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Introduction: Citrus medica, a phylogenetically pivotal progenitor of
contemporary citrus cultivars, holds significant economic value due to its
medicinal compounds and its role in breeding stress-resistant hybrids. The
essential functions of organellar genomes in plant adaptation and metabolic
regulation necessitate the characterization of their architecture to elucidate the
genomic basis for these traits. However, the absence of a complete
mitochondrial genome has hindered investigations into inter-organellar
interactions and diversification mechanisms within this key species.

Methods: To address this gap, we used hybrid lllumina-Nanopore sequencing to
produce the first mitochondrial genome of C. medica. Subsequent annotation
and comparative analysis were conducted to identify homologous fragments
transferred from the chloroplast genome, repetitive sequences, and RNA editing
sites. Phylogenetic reconstruction was performed using 19 mitochondrial
genomes, and synteny analysis was employed to assess structural divergence.
Results: The mitochondrial genome of C. medica was assembled to a length of
553,930 bp with a GC content of 45.04%, containing 65 genes (36 protein-coding
genes, 25 tRNAs, and four rRNAs). Comparative analysis revealed 44 homologous
fragments (totaling 41,479 bp) transferred from the chloroplast genome, including
two 6,767 bp segments containing 11 genes (rps7 and 10 tRNAs), with nine tRNA
genes being either pseudogenized or lost from the chloroplast genome. The
mitogenome includes 633 repetitive sequences (386 dispersed, 215 simple
sequence repeats, 32 tandem), with inverted repeats exceeding 11 kb potentially
facilitating recombination. Additionally, we predicted 600 RNA editing sites
(predominantly C-to-U) in 34 protein-coding genes, affecting amino acid
hydrophobicity in 38.83% of these sites. Phylogenetic reconstruction using 19
mitochondrial genomes positioned C. medica closest to C. unshiu. Synteny analysis
highlighted significant structural divergence among Rutaceae mitochondrial
genomes, with nucleotide diversity (Pi) indicating 15 polymorphic genes.
Discussion: This study establishes a foundational mitogenomic resource for C.
medica, demonstrating significant acquisition of chloroplast-derived sequences and
dynamic genome architecture, thus advancing the understanding of organellar
evolution in citrus and supporting the breeding of stress-resistant cultivars.

Citrus medica, organelle, mitochondrial genome, chloroplast genome,
systematic evolution
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1 Introduction

C. medica (Rutaceae) is an evergreen shrub or small tree
characterized by polymorphic fruits that range from sub-ellipsoid
to spherical or melon-shaped. The fruits feature oil gland-dotted
surfaces with longitudinal ridges that typically culminate in apical
papillae, transitioning from green to yellow during ripening
(Carvalho et al,, 2005). Phytochemical analyses reveal abundant
bioactive compounds, including flavonoids (hesperidin, naringin),
limonoids (limonin, nomilin), volatile oils (predominantly
limonene and citral), vitamin C, pectin, and polysaccharides.
Flavonoids exhibit antioxidant, hypoglycemic, and hypolipidemic
activities (Sah et al,, 2011; Chhikara et al., 2018). Pectin serves as
dietary fiber, regulating intestinal functions, while various fruit
components exhibit diverse pharmacological effects: the pericarp
possesses stomachic and expectorant properties, seeds exhibit
antiparasitic activity, and leaf extracts show sedative effects
(Chhikara et al.,, 2018). Beyond their medicinal applications, C.
medica is widely used in food industries (e.g., jams, preserves,
beverages), cosmetic formulations (e.g., essential oils), and
religious-cultural practices (Krug, 1943).

Native to Southeast Asia, natural populations of C. medica are
concentrated in regions such as Yunnan and Tibet (China), as well
as India, with cultivated specimens distributed across global tropical
and subtropical areas (Wu et al., 2018; Liu et al,, 2021; Wang et al,,
2025a). As a prominent cultivated citrus variety, it represents one of
the largest citrus cultivars worldwide and serves as the progenitor of
commercially significant acidic citrus varieties (Wu et al., 2018; Liu
et al, 2021; Wang et al., 2025a). Recent studies identify C. medica,
C. maxima, and C. reticulata as the three ancestral species of the
Citrus genus (Wu et al.,, 2018; Huang et al,, 2023). Commercially
valuable hybrids, including limes, lemons, sweet oranges, and
grapefruits, originated through intraspecific, interspecific, and
intergeneric hybridization among these ancestral species, whose
unique structural configurations influence the characteristic fruit
morphology of modern citrus varieties (Wu et al., 2018; Huang
et al., 2023). However, the evolutionary relationships between
species and the mechanisms underlying intraspecific
diversification remain poorly understood. Mitochondria and
chloroplasts, as crucial semi-autonomous organelles within plant
cells, are instrumental in elucidating genetic diversity, adaptive
evolution, and metabolic regulatory networks through
investigations of their genome architecture, functional
mechanisms, and evolutionary dynamics (Shen et al., 2022).

