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Introduction: Wheat (Triticum aestivum L.) is a major staple crop, but its
productivity is severely threatened by drought, especially during reproductive
stages when yield and quality are most vulnerable. Climate change and water
overexploitation intensify this challenge, with yield losses of up to 80% in arid
regions and projected global production declines of ~29%. Drought tolerance is a
complex trait involving physiological, biochemical, and molecular mechanisms,
including stomatal regulation, osmolyte accumulation, and activation of stress-
responsive genes. Advances in transcriptomics, functional genomics, and
genome editing have identified key regulators (DREB, ERF, SnRK2), antioxidant
enzymes, and ABA signalling components as targets for improving drought
resilience. Developing drought-tolerant wheat varieties is therefore a priority
for food security.

Materials and Methods: This study investigates transcriptomic responses in root
and leaf tissues of three wheat cultivars, Atay 85 (drought-sensitive), Gerek 79 and
Mufitbey (drought-tolerant), subjected to 4- and 8-hour shock-dehydration stress.
Before RNAseq analysis, biochemical assays were conducted to assess oxidative
damage (TBARS) and antioxidant enzyme activities under shock-dehydration stress
for three different cultivars. Differential gene expression analysis was performed,
and several highly differentially expressed genesincluding TaZFP36, TaMC5, TaGl,
TaGLP9-1, and TaFer were selected to validate RNAseq data in both root and leaf
tissues of tolerant and sensitive cultivars.

Results: Transcriptomic analysis revealed distinct metabolic strategies for
drought adaptation. Photosynthesis-related processes, including Photosystem |
and Il, were broadly downregulated, while extracellular and membrane-
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associated components were upregulated, reflecting a shift toward stress
defence mechanisms. Cultivar-specific responses highlighted diverse
adaptation strategies: Atay 85 exhibited severe metabolic suppression and ATP
depletion, making it highly vulnerable to drought. Gerek 79 conserved energy by
suppressing photosynthesis while enhancing osmoprotective sugar metabolism
and reinforcing structural integrity through lignin and flavonoid biosynthesis.
Mdufitbey demonstrated the most robust drought tolerance by integrating
metabolic dormancy, hormonal signalling, and antioxidant defence,
characterized by stable CAT activity and elevated SOD activity, which mitigated
oxidative damage and preserved photosynthetic stability. Root tissues prioritized
metabolic adjustments for oxidative stress reduction and developmental
adaptation, while leaf tissues focused on maintaining photosynthesis and
limiting protein damage. Functional enrichment analysis indicated significant
upregulation of stress-related pathways, including ABA-mediated signalling,
protein binding, and cellular metabolic processes in tolerant cultivars.

Discussion: This study advances our knowledge of the complex molecular and
biochemical responses of wheat with differing tolerance levels, highlighting both
key candidate genes and antioxidant defence mechanisms as central to cultivar-
specific adaptation strategies. The distinct metabolic strategies observed
emphasize the importance of tailored molecular mechanisms in drought
tolerance, which can guide future breeding programs aimed at improving

wheat resilience under water-limited conditions.

KEYWORDS

drought stress, Triticum aestivum L., RNAseq, metal ion binding, ABA signalling, shock-
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1 Introduction

Bread wheat, Triticum aestivum L. is one of the staple crops in
many countries. According to the Food and Agriculture Organization
of the United Nations (FAO), global wheat production was estimated at
766.5 million tons in 2020 (www.fao.org) (Food and Agriculture
Organization of the United Nations, 2024), and the requirement for
wheat is expected to rise by 60% by 2050. Drought is a major threat
to wheat, reducing grain yield, kernel weight, and end-use quality,
particularly during heading and grain filling (Zampieri et al.,, 2017; Bagci
et al,, 2007). The problem is acute in arid regions such as central and
eastern Anatolia, Turkey. Yield losses can reach up to 80% in some
years, especially in central Turkey (Turkish Statistical Institute 2024),
where groundwater resources have nearly been depleted due to the
excessive use for irrigation, further exacerbating the problem. Flowering
and grain development stages are the most drought-sensitive growth
stages, with stress at these points reducing both yield and grain protein
quality. In addition, climate change is projected to further reduce wheat
production by up to 29% (Manickavelu et al., 2012). These predictions
clearly show that the improvement of drought tolerance in wheat is of
great significance for the global food security in the near future. Genetic
studies and new approaches to improve wheat productivity under
drought conditions is an urgent priority.
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Drought stress tolerance is a complex trait that involves
physiological, biochemical, and molecular processes. Adaptation
strategies in drought-tolerant plants include reducing water loss
through increased stomatal resistance, enhancing water uptake via
larger and deeper root systems, and accumulating osmolytes such as
proline, glycine betaine, mannitol, sorbitol, trehalose, and glutamate
(Mahajan and Tuteja, 2005).

Plant responses to drought stress start with the stimulation of
signal transduction cascades. The activation of several transcription
factors and regulators initiates the induction of several molecular and
cellular mechanisms. Depending on the genetic background, the
response to drought stress varies considerably. For instance, Igbal
etal. (2019) reported distinct water stress responses in two genetically
different soybean genotypes, demonstrating the diversity of drought
adaptation strategies. Transcriptomic, proteomic, and genetic
manipulation studies have identified several key genes and enzymes
potentially involved in drought tolerance. These include transcription
factors such as Dehydration-Responsive Element Binding Factor 1
(DREBI1B) and Ethylene Responsive Factor 3 (ERF3); signalling
proteins like SNF1-Associated Protein Kinase 2 (SnRK2); enzymes
involved in ABA biosynthesis such as Zeaxanthin Epoxidase (ZEP)
and 9-cis-Epoxycarotenoid Dioxygenase (NCED); plasma membrane
intrinsic proteins (PIPs); and a suite of antioxidant enzymes
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including peroxidase (POD), glutathione reductase (GR), catalase
(CAT), superoxide dismutase (SOD), ascorbate peroxidase (APX),
dehydroascorbate reductase (DAR), and guaiacol peroxidase (GPOX)
(Alzahrani et al, 2018; Verma et al, 2020). Improved water-use
efficiency has been achieved by the knockout of TaERF3 under
drought stress (Rong et al,, 2014). Overexpression of the DREB1A
gene from Arabidopsis has led to enhanced drought tolerance in
wheat by improving osmoprotectant accumulation and reducing
water loss (Qain-Ali et al, 2021). In Arabidopsis, activation of
drought-regulated genes by AtSnRK2.8 involved in ABA signalling,
drought resistance, and plant growth demonstrated a key stress
regulatory network that improves drought resistance (Umezawa
et al, 2004). Improved plant growth and abiotic stress response
were observed in rice with the presence of sub-class I and IIT SnRK2
family members (Kulik et al., 2011).

