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Background: Rice blast, caused by Pyricularia oryzae (teleomorph: Magnaporthe
oryzae), is one of the most economically damaging diseases affecting rice
worldwide. While the evolutionary origins and genetic structures of Asian and
European P. oryzae populations are relatively well characterized, African isolates
remain underexplored. This knowledge gap impedes the development of
informed management strategies for rice blast in the region. The present study
was conducted to characterize the genetic origins, population structure,
admixture, demographic history, and effector gene diversity of P. oryzae
isolates in SSA, and to elucidate their evolutionary trajectories and implications
for disease management.

Methods: A total of 180 genome sequences (45 from SSA, 135 from other regions)
were analyzed using population genomic approaches. Phylogeographic
reconstructions, demographic modeling, and genome-wide association studies
were performed to trace migration events, quantify genetic diversity, and identify
candidate adaptation genes. Effector gene repertoires were also examined for
diversity and selection signatures.

Results: Our findings provide new dates for the divergence of SSA populations
from Asian populations. The introduction of P. oryzae into Africa occurred mainly
from China in the late 19th century, initially in West Africa (WA; Mali and Burkina
Faso), and subsequently in Uganda and Madagascar during the early 20th century,
before extending to the wider African region, with subsequent repeated
introductions. Tajima's D and demographic modeling suggested complex
population dynamics shaped by migration and asymmetric founder events,
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highlighting considerably shared genetic ancestry between Asia and East Africa
(EA), in contrast with that between Asia and WA. Genome-wide association analysis
identified a specific set of single nucleotide polymorphism markers, along with
several candidate genes linked to adaptation. Effector analysis revealed that SSA
isolates harbor fewer effectors and exhibit lower genetic diversity than Asian
populations, with some effectors under positive selection, particularly in WA.

Discussion: P. oryzae populations in SSA are shaped by historical introductions,
founder events, and region-specific adaptation processes. While WA populations
have diverged significantly from their Asian ancestors, gene flow within SSA
connects regional populations, and effector gene diversity reflects both
conserved virulence strategies and adaptation to local hosts. Overall, this study
improves the existing knowledge on P. oryzae populations in SSA and underscore
the need for integrated management strategies that consider both historical and

contemporary pathogen dynamics in Africa.
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1 Introduction

Routine genomic surveillance of plant pathogens across diverse
geographic regions, along with equitable data sharing, is essential for
effective plant disease management and timely outbreak response.
However, most countries in Sub-Saharan Africa (SSA) remain
markedly underrepresented in large-scale pathogen genomic
studies, resulting in limited regional capacity for pathogen
monitoring and an increased vulnerability to emerging disease
threats (Mutiga et al., 2021; Conde et al., 2025). The dynamics of
plant diseases are shaped by intricate interactions between the host,
environment, and pathogen communities, with local adaptation and
evolutionary change often influencing disease emergence and severity
(Stukenbrock and McDonald, 2008; Mundt, 2014). Given that the
evolution of pathogens is frequently driven by localized ecological
and agricultural factors, region-specific genomic studies are critical
for validating biological processes and informing tailored disease
management strategies.

Rice blast, caused by Pyricularia oryzae (syn. Magnaporthe oryzae),
is among the most destructive and historically significant rice diseases
worldwide, having first been reported in China as early as 1637 (Agrios,
2005). The pathogen is now endemic in over 100 countries across Asia,
Africa, the Americas, Europe, and the Middle East (CABI, 2021;
Pedrozo et al, 2025). Yield losses due to blast range from 10-30%
under typical conditions but can reach 40-100% during severe
epidemics, not only in rice but also in wheat and turfgrass (Savary
et al, 2019; Vanaraj et al.,, 2013; Coelho et al., 2016; Skamnioti and
Gurr, 2009; Uddin et al., 1999). As a polycyclic pathogen, P. oryzae can
complete multiple infection cycles per season, amplifying its destructive
potential, especially in favorable or previously unexposed cropping
systems (Ribot et al., 2008). Recent trends in rice production, including
reduced water usage, expansion of high-yielding cultivars, and
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increased fertilizer application, are intensifying selection pressures
and increasing pathogen evolution (Mutiga et al,, 2021). Analogous
trends have been observed in other major crop diseases, such as the
emergence and global spread of the highly virulent Ug99 lineage of
wheat stem rust, where changes in agricultural practices and host
deployment have accelerated evolution and dispersal (Singh et al,
2011). These examples underscore the urgent need for robust, ongoing
genomic surveillance of plant pathogens to detect shifts in genetic
diversity and inform sustainable crop protection strategies.

The genetic diversity of P. oryzae is shaped by mutation, genetic
drift, gene flow, sexual and asexual reproduction, and strong
selection from host resistance genes (McDonald and Linde, 2002).
These evolutionary forces not only drive pathogen adaptation and
virulence but also provide the foundation for reconstructing the
pathogen’s demographic history, migration routes, and
mechanisms underlying virulence evolution. Southeast Asia has
been established as both a biodiversity hotspot and the likely center
of origin for P. oryzae, from which host-specific lineages have
radiated during historical host transitions (Saleh et al, 2014;
Couch et al.,, 2005). The rice-infecting lineage is thought to have
arisen approximately 1,000 years ago from a recombining grass-
infecting ancestor, following a single gain-of-function event for rice
pathogenicity (Gladieux et al, 2018). Genomic surveys have
subsequently revealed four major genetic groups within the rice-
infecting lineage, with distinct global distributions and reproductive
strategies: Group 1 is characterized by recombination and sexual
reproduction, while Groups 2, 3, and 4 are largely clonal and
female-infertile (Gladieux et al., 2018; Thierry et al., 2022).

Dating studies indicate that the major clonal expansions of P.
oryzae occurred within the last 100-200 years, originating from
genetically diverse populations in Southeast Asia (Duan et al., 2024;
Latorre et al, 2020). These expansions have shaped the current
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genetic profiles of Asian populations, resulting in the formation of
distinct genetic groups and a marked reduction in effector gene
repertoire compared to the ancestral, more diverse populations.
Bottleneck effects and founder events during such clonal expansions
lead to the loss of rare alleles and a narrowing of both adaptive and
neutral genetic variation, a trend reported in other plant pathogens
(Wilson et al.,, 2025; Saleh et al., 2014). Similar processes appear to
have influenced P. oryzae in regions outside Asia, including SSA,
where introductions are inferred to have been relatively recent
compared to the pathogen’s much earlier establishment and
diversification in Asia (Thierry et al., 2022). However, many
African countries remain severely undersampled, and most
studies have used low-resolution markers, limiting inferences
about population history and finer-scale structure (Kassankogno
et al., 2016; Onaga et al, 2015). A recent bibliometric review
highlighted that Africa has the lowest research output on rice
blast and related rice diseases compared to other continents
(Conde et al, 2025). As a result, significant knowledge gaps
persist about P. oryzae in Africa, compounding the lack of
comprehensive data needed for informed disease management.

Historical records first identified rice blast symptoms in SSA in
Uganda in 1922 (Small, 1922), with subsequent detections in Ghana
(1923), Kenya (1924), Congo (1932), Egypt (1935), and later in
Madagascar, Morocco, Senegal (1952), and South Africa (1956)
(Asuyama, 1965). More recently, global population studies
employing genotyping and lineage analysis, including some
genomes from West African countries, have revealed the presence
of all four major genetic groups of P. oryzae, underscoring the broad
and diverse nature of the pathogen population in Africa (Thierry
et al,, 2022). Previous research using larger collections of SSA
isolates identified considerable genetic diversity and evidence of
population structure across SSA, with subtle differentiation
observed between East and West African populations (Odjo et al.,
2021; Kassankogno et al., 2016; Onaga et al., 2015; Mutiga et al.,
2017). However, many of these earlier studies relied on low-
resolution genetic markers, such as simple sequence repeats
(SSRs) or partial genome data, which only provide a limited view
of genetic diversity and are insufficient for reconstructing the
demographic and migration history of the pathogen. To
overcome these limitations, high-resolution whole-genome studies
are needed to clarify the relationships between African and Asian
populations, establish the timing and routes of introduction, and
guide effective disease control.