Plant mitochondrial genomes exhibit remarkable structural
complexity, characterized by expansive sizes, abundant repetitive
sequences, and frequent horizontal gene transfer events (Wang
et al,, 2024; Wang et al,, 2025b; Li et al,, 2025). These distinctive
features are essential for energy metabolism, stress responses, and
cytoplasmic male sterility, and they serve as valuable tools for
phylogenetic reconstruction and population genetic analyses
(Bentolila et al., 2002; Shen et al, 2022). Mitochondrial-plastid
DNAs (MTPTs) are a key driver of genomic diversity, with plastid-
derived fragments (e.g., tRNA and ribosomal genes) constituting
2.02-5.53% of mitogenomes, as documented in Ilex rotunda and
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Michelia, where intact tRNA genes (trnD-GUC, trnW-CCA) retain
functionality after transfer (Wang et al., 2024, 2025b). In contrast,
chloroplast genomes demonstrate higher evolutionary conservation
while providing critical insights into plant evolution and facilitating
inter-organellar gene transfer with mitochondrial genomes
(Gandini et al., 2019; Ma et al., 2022; Lu et al.,, 2023). The cross-
organellar transfer of tRNA and ribosomal genes reveals dynamic
interactions between organelles and their co-evolutionary
trajectories (Yang et al., 2023).

As an ancestral Citrus species with unique medicinal properties
and stress-resistant characteristics, C. medica remains genomically
under characterized, particularly regarding its complete
mitochondrial genome. This study is the first to employ a hybrid
assembly strategy integrating Illumina and Nanopore sequencing
technologies for the de novo assembly and functional annotation of
the C. medica mitochondrial genome. Through comprehensive
characterization of structural features, repetitive element
distribution, and RNA editing patterns, coupled with comparative
genomic analysis of chloroplast-mitochondrial DNA transfer
mechanisms, this study establishes a theoretical foundation for
understanding Citrus evolution, organelle interaction networks,
and functional gene discovery. The results pave the way for the
development of stress-resistant citrus cultivars and molecular
markers while providing novel perspectives on mitochondrial
genome plasticity and its significance in plant evolution and
crop improvement.

2 Materials and methods

2.1 Plant materials and preparations of
samples

C. medica samples were collected from the greenhouse at
Foshan University in Foshan City, Guangdong Province, China
(N23.02, E113.14), which originated from germplasm resources in
Metuo County, Xizang Province, China (N29.33, E95.33). After
surface disinfection of fresh leaves using 75% alcohol, DNA
extraction was conducted using the OMEGA Plant DNA Kit
D2485-04 (OMEGA Bio-Tek Co., Guangdong, China) following
the manufacturer’s instructions. The quality and concentration of
the extracted DNA were assessed using a Qubit 2.0 (Thermo Fisher
Scientific Inc., Waltham, MA, USA) and an Agilent 2100 (Agilent
Technologies Inc., Santa Clara, CA). The extracted DNA was stored
at -80 °C for preservation and used as sequencing material for
subsequent steps involving the genomes of plant organelles.

2.2 Sequencing and database analyses

Short-read sequencing of the C. medica organelle genomes
(mitochondria and chloroplast) was performed using the Illumina
NovaSeq X Plus whole-genome resequencing platform. The fastp
software was employed for filtering and quality control of raw
short-read sequencing data to obtain high-quality sequencing
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datasets (Chen et al, 2018). For long-read sequencing, the
Nanopore PromethION sequencer (Oxford Nanopore
Technologies, Oxford, UK) platform was used. The NanoPack
software was used to perform data filtering and quality control on
the raw long-read sequencing data (De Coster et al., 2018).