Microarray and RNA-seq analyses have revealed numerous
genes associated with abiotic stress responses, particularly
drought stress, across diverse plant species (Liang et al., 2017; Li
et al,, 2020; Abdel-Ghany et al.,, 2020). In T. aestivum genes related
to photosystem components, carbohydrate metabolism, antioxidant
enzymes, and the tricarboxylic acid cycle have been identified as key
contributors to drought tolerance (Peremarti et al., 2014). During
reproductive stages, more than 300 differentially expressed genes
(DEGs) associated with photosynthesis, stomatal regulation, and
floral development have been reported under drought stress (Ma
et al, 2017). Key transcription factors, including WRKY, ERF,
NAC, bHLH, bZIP, HD-ZIP, as well as dehydrins, heat shock
proteins, proteinase inhibitors, and glutathione transferases,
constitute the main DEGs responsive to drought (Kulkarni et al.,
2017). Genes in the antioxidant defence system such as Fe/Mn SOD,
PER1, PER22, SPC4, CAT2, APX1, APX7, GSTU6, GST4, GOR,
GRXC1, and GRXCI15 are upregulated in response to drought
stress, mediated in part by phytohormone strigolactones (SLs)
(Song et al., 2023). Additionally, glutathione S-transferase (GST),
RAB, rubisco, helicase, and vacuolar acid invertase genes have been
linked to drought tolerance in wheat (Nezhadahmadi et al., 2013).

In Oryza. sativa, Late embryogenesis abundant (LEA) proteins
accumulate under drought, salinity, and low temperatures, playing a
crucial role in stress adaptation (Xiao et al, 2007). Expression
profile analysis determined that most of the GhLEA genes were
expressed at a higher rate in drought-resistant cotton varieties than
in sensitive ones (Magwanga et al, 2018). Similarly, the
accumulation of members of the dehydrin (DHN) family has
been linked to stress tolerance involving dehydration in several
species, including sunflower (Cellier et al., 1998), cotton
(Magwanga et al., 2018), and wheat (Lopez et al., 2003).

Bogard et al. (2021) emphasized that genotypic characteristics
related to abiotic stress tolerance should be taken into account in
the selection of suitable wheat varieties for breeding in different
regions. They developed a marker-based statistical model to predict
phenology parameters in wheat and simulated genotype-specific
stress avoidance frequencies for frost and heat stress across different
locations. The model’s predictions were validated by assessing grain
yield performance in a real trial network conducted during low frost
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and heat risk periods at each location (Bogard et al., 2021). Since the
drought stress regulation of some genes has not been completely
identified yet, our knowledge of genes involved in drought response
is still incomplete.

Recent advances in genome editing, particularly CRISPR/Cas9
technology, have enabled targeted improvement of drought
tolerance in plants (Erdogan et al., 2023). CRISPR/Cas9 has been
used to modify key genes in drought-response pathways across
various crops. For example, in wheat, TaADREB2 and TaERF3 were
edited to improve drought tolerance (Kim et al., 2018). In O. sativa,
mutations in SAPK2 and OsERF109 enhanced drought resilience by
modulating ABA signalling (Lou et al., 2017). Editing the OsDST
gene in O. sativa cultivar MTU1010 improved drought and salt
tolerance, promoting leaf retention under stress (Santosh Kumar
et al,, 2020). In tomato, knock-out of SIMAPK3 increased drought
tolerance, marked by elevated malondialdehyde, proline, and H,0,
levels, while knock-out of SINPR1 reduced drought resistance (Li
et al, 2019). In wheat, silencing Sall enhanced drought tolerance
(Abdallah et al., 2022). Similarly, in maize, editing ARGOS8 and
ZmWRKY40 improved drought resilience (Shi et al., 2017; Wang C.
T. et al.,, 2018).

This study was aimed to discover genes that are responsive to
drought stress in bread wheat (Triticum aestivum L.). Through
physiological screening, we identified wheat cultivars displaying
varying levels of sensitivity and tolerance to drought. Leveraging
RNA-Seq technology, we examined expression profiles of drought-
responsive genes within the leaves and roots of three distinct wheat
cultivars following exposure to shock dehydration stress conditions.
Our investigation unveiled a considerable number of genes
exhibiting either elevated or decreased levels of expression in both
drought-tolerant and sensitive bread wheat cultivars. Subsequently,
selected DEGs were validated using quantitative real-time
polymerase chain reaction (QRT-PCR). The insights gained from
this research have the potential to inform the development of
drought-tolerant wheat varieties, employing diverse
methodologies, including genome-editing techniques.

2 Materials and methods
2.1 Plant materials

Seeds of twelve T. aestivum cultivars, classified as drought-
tolerant or drought-sensitive, were obtained from the General
Directorate of Agricultural Research and Policies (TAGEM),
Turkey (Supplementary Table S1). The seeds were surface
sterilized (5 min with 70% EtOH and 5 min with 5%
hypochlorite) and pre-germinated in Petri dishes for 10 days on
moist filter paper at 4°C in the dark. Uniform seedlings were
transplanted into 1.5 L plastic pots filled with a turf: soil: sand
mixture (3:3:1) and grown in a controlled environment chamber at
18-20°C, 60-70% relative humidity. For each cultivar, three pots
were assigned to the control and three to the drought-
stress treatment.
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2.1.1 Drought stress treatment and selection of
cultivars for further investigations

Progressive drought stress was initiated three weeks after
transferring the seedlings to the pots and carried out by
withholding water from the stress treated pots. A regular watering
regime was carried out for the control plants every day. Soil Water
Content (SWC) measurements were taken during the stress. At the
end of the tenth day of drought treatment, Relative Water Content
(RWC) measurements were calculated for each cultivar as described
(Barrs and Weatherley, 1962). All plants were harvested at the end
of the 10™ day of drought treatment. Harvested tissues were directly
frozen in liquid nitrogen and stored at -80°C till use. For each pot,
three different measurements were taken in the afternoon for every
day. Based on the physiological data (RWC, SWC), from the three
biological replicates of each cultivar, drought-sensitive and
drought-tolerant bread wheat cultivars were identified. After
drought treatment, physiological resilience and Relative Water
Content (RWC) levels were assessed. RWC experiment showed
Gerek 79, Miifitbey, Altay, and Harmankaya-99 highly drought-
tolerant cultivars maintain high RWC levels even under drought
stress, suggesting better water retention and drought tolerance
(Supplementary Figure S1).

Our findings showed that Gerek 79 and Miifitbey maintained
higher relative water content (RWC) and exhibited strong
antioxidant enzyme responses under drought stress, indicating
resilience, whereas Atay 85 displayed significant water loss and
lower antioxidant activity, suggesting drought sensitivity These
three Turkish winter bread wheat (Triticum aestivum L.) cultivars,
officially registered by the Ministry of Agriculture and Forestry
(Gegitkusagi Agricultural Research Institute, Eskisehir), represent
contrasting drought responses. Miifitbey is classified as drought-
tolerant with stable photosynthetic activity and canopy cooling
under post-anthesis stress, while Gerek 79 serves as a widely
recognized drought-tolerant check adapted to rainfed
conditions. In contrast, Atay 85 is generally considered drought-
sensitive and is often used as a susceptible control in multi-
environment trials (Tarim Orman, 2025a; NBC Agriculture).
These physiological and biochemical differences made them
ideal candidates for RNA-seq analysis, with Gerek 79 and
Miifitbey selected as drought-tolerant and Atay 85 as drought-
sensitive for transcriptomic profiling.

2.1.2 Soil water content

The Time Domain Reflectometry (TDR) Soil Moisture System
(Spectrum Technologies, Illinois) was used for the estimation of the
mean soil moisture. During the progressive drought stress
application, soil moisture ratios were measured in pots of drought
and control plant samples for each of the 12 cultivars every day.