Rice blast control in Africa, as elsewhere, relies primarily on the
deployment of resistant rice varieties. However, the durability of
resistance is frequently compromised by the rapid emergence of
new, resistance-breaking strains, a direct consequence of ongoing
pathogen evolution driven by mutation, gene flow, and selection
imposed by host resistance genes (McDonald and Linde, 2002). The
capacity for P. oryzae to gain, lose, or rearrange genes, particularly
those encoding effectors, enables it to evade host immunity and
adapt quickly to new resistant cultivars (Yoshida et al.,, 2016;
Chiapello et al., 2015). This dynamic nature of effector gene
evolution, through gene gain/loss, diversifying selection, and
genetic drift, means that previously effective resistance genes can
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rapidly become obsolete as the pathogen adapts (Yoshida et al,
2016). Given these challenges, regular monitoring of P. oryzae
populations, particularly with a focus on effector diversity and
evolution, is crucial to inform breeding programs and ensure
long-term disease management (Dong et al., 2015; Latorre et al.,
2020). Unfortunately, most effector diversity studies have
concentrated on Asian populations, with African strains
remaining severely underrepresented in global analyses. This data
gap constrains our ability to track virulence evolution, predict
resistance breakdown, or tailor management strategies to the
specific evolutionary dynamics present in Africa.

In this study, whole-genome sequences from 45 P. oryzae
isolates collected across 14 African countries were analyzed
alongside 135 genomes from other global regions to explore
population variation in SSA. Unlike earlier studies, different
evolutionary scenarios were tested to provide a more
comprehensive regional perspective on P. oryzae and to improve
understanding of its introduction and spread within SSA. In
addition, eftector polymorphisms in SSA isolates were compared
at both continental and regional levels. Although SSA isolates
clustered with Asian strains, varying degrees of divergence were
exhibited, alongside distinct patterns of effector gene presence/
absence and evidence of selection. These results improve our
understanding of P. oryzae populations in SSA and highlight the
need for continous monitoring of genetic variations that could
cause disease epidemics.

2 Materials and methods

2.1 Collection of P. oryzae isolates and
DNA extraction

In this study, 45 isolates were collected from 14 African
countries, including Burundi (4), Kenya (2), Rwanda (3),
Tanzania (9), Uganda (5), Benin (4), Burkina Faso (4), Ghana (2),
Mali (2), Nigeria (4), Togo (3), Madagascar (1), Morocco (1), and
Cote d’Ivoire (2). Additional isolates were obtained from Asia (4)
and Latin America (3). The metadata for the isolates, including
those downloaded from public INSDC databases, are provided in
Supplementary Table S1. Infected leaves were collected from rice
fields, dried, and stored on filter paper at 4 °C before isolation.
Leaves with single lesions were placed on glass rods in Petri dishes
containing wet filter paper and incubated at 25-26 °C until
sporulation was achieved. Sporulating lesions were examined
under a stereomicroscope, and conidia were aseptically
transferred with a transfer needle to prune agar (PA) medium
(composed of three pieces of prunes, 1 g yeast extract, 21 g Gulaman
bar, 5 g alpha-lactose monohydrate, and 1 L distilled H,0O) (Meng
et al., 2020). Spores were then harvested in distilled water, and
individual germinating conidia were aseptically transferred and
subcultured in PA medium. After seven days, agar disks cut from
PA were subcultured on Malt Extract Agar. Fungal growth and
DNA extraction were performed as previously described (Mutiga
et al,, 2017). The quality of DNA was checked using a NanoDrop
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1000 instrument (Thermo Fisher Scientific) and agarose
gel electrophoresis.

2.2 Generation of genomic datasets

The sequence datasets used in this study were obtained from P.
oryzae isolates collected in the field or downloaded from the public
INSDC databases. For the isolates sampled from the field, DNA
samples were submitted and library construction was performed by
the Beijing Genomic Institute (Shenzhen, China) using Illumina
paired-end reads with an insert size of 350 bp. Sequencing was
performed on Illumina HiSeq4000, with sequencing parameters set
to an average coverage of 50x to 70x. Sequencing quality was
confirmed using the fastqc algorithm, and the data were trimmed
by removing low-quality sequences and adapter sequences with
Trimmomatic 0.36 (Bolger et al, 2014). The whole-genome
sequence of P. oryzae 70-15 strain, reference assembly MG8 with
accession number GCA_000002495 (Dean et al., 2005), was used as
the reference template for mapping using BWA-mem 0.7.17 (Li
and Durbin, 2009), under default parameters. Mapped reads were
sorted with Samtools 1.3.1 (Li et al., 2009). Duplicate reads were
removed using the MarkDuplicates command, and all reads in a file
were assigned to a single new read-group using the
AddOrReplaceReadGroups command with Picard 2.7 (http://
broadinstitute.github.io/picard). Single nucleotide polymorphisms
(SNPs) for each strain were identified using the HaplotypeCaller
command implemented in the Genome Analyses Toolkit 4
(GATK4.1.6.3) (McKenna et al., 2010). Subsequently, the
GenotypeGVCFs command in GATK was simultaneously applied
to the genotype polymorphic sequence variants for all strains. Hard-
filtering was performed for raw SNP calls using the SelectVariants
and VariantFiltration functions in GATK (De Summa et al.,, 2017).
The following parameters were used for variant calling: QD < 5.0,
QUAL < 5000.0, MQ < 20.0, ReadPosRankSum < -4.0,
ReadPosRankSum > 4.0, MQRankSum < -2.0, MQRankSum >
2.0, BaseQRankSum < -2.0, BaseQRankSum > 2.0. The final SNP
dataset was further filtered to only include biallelic variations. P.
oryzae isolates with a mapping rate of less than 80% to the reference
strain were excluded from the population genetic analyses; however,
all reads were used for effector mapping. Genomic datasets for 131
P. oryzae isolates from a global population (Gladieux et al., 2018b;
Zhong et al, 2017) were downloaded from the Sequence Read
Archive (http://www.ncbinlm.nih.gov/sra). A summary of the
sequencing yield and dataset coverage is presented in
Supplementary Table S2.

2.3 Phylogenetic and phylogeogoraphy
analysis

Phylogenetic relationships and phylogeography were
investigated using maximum likelihood (ML) and Bayesian
inferences with RAXML 8.2.9 (Stamatakis, 2014) and BEAST
v2.6.3 (Bouckaert et al., 2019), respectively. For the ML tree, the
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statistical confidence for each node was set to 1000 bootstrap runs,
and the general time-reversible model of nucleotide substitution
with a gamma model of rate heterogeneity was used. The
phylogenetic tree was visualized using the ggtree R package (Yu
etal, 2017), and visualization was improved using iTOL v5 (Letunic
and Bork, 2021). For phylogeographic analysis, the most
appropriate substitution model, General Time-Reversible (GTR
+G+1), was identified by the jModelTest v2.1.10 program (Posada,
2008). Bayesian maximum-clade-credibility (MCC) phylogenetic
trees were constructed as described by Drummond and Rambaut
(2007). To infer the geographic origins of P. oryzae strains, location
and genetic group traits were analyzed using a discrete trait
diffusion model. To estimate the transition rates between different
locations, a Bayesian stochastic search variable selection (BSSVS)
with a symmetrical discrete trait substitution model (strict clock
assumption) was used. The Markov chain Monte Carlo (MCMC)
was run under an Extended Bayesian Skyline model for over 100
million generations, with sampling conducted every 1,000 states.
For the major parameters, an effective sample size (ESS > 200) was
observed. The ESS values were evaluated using TRACER v1.8.4, and
a cutoff value of 200 was applied to retain the concluding
simulations. TreeAnnotator v1.8.4 (after removal of 10% burn-in)
was used to generate the MCC tree. Ultimately, the resulting MCC
tree was visualized using FigTree v1.4.3 (http://tree.bio.ed.ac.uk/
software/figtree/). A posterior probability threshold (pp) higher
than 0.95 was used to assess the tree nodes with SPREAD3
(Bielejec et al., 2011). SPREAD3 was also used to calculate the
Bayes factors (BF) for pairwise diffusion rates between sites. Bayes
factors greater than 3 were considered statistically significant. The
simulations of 300 million iterations produced better results than
the 100 million simulations. Phylogenetic analysis results were
projected onto a map using Google Earth'" to enable
visualization and understanding of the relationship between
pathogen genomes and geographical locations. This was
accomplished by creating a Keyhole Markup Language (KML)
file, and importing and converting in shapefiles in QGIS. which
allowed visualization of P. oryzae spread and genetic relationships
on a map.