2.3 Organelle genome assembly,
annotation, and structure prediction

Multiple sophisticated methods were implemented for the
assembly of the C. medica mitochondrial genome. Initially, the
mitochondrial genome of C. sinensis (GenBank accession number:
NC_037463.1) served as the reference genome. Bowtie2 (version
2.3.5.1) and minimap2 were employed to map the high-quality
short-read and long-read sequencing data, acquired after rigorous
filtration and quality control procedures, back onto the reference
genome (Langmead and Salzberg, 2012; Li, 2021). Subsequently, the
Unicycler software (version 0.4.8), using default parameters, was
employed to perform the assembly operation on the aligned data
(Wick et al., 2017). The GetOrganelle software was used for
chloroplast genome assembly (Jin et al., 2020). The accuracy and
integrity of the assembled organelle genomes were confirmed using
CLC Genomics Workbench 23 (Qiagen Bioinformatics, Aarhus,
Denmark). Annotation of the C. medica mitochondrial genome was
performed using MGA (http://www.lkmpg.cn/ipmga/), with
subsequent manual adjustments based on the mitochondrial
genome of C. sinensis (GenBank accession number:
NC_037463.1). The OGDRAW software was used for the plotting
of the mitochondrial genome map (Greiner et al, 2019). The
CPGAVAS2 tool was used to annotate the chloroplast genome of
C. medica based on the reference genome of C. sinensis (GenBank
accession number: NC_008334.1) (Shi et al., 2019). Annotated
maps of the chloroplast genome and cis-splicing/trans-splicing
genes were generated using CPGView (Liu et al., 2023).

RNA editing sites were predicted using the Deepred-Mt website
(http://47.96.249.172:16084/deepredmt.html) (Edera et al., 2021),
and sites with scores higher than 0.2 were screened. After extracting
total RNA from mature leaves of C. medica, RNA was fragmented
with ion reagents and bound to random primers. First-strand
cDNA was synthesized via reverse transcription, followed by
second-strand ¢cDNA synthesis using residual RNA as primers
after RNA cleavage in hybrids. Double-stranded cDNA undergoes
end repair, dA-tailing, and ligation with Y-shaped adapters.
Adapter self-ligated fragments are removed by magnetic beads,
with library templates enriched by PCR and recovered via magnetic
beads (Oligo (dT)). The library is then sequenced using the
NovaSeq 6000 Illumina HiSeq platform. To identify potential
RNA editing sites, these RNA-seq data were analyzed using a
reference-based variant detection approach. First, raw reads were
aligned to CDS of the reference genome in local alignment mode
using Bowtie2 (v2.3.5.1) (Langmead and Salzberg, 2012). The
resulting alignments were sorted and indexed using Samtools
(v1.9), followed by filtering to retain reads with a minimum
mapping quality (MAPQ) = 40 (Danecek et al, 2021).
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Subsequently, variant calling was performed on the filtered
alignments using Bcftools (v1.9) (Danecek et al., 2021) to identify
discordant single-nucleotide variants (SNVs) relative to the
reference genome. Finally, putative variants were filtered to retain
only those supported by a minimum sequencing depth of 3,
designating the remaining loci as candidate RNA editing sites.
The BLASTN software was employed to align homologous
sequences between the chloroplast and mitochondrial genomes of
C. medica (Chen et al., 2015), with the E-value set to le” and other
parameters maintained at their default settings. The Circos package
(version 0.69-5) was used to visualize the results (Zhang
et al., 2013).

2.4 Phylogenetic evolution and sequence
collinearity

Nineteen complete mitochondrial genome sequences from two
distinct orders (Sapindales and Aquifoliales) were obtained from the
National Center for Biotechnology Information (NCBI) database,
including those of C. sinensis (NC_037463.1), C. reticulata
(NC_086688.1), C. maxima (PP035765.1), C. unshiu
(NC_057142.1), Phellodendron amurense (PP492704.1,
PP492705.1), Sapindus mukorossi (NC_050850.1), Litchi chinensis
(PP932631.1), Nephelium lappaceum (PP916047.1), Xanthoceras
sorbifolium (MK333231.1), Acer yangbiense (NC_059858.1), Acer
miaotaiense (MZ636518.1), Acer truncatum (MZ318049.1),
Mangifera longipes (NC_060990.1), Mangifera sylvatica
(MZ751077.1), Mangifera persiciforma (MZ751076.1), Ilex
micrococca (PP994859.1), Ilex metabaptista (NC_081509.1), and
Ilex pubescens (NC_045078.1). Species from the genus Ilex (I.
micrococca (PP994859.1), I metabaptista (NC_081509.1), and L
pubescens (NC_045078.1)) were designated as the outgroup. Ilex
species (order Aquifoliales) were chosen for this role because
Aquifoliales belongs to the asterid clade, which—together with the
rosid clade—constitutes the core Pentapetalae. Given that the ingroup
taxa in this study (Sapindales) are classified within the rosids, this
deep phylogenetic divergence between the asterid and rosid lineages
ensures that Ilex provides a robust and evolutionarily distant root for
resolving phylogenetic relationships within Sapindales. The
mitochondrial genome of C. medica, obtained through sequencing
and assembly in this research, was incorporated to construct a
phylogenetic tree for in-depth phylogenetic analysis.