2.1.3 The relative water content

At the end of 10 days of drought stress, leaf tissues (the third
youngest leaf) were collected for RWC measurements. RWC
quantifications were performed as described by Barr and
Weatherley (1962). Fresh leaves (0.5 g) were cut into 1-cm- long
fragments and weighed for their fresh weight (FW), then saturated
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in water for 8 hours at 4°C and weighed for their turgid weight
(TW). Subsequently, the samples were dried in an oven at 80°C for
24 hours, and the dry weight (DW) was measured. The RWC was
calculated by using the formula (FW-DW)/(TW-DW) X 100%
(Supplementary Figure S2).

2.1.4 Shock dehydration stress

To identify more rapid changes in drought related gene
expression, a shock dehydration experiment was performed on
wheat cultivars differing in drought tolerance: the drought-
tolerant cultivars (Miifitbey and Gerek 79) and the sensitive
cultivar (Atay 85), as described by Ergen et al. (2009) with some
modifications. Seeds were surface sterilized in 70% EtOH for 5
minutes and in 30% sodium hypochlorite for 10 minutes.
Subsequently, seeds were rinsed six times with sterile distilled
water for 2 minutes and pre-germinated in Petri dishes for 10
days at 4°C in the dark. Following germination, seedlings were
transferred to 10 L plastic pots containing moistened perlite for
initial growth. Seedlings of a similar developmental stage were then
transferred to a continuously aerated % Hoagland’s solution
renewed every 3 days, and grown under controlled conditions
(16h photoperiod, temperature 22/18°C and relative humidity
60%). For shock dehydration stress, seedlings of each cultivar
were removed from hydroponic culture and placed on the
laboratory bench at room temperature for 4 or 8 hours. Control
plants remained in hydroponic culture and were harvested at the
same time points without exposure to dehydration stress (Figure 1).
Leaf and root tissues from three biological replicates of each cultivar
were analyzed under four conditions (4 hours drought, 4 hours
control, 8 hours drought, and 8 hours control), resulting in a total of
72 samples (3 genotypes x 4 conditions x 3 replicates x 2 tissues).

2.2 Determination of lipid peroxidation

Lipid peroxidation was quantified by measuring thiobarbituric
acid reactive substances (TBARS), a widely used indicator of
oxidative membrane damage under stress conditions. TBARS
levels were determined following the method of Madhava Rao
and Sresty (2000), using an extinction coefficient of 155 mM™
cm™ for calculation.

2.3 Enzyme extraction and protein
determination

To further understand the antioxidant defense strategies, the
activities of key ROS-scavenging enzymes were assessed. All
enzyme extractions were carried out at 4°C. Fresh tissue samples
(0.5 g) were ground in liquid nitrogen and homogenized in 1.5 ml of
50 mM Tris-HCI buffer (pH 7.8) containing 0.1 mM EDTA, 0.2%
(w/v) Triton X-100, 1 mM phenylmethylsulfonyl fluoride (PMSF),
and 2% (w/v) polyvinylpyrrolidone (PVP). For ascorbate
peroxidase (APX) extraction, 5 mM ascorbate was added to the
homogenization buffer. The homogenates were centrifuged at
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FIGURE 1

Shock dehydration stress induction in Gerek 79, Atay 85, and Mfitbey cultivars. (A) Seedlings at a similar developmental stage were transferred to
continuously aerated ¥> Hoagland's solution, renewed every three days, and grown under controlled conditions (16 h photoperiod, 22/18°C
temperature, and 60% relative humidity). (B) 4 hours and (C) 8 hours after removal from hydroponic culture.

14,000 x g for 30 min, and the resulting supernatants were used for
protein quantification and enzyme assays. Total soluble protein
content was determined using the Bradford method with bovine
serum albumin as a standard. All spectrophotometric
measurements were performed using a Shimadzu UV-
1600 spectrophotometer.

2.3.1 Antioxidant enzyme activity assays

Superoxide dismutase (SOD; EC 1.15.1.1): Assayed according to
Beauchamp and Fridovich (1971) by monitoring the inhibition of
nitroblue tetrazolium (NBT) photoreduction at 560 nm. One unit of
SOD activity was defined as the amount of enzyme required to
inhibit NBT reduction by 50%.

Catalase (CAT; EC 1.11.1.6): Measured as the decline in H,O,
absorbance at 240 nm (Bergmeyer, 1970). One unit corresponded to
the decomposition of 1 mmol H,O, min™.

Peroxidase (POX; EC 1.11.1.7): Assayed by monitoring guaiacol
oxidation at 465 nm (Herzog and Fahimi, 1973). One unit was
defined as the decomposition of 1 mmol H,O, min™.

Ascorbate Peroxidase (APX; EC 1.11.1.11): Determined by the
decrease in ascorbate absorbance at 290 nm (Nakano and Asada,
1981), using an extinction coefficient of 2.8 mM ™ cm™. One unit
was defined as the oxidation of 1 mmol ascorbate min™.

2.4 Isolation of total RNA

Total RNA isolation was performed from leaf and root tissues of
4- and 8-hours droughts stressed and control groups using the
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RNeasy Plant Mini kit (Qiagen, Hilden, Germany) according to the
manufacturers’ instructions. Approximately 100 mg of tissue was
ground into a fine powder using a pre-chilled mortar and pestle
with liquid nitrogen. The powdered tissue was transferred to lysis
buffer containing guanidine thiocyanate to inactivate RNases,
followed by homogenization through the kit-provided shredder
column to remove cellular debris. RNase-free DNasel (Roche
Applied Science GmbH, Germany) digestion and purification
were carried out for the elimination of the genomic DNA from
total RNA as described Cevher-Keskin et al. (2019). RNA
concentration and purity were initially determined using a
NanoDrop ND-1000 spectrophotometer (Thermo Fisher
Scientific, USA), ensuring A260/A280 ratios between 1.9 and 2.1
and A260/A230 ratios above 2.0. RNA integrity was further assessed
with an Agilent 2100 Bioanalyzer (Agilent Technologies, USA), and
only samples with an RNA Integrity Number (RIN) > 8.0 were
selected for downstream RNA-seq analysis. All samples were stored
at —80 °C until library preparation.

2.5 RNA sequencing

Leaf and root tissues from three biological replicates of each
cultivar were analyzed under four conditions (4-hours drought, 4-
hours control; 8-hours drought, and 8-hours control), resulting in a
total of 72 samples (3 genotypes x 4 conditions x 3 replicates x 2
tissues). The RNAseq library for each sample was prepared with a
1250 ng of total RNA using the TruSeq RNA Sample Preparation kit
(Ilumina) according to the manufacturer’s instructions. Paired-end
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sequencing was performed with a current next generation
sequencing instrument, HiSeq2000 (Illumina, user guide; Part#
15011190 Rev. H) using TruSeq SBS Kit v3 (cBot-HS) (Illumina,
user guide; Part#15023333 Rev. B). The prepared libraries were
enriched using 15 cycles of PCR and purified by the QIAquick PCR
purification kit (Qiagen). The Agilent 2100 Bioanalyzer was used to
control the size and purity of the samples using the Agilent High
Sensitivity DNA Kit. A total of 12 indexes were prepared for 72
samples and run-on Illumina HiSeq 2000 for 6 lanes (Pingault et al.,
2015). The enriched libraries were diluted with the elution bufter to
a final concentration of 10 nM. Sequencing was performed on each
library to generate 100-bp PE reads for transcriptome sequencing
on an Illumina High-Seq 2000 platform.