To further support the phylogenomic relationships and probe
deeper into the genetic partitioning of the datasets, several
clustering approaches were used. The whole-genome neighbor-net
network analysis was employed using the neighbor-net method
implemented in SplitsTree 4.16.1 (Huson and Bryant, 2006).
Assignment tests were conducted using principal component
analysis (PCA; employing the genlight object and the gIPCA
function from the adegenet package in R followed by
STRUCTURE v2.3.4 (Pritchard et al, 2000) and discriminant
analyses of principal components (dAPC) also using the
“adegenet” v1.31 R package (Jombart et al., 2008). STRUCTURE
was run for K values ranging from 1 to 10, with each K value
evaluated using 20,000 Monte Carlo Markov Chain (MCMC)
iterations, following a burn-in period of 10,000 iterations, across
ten replicate runs. As dAPC requires prior population information,
inferred population assignments from STRUCTURE and
phylogenetic relationships observed in the PCA were used. A
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dAPC was performed using the “dapc” function, whereas the
number of clusters (K) with the lowest Bayesian information
criterion (BIC) was determined using the “find.clusters” function
within the “adegenet” package. The R package factoextra was used
to validate the optimal number of clusters in a silhouette plot
(Kassambara, 2017).

2.4 Linkage disequilibrium, GWAS,
Admixture, and genetic diversity analysis

Following the identification of the optimal number of clusters,
isolates were reclassified into four populations according to their
region of origin: EA (EA), WA (WA), Asia (A), and the rest of the
world (ROW), and their ancestry was assessed. SNPs were filtered
from the original VCF file using three different cutoffs of presence
for all samples (1%, 5%, and 10%), and new VCF files were then
generated for each cutoff. To investigate the relatedness between
samples in the filtered SNP VCF files using the TASSEL package
(version 5.2.86, Bradbury et al., 2007), four principal components
were extracted, capturing the most significant variations in the
genetic data. The PCA results, specifically the scores of the samples
on the four principal components, were exported as a NumPy
matrix, which was then imported into a Python environment, where
visualization was carried out using the NumPy and Matplotlib
libraries. Variance of up to 60% was represented by PCs 1 and 2,
and four genetic groups were confirmed based on genetic
relatedness. Linkage disequilibrium (LD) between pairs of SNPs
from isolates across the four regions was assessed by calculating the
mean LD within 10 Kb end-to-end sliding windows genome-wide,
with each window centered on a given SNP. SNP pairs were
grouped into bins based on physical distance (in base pairs) or
chromosomal proximity. SNPs with low minor allele frequencies
(MAF > 0.1) were excluded prior to binning and subsequent
analysis in conjunction with the PCA-derived genetic groups. For
each bin, the average r* (half decay distance) was determined by
summing the r* values for each pair of SNPs within the bin and
dividing by the total number of SNP pairs present in that bin. SNPs
were pooled across all chromosomes within each genome to
determine the overall average LD on a genome-wide scale. LD
between SNPs was assessed by plotting their average r* values, with
minimal LD expected at r* values of approximately 0.2. The binned
SNPs and PCA-derived pathogen genetic groups were subsequently
used as input for genome-wide association studies (GWAS) in
TASSEL to identify associations. The results of the GWAS were
then analyzed to identify a list of SNPs significantly associated with
pathogen groups, with LD decay taken into account to refine the
identification of truly associated SNPs. These SNPs were further
analyzed to identify a list of genes containing SNP variants, and a
VCE file with all required annotations was generated.

Admixture analysis was performed using the ADMIXTOOLS
package (version 7.0.2; Patterson et al.,, 2012) within R environment
(R Core Team, 2023). f2 statistics were calculated by measuring the
squared allele-frequency distance between pairs of genetic groups
subdivided into regions. As the f2-distances are squared Euclidean,
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pairwise f2(Xi, Xj) values between all populations were calculated
and assembled into a matrix, resulting in a three-dimensional (3D)
array containing 24 distance matrices. From these matrices, 24 trees
were generated using the PHYLIP package (version 3.698;
Felsenstein, 1989), employing the neighbor-joining method
implemented in the neighbor program. To account for variability
across the matrices, a consensus tree was constructed from the 24
individual trees using the consense program in PHYLIP, following
standard consensus-building procedures (Felsenstein, 1989). To
further investigate population structure and admixture, we
performed the 3-Population Test (outgroup f3-statistics), as
implemented in ADMIXTOOLS. This test measures the amount
of shared genetic drift between two test populations relative to an
outgroup and is robust for detecting admixture events. For these
analyses, we used US 71, a Setaria-infecting P. oryzae strain, as the
outgroup, consistent with previous studies (Gladieux et al., 2018a).
The resulting f3-statistics were used to generate a pairwise genetic
similarity matrix, which was then subjected to complete linkage
hierarchical clustering using the hclust function in R. Cluster tree
was visualized with the ggtree package (Yu et al, 2017), and
additional graph depicting genetic distances between regions was
created using the ggplot2 package (Wickham, 2016).

The VCFTOOLS software, with the “-haploid” flag
(downloaded from https://github.com/jydu/vcftools), was used to
calculate Fy; statistic, diversity index (Pi), and Tajima’s D (Tajima,
1989). Variations within the different genetic groups at the 10%
SNP presence cutoff were calculated, and boxplots for Pi index, F
statistic, and Tajima’s D were plotted. For F outlier analysis, F
values were estimated for each 10 kb-sized window, resulting in the
generation of an Fy value for each individual SNP by comparing
regional populations. Genes from each comparison (EA-WA, A-
EA, A-WA, and A-ROW) were extracted to predict their biological
role in pathogen adaptation.

2.5 Population genetic analyses of
demography

The demographic patterns of P. oryzae populations were
investigated based on the folded site frequency spectrum (SFS)
using the diffusion approximation framework implemented in dadi
(Gutenkunst et al, 2009). This model assumes that an ancestral
population of size X gives rise to two populations of size X1 and X2,
respectively, at a time of split Ts, after which several migration
scenarios are contrasted (Momigliano et al,, 2021). The SFS,
representing the distribution of allele frequencies across SNPs, was
used to infer the demographic history of populations. The observed
SES was compared to expected SES values generated under different
demographic models, and the likelihood of each model, along with its
parameter values, was estimated using maximum likelihood methods.
Each geographic region (EA, WA, and Asia) was treated as a
subpopulation. The ROW subregion was excluded due to
insufficient sample size and potential population substructure,
which could bias the SFS and downstream inferences (Excoffier
et al, 2013). Multiple projection sizes were evaluated for each
population, and the projection that retained the largest number of
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SNPs without excessive missing data was selected for further analyses.
Demographic models were fitted to the observed SFS for each
population, including, Expansion (two-epoch), Growth, Bottle-
growth and bottleneck-expansion (three-epoch function)
(Gutenkunst et al., 2009). For each model, initial parameter values
were randomly drawn from uniform distributions within biologically
plausible bounds, following Gutenkunst et al. (2009). The model with
the highest log-likelihood was selected as the best-fit for each region.
To investigate historical relationships between population pairs, we
constructed two-dimensional (joint) SFS using pairs of regions: Asia-
EA, Asia-WA, and EA-WA. We fit two-population demographic
models, including split-migration and isolation-with-migration
scenarios, to each pairwise SFS (Gutenkunst et al., 2009; Excoffier
et al,, 2013). Each model was optimized iteratively, and the best-fit
parameters were determined based on maximum likelihood criteria.
For each fitted model, we compared the log-likelihood values to assess
relative model fit. Model adequacy was visually evaluated by plotting
the observed vs. expected SES, as well as the distribution of residuals.
These plots allowed us to assess the extent to which the best-fit model
captured the main features of the data.