During the construction of the phylogenetic tree, MAFFT
software (version 7.427) was used to perform multiple sequence
alignment on the gene sequences encoded by the 20 mitochondrial
genomes (Katoh and Standley, 2013). The trimAl software was used
for trimming (parameters: -gt 0.7) (Capella-Gutiéerrez et al., 2009).
After trimming, the jModelTest software was employed for model
prediction (Posada, 2008). Using RAXML software (version 8.2.10),
the GTRGAMMA model was selected with 1000 bootstrap
replications to construct the maximum likelihood phylogenetic
tree (Stamatakis, 2014). The ITOL software (version 4.0) was then
used to visualize the maximum likelihood tree (Letunic and
Bork, 2019).
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The BLASTN algorithm was used to compare the mitochondrial
genome of C. medica with those of five related species within
Rutaceae previously reported. This comparison aimed to identify
homologous sequences among these six mitochondrial genomes,
with parameter settings configured as -evalue le” and -word_size 7.
The Multiple Synteny Plot plugin within TBtools software was then
employed to visualize homologous sequences of no less than 300 bp
(Chen et al., 2020).

2.5 Analysis of codon usage bias, repetitive
sequences, and nucleotide diversity

Following the extraction of protein-coding sequences from the
genome using TBtools software, the codonW software was
employed for the analysis of codon usage bias of the protein-
coding genes (PCGs) within the mitochondrial genome of C.
medica using default parameters (Sharp and Li, 1986).

To analyze repetitive sequences within the mitochondrial
genome of C. medica, the MISA web tool (https://webblast.ipk-
gatersleben.de/misa/index.php?action=1) (version 2.1, parameter
settings: 1-10 2-5 3-4 4-3 5-3 6-3) was used to identify simple
sequence repeat (SSR) sequences (Beier et al, 2017). Tandem
repeats were identified using the Tandem Repeats Finder software
(parameter settings: 2 7 7 80 10 50 2000 -f -d -m) (Benson, 1999).
Dispersed repeats were identified using the Vmatch software
(version 2.3.0), applying a minimum sequence length of 30 bp
and a Hamming distance of 3 (Kurtz, 2010).

For nucleotide polymorphism analysis, MAFFT software
(v7.427, under the —auto mode) was employed to conduct global
alignments of homologous gene sequences among diverse species
(Katoh and Standley, 2013). Subsequently, DnaSP5 was utilized to
calculate the Pi value for each individual gene (Librado and
Rozas, 2009).

3 Results

3.1 Organelle genome assembly and gene
function annotation

The mitochondrial genome was assembled using a hybrid
strategy that integrated long-read and short-read sequencing data.
Due to its complex conformation, characterized by branched
architectures and abundant repetitive sequences, long-read
sequencing data were employed to verify and resolve these
structural complexities, ultimately yielding a linear mitochondrial
genome assembly (Figure 1). The mitochondrial genome of C.
medica was found to consist of six assembly contigs with the
following lengths: contig 1 (269,363 bp), contig 2 (98,057 bp),
contig 3 (87,711 bp), contig 4 (54,040 bp), contig 5 (11,216 bp), and
contig 6 (11,189 bp). Notably, contigs 5 and 6 exhibited double-
bifurcation structures (Supplementary Figure S1), and the
connectivity between these two contigs and other genomic
regions was validated by Nanopore read alignments spanning full
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junctions (Supplementary Figure S2). The complete mitochondrial
genome spanned 553,930 bp with a GC content of 45.04%
(GenBank accession number: PQ636878), and its structure was
confirmed through long-read sequencing data. Annotation of the
mitochondrial genome revealed 65 genes, including five ATP
synthase genes (atpl, atp4, atp6, atp8, atp9), four cytochrome c
biogenesis genes (ccmB, ccmC, ccmFc, ccmFn), one ubiquinol
cytochrome ¢ reductase gene (cob), three cytochrome ¢ oxidase
genes (coxI, cox2, cox3), one maturase gene (matR), two transport
membrane protein gene (mttB (x2)), nine NADH dehydrogenase
genes (nadl, nad2, nad3, nad4, nad4L, nad5, nad6, nad7, nad9),
three ribosomal large subunit genes (rpl10, rpll6, rpl5), six
ribosomal small subunit genes (rpsl, rpsl0, rpsi2, rps3, rps4,
rps7), two succinate dehydrogenase genes (sdh3, sdh4), four rRNA
genes (rrnl8, rrn26 (x2), rrn5), and 25 tRNA genes
(Figure 1; Table 1).