2.6 Differential gene expression analysis

The quality control was performed for the Illumina paired-end
sequencing files of each sample. FastQC Software” was used for the
detection of faulty sequences (Andrews, 2022). RNA-seq data were
trimmed using the Fastx Toolkit (http://hannonlab.cshl.edu/
fastx_toolkit, Hannon Lab, 2022). After quality control, de novo
assembly was carried out from a total of 311 GB of transcript data.
The assembly was performed as recommended by Duan et al.
(2012). The resultant data were evaluated using the software
“Trinity Assembly”, which combines three independent software
modules (Inchworm, Chrysalis and Butterfly) and 323 Mbs of
FASTA files were obtained. To remove the expected redundancy
in this assembly file, “the cd-hit-est tool” to place the contigs into
clusters was applied, so that a sequence is not represented more
than once in our reference assembly. Subsequently, the RNA-seq
data were mapped to our de novo reference genome using Bowtie
(https://bowtie-bio.sourceforge.net/index.shtml, 2022; Langmead
et al,, 2022). The resulting mapped reads were evaluated by using
the RSEM tool to obtain Fragments per Kilobase of transcript per
Million mapped reads (FPKM) data. FPKM files belonging to each
sample were subjected to pairwise comparison using the edgeR
differential expression tool, which is included in the R-
Bioconductor package (Robinson et al., 2010). Through
differential expression analysis, we pooled replicates belonging to
each condition into a single file by averaging the counting
information corresponding to each gene. As a result, comparisons
between different conditions were carried out and differentially
expressed transcripts were obtained. However, some transcripts
were not informative, as they were not annotated due to a lack of
well-annotated reference genome. In this case, the Trinotate
annotation tool (https://rnabio.org/module-07-trinotate/0007/02/
01/Trinotate) was used which uses various well referenced
methods for functional annotation including homology search for
known sequence data (NCBI-BLAST), protein domain
identification (HMMER/PFAM), protein signal prediction
(singalP/tmHMM), and comparison to currently curated
annotation databases (EMBL Uniprot eggNOG/GO Pathways
databases) have been applied. To account for multiple hypothesis
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testing, we first calculated adjusted p-values using the Benjamini-
Hochberg procedure, which controls the expected proportion of
false positives (Benjamini and Hochberg, 1995; Benjamini and
Yekutieli, 2001). These adjusted p-values were recommended as
the primary statistic for interpreting significance. Additionally,
multiple testing corrections were performed using the False
Discovery Rate (FDR) method to further control type I error,
applying a stringent threshold of FDR < 0.05 for the identification
of DEGs and enriched functional terms. In addition to this statistical
threshold, we assessed the biological relevance of the expression
change using the log, Fold Change (log,FC), which quantified both
the direction (up- or down-regulation) and the magnitude of the
transcriptional difference. A log, fold change threshold was applied to
filter genes, ensuring that only those with biologically meaningful
shifts were retained for downstream analysis. Genes exceeding the
defined cut-off, either positively or negatively, were considered
significant and included in the final dataset. The colour intensity,
based on the adjusted logarithmic scale of FC values, demonstrates
the level of significance of each term. If there was no log2FC score for
the corresponding enriched term, this was depicted as white in the
heatmap. Pathway enrichment analysis is performed by using
WebGestaltR. The terms belong to KEGG and WikiPathways.
Adjusted values indicate adjusted p-values. Negative logarithm base
10 was applied to the p-values of pathway terminologies.

2.7 Primer design for qRT-PCR

Primers were designed for the selected genes using FastPCR and
Primer 3 programs. The quality of the primers was validated by
BLASTN queries against the entire wheat EST unigene set. The
primers, wherever possible, were designed spanning an intron or
intron-intron junctions to detect any genomic DNA contamination.
All the primers were adjusted to 100-140 bp amplicon size and
55°C annealing temperature and controlled by conventional PCR
by housekeeping genes (B actin, EF-1 and EF2 primers).

2.8 cDNA synthesis and gRT-PCR

First-strand cDNA was synthesized from 1 ug of total RNA in a
20 pl reaction using MMLV reverse transcriptase (Roche High
Fidelity ¢cDNA Synthesis Kit) following the manufacturer’s
instructions. cDNA quality was verified by conventional PCR
using housekeeping gene primers (B-actin, EF1, EF2). Differential
expression analysis was performed with SYBR Green Mix (Roche
FastStart Universal SYBR Green Master) and gene-specific primers
(Supplementary Table S5) on an iQ5 System (Bio-Rad, Hercules,
USA) as described by Cevher-Keskin et al. (2011). Each reaction
was run in triplicate to ensure accuracy. Relative transcript
abundance was normalized to housekeeping genes (EF-ol and
EF-02), and fold changes were calculated using the comparative
CT (AACq) method (Schmittgen et al., 2000). Error bars represent
standard deviation across three technical replicates.
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2.9 Statistical analysis

Data from three independent biological replicates were
analyzed using one-way analysis of variance (ANOVA), or
Student’s t-test, as appropriate, to evaluate the effects of
treatments on the measured parameters. When significant
differences were observed, Tukey’s Honest Significant Difference
(HSD) post hoc test was applied for pairwise comparisons. Statistical
significance was set at p < 0.05 (*, significant) and p < 0.01 (**,
highly significant); results with p > 0.05 were considered not
significant (ns). All statistical analyses were performed using
GraphPad Prism (v. 10.5.0 for Mac; GraphPad Software). Bar
graphs for enzyme analysis were generated using Microsoft Excel
(Microsoft Corporation, Redmond, WA, USA).

3 Results

3.1 Physiological screen of wheat cultivars
reveals drought-tolerant and sensitive
genotypes

In the present study, 12 bread wheat (Triticum aestivum L.)
cultivars with diverse genetic backgrounds were initially evaluated to
determine the most promising drought stress tolerant and sensitive
cultivars under progressive drought stress (Supplementary Figure 52).

Initially, we conducted a physiological screen. Soil water content
(SWC) was monitored throughout the drought stress period. In control
plants, SWC ranged from 35% to 45%, depending on the cultivar.
Under drought conditions, SWC generally declined to 8-22%. Some
cultivars, such as Sultan, Kirgiz, and Gerek, showed a larger SWC
difference between control and drought treatments, suggesting faster
water depletion or higher water loss. In contrast, Miifitbey and
Harmankaya-99 exhibited smaller differences, indicating slower water
uptake or more efficient water conservation. Relative water content
(RWC) also decreased during the 10-day drought treatment, with Atay
85 showing the most pronounced reduction, dropping below 70%
(Supplementary Figure S2). Conversely, Gerek 79, Miifitbey, Altay, and
Harmankaya-99 maintained higher RWC levels under stress, reflecting
better water retention and drought tolerance.