2.6 Effector mapping, distribution, and
diversity

To map candidate effectors in SSA P. oryzae genomes,
previously described methods and resources (Latorre et al., 2020)
were followed with modifications. Protein-coding genes, both
virulent and avirulent, from P. oryzae isolates infecting rice,
wheat, oat, millet, and wild grasses were used to generate
reference effector sequences (Petit-Houdenot et al., 2020).
Genome reads from 180 P. oryzae isolates were mapped to the
effector reference using bwa-mem 0.7.17 (Li and Durbin, 2009).
Mean gene coverage for each isolate was calculated with samtools
coverage (v1.10), using a minimum read depth of 3x. The total
number of mapped reads per gene was divided by gene length in the
reference (Li et al., 2009), and an 80% coverage threshold was set to
define effector presence. A binary presence/absence matrix was
generated. Only informative effector genes displaying presence/
absence polymorphisms were retained for clustering. Hierarchical
clustering was performed using the hclust function with complete
linkage, and distance matrices were computed in R with the ade4
package (Dray and Dufour, 2007), employing the dist.binary
function and Jaccard index. Principal component and effector
loading analyses were conducted as described previously (Latorre
et al., 2020). Effector bam files were converted into fastq format
using samtools 1.10 and bcftools 1.10 (Li et al., 2009) for variant
calling and diversity estimation. Sequences with zero presence,
ambiguous nucleotides (“N”), unknown bases, or heterozygous
positions were excluded. Effector alignments were generated using
MAFFT 7.453.0 (Katoh and Standley, 2013) with the G-INS-i
strategy and were manually curated. Effector diversity indices
were calculated with the R package pegas (Paradis, 2010), using
hap.div for allele diversity and nuc.div for nucleotide diversity (Pi).

Synonymous and nonsynonymous substitution rates, as well as
site-specific positive selection, were estimated using YNOO and
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CODEML from the PAML suite. Orthologous effector genes were
identified using BLAST, and sequence alignments were generated
for each set. For genes with at least two orthologs, we calculated
mean pairwise dN/dS ratios using KaKs_Calculator 2.0 (Wang
et al., 2010) with the Yn00 model (Yang et al., 2000).
Additionally, site-specific positive selection was evaluated using
CODEML (version 4.10.6) from the PAML suite. Likelihood ratio
tests (LRTs) were performed, comparing models M1 (neutral) vs.
M2 (selection) and M7 (beta) vs. M8 (beta&m), with statistical
significance determined by chi-square tests (P < 0.05). A gene was
considered under site-specific positive selection if both LRTs were
significant. Preliminary examination of effector sequences revealed
>99% identity among samples, and further analysis was performed
by repeating CODEML tests with an outgroup, Magnaporthe poae,
selected for sufficient evolutionary distance and homology.
Orthologous effector gene sequences from this outgroup were
analyzed individually. The dN/dS ratios were calculated only for
proteins with corresponding orthologs in Magnaporthe poae, and
region-wise comparisons were conducted for each effector gene.
Results were visualized using boxplots.

3 Results

3.1 Phylogenetic and phylogeography
analysis

To characterize the genetic composition of SSA populations of
P. oryzae, previous datasets (Gladieux et al., 2018a; Zhong et al.,
2017) were combined with genome sequences from newly collected
isolates in SSA rice-growing regions. In the entire collection, 66,744
SNPs were identified. The phylogenetic signal of SSA strains was
analyzed using ML. SSA genomes clustered within three well-
defined global genetic groups, as well as within a diverse Group 1
(Figure 1A). Most Group 1 isolates were more broadly related to
Groups 3 and 4, as indicated by shared branching points, whereas
Group 2 appeared to be relatively distant. Group 1 was represented
by five SSA isolates (SSA-1): a single isolate from East Africa
(Uganda; subclade 1) and four from West Africa (Mali, Togo,
Ghana, and Nigeria; subclade 2) that grouped together with Asian
isolates predominantly from Yunnan, China (13FM-5-1, 13FM-24-
1, CH1019 and CH0999). Most SSA isolates were assigned to Group
3 (SSA-3), which was detected across all SSA regions. Group 4
(SSA-4) included isolates from Tanzania, two from Burkina Faso,
and one each from Uganda and Kenya. Group 2 (SSA-2) was
restricted to East Africa and comprised mainly isolates from
Rwanda and Burundi, along with one isolate each from Uganda
and Morocco. The ML tree was compared with a tree reconstructed
using the maximum clade credibility (MCC) method in BEAST2.
The time-calibrated MCC phylogenetic tree closely resembled the
ML tree (Figure 1B). The most recent common ancestor (MRCA) of
the analyzed samples was estimated to have emerged around 1742
(95% highest probability density (HPD): 1700-1753)
(Supplementary Table S3). Divergence into clonal groups was
dated to approximately 1748, leading to emergence of Group 1
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FIGURE 1

(A) A maximum-likelihood phylogenetic tree generated using single nucleotide polymorphism (SNP) alignment of global isolates. Font colors on the
tree represent SSA isolates in different clusters (genetic groups) (B) Bayesian maximum clade credibility (MCC) tree from BEAST based on 66,744
SNPs among the global population; genetic groups are represented by the different colors. (C) A Google Earth map created using Keyhole Markup
Language file allowing for visualization of the spread of Pyricularia oryzae and genetic relationship between pathogen genomes and geographical
locations. (D) Cord diagram generated using a Bayesian stochastic search variable selection, with a symmetrical discrete trait substitution model
(strict clock assumption) to estimate the transition rates between groups (D) and different locations (E).
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and clonal Group 3. Another divergence, resulting in Group 2,
occurred in 1786, followed by the emergence of Group 4 in 1804.
The MRCA for SSA samples was traced to 1896 in Burkina Faso,
West Africa (95% HPD: 1891-1917), with subsequent emergence in
Mali between 1896 and 1900. For East Africa, the MRCA was
identified in Uganda in 1910 (95% HPD: 1905-1929), with
emergence in Madagascar seven years later (95% HPD: 1900-
1918). Through Google Earth visualization, we observed that
several SSA isolates were likely originated from China, while
others were inferred to have previously circulated in East Asian
countries, such as South Korea, before their emergence in SSA
(Figure 1C). Evidence of a reintroduction event involving China
and Burundi in the 1950s was observed, which was subsequently
followed by introductions to Ghana and Burkina Faso in the late
1960s. Substantial migration flux between EA and WA was detected
in the early 1990s, particularly involving Tanzania, Burundi, and
several West African countries.

To verify these geographic transitions, a discrete trait diffusion
model was implemented. A considerable representation of Group 1
alleles in Group 3 was observed, whereas Group 2 showed reduced
representation across all groups (Figure 1D). Most P. oryzae isolates
in SSA were consistently traced to migration from China and India
(Figure 1E). In EA, strong connections were found between Uganda
and Kenya, with each also maintaining separate links to Tanzania.
Within WA, Ghana exhibited a robust connection with Benin.
Madagascar displayed limited connectivity with other countries,
apart from a distinct link with Benin. Transition rates indicated that
Burundi acted as a repository for isolates from various countries,
particularly from Cote d’Ivoire, Burkina Faso, Ghana, China, the
Philippines, and Nigeria.

3.2 Population structure and admixture
analysis

Population structure and admixture analyses provide insights
into the genetic composition of populations, elucidating patterns of
relatedness, migration, and the degree of genetic exchange among
different groups. In this study, principal component analysis (PCA)
clustered the isolates into four groups, consistent with the
phylogenetic analysis (Figure 2A). The first principal component
accounted for the majority of variance (42.7%) and separated Group
1 isolates from those in other groups, while the second principal
component explained 13% of the variance and further distinguished
the four groups identified in the phylogenetic tree. In PC space,
isolates in Group 4 were effectively clustered above those in Group
1. Exceptions were observed for isolates HB-LTH18 from Hubei
and CH1016 from Yunnan, which, although grouped within Group
1 in the PCA, appeared closer to Group 3 in the phylogenetic
analysis. Similar clustering patterns were revealed by phylogenetic
network analysis using the neighbor-Net method, indicating that
both approaches captured consistent data structures (Figure 2B).
Subsequent analysis with STRUCTURE showed that SSA isolates
clustered with Asian populations across all groups (Figure 2C). As
the number of genetic groups (K) increased to 10, a gradual
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seperation appeared between Asian and SSA populations in each
group, particularly in group 1 and 2. Discriminant analysis of
principal components (dAPC) supported a model with K = 4
genetic clusters, as determined by both BIC and silhouette plot
cross-validation (Supplementary Figure S1).