We performed de novo assembly of the chloroplast genome for
C. medica by integrating both next-generation sequencing and
third-generation sequencing data. The complete chloroplast
genome (GenBank accession number: PP863286) had a length of
160,038 bp, with the nucleotide base composition as follows: G:
18.86%, C: 19.59%, A: 30.47%, T: 31.08%. This genome consists of
four regions: an 87,482 bp large single-copy region, an 18,574 bp
small single-copy region, and a pair of 26,991 bp inverted repeat
regions. In total, the chloroplast genome contains 134 genes,
including 89 PCGs, 37 tRNA genes, and eight rRNA genes
(Figure 2). Among the twelve PCGs containing introns, two genes
(ycf3 and cIpP) possessed two introns each, while one intron was
present in ten genes (rpsl6, atpF, rpoCl, petB, petD, ndhA, ndhB
[x2], rpl2 [x2]) (Supplementary Figure S3). Additionally, trans-
splicing was detected in the rpsI2 gene (Supplementary Figure S4).

3.2 Comparative homology assessment
between mitochondrial and chloroplast
genomes of C. medica

Intercompartmental sequence exchange between mitochondria
and chloroplasts is a ubiquitous phenomenon in higher plants, with
mitochondrial genome fragments demonstrating conserved
homologous sequences within chloroplast genomes. This
comparative analysis provides insights into the mechanisms
governing horizontal gene transfer in chloroplast genomes,
elucidating its evolutionary significance in plant phylogeny.
Consequently, we conducted a systematic comparative analysis of
mitochondrial and chloroplast genome homology in C. medica.
Sequence homology analysis identified 44 conserved inter-
organellar fragments between the mitochondrial and chloroplast
genomes, ranging in size from 40 to 6,767 base pairs (bp),
cumulatively spanning 41,479 bp (Figure 3; Supplementary
Table S1).

The two longest homologous segments (CP-1 and CP-2, each
6,767 bp) accounted for 2.44% of the mitochondrial genome, with
DNA transfer events predominantly localized to the inverted repeat
(IR) regions of the C. medica chloroplast genome. Functional
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annotation of these transferred sequences revealed 11 intact genes,
comprising one protein-coding gene (rps7) and ten tRNA genes
(trnA-TGC, trnV-GAC, trnP-TGG, trnS-GGA, trnl-TAT, trnN-
GTT, trnH-GTG, trnD-GTC, trnW-CCA, trnM-CAT). Notably,
nine tRNA genes (excluding trnW-CCA) exhibited complete loss
or pseudogenization within the chloroplast genome (Figure 3;
Supplementary Table SI).

3.3 Integrative analysis of phylogenetic
relationships and syntenic architecture

A maximum likelihood phylogenetic tree was constructed using
conserved homologous genes from 19 mitochondrial genomes
representing two angiosperm orders (Sapindales and
Aquifoliales). Sixteen nodes exhibited bootstrap support values
exceeding 80%, with 11 nodes achieving maximal nodal support
(BS = 100%). Notably, C. medica demonstrated close phylogenetic
affinity to C. unshiu (Figure 4).

To assess sequence homology and structural conservation, a
comparative analysis was conducted between the mitochondrial
genomes of C. medica and five published Rutaceae species,
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employing BLASTN-based alignment of homologous genes and
syntenic regions. Homologous sequences >300 bp in length were
visualized (Figure 5), revealing abundant homologous fragments
shared between C. medica and other Rutaceae species, with several
sequences uniquely conserved within the C. medica mitochondrial
genome. Furthermore, syntenic collinearity analysis detected
significant structural divergence among the six mitochondrial
genomes, characterized by multiple genomic rearrangement
events coexisting with highly conserved regions.

3.4 Identification of RNA editing events

We predicted RNA editing sites in 34 PCGs of the C. medica
mitogenome to investigate genomic expression regulation. Our
analysis identified 600 RNA editing events, predominantly
characterized by C-to-T conversions. Among the 34 edited genes,
ccmB exhibited the highest editing frequency with 53 identified
sites, followed by ccmFn with 46 sites, whereas cox3 showed the
lowest editing activity with only three modified sites (Figure 6).
Positional analysis revealed distinct editing patterns: 198 events
(33.00%) occurred at second codon positions, while third positions
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TABLE 1 Gene profile of the C. medica mitogenome.