To contextualize these findings, we reviewed agronomic and
historical performance data from the Ministry of Agriculture
(Gegitkusagr Agricultural Research Institute, Eskisehir, Turkey).
Miifitbey is a drought-tolerant winter cultivar, maintaining
photosynthetic function, canopy cooling, and stable PSII efficiency
(Fv/Fm) under stress (Dirik and Sakin, 2024; Tarim Orman, 2025a).
Gerek 79, widely used as a tolerant check, shows broad adaptation and
resilience to combined drought and heat stresses (Tarim Orman,
2025b). In contrast, Atay 85 is drought-sensitive, with sharp declines
in RWC, SPAD, and Fv/Fm under water deficit (NBC Agriculture).
Atay 85 performs best under irrigation, whereas Gerek 79 thrives in
drought-prone, cold regions, and Miifitbey combines winter hardiness
with drought tolerance. Based on these contrasting traits, we selected
Gerek 79 (tolerant), Miifitbey (highly tolerant), and Atay 85 (sensitive)
for further analysis.
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To capture robust transcriptional responses, we applied a shock
dehydration treatment, as acute stress elicits stronger gene
expression changes than progressive drought. Seedlings at a
similar developmental stage were grown in aerated 2 Hoagland’s
solution (renewed every three days) under controlled conditions (16
h photoperiod, 22/18 °C, 60% RH) (Figure 1A). They were then
removed and subjected to 4 and 8 hours of shock dehydration
(Figure 1B, C). Leaf and root tissues were immediately frozen in
liquid nitrogen, stored at —80 °C, and used for RNA-seq.

3.2 Drought-tolerant and sensitive wheat
cultivars exhibit contrasting antioxidant
responses

Lipid peroxidation (TBARS assay) used as an indicator of
oxidative membrane damage under drought stress. To elucidate
antioxidant defense strategies, we analyzed the activities of key
ROS-scavenging enzymes: superoxide dismutase (SOD), catalase
(CAT), peroxidase (POX), and ascorbate peroxidase (APX). SOD
catalyzes the dismutation of superoxide radicals, protecting
photosynthetic pigments and stabilizing PSII under stress (Rao
et al., 2025). CAT complements this by decomposing hydrogen
peroxide into water and oxygen, maintaining redox balance
(Calderon et al, 2018). Together with POX and APX, these
enzymes form a coordinated antioxidant network mitigating
drought-induced oxidative stress.

TBARS levels varied significantly among genotypes and time
points (Figure 2). Atay 85 showed a sharp increase at 8 hours
(AD8), indicating severe oxidative damage. Gerek 79 exhibited the
highest TBARS accumulation at GD8, while Miifitbey maintained
consistently low levels, suggesting superior oxidative stress
tolerance. SOD activity displayed tissue- and genotype-specific
patterns (Figure 3A). Atay 85 roots showed strong induction at 4
hours and remained high at 8 hours, with leaves following a similar
trend. Gerek 79 roots increased at 4 hours, but leaves showed
marked suppression under drought. Miifitbey maintained stable
SOD activity in both tissues, with only minor fluctuations. CAT
responses were highly genotype-dependent (Figure 3B). Atay 85
roots exhibited the strongest induction, peaking at AD8 (>9 units
mg™ protein), whereas Gerek 79 roots declined steadily under
stress. Miifitbey showed moderate root responses. In leaves, Atay
85 activity decreased under stress, while Gerek 79 and Miifitbey
increased, with Mifitbey reaching the highest levels at 8 hours. POX
activity highlighted contrasting strategies (Figure 3C). Atay 85 roots
showed delayed induction, while Gerek 79 roots peaked at 4 h
before declining. In leaves, Miifitbey exhibited a rapid and strong
POX increase (~135% at 4 h), whereas Atay 85 decreased,
suggesting reliance on alternative antioxidant systems. APX
responses were also genotype-specific (Figure 3D). Atay 85
strongly upregulated APX in both roots and leaves, particularly at
8 h (+84.8%), indicating a robust ascorbate-glutathione cycle.
Conversely, Gerek 79 and Miifitbey roots showed significant
reductions, and Miifitbey leaves declined at 8 hours, suggesting
limited APX contribution under prolonged stress.
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FIGURE 2

The TBARS contents in the leaves of the three wheat genotypes showed significant variation in response to drought stress and exposure time.
Drought stress induced genotype-dependent increases in TBARS contents. The highest accumulation was observed in Gerek 79 at 8 h (GD8),
followed by Atay 85 (AD8), while MUfitbey showed comparatively stable and lower levels, indicating greater tolerance to oxidative damage. Values
represent means + SE (n = 3). Statistical significance was assessed using one-way analysis of variance (ANOVA) to evaluate the effects of treatments
on the measured parameters. When significant differences were observed, Tukey's Honest Significant Difference (HSD) post hoc test was applied for
pairwise comparisons. Statistical significance was set at p < 0.05 (*significant) and p < 0.01 (**highly significant); results with p > 0.05 were

considered not significant.

3.3 Differential gene expression profiles
reveal divergence of drought response
strategies

RNA-seq was performed on root and leaf tissues of the selected
cultivars, Atay 85, Gerek 79, and Miifitbey, subjected to 4- or 8-hour
shock dehydration or maintained under control conditions to assess
transcript-level differences (Figure 4A, B). To further explore cultivar-
and tissue-specific responses, Gene Ontology (GO) enrichment
analysis was conducted on differentially expressed genes (DEGs).
Significant DEGs were categorized into biological processes,
molecular functions, and cellular components (Figures 5-8;
Supplementary Figures S3-58), enabling comparisons of conserved
and unique drought-response mechanisms among cultivars.

The distribution of gene expression levels was more variable in leaf
tissues than in roots. In Atay 85 roots under 8-hour drought stress (p <
0.01), upregulated genes were enriched in categories related to ion
transport, including GO:0015078~hydrogen ion transmembrane
transporter activity, GO:0015077~monovalent inorganic cation
transmembrane transporter activity, and GO:0022890~inorganic
cation transmembrane transporter activity. In contrast, the tolerant
cultivar Miifitbey showed enrichment in biosynthetic and energy-
related processes, such as GO:0034404~nucleobase, nucleoside, and
nucleotide biosynthetic process, GO:0034654~nucleic acid biosynthetic
process, GO:0016469~proton-transporting two-sector ATPase
complex, GO:0045259~proton-transporting ATP synthase complex,
and GO:0044271~nitrogen compound biosynthetic process. In Gerek
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79, leaves under 8-hour drought stress, upregulated genes were
associated with GO:0005506~iron ion binding,
GO0:0046906~tetrapyrrole binding, and GO:0009767~photosynthetic
electron transport chain (Figures 4, 6-8).

At 4 hours of drought stress (Figure 5A), 37 genes were
commonly regulated across all three cultivars. Miifitbey had the
highest number of unique genes (8), followed by Atay 85 (7) and
Gerek 79 (3). Pairwise overlaps included 5 shared genes between
Atay 85 and Gerek 79, 3 between Atay 85 and Miifitbey, and 3
between Gerek 79 and Miifitbey. At 8 hours of drought stress
(Figure 5B), the number of shared genes across all cultivars
decreased to 15, indicating more divergent responses over time.
Atay 85 had 9 unique genes, Gerek 79 had 10, and Miifitbey had 2.
Pairwise overlaps included 3 genes between Atay 85 and Gerek 79, 4
between Gerek 79 and Miifitbey, while Atay 85 and Miifitbey shared
none. Unique DEGs for sensitive and tolerant cultivars are listed in
Supplementary Tables S1 and S2.