Admixture analysis was performed to determine the regional
ancestry of the isolates, using genetic distances calculated from {2
statistics between all pairs of genetic groups (G1-4) subdivided by
region. A total of 24 trees were generated from the f2 statistics-
derived distances, and a consensus tree was constructed
(Figure 2D). The foundational population for Group 3 was
identified as Group 1 from Southeast Asia (SEA). Before the
formation of the final SSA-3 (EA and WA) cluster, two distinct
intermediate clusters from South Asia and East Asia were observed.
The origins of SSA Group 4 (SSA-4) were traced to the lineage of
Group 1 in China, which appeared to have originated from a
broader Group 1 population. WA Group 1 was found to have
diverged before the emergence of Group 4 strains that are were
detected in other regions, including South America, North America,
East Asia, Europe, WA and EA. EA. The ancestral Group 1, from
which EA Group 1 diverged, was positioned at the base of the
branch that was linked with Group 2. A weak connection was
detected between EA Group 1 and other SSA groups, even within
Uganda. Similarly, Group 2, which was found to have emerged from
the same ancestral population as EA Group 1, was observed to be
distant from Groups 3 and 4.

Further analysis using f3-statistics was conducted to evaluate
the genetic similarity between two populations, as inferred with a
distant outgroup. Positive f3 values (Z-score > 2) were observed for
all genetic groups (Supplementary Table S4). At the regional level,
higher f3 statistics were found between EA and WA and between
Asia and ROW (Figure 2E).

3.3 Linkage disequilibrium and GWAS
analysis

To investigate the extent of clonal reproduction in our
collection, linkage disequilibrium (LD) decay was evaluated by
calculating the squared correlation coefficient (r*) between pairs
of SNPs using the TASSEL interface (Bradbury et al., 2007). The
majority of SNPs were found to be in complete disequilibrium, and
no LD decay was observed until r> dropped below 0.2
(Supplementary Figure S2A). To further investigate the genetic
basis of SNP variation, GWAS was performed, and Manhattan plots
were generated to visualize significant SNPs exceeding the threshold
of —log10(p) > 40 (Supplementary Figure S2B). Subsequently, a list
of genes containing these significant SNPs was compiled, followed
by annotation and GO analysis of the associated gene set
(Supplementary Table S5). The SNPs with the strongest
association on chromosome 1 were linked to MGG02124, which
encodes a K+ transporter involved in inorganic ion transmembrane
transport (GO:0098660). Additional genes identified included the
ammonium transporters MEP1 (MGGO00595, MGG00537) and an
MES transporter (MGG00416) on chromosome 5; the secreted
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FIGURE 2

(A) A two-dimension principal correspondence analysis showing the distribution of genetic variability in the Pyricularia oryzae datasets.

(B) Phylogenetic network analysis of global P. oryzae populations using the neighbor net method showing the four inferred genetic groups. The
color denotes the four genetic groups as inferred using the PCA in panel A and confirmed via the clustering analysis in Supplementary Figures S1B,
C. (C) STRUCTURE results showing the membership probability for each P. oryzae genome from K = 2 to K = 10 populations. (D) A consensus tree
generated using f2 statistics between all pairs of groups subdivided into regions using the PHYLIP package. (E) A 3-Population test or outgroup
f3-statistics implemented in AdmixTools to estimate the genetic similarity between isolates relative to an outgroup; genetic distance between
regions are presented in a graphical form.
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FIGURE 3

Patterns of diversity across rice-infecting genetic groups in Sub-Saharan Africa (SSA) and Asia. (A) Nucleotide diversity (Pi) was calculated for each
group. (B) Nucleotide diversity (Pi) compared at the regional level. (C) Fixation index (Fst) between different Pyricularia oryzae genetic groups across

different regions. (D) Fst between different regions.

chitin deacylase MoCDA1 (MGG14966) on chromosome 6; and
MGG02986 on chromosome 7, encoding the DNA polymerase zeta
catalytic subunit (REV3), which is essential for DNA replication
and repair, particularly in regions of damaged or repetitive DNA.
Other notable genes included effector-encoding genes such as
MGG_01753, associated with the epigenetic regulator, MoSET1I.

3.4 Genomic landscape of differentiation
and genetic diversity

Nucleotide diversity (Pi), fixation index (Fst), and Tajima’s D
are widely used in population genetics to characterize population
structure and evolutionary dynamics. In our genome-wide analysis,
average Pi in Group 1 (Pi = 1.3e-04) was higher than that observed
in Groups 2 (Pi = 2.5e-05), 3 (Pi = 2.1e-05), and 4 (Pi = 2.45e-05)
(Figure 3A; Supplementary Table S6). On a regional scale, Pi was
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observed to display a heterogeneous distribution, with high
nucleotide diversity interspersed with stretches of low diversity
(Figure 3B). Higher Pi was observed in WA Group 1 compared
to all other regions and groups. In all regions, lower Pi was observed
for Groups 2 and 3.

Low fixation index (Fst) values were observed both across
regions (Fst = 0.05) and within each genetic group (Fst = 0.03-
0.08) (Figure 3C). In contrast, significantly higher Fst values were
detected between genetic groups (Fst = 0.25-0.72). Group 1 was
found to be highly differentiated from the other groups, with the
highest Fst values observed between Groups 1, 2, and 3, while the
lowest Fst was recorded between Groups 1 and 4. On a regional
scale, significant genetic differentiation was found between WA and
Asia, as well as between WA and ROW, with Fst values of 0.22 and
0.42, respectively (Figure 3D). Moderate Fst values were observed
between EA and Asia and between EA and ROW (both 0.12),
whereas the Fst between Asia and ROW was low (0.04).
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To further understand signatures of population difterentiation,
pairwise Fst values for all individual SNPs were calculated using a
10% SNP threshold across the regions (Asia, EA, WA, and ROW).
Outlier SNPs were identified in Manhattan plots, using a weighted
Fst threshold of 0.2. Markedly elevated Fst values were observed
between WA and Asia, with 1,814 SNPs exceeding the 0.2 threshold
(Figure 4A). In comparison, only 368 SNPs exceeded this threshold
between EA and WA (Figure 4B). The differentiation among Asia,
EA, and ROW was minimal, with fewer than 30 SNPs above the 0.2
threshold (Figures 4C, D). Common SNPs from the highest Fst bins
across all chromosomes were pooled to compile a list of linked
genes, followed by annotation and GO analysis of the associated
gene set. Thirty-eight candidate genes were identified as common
between Asia-EA and Asia-WA comparisons (Supplementary Table
57) and were linked to diverse functional categories, including ion
transport, fungal hyphal growth, conidiation, lipid metabolism,
ubiquitination, and fertility. GO term enrichment revealed
biological processes such as iron-sulfur cluster assembly
(G0O:0016226), cellular response to starvation (GO:0009267),
cellular response to nutrient levels (GO:0031669), proteasome-
mediated ubiquitin-dependent gene expression (GO:0043161,
GO0:0010467), ncRNA metabolic process (GO:0034660), protein
maturation by [4Fe-4S] cluster (GO:0106035), ncRNA processing
(G0:0034470), and RNA modification (GO:0009451).
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Estimates of Tajima’s D helped to detect deviations from
neutrality. Positive Tajima’s D were observed in SSA-1 and SSA-
2, but were predominantly around zero (Figure 5A). In SSA-4,
Tajima’s D was closer to neutrality, consistent with neutral
expectations. In contrast, SSA-3 exhibited negative Tajima’s D
values, similar to those observed in Asian genetic groups 1, 2, 3
(Asia-1, Asia-2, and Asia-3, Tajima’s D = 0.6 to —1.2), except for
Asian genetic group (Asia-4), which showed a value close to zero
(Supplementary Table S8). Sliding window analysis revealed minor
deviations from neutrality across the genome, with more
pronounced deviations observed on chromosomes 4, 5, and 7
(Supplementary Figure S3), with specific loci potentially involved
in adaptation or evolutionary processes in Group 2, highlighted on
chromosome 7 (Figure 5B). Region-specific analyses revealed that
Group 1 in WA exhibited a positive Tajima’s D relative to other
regions, with a median greater than 1 (Figure 5C). Group 2 in EA
also showed high Tajima’s D, although most SNPs fell within the
negative range. In Asia-3, Tajima’s D was variable, with most values
falling between 0 and 2, while values for West Africa (WA) and EA
hovered around 0. In Group 4, Tajima’s D for EA was marginally
positive, while in Asia it was negative, with most values near zero.
Comparisons for Group 4 did not include WA and ROW due to
insufficient numbers of assigned isolates, which limited the ability to
conduct reliable analyses.
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(A) Genome-wide Tajima’s D computations for genetic groups from SSA and Asia showing substantial differences within groups 1 and 2. To compare
the distribution in each genome-wide diversity test analysis for each genetic group within different regions, Mann—Whitney test was performed as
shown above in the boxplot. (B) Example of the dramatic change in Tajima's D values on Pyricularia oryzae chromosome 7 within genetic group 2

from SSA and Asia. Sequence variation of P. oryzae genes within a 5 kb window representing color-coded single nucleotide polymorphisms (SNPs).
(C) Tajima’s D between between regions across genetic groups.
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TABLE 1 Maximum likelihood parameter estimates for the isolation with migration and split-migration models, for each population pair analyzed.