Group of genes  Gene name

ATP synthase atpl, atp4, atp6, atp8, atp9

Cytochrome ¢
yt . ccmB, cemC, ccmFce, ccmFn
biogenesis

Ubichinol cytochrome ¢

cob
reductase

Cytochrome ¢ oxidase cox1, cox2, cox3

Maturases matR

Transport membrane
ran ‘po membran mttB (x2)
protein

nadl, nad2, nad3, nad4, nad4L, nad5, nad6, nad7,

NADH dehyd:
ehydrogenase nado

Ri 11 i
ibosomal large subunit 1pl10, tpl16, rpl5

genes

Ribosomal small subunit

1, rps10, rps12, rps3, rpsd, rps7
genes rpsl, rps10, rps12, rps3, rpsd, rps.

Succinate dehydrogenase = sdh3, sdh4

Ribosomal RNAs rrnl8, rrn26 (x2), rrn5

trnA-TGC, trnC-GCA, trnD-GTC, trnE-TTC, trnF-
GAA, trnG-GCC, trnH-GTG, trnl-TAT, trnK-TTT,
trnM-CAT (x6), truN-GTT, trnP-TGG (x2), trnQ-
TTG, trnS-GCT, trnS-GGA, trnS-TGA, trnV-GAC,
trnW-CCA, trnY-GTA

Transfer RNAs

The numbers in parentheses represent the copy number of the gene.

were more susceptible, with 266 events (44.33%). These
modifications predominantly induced non-synonymous
substitutions, including: histidine (H) to tyrosine (Y), arginine (R)
to cysteine (C) or tryptophan (W), threonine (T) to isoleucine (I) or
methionine (M), serine (S) to leucine (L) or phenylalanine (F),
proline (P) to serine (S), leucine (L), or phenylalanine (F), leucine
(L) to phenylalanine (F), alanine (A) to valine (V), premature stop
codons from arginine (R) and glutamine (Q). Hydrophobicity
analysis demonstrated that 33.00% of edits enhanced protein
hydrophobicity (hydrophilic-to-hydrophobic transitions),
potentially facilitating proper protein folding. Conversely, 5.83%
introduced hydrophilic residues (hydrophobic-to-hydrophilic
shifts), while 1.67% generated termination codons. The remaining
59.50% maintained original hydrophobicity profiles
(Supplementary Table S2). Transcriptome analysis identified 114
RNA editing sites, of which 107 showed perfect concordance with
Deepred-Mt predictions (Supplementary Table S3).

3.5 Analysis of codon usage bias and
nucleotide polymorphism

We analyzed codon usage bias across 38 unique genes in the C.
medica mitogenome, revealing a conserved preference pattern in
protein-coding sequences. The start codon (AUG) and tryptophan
codon (UGG) exhibited relative synonymous codon usage (RSCU)
values of 1.0, while distinct biases were observed for other amino
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acids: alanine (Ala) showed the strongest preference for GCU
(RSCU = 1.59), followed by leucine (Leu, RSCU = 1.54), and
histidine (His) and tyrosine (Tyr) (both RSCU = 1.53). In
contrast, phenylalanine (Phe) and valine (Val) exhibited weak
codon biases, with maximum RSCU values below 1.2 (Figure 7;
Supplementary Table S4). Additionally, nucleotide diversity (Pi)
analysis of the mitogenome revealed values ranging from 0 to 0.07,
with 15 protein-coding regions (atp4, rrn26, rrnl8, rps4, nad7,
tpll6, atpl, cox2, atp8, nad4, nad5, mttB, nad2, rpsl10, and nadl)
exhibiting Pi values > 0.01, indicative of elevated polymorphism
levels (Figure 8; Supplementary Table S5).

3.6 Analysis of repetitive sequences in the
mitochondrial genome of C. medica

Our analysis identified 633 repetitive sequences within the C.
medica mitochondrial genome, comprising 386 dispersed repeats,
215 SSRs, and 32 tandem repeats (Figure 9A). Notably, two long
inverted complementary repeats (>1 kb) were detected (contigs 5
and 6 in Supplementary Figure S1), which may facilitate the
formation of two distinct substructures (Figure 9B). Among the
386 dispersed repeats (>30 bp), 200 pairs were palindromic, 184
displayed forward orientation, and two were reverse, with none
exhibiting complementary repeats (Figure 10A; Supplementary
Table S6). The palindromic repeats included exceptionally long
fragments (11,189 bp and 13,039 bp), while the longest forward
repeat spanned 296 bp; reverse repeats measured 30-31 bp.
Characterization of the 215 SSRs revealed the following
distribution: 59 monomeric (27.44%), 43 dimeric (20.00%), 40
trimeric (18.60%), 53 tetrameric (24.65%), 18 pentameric (8.37%),
and two hexameric (0.93%) (Figure 10B). Further analysis showed
that 94.92% (56/59) of monomeric SSRs were A/T-rich, while
58.14% (25/43) of dimeric SSRs contained AG/CT motifs
(Supplementary Figure S5). Additionally, 32 tandem repeats
exhibited >71% sequence identity, with lengths ranging from 5 to
40 bp and copy numbers varying from 2 to 5 (Supplementary
Table S7).