3.3.1 Distinct transcriptomic strategies drive
drought adaptation in wheat cultivars

We then investigated the cultivar-specific responses to drought
stress in leaf and root tissues. Atay 85 (drought-sensitive) exhibited
severe metabolic suppression, marked by strong activation of stress-
response pathways, ABA signalling, and carbohydrate metabolism,
alongside significant downregulation of photosynthesis and energy
production—indicating an inability to maintain energy balance.
Gerek 79 (moderately tolerant) showed a more balanced response,
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FIGURE 3

Antioxidant enzyme activities in roots and leaves of wheat genotypes under drought stress. (A) Superoxide dismutase (SOD), (B) Catalase (CAT),
(C) Peroxidase (POX), and (D) Ascorbate peroxidase (APX) activities were measured in roots (left panels) and leaves (right panels) of three wheat
genotypes (Atay 85, Gerek 79, Mulfitbey) subjected to drought stress for 4 h (D4) and 8 h (D8), along with corresponding controls (C4, C8). Values

represent means + SE (n =

3). Statistical significance was assessed using one-way analysis of variance (ANOVA) to evaluate the effects of treatments

on the measured parameters. When significant differences were observed, Tukey's Honest Significant Difference (HSD) post hoc test was applied for

pairwise comparisons. Statistical significance was set at p < 0.05 (*significant) and p < 0.01 (**highly significant); results with p > 0.05 were
considered not significant.
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Differentially expressed genes (DEGs) in leaf (A) and root (B) tissues of drought-tolerant (Gerek 79, Mufitbey) and drought-sensitive (Atay 85) cultivars
under 4- and 8-hour drought stress, compared to untreated controls. Red and blue indicate higher and lower expression values, respectively.
Cultivars are color-coded as Atay 85 (green), Gerek 79 (grey), and Mufitbey (pink). Significant DEGs were identified at FDR < 0.05. Genes marked with

an asterisk (*) represent wheat DEGs as designated in the UniProt database.

with moderate defense activation and limited suppression of ATP
biosynthesis, sustaining partial metabolic activity under stress. In
contrast, Miifitbey (highly tolerant) maintained energy production,
enhanced carbohydrate metabolism, and activated structural
reinforcement and antioxidant pathways, ensuring superior
drought resilience (Figure 6A).

Root transcriptomes also reflected these differences (Figure 6B).
Stress-responsive pathways, including “response to stress” and

MBey

FIGURE 5

Gerek

“ABA-mediated signalling,” were strongly upregulated across
cultivars, while energy production processes such as oxidative
phosphorylation and electron transport were downregulated. Atay
85 showed the sharpest decline in ATP biosynthesis, whereas Gerek
79 maintained moderate energy output and reinforced root
structure via lignin and flavonoid biosynthesis. Miifitbey
demonstrated the most effective strategy, preserving energy
homeostasis and activating antioxidant defenses, enabling better

Atay

Venn diagrams of differentially expressed genes (DEGs) in leaf (A) and root (B) tissues. The diagrams display significant DEGs for each cultivar at an
FDR threshold of < 0.05. Atay 85 is represented in dark green, Gerek 79 in orange, and Mufitbey in light green.
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root survival under drought. These findings highlight distinct
molecular mechanisms underlying drought tolerance, with
Miifitbey integrating metabolic stability and stress defense
most effectively.

3.3.2 Drought stress drives divergent cellular and
metabolic reprogramming in wheat cultivars

Analysis of Differentially Expressed Genes showed that drought
stress triggers distinct transcriptional and metabolic adjustments in
wheat cultivars with varying tolerance levels. As shown in
Figure 7A, genes associated with extracellular regions (cell wall,
apoplast) and the nucleus are strongly upregulated, reflecting
structural reinforcement and stress signalling. Conversely,
photosynthesis-related components, including Photosystem I,
Photosystem II, and chloroplast-associated proteins, are markedly
downregulated—a common drought adaptation strategy to
minimize energy-demanding processes.

Cultivar-specific responses reveal contrasting survival
mechanisms. Atay 85 (drought-sensitive) exhibits severe
metabolic suppression, compromising energy production and
increasing vulnerability. Gerek 79 (moderately tolerant) maintains
a balance between stress responses and energy metabolism, enabling
moderate resilience. In contrast, Miifitbey (highly tolerant) sustains
robust energy production and stress defense, conferring superior
drought tolerance in both leaves and roots (Figure 7A, B).

Further analysis (Figure 7B) highlights differential regulation of
cellular structures, including the plasma membrane, extracellular
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matrix, nucleus, and chloroplast. Mitochondrial components such
as the respiratory chain and ATP synthase complex display mixed
regulation, indicating cultivar-specific metabolic adjustments.
Interestingly, Atay 85 reinforces root structure while maintaining
basal metabolism, Gerek 79 prioritizes membrane transport and
moderate energy conservation, whereas Miifitbey downregulates
mitochondrial and photosynthetic activity, possibly invoking
dormancy-like mechanisms for survival. These results highlight
how genetic and metabolic diversity drives differential drought
adaptation strategies among wheat cultivars.

3.3.3 Wheat cultivars employ distinct functional
strategies for drought survival

Wheat cultivars adopt contrasting functional strategies to
withstand drought, ranging from osmoprotection to metabolic
dormancy. These strategies reflect cultivar-specific genetic
programs that balance energy conservation, water retention,
oxidative stress mitigation, and long-term survival, with
implications for drought resilience and recovery (Figure 8A, B).

Tolerant cultivars exhibit coordinated leaf-level adjustments
that complement root signalling to preserve photosynthetic
integrity (Figure 8A). Genes encoding PSII core proteins (psbA,
psbD), light-harvesting complexes (LHCBs), and RuBisCO activase
are maintained or upregulated, safeguarding photochemistry and
carbon assimilation. ABA signalling in guard cells (PYR/PYL-
SnRK2) ensures timely stomatal closure, reducing water loss while
preventing photoinhibition via regulated non-photochemical
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under 4- and 8-hour drought stress compared to control conditions. Red and blue indicate higher and lower expression values, respectively.
Cultivars are color-coded as Atay 85 (green), Gerek 79 (grey), and MUfitbey (pink). Significant DEGs were identified at FDR < 0.05.
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quenching. Aquaporins sustain mesophyll hydration despite
reduced stomatal conductance. Antioxidant systems, supported by
the ascorbate-glutathione cycle, maintain low ROS levels, while
osmoprotectants stabilize proteins and membranes. Structural
reinforcements through cell wall remodeling, lignin deposition,
and cuticular wax biosynthesis delay senescence and maintain
tissue integrity. These adjustments preserve photosynthetic
efficiency (®PSII, Fv'/Fm’), water-use efficiency, and chlorophyll
content, enabling rapid post-drought recovery. In contrast, the
sensitive cultivar Atay 85 shows sharp downregulation of
photosynthetic genes, leading to early PSII damage and reduced
CO, fixation. ABA-mediated stomatal control is inefficient, causing
excessive transpiration followed by severe dehydration. Weak
antioxidant defenses and osmolyte production result in ROS
accumulation, lipid peroxidation, and chlorophyll degradation.
Structural maintenance pathways are underrepresented,
accelerating leaf curling, rolling, and senescence. Consequently,
photosynthetic and hydraulic decline is rapid, and recovery is
poor (Figure 8A).