Dataset Model Theta Likelihood S Best-fit parameters
N1 Nu1

. Isolation-

Asia-EA o 365392  -10326.76 1.698 0.010 1.700 0.544 0.0070 0.0084 0.007 0.0012
migration

. Isolation-

Asia-WA o 457748 | -10926.76 1.180 1.034 1.180 1.883 0.0052 0.0066 0.018 0.0170
mlgratlon

EA-WA Split-migration 421807 | -8745.71 - 0.014 0.010 0.002 0.0084 0.0102

S, population size of the first population after split (population 2 has size 1-s); nul, current size of population 1; nu2, current size of population 2; T, time of population split; 1, migration rate;
m12, migration from population 2 to population 1; m21, migration from population 1 to population 2.

3.5 Popu[ation genetic ana[yses of followed by Group 2, while Group 4 displayed the lowest count
demographic history (Figure 6B). Variance in effector presence/absence was visualized

using a PCA biplot, which illustrated the contribution of individual

The impact of demographic history was modeled using two types ~ effectors to the principal components and their correlations
of analyses available in dadi. Initially, the demographic history of each ~ (Figure 6C). We observed that some effectors exerted a stronger
population was analyzed separately by fitting the default single-  influence on the principal components, and through effector loading
population models: expansion (two-epoch function), growth,  analysis, 16 informative effectors were identified as accounting for 90%
bottleneck, and bottleneck-expansion (three-epoch function), using (red line) of the cumulative distribution (Figure 6D). Visualization of
an optimal projection size for the site frequency spectra (SFS).  these effectors in a dendrogram revealed two main clusters, with
However, none of these models were found to adequately fit the ~ Group 2 forming a distinct cluster separate from Groups 1, 3, and 4
data for any of the geographic regions analyzed. Subsequently, two-  (Figure 6E). The presence/absence polymorphism of effectors was
dimensional demographic models, specifically the split-migration ~ evaluated across all genomes, and similar, though not identical,
and isolation-migration models, were examined. Among these, the patterns of effector repertoires were observed within each genetic
Isolation with Migration (IM) model was identified as providing the ~ group (Supplementary Table 59).
best fit for the data and exhibited the highest likelihood values among To assess genetic diversity of P. oryzae effectors across regions,
all paired population comparisons (Table 1). In each pairwise consensus sequences for all effector genes were extracted and variants
comparison, SSA populations emerged from a small proportion of identified. Overall diversity, measured as the probability of
the ancestral population. However, the founding population size of encountering different effector gene variants, was higher in Asia
EA was smaller than that of WA. The migration rate from Asiato EA  than in SSA across all genetic groups (Figure 7A). Within genetic
was higher (m12 = 7.29E-03, while m21 = 1.19E-03) than that from  groups 1, 3, and 4, distinct subclusters of effector patterns from SSA P.
Asia to WA (m12 = 1.75E-02, while m21 = 1.70E-02). Analysis of ~ 0ryzae genomes were observed (Figure 7B). Sequence variation
migration between EA and WA yielded no results with the IM model; ~ among candidate effector repertoires was analyzed to detect
therefore, the split-migration model was used, which provided a good ~ Vvariation in genetic groups for SSA and Asia genomes. Variation in
fit. The joint site frequency spectrum observed for EA-WA indicated  effector genes was significantly higher in Asia than in SSA, as shown
an asymmetric split between the two regions (Supplementary Figure ~ in the box plot (Supplementary Figure S5A). A similar trend was
54), consistent with the respective founding population sizes. EA and observed for effector nucleotide diversity (Supplementary Figure

WA had a higher migration rate (m = 0.01) compared to the Asia-EA S5B). Likelihood ratio tests showed that dN/dS ratios were largely
and Asia-WA population pairs. comparable among genetic groups, with the highest ratio observed in

Group 2 (Supplementary Figure S5C). Differences in the allelic

frequencies of effectors for each genetic group were visualized using

3.6 Effector distribution and diversification a heatmap (Supplementary Figure S6A), and this confirmed higher
in SSA allele frequencies in Asia compared to SSA, regardless of genetic
group. The number of effector genes with sites under positive

The number and distribution of effector repertoires among  selection, as predicted by CODEML, increased to 36; however, only
different groups and regions were compared by mapping 178  six effectors exhibited multiple sites with dN/dS > 1 (Supplementary
predicted effector references to the genome sequences of P. oryzae  Figure S6B). These included MGDIG41 (detected in all isolates),
isolates. The total number of effectors per isolate was found to range ~ Avr.Pita3 (with presence/absence polymorphism), FR13.0004761
from 110 to 127. The highest count was observed in isolate CH0333  (detected in all isolates), FR13.00128431 (with presence/absence
(127 eftectors), whereas the lowest was detected in IN0072 (110  polymorphism), NA168 (detected in all isolates), and AvrPex75
effectors), with SSA isolates falling within this range. The total  (with presence/absence polymorphism). Two effectors,
effector content across the various genetic groups of P. oryzae is  INA168.G2457 and FR13.00128431, exhibited a wide range of dN/
presented in Figure 6A. When the genetic groups were ranked by  dS values from 0 up to 99, followed by FR13.00094761 and
effector count, Group 1 was found to possess the largest number, =~ MGDIG41, which showed sparse dN/dS values within the same
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FIGURE 6

Effector repertoires in P. oryzae reveal distinct patterns of diversification in each genetic group. (A) An assortment of the total number of effectors
per isolate from the highest (CH0333 = 127) to the lowest (INOO72 = 110). (B) A box plot of the total effector content in each genetic group. To
compare the distribution of the total effector for every isolate in each of the four genetic groups, Mann—-Whitney test was performed as shown
above for the boxplot. (C) Principal component analysis (PCA) biplot of effectors from the presence/absence matrix (Supplementary Table S9). The
effector loading vectors are indicated by the arrowheads. (D) A bar plot showing the product for each effector loading vectors. The redline reveals
90% of the cumulative sum from the data, or in this case, 16 effectors that can explain the distribution. (E) Complete hierarchical clustering
dendrogram of the 16 effectors based on the results presented in Supplementary Figure S6E. The distance matrix was computed using the Jaccard

index.

range (Supplementary Figure S6C). Regional differences in positive
selection signatures occurred predominantly in Group 1, with WA
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isolates displaying a higher number of positively selected sites
compared to those from Asia and EA (Supplementary Figure S6D).
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FIGURE 7

Variation in the number and distribution of candidate effector repertoires in P. oryzae genetic groups collected from Sub-Saharan Africa (SSA). (A) A
box plot representing the average number of effector genes in each genetic group from SSA and Asia. To compare the distribution of each effector
content within the genetic group between different regions, Mann—-Whitney test was performed as shown above for the boxplot. SSA1-4 and Asial-

4 represent the genetic groups described in

(B) A hierarchical heatmap representing the presence/absence patterns of candidate effectors.

SSA (triangles), Asia (circles), and RoW (squares) regions are depicted. Color labels in the tree represent the genetic group. Gray and white colors in
the heat map represent the presence/absence of effectors as <80% of coverage. Gene names (rows) and isolate names (columns) are described in
. Subclusters in genetic groups 1, 3, and 4 are indicated as gray nodes in the tree. Complete-linkage clustering was

performed as visualized in the dendrogram

Population analyses is crucial for understanding the
evolutionary histories and forces shaping pathogen populations,
which in turn inform management strategies. The resolution and
accuracy of genetic diversity estimates and other population genetic
inferences have been greatly improved by the use of genomic
markers, allowing a finer dissection of pathogen population
structure, ancestry, and adaptive evolution.