4 Discussion

The mitochondrial genome of C. medica assembled in this study
represents the first complete mitochondrial genomic resource for
this ancestral Citrus species. Our hybrid sequencing strategy, which
integrates long-read Nanopore and short-read Illumina data,
successfully reveals a mitochondrial genome size of 553,930 bp,
consistent with the expansive genome architecture typical of plant
mitochondria. Annotation of the genome revealed 65 functional
genes, including 36 PCGs, 25 tRNAs, and 4 rRNAs. This gene
repertoire aligns with the conserved patterns observed in other
angiosperm mitochondrial genomes, particularly the retention of 24
core PCGs (e.g., atpl, coxI-3, nadl-9) and convergent loss of
ribosomal protein genes (rps/rpl) across land plants (Yu et al,
2018; Shen et al., 2022; Bi et al., 2023; Li et al., 2025).

frontiersin.org


https://doi.org/10.3389/fpls.2025.1649951
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Wu et al.

10.3389/fpls.2025.1649951

maik (0.49).

PSbA (0.58)
trnH

g2 085

@o° o

photosystem |
photosystem Il
cytochrome b/f complex
ATP synthesis

NADH dehydrogenase
RubisCO larg subunit
RNA polymerase

small ribosomal protein
large ribosomal protein
clpP, matK, infA
hypothetical reading frame
transfer RNA

ribosomal RNA

other

(-0 N Bel-N-Ro) R-Nalu)-N N |

FIGURE 2

wun

- 1ps14 (0.51)
psaB (0.47)
PsaA (0,59

P g,
"I

"’?;4 (0-38)
n?'lfo.)
el 0.4
0/03‘57

e

7
]

N

E
o
g

Complete chloroplast genome map of C. medica. From the center to the outside, there are six tracks. The first track is dispersed repeats consisting
of direct (D) and palindromic (P) repeats, which are connected by red and green arcs. The second track shows long tandem repeats (short blue bars).
The third track shows short tandem repeats or microsatellite sequences (short bars with different colors). Small single-copy (SSC), inverted repeat
(IRa and IRb), and large single-copy (LSC) areas are displayed in the fourth track. The GC content of the genome is plotted on the fifth track. Shown
between the fourth and fifth tracks is the base frequency of each locus in the genome. Gene annotation is displayed in the sixth track. Genes are
color-coded according to their functional classification. The transcription directions of inner genes and outer genes are clockwise and anticlockwise,
respectively. The functional classification of genes is shown in the lower left corner.

The identification of 44 homologous fragments (totaling 41,479
bp) shared between the mitochondrial and chloroplast genomes
provides compelling evidence for bidirectional DNA transfer.
Notably, the presence of two exceptionally long homologous
segments (6,767 bp each) transferred from the chloroplast
genome highlights active inter-organellar DNA exchange. This
phenomenon is increasingly recognized as a driver of
mitochondrial genome plasticity in plants (Gandini et al, 2019;
Odahara et al,, 2024). Although these transferred fragments are
non-functional within the mitochondrial genome, they may serve as
reservoirs for evolutionary innovation through mechanisms such as
exaptation or recombination-mediated structural variation (Gong
et al., 2025). There exists a protein compensation mechanism
between semi-autonomous organelles. For example, in
Arabidopsis thaliana, AtRNHIC can substitute for the
mitochondria-localized AtRNHIB to maintain genomic stability
(Cheng et al., 2021; Duan et al., 2024). The lack of recent transfer
events in C. medica contrasts with the frequent chloroplast-derived
tRNA acquisitions noted in other Citrus species. This suggests C.
medica may employ distinct mechanisms to maintain organellar
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genome stability, potentially linked to its unique evolutionary
trajectory as a progenitor species (Huang et al., 2023).

The detection of 633 repetitive sequences, including long
inverted repeats (>11 kb), provides mechanistic insights into the
structural rearrangements and substoichiometric shifting observed
in plant mitochondrial genomes. Such repeats may facilitate
recombination events, generating subgenomic isoforms that
contribute to genomic heteroplasmy—a critical feature for
adaptive evolution in dynamic environments (Bentolila et al.,
2002; Hao et al.,, 2024; Ma et al,, 2025). The predominance of A/
T-rich monomeric SSRs (94.92%) and AG/CT dimeric motifs aligns
with the nucleotide bias typical of plant mitochondrial genomes,
which may influence replication fidelity and genome stability.