Root transcriptomes reveal cultivar-specific metabolic
reprogramming under drought (Figure 8B). Tolerant genotypes
activate gene modules sustaining water and ion homeostasis.
Aquaporins (PIP, TIP) and cell wall-modifying enzymes
(expansins, XTHs) enhance root hydraulic conductivity, while
ABA biosynthesis genes (NCEDs) and signalling components
(PYR/PYL-SnRK2) ensure precise shoot-root communication.
Ethylene production is moderated, possibly via ACC deaminase
pathways, favoring continued root growth. Ion transporters (SOSI,
NHX1, HKT-like) and K" retention systems maintain ionic balance,
while osmoprotectant biosynthesis (proline, trehalose, raffinose
family oligosaccharides) preserves turgor. Strong antioxidant
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capacity (SOD, APX, CAT, GR, GSTs) mitigates ROS
accumulation, protecting meristematic integrity. Conversely, Atay
85 exhibits weak induction of aquaporins and wall-modifying
genes, reducing root hydraulic conductivity. Erratic ABA-
ethylene regulation impairs root growth and signalling to leaves.
Ion homeostasis collapses due to poor Na® exclusion and K"
retention, while limited osmolyte and antioxidant production
predispose roots to oxidative injury. These deficiencies trigger
early hydraulic failure, amplifying stress signals to the shoot.

Cultivar-specific drought survival strategies: Figure 8A, B
illustrate contrasting drought tolerance mechanisms among
wheat cultivars:

Atay 85 (sensitive) maintains moderate photosynthesis and
reinforces structural components (cell wall, apoplast) while
relying on rapid ROS detoxification and transcriptional
regulation. However, weak root hydraulics, limited osmolyte
production, and poor root-shoot coordination lead to oxidative
damage, impaired photosynthesis, and accelerated senescence
under prolonged stress. Gerek 79 (moderately tolerant) adopts an
energy-conservative strategy, suppressing photosynthesis while
enhancing osmotic adjustment via sugar metabolism (notably
fructans). Root responses include strong induction of aquaporins
(PIP, TIP), cell wall remodeling enzymes (expansins, XTHs), ABA
biosynthesis and signalling (NCEDs, PYR/PYL-SnRK2), ion
transporters (SOS1, NHX1, HKT-like), osmoprotectant synthesis,
and antioxidant systems. These traits sustain root hydraulics, ion
homeostasis, and oxidative balance, ensuring effective root-shoot
signalling. Miifitbey (highly tolerant) employs a dormancy-like
strategy, shutting down photosynthesis and mitochondrial activity
while activating hormonal signalling and protein stabilization
pathways for long-term survival. Root responses mirror Gerek 79
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Cultivars are color-coded as Atay 85 (green), Gerek 79 (grey), and Mufitbey (pink). Significant DEGs were identified at FDR < 0.05.

but with stronger hormonal regulation, maximizing drought
endurance at the cost of slower post-stress recovery.

These strategies involve trade-offs, as Miifitbey’s dormancy ensures
survival during prolonged drought but delays recovery, potentially
affecting harvest timing, Gerek 79’s osmoprotective balance supports
moderate yields under intermittent drought and Atay 85’s limited
tolerance risks severe yield loss under water deficits, emphasizing the
need for targeted cultivar selection in water-limited environments.
Tolerance in Gerek 79 and Miifitbey is driven by early activation of
root hydraulics, ion transport, and hormonal signalling, synchronized
with leaf-level protective programs whereas in Atay 85, poor root-
shoot coordination amplifies stress effects, accelerating functional
decline. This tissue-resolved framework identifies key genetic and
physiological nodes for breeding drought-resilient wheat.

3.4 KEGG pathway enrichment analysis

Pathway enrichment analysis of significantly differentially
expressed genes revealed tissue-specific drought responses (Figure 9).

In roots, enrichment of secondary metabolite biosynthesis and
phenylpropanoid pathways suggests enhanced production of
protective compounds (e.g., flavonoids, lignin) that reinforce root
structure and improve drought tolerance. Glutathione metabolism
plays a central role in detoxifying drought-induced reactive oxygen
species (ROS), while nucleotide and purine metabolism supports
DNA/RNA synthesis and energy balance, ensuring root growth and
repair under stress. Interestingly, pathways linked to seed
development were also upregulated, possibly reflecting a survival
mechanism to secure future reproduction. In leaves, enrichment of
porphyrin metabolism indicates an effort to sustain chlorophyll
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synthesis and maintain photosynthetic activity despite water deficit.
Activation of ubiquitin-mediated proteolysis facilitates protein
turnover by removing damaged proteins and recycling amino
acids—an essential adaptive mechanism during stress. Similar to
roots, glutathione and phenylpropanoid pathways in leaves
contribute to ROS scavenging and structural reinforcement,
protecting cellular integrity. Together, roots and leaves exhibit
activation of secondary metabolite biosynthesis, highlighting a
broad stress-adaptive strategy. However, roots prioritize metabolic
adjustments for growth maintenance, oxidative stress reduction,
and developmental adaptation, whereas leaves focus on preserving
photosynthesis, regulating protein turnover, and maintaining
cellular homeostasis under drought.

3.5 qRT-PCR validation of differentially
expressed genes under drought stress

To validate the RNA-seq results, twelve drought-responsive genes
identified from the DEG analysis were selected for expression profiling
using qQRT-PCR. Although fold-change values differed between RNA-
seq and qRT-PCR, the overall expression trends were consistent,
confirming the reliability of the RNA-seq data.

The selected genes represent key stress-related pathways,
including cell wall remodeling, oxidative stress response, hormone
signalling, and metabolic regulation. These include:

TaPME42 (pectinesterase/pectinesterase inhibitor 42), TaExLP
(extensin-like protein), TaGLP9-1 (germin-like protein 9-1),
TaZFP36 (CCCH-type zinc finger protein 36), TaMC5 (metacaspase-
5), TaPGM (phosphoglycerate/bisphosphoglycerate mutase),
TaPP2CA (protein phosphatase 2C), TaGI (GIGANTEA),
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upregulated and downregulated genes in leaf (green) and root (brown) tissues, based on adjusted values. The x-axis shows the adjusted values,
indicating the significance of enrichment for each pathway. The y-axis lists different biological pathways enriched in the two tissues.

TaRBP45B (RNA-binding protein), TaFER (ferritin), TaADT
(arogenate dehydratase 5), and TaFBW2 (F-box protein). Expression
was assessed in root and leaf tissues of drought-stressed and control
plants. gRT-PCR validation confirmed differential expression of genes
under drought stress (Figures 10-12).

