bar plot showing the
membership probability for each genome from K = 2 to K = 8 populations.

The clusters were built using a discriminant analysis of principal components
(DAPC). (B) The Bayesian information criterion (BIC), and (C) the Silhouette

score hinting at four genetic groups as the optimum number of clusters

(elbow in the BIC curve and maximum Silhouette score).

SUPPLEMENTARY FIGURE 2

(A) Linkage disequilibrium (LD) estimated using 66,744 single nucleotide

polymorphisms (SNPs). Decay of r2 as a function of genetic distance
between SNP markers. (B) Genome-wide Manhattan plot for seven

Pyricularia oryzae chromosomes showing the results of genome wide

association analysis and the significant SNPs linked to candidate genes.

SUPPLEMENTARY FIGURE 3

Genome-wide Tajima’s D for Pyricularia oryzae chromosomes revealing

different patterns in genetic group 1 and 2 across regions. Tajima’s D for
each genetic group from chromosomes 1 to 7 was built using a 50 kb sliding

window. The color for the different genetic groups corresponds to the
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predicted groups in Figure 1 and Supplementary Figure S2. Tajima’s D
values for Asia and Sub-Saharan Africa (SSA) regions are depicted as grey

and black lines.

SUPPLEMENTARY FIGURE 4

The observed joint site frequency spectrum for Pyricularia oryzae in, (A) Asia-
East Africa (Asia-EAfrica), (B) Asia-West Africa (Asia-WAfrica), and (C) East

Africa-West Africa (EAfrica-WAfrica) along with the model fit and residuals.
Residuals for each model are plotted below their expected spectra.

SUPPLEMENTARY FIGURE 5

Diversity of Pyricularia oryzae effectors associates with a strong purifying
selection. (A) Allele diversity analysis of each effector from the four genetic

groups. (B) Nucleotide diversity (Pi) of each effector from the four genetic

groups. (C) Ka/Ks effector distribution in each genetic group. To compare the
distribution of each effector diversity test analysis in each of the four genetic

groups, Mann–Whitney test was performed.

SUPPLEMENTARY FIGURE 6

(A) Allele diversity of effector repertoires in Pyricularia oryzae genetic groups from

Asia and Sub-Saharan Africa (SSA). The heatmap shows allele frequency from

effectors present in each genetic group across regions. Effector alleles range from
1 to 16. More effector alleles are present in Asia compared with that in SSA,

regardless of the genetic group. Low frequency (yellow) and high frequency (red)
is based on the total number of isolates with that particular allele in each effector.

The color in the text is based on the four genetic groups. (B) Boxplot: effectors
with most sites under positive selection are shown among the 36 effectors.

Region-wise, dn/ds values exhibit considerable diversity in distribution.
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