The loss of the MutS Homolog 1 (MSH1) protein in Arabidopsis
thaliana leads to an increase in abnormal recombination of
medium-length repetitive sequences enriched in A/T nucleotides
within the mitochondrial genome, coinciding with the
accumulation of single-nucleotide variants and insertion/deletion
mutations (indels). This finding underscores the sensitivity of A/T-
rich regions in maintaining replication fidelity (Zou et al.,, 2022).
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Additionally, studies have shown that the accumulation of short
repetitive sequences may be driven by slipped-strand mispairing,
particularly those enriched in AG/CT dinucleotides. The structural
properties of these sequences facilitate strand slippage during DNA
replication, leading to the formation of localized repetitive elements
that participate in the regulation of regional genomic stability

Frontiers in Plant Science

(Alverson et al, 2010; Kong et al., 2025). These findings support
the hypothesis that repetitive elements serve as hotspots for
evolutionary innovation in organellar genomes.

RNA editing in plant mitochondria primarily occurs at the first
and second positions of codons (>90%), resulting in changes to the
physicochemical properties of amino acids (e.g., increased
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Codon usage bias in C. medica mitochondrial protein-coding genes (PCGs). RSCU values are represented on the y-axis, and the codons for the

respective amino acids are represented on the x-axis.

hydrophobicity) that are necessary for the structural stability of
transmembrane proteins (Takenaka et al., 2008; Bi et al., 2023; Qin
et al, 2024). Our RNA editing analysis identified 600 C-to-T
conversion events, predominantly at the first and second codon
positions, with significant impacts on amino acid hydrophobicity.
The predominance of C-to-U conversions at second codon positions
aligns with the RNA editing landscape of angiosperm mitochondria
(Yang et al,, 2017; Edera et al,, 2021). The high editing frequency in
ccmB (53 sites) and ccmFn (46 sites) suggests stringent post-
transcriptional regulation of cytochrome ¢ maturation genes, which
are essential for maintaining electron transport chain efficiency (Faivre-
Nitschke et al,, 2001). Notably, 33% of these editing events increased
amino acid hydrophobicity, potentially aiding in the proper folding of
transmembrane proteins within oxidative phosphorylation complexes
(Takenaka et al., 2008; Qin et al,, 2024). These modifications are likely
adaptive mechanisms that fine-tune protein function under fluctuating
environmental conditions (Mower, 2009; Qin et al., 2024). Deepred-Mt
demonstrates high predictive accuracy for RNA editing motifs, yet the
quantitative discrepancy (600 predicted vs. 114 detected sites) primarily
arises from methodological constraints. We speculate that oligo(dT)-
based RNA-seq severely underrepresents non-polyadenylated
mitochondrial transcripts, yielding insufficient coverage depth (~9x).
This precludes reliable variant detection in regions below critical
thresholds (<5x coverage), masking genuine editing events despite
genomic potential. If a whole-transcriptome sequencing strategy were
employed—such as first removing rRNA followed by sequencing all
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RNAs without relying on poly(A) enrichment—it might be more ideal
for validating RNA editing results. Furthermore, RNA editing is
dynamically regulated by physiological or environmental factors—a
dimension inherently unaddressed by static sequence-based
predictions. These technical and biological limitations collectively
explain the observed disparity.

Phylogenetic reconstruction firmly positions C. medica within
the Rutaceae clade, demonstrating closer affinity to C. sinensis than
to C. maxima. This topology reinforces C. medica’s status as a
progenitor species of modern citrus hybrids, consistent with
previous studies (Wu et al., 2018; Huang et al., 2023). However,
the limited collinearity observed among the mitochondrial genomes
of Rutaceae species highlights rapid structural divergence, likely
driven by lineage-specific recombination and horizontal gene
transfer events. Elevated nucleotide diversity (Pi = 0.01) in 15
protein-coding regions, including nad” and rpsI0, highlights
regions under relaxed selection, potentially serving as molecular
markers for population-level studies.

5 Conclusion

This study establishes C. medica as a pivotal genomic resource
for understanding organelle evolution in Citrus. The structural
features of the mitochondrial genome, including chloroplast-
derived sequences and recombination-prone repeats, provide a
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framework for investigating hybridization-driven diversification in
commercially significant citrus hybrids. Moreover, the extensive
RNA editing repertoire and codon usage bias patterns present
insights into post-transcriptional regulatory mechanisms that may
underlie adaptive traits. These findings not only address a critical
gap in Citrus organelle genomics but also offer actionable data for
molecular breeding programs aimed at enhancing stress tolerance

and metabolic engineering in citrus crops.
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