In this study, we analyzed 180 genome sequences of P. oryzae,
including 45 newly sequenced isolates from SSA, to uncover
patterns of genetic variation, population structure, demographic
history and effector gene diversity. Our analyses revealed that SSA
populations have diverse ancestries, consistent with multiple
introduction events, a finding that corroborates previous studies

(

). However, isolates from WA exhibited
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considerable genetic divergence from Asian populations
compared to other regions, suggesting region-specific
evolutionary trajectories. Phylogeographic reconstruction placed
the most recent common ancestor (MRCA) of all isolates in this
study around 1742 CE, considerably more recent than the global
evolutionary timeline of P. oryzae, which extends over 12,000 years
( ; ; Latorre et al., 2020). To
reconstruct the pathways of pathogen migration, we employed
spatial simulations and Bayes factor analyses of diffusion rates,
supported by visualization tools such as Google Earth. Our results
revealed two primary migration waves from China to SSA: (1) a
direct introduction, and (2) a secondary, indirect route involving
intermediary countries. Most SSA introductions were traced
directly to China, most probably associated with the significance
of historical agricultural projects in facilitating pathogen dispersal, a
phenomenon also documented for other plant pathogens (
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2008). A compelling case is provided by the genetic grouping of
Chinese and Ugandan isolates, notably E-UGD-32 from the TILDA
irrigation scheme, which was established with Chinese support in
the 1970s. This isolate clustered closely with Chinese isolates 13FM-
5-1 and 13FM-24-1 from Yunnan province. Group 1 isolates from
WA countries (e.g., Mali, Togo, Burkina Faso, Nigeria) also had
Asian ancestry genetic signatures, yet with considerable divergence
from contemporary Asian genomes. This suggests that after their
introduction, these populations have evolved independently, likely
influenced by region-specific host-pathogen interactions,
adaptation to local rice varieties, and demographic events.

The second, more recent migration wave is characterized by P.
oryzae isolates that were initially introduced to other countries, such
as South Korea, the Philippines, and India, from China, and
subsequently introduced into SSA. The genetic connection between
Mali isolates and both China and South Korea, for instance,
highlights the complexity of such pathogen movements. These
multidirectional introductions are plausibly linked to periods of
intensified human movement and trade, especially during and after
the European colonization of Africa. Colonial expansion not only
transformed agricultural practices but also led to the widespread
importation of Asian rice varieties (Reid, 2002; Vaughan et al., 2008;
Uma, 2022). Historical records show that rice became increasingly
important as a staple in several African countries during the colonial
era, which is in line with our phylogeographic inferences regarding
the timing of P. oryzae emergence in the region (Small, 1922). This
pattern mirrors the introduction of other significant plant pathogens,
such as Phytophthora infestans in the Cape Peninsula, a key node in
the Europe-India trade route (Blersch, 1890; Goss et al., 2014).
Together, these findings underscore how geopolitical and socio-
economic transformations inadvertently created opportunities for
pathogen migration and establishment in previously uninfected
regions (Stukenbrock and McDonald, 2008). Within SSA,
continued P. oryzae spread among countries appears to be driven
by the movement of planting materials and regional trade (Mutiga
et al, 2021). Notably, we observed significant transmission events
between Burkina Faso and Burundi, as well as connections between
Cote d'Ivoire, Nigeria, and Ghana with Burundi. Burundi’s central
position in the Great Lakes region may have contributed to its role as
a hub, while Madagascar’s relative isolation likely limited
international connections. Additional connections, such as those
between Ghana and Benin, and between Kenya and Uganda, with
both East African countries also showing links to Tanzania, further
underscore the networked nature of pathogen movement within SSA,
potentially aligned with trans-African transport corridors
(FAO, 2019).

Population structure analyses revealed that Groups 3 and 4 in
SSA are more closely related to Group 1 than to Group 2,
supporting previously proposed divergence patterns (Gladieux
et al, 2018b; Latorre et al,, 2020). Group 3, comprising about
two-thirds of the regional population, displayed a wide geographic
spread and a coherent structure in STRUCTURE analysis, a pattern
indicative of successful regional expansion and relative clonal
stability. Such widespread distribution of a clonal lineage is a
hallmark of epidemic populations of plant pathogens, where a few
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highly adapted genotypes proliferate across large areas, often due to
their fitness advantages in prevailing agroecological and host
environments (McDonald and Linde, 2002; Saleh et al., 2014). In
contrast, WA Group 1 isolates showed increasing separation from
Asian groups at higher K values. This divergence suggests that,
following their initial introduction, WA Group 1 isolates have
undergone local evolution, possibly shaped by adaptation to local
rice varieties and reduced recent gene flow from Asia (Latorre et al,,
20205 Gladieux et al., 2018b). Conversely, Group 1 isolates from EA
consistently clustered with Asian populations even at higher K
values, indicating more recent transmission event from Asia into
EA or less disrupted genetic diversity compared to WA. These
patterns are further supported by f, statistics, which revealed weak
genetic connectivity between EA and WA in Group 1 and a strong
relationship between the two regions in Group 3. The consensus 2
admixture tree placed EA Group 1 isolates at the base of a lineage
leading to Group 2, indicating that their ancestral lineage likely
served as the progenitor for Group 2 isolates. In contrast, WA
Group 1 isolates were positioned at the base of Group 4, which
traces back to the broader Group 1 lineage leading to group 3. This
divergence occurred considerably later than the split of EA Group 1
from the broader Asian Group 1. Group 3 was inferred to have
descended from Southeast Asian Group 1. Prior to the emergence of
SSA-3 (EA and WA) cluster, two distinct Asian subpopulations,
corresponding to South and East Asia, were evident, suggesting that
SSA-3 originated from a Southeast Asian lineage that had already
diverged into these subregions. This phylogenetic pattern provides
additional evidence that independent introductions and subsequent
local evolution, rather than a single pan-continental dispersal event,
have shaped the population structure of P. oryzae in SSA. This is
consistent with previous studies showing that multiple, temporally
and spatially separated pathogen introduction events, often driven
by human migration, long-distance trade, and shifting agricultural
practices, contribute to local adaptation and diversification
(Gladieux et al., 2018b; Latorre et al., 2020).

Demographic modeling using dadi suggested that both WA and
EA descended from small founding populations, consistent with the
hypothesis that P. oryzae populations outside Asia originated from
a limited number of founders (Levy et al., 1991; Zeigler, 1998). Such
founder events can significantly reduce genetic diversity and
increase the influence of genetic drift, shaping the initial genetic
landscape of introduced populations (McDonald and Linde, 2002).
These founder effects may have played a crucial role in shaping the
genetic profiles, particularly in WA, compared to those of their
ancestral populations. Divergence time estimates indicate a more
recent separation between WA and Asia, and greater divergence in
WA. This greater differentiation in WA likely reflects not only the
historical impact of founder events but also ongoing processes of
local adaptation, which may have been driven by the region’s
unique host diversity following the introduction and
intensification of rice cultivation.

Genetic diversity metrics further support these conclusions:
WA isolates, especially those in Group 1, showed higher Pi and
positive Tajima’s D compared to their Asian and EA counterparts.
Elevated Pi suggests a broader spectrum of genetic variation within
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WA populations, while positive Tajima’s D is indicative of the
maintenance of multiple alleles at intermediate frequencies. Such
patterns can arise from balancing selection, where diverse host-
pathogen interactions favor the persistence of different alleles, or
from the retention of intermediate-frequency variants following
historical population bottlenecks (Tajima, 1989; Charlesworth,
2006). In plant pathogen systems, balancing selection is often
driven by the coexistence of varied host genotypes and fluctuating
selection pressures imposed by the deployment of resistance genes
(Stukenbrock and McDonald, 2008). These genetic diversity
patterns are further corroborated by genome-wide pairwise Fgr
analyses and cross-population scans, which revealed pronounced
genetic differentiation between WA and Asian populations.
Specifically, a higher number of outlier SNPs and candidate genes
potentially linked to adaptation were identified in WA isolates.
Previous studies have shown that such differentiation can be driven
by both geographic barriers and the distinct evolutionary
trajectories imposed by the independent domestication and
diversification of rice in WA (Mutiga et al., 2021). Consistent
with these findings, our analysis also revealed a higher number of
positively selected effector sites in WA isolates than in other regions,
further supporting the hypothesis that diversification of rice
cultivars in WA has driven local adaptation of P. oryzae. This is
consistent with broader findings that regions with greater host
diversity tend to harbor pathogens with more diverse and rapidly
evolving effector repertoires (Stukenbrock and McDonald, 2008).
The domestication of Oryza glaberrima in WA approximately 3200
BP likely provided a long-standing, genetically distinct host
environment, which was later complemented by the introduction
of Asian O. sativa (Linares, 2002). The coexistence and interaction
of these two rice species likely created selection pressures, favoring
localized adaptation and increased genetic divergence in WA P.
oryzae populations. Similar patterns of pathogen adaptation
following host diversification have been observed in other
agroecosystems, where the interplay between historical
introductions, host genetic resources, and local selection has
driven both population structure and evolutionary trajectories
(Stukenbrock and McDonald, 2008; Croll and Laine, 2016).

The relatively modest genetic differentiation observed between WA
and EA, as evidenced by lower Fgr values and fewer genomic outlier
regions, suggests more recent or ongoing gene flow and/or the
retention of shared ancestral alleles between these regional
populations. Such genetic connectivity is frequently maintained
through the regular exchange of rice germplasm and seeds, as well as
similar agroecological conditions and farming practices across
neighboring countries (Gladieux et al,, 2018b; Thierry et al., 2022).
Previous studies have demonstrated that the movement of planting
materials, often facilitated by regional trade and agricultural
development programs, plays a central role in shaping the genetic
structure and connectivity of plant pathogen populations in Africa
(Mutiga et al., 2021). Consistent with this interpretation, both WA and
EA populations showed near-zero Tajima’s D values in clonal Groups 3
and 4, which is indicative of either weak balancing selection, where
multiple alleles are maintained within the population or demographic
neutrality, where neither strong expansion nor contraction dominates
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the population’s evolutionary trajectory (Charlesworth, 2006). Such
patterns are often observed in more established populations or where
there is ongoing gene flow and relatively stable host-pathogen
dynamics (Stukenbrock and McDonald, 2008). This observed genetic
similarity and neutrality in Tajima’s D in SSA Groups 3 and 4 may, in
part, be attributed to the widespread adoption of New Rice for Africa
(NERICA) varieties, which are interspecific hybrids containing alleles
from both O. glaberrima and O. sativa. The expansion of NERICA and
similar varieties across both WA and EA has likely contributed to the
convergence of host environments, imposing similar selection
pressures on P. oryzae populations and resulting in parallel patterns
of genetic diversity and demographic stability.

Furthermore, most effector genes analyzed in this study
exhibited patterns consistent with purifying selection or
functional conservation, particularly within Groups 3 and 4. This
suggests that, despite geographic separation, the evolutionary forces
acting on effector repertoires are comparable in both WA and EA.
Such patterns align with previous findings that, while a subset of P.
oryzae effector genes evolves rapidly, presumably to escape
recognition by host immune systems, the majority remain highly
conserved due to their critical roles in pathogen virulence (Xue
et al., 2012; Kim et al., 2019). An exception to this trend was
observed in Group 2, where marked divergence in effector
repertoires was found relative to other groups. Similar patterns of
group-specific effector content have previously been reported in P.
oryzae lineages, highlighting the importance of lineage-specific
adaptation (Dong et al., 2015). We also found notable differences
in effector gene presence/absence between Asia-1 and SSA-1, and
the emergence of SSA specific subclusters within SSA-3. These SSA-
specific effector alleles may represent ancient variants retained in
African populations but lost in Asia, or recent adaptations to the
unique host diversity and agroecological conditions of SSA rice-
growing systems. This contrasting effector distributions between
Asian and SSA populations underscore the impact of local selection
pressures and historical contingency on the effectorome structure of
P. oryzae. MAX effectors, a prominent and highly variable effector
family in P. oryzae, are known to undergo rapid sequence evolution,
as evidenced by increased rates of non-synonymous substitutions
under diversifying selection (Le Naour—Vernet et al,, 2023). Our
analyses found only a subset of MAX effectors that displayed
signatures of positive selection, such as INA168.G2457 and
FR13.00128431, which had highly variable dN/dS ratios.
Collectively, these results highlight the dual forces of purifying
selection and localized positive selection acting on the P. oryzae
effectorome in SSA. This interplay drives both the maintenance of
essential virulence functions and the rapid adaptation to the
changing host populations, underscoring the importance of
integrating effector diversity analyses into pathogen surveillance
and management strategies.

Our study is not without limitations. The sampling strategy
focused on epidemic hotspots and available archival samples,
potentially leading to underrepresentation of certain regions and
introducing biases in estimates of diversity and structure.
Additionally, many population genetic methods assume random
mating and sexual reproduction, while P. oryzae is predominantly
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clonal, which may bias estimations of linkage disequilibrium and
effective population size. Although we have taken steps to minimize
such biases by using genome-wide markers and robust analytical
approaches, interpretations of our results, particularly, population
structure and demographic history should be made with caution.

In conclusion, our findings reveal a dynamic landscape of P.
oryzae evolution in SSA, shaped by historical introductions and
local adaptation. While WA and Asian populations of P. oryzae
have experienced significant divergence, populations within SSA
(WA and EA) remain more interconnected, underscoring the
importance of regional migration and common ancestry in
shaping present-day diversity. Patterns of effector gene diversity
and selection were identified, providing insights into historical
contingency on the effectorome structure of P. oryzae in SSA and
Asia. Collectively, these results highlight the need for integrated
strategies that account for both historical and contemporary
pathogen dynamics when designing biosecurity protocols and
disease management programs in Africa.
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SUPPLEMENTARY FIGURE 1

Four genetic groups inferred in global Pyricularia oryzae isolates based on the
whole genome single nucleotide polymorphisms. (A) Bar plot showing the
membership probability for each genome from K = 2 to K = 8 populations.
The clusters were built using a discriminant analysis of principal components
(DAPC). (B) The Bayesian information criterion (BIC), and (C) the Silhouette
score hinting at four genetic groups as the optimum number of clusters
(elbow in the BIC curve and maximum Silhouette score).

SUPPLEMENTARY FIGURE 2

(A) Linkage disequilibrium (LD) estimated using 66,744 single nucleotide
polymorphisms (SNPs). Decay of r® as a function of genetic distance
between SNP markers. (B) Genome-wide Manhattan plot for seven
Pyricularia oryzae chromosomes showing the results of genome wide
association analysis and the significant SNPs linked to candidate genes.

SUPPLEMENTARY FIGURE 3

Genome-wide Tajima’'s D for Pyricularia oryzae chromosomes revealing
different patterns in genetic group 1 and 2 across regions. Tajima’'s D for
each genetic group from chromosomes 1 to 7 was built using a 50 kb sliding
window. The color for the different genetic groups corresponds to the
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SUPPLEMENTARY FIGURE 5

Diversity of Pyricularia oryzae effectors associates with a strong purifying
selection. (A) Allele diversity analysis of each effector from the four genetic
groups. (B) Nucleotide diversity (Pi) of each effector from the four genetic
groups. (C) Ka/Ks effector distribution in each genetic group. To compare the
distribution of each effector diversity test analysis in each of the four genetic
groups, Mann-Whitney test was performed.

SUPPLEMENTARY FIGURE 6

(A) Allele diversity of effector repertoires in Pyricularia oryzae genetic groups from
Asia and Sub-Saharan Africa (SSA). The heatmap shows allele frequency from
effectors present in each genetic group across regions. Effector alleles range from
1 to 16. More effector alleles are present in Asia compared with that in SSA,
regardless of the genetic group. Low frequency (yellow) and high frequency (red)
is based on the total number of isolates with that particular allele in each effector.
The color in the text is based on the four genetic groups. (B) Boxplot: effectors
with most sites under positive selection are shown among the 36 effectors.
Region-wise, dn/ds values exhibit considerable diversity in distribution.
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