TaZFP36 (zinc finger protein) was strongly induced in roots
and leaves of the tolerant cultivar Miifitbey, but not in Atay 85.
TaFER (ferritin) increased in leaves of both cultivars, peaking at 8
hours (Supplementary Figure S9). TaPME42 (pectinesterase) was
consistently upregulated in roots and leaves of both cultivars.
TaExLP (extensin-like protein) showed strong induction in roots
of both cultivars but cultivar-specific patterns in leaves, higher in
Atay 85 at 4 hours, reduced in Miifitbey.

TaGLP9-1 (germin-like protein) was upregulated in roots of both
cultivars, but only Miifitbey showed increased expression in leaves. In
defense responses, TaMC5 (metacaspase-5) was induced in roots of
Miifitbey but unchanged in Atay 85. TaADT-5 (arogenate dehydratase)
increased in leaves of both cultivars at 4 hours, with an eight-fold rise in
Miifitbey at 8 hours, while Atay 85 declined (Supplementary Figure
S10). TaPGM (Phosphoglycerate mutase) increased in roots of Atay 85
at both time points and in leaves of Miifitbey at 4 hours. TaPP2CA was
significantly upregulated in roots and leaves of both cultivars, peaking at
4 hours in most tissues. Finally, TaGI (GIGANTEA) decreased in
Miifitbey leaves at 8 hours but increased in Atay 85 at 4 hours.
TaRBP45B (RNA-binding protein) was induced in roots of both
cultivars and transiently in leaves at 4 hours. TaFBW2 (F-box
protein) showed cultivar-specific induction, suggesting a role in
ubiquitin-mediated proteolysis and stress signalling.

4 Discussion

Drought stress severely impacts plant growth and can
significantly reduce wheat yields, especially in cultivated areas. To
better understand the mechanisms of drought response in
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hexaploid wheat, it is essential to study gene expression patterns
in both tolerant and sensitive genotypes. Although several studies
have explored comparative transcriptome responses to drought in
various crop species, the specific molecular mechanisms in Triticum
aestivum cultivars with differing tolerance levels—tolerant, mildly
tolerant, and sensitive—remain underexplored.

In this study, we investigated drought-responsive gene expression
in three T. aestivum cultivars: drought-tolerant (Miifitbey), mildly
tolerant (Gerek 79), and drought-sensitive (Atay 85). Since gene
expression changes are more pronounced under acute water
deficiency than under progressive drought, we applied a shock
drought stress model, as previously described (Ergen et al., 2009).

Genotype-specific antioxidant patterns reveal divergent ROS
management strategies under drought stress.

Drought stress triggered pronounced, genotype- and tissue-
specific changes in antioxidant enzyme activities, highlighting
distinct adaptive mechanisms in Atay 85, Gerek 79, and Miifitbey.
Superoxide dismutase (SOD), which catalyzes the dismutation of
superoxide radicals (O,¢") into hydrogen peroxide (H,O,), showed
differential activity patterns. In tolerant genotypes, SOD activity
increased under stress, facilitating continuous conversion of
superoxide radicals and placing greater demand on downstream
scavengers such as peroxidase (POX), ascorbate peroxidase (APX),
and catalase (CAT) to maintain ROS homeostasis (Devi et al., 2012;
Sallam et al., 2019).

Integrated analysis of antioxidant enzyme activities (SOD, POX,
APX, CAT) alongside TBARS accumulation revealed genotype-
dependent drought responses. Miifitbey maintained a coordinated
antioxidant profile, with moderate increases in SOD, POX, and
CAT in leaves and stable APX activity, resulting in the lowest
TBARS levels. This suggests efficient ROS detoxification and
supports its classification as the most drought-tolerant genotype
(Haouari et al., 2013). Gerek 79 exhibited organ-specific responses:
while root CAT and APX activities were suppressed, leaf SOD,
POX, and CAT were strongly induced. However, this activation did
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FIGURE 10

Expression patterns of Zinc finger CCCH domain-containing protein 36 (TaZFP36), pectinesterase/pectinesterase inhibitor 42 (TaPME42), and
Extensin-like protein (TaExLP) genes in 4- and 8-hour drought-stressed root and leaf tissues. (A, C, E) Drought- tolerant Mufitbey); (B, D, F)
Drought-sensitive Atay 85 cultivar. LCtrl, Leaf Control; LD, Leaf Drought; RCtrl, Root Control; RD, Root Drought. Error bars correspond to the
standard error of the means. Statistical significance was determined using a t-test, with p < 0.05 represented by a single asterisk (*) and p < 0.01 by
double asterisks (**), indicating significant differences in expression between the control and drought groups.

not prevent a significant rise in TBARS, particularly at 8 h, induction of CAT and APX in roots and elevated APX in leaves,
indicating oxidative damage. These findings position Gerek 79 as  indicating an active enzymatic response. Nevertheless, high TBARS
moderately tolerant, capable of partial defense but susceptible to  accumulation in leaves suggests that its antioxidant defenses were
lipid peroxidation under prolonged stress. Atay 85 showed strong  insufficient to fully mitigate oxidative injury (Chakraborty and
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FIGURE 11

Expression patterns of Germin-like protein 9-1 (TaGLP 9-1), Metacaspase-5 (TaMC5), and Phosphoglycerate/bisphosphoglycerate mutase (TaPGM)
genes in 4- and 8-hour drought-stressed root and leaf tissues. (A, C, E) Drought- tolerant Mufitbey; (B, D, F) Drought-sensitive Atay 85 cultivar.
LCtrl, Leaf Control; LD, Leaf Drought; RCtrl, Root Control; RD, Root Drought. Error bars correspond to the standard error of the means. Statistical
significance was determined using a t-test, with p < 0.05 represented by a single asterisk (*) and p < 0.01 by double asterisks (**), indicating
significant differences in expression between the control and drought groups.

Pradhan, 2012). Thus, Atay 85 can be considered moderately  resilience, and Atay 85 reduced efficiency in balancing antioxidant
sensitive, with robust but suboptimal protective responses. activity and oxidative damage.

Overall, these results highlight genotype-specific strategies: Role of transcription factors and gene expression patterns in
Miifitbey shows superior tolerance, Gerek 79 intermediate  drought tolerance.
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Expression pattern of Serine/threonine protein phosphatase 2A (TaPP2CA), GIGANTEA (TaGl), and Polyadenylate-binding protein (TaRBP45B) in root
and leaf tissues under 4- and 8-hour drought-stress. (A, C, E) Drought- tolerant Mifitbey; (B, D, F) Drought-sensitive Atay 85 cultivar. LCtrl, Leaf
Control; LD, Leaf Drought; RCtrl, Root Control; RD, Root Drought. Error bars correspond to the standard error of the means. Statistical significance
was determined using a t-test, with p < 0.05 represented by a single asterisk (*) and p < 0.01 by double asterisks (**), indicating significant
differences in expression between the control and drought groups.

Our findings revealed distinct physiological and molecular
responses in both root and leaf tissues, with observable variations
between the 4- and 8-hour time points and among the three
cultivars. These responses also differed notably from those
observed in their respective control groups.
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In leaf tissues, a consistent trend of decreased gene expression
was observed for cellular processes such as protein refolding and
metabolic pathways like photorespiration as drought stress duration
increased (8 hours) across all three cultivars. Comparative
transcriptome profiling provided valuable insights into the
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complexity of drought stress responses at the molecular level.
Analysis of RNA-seq data indicated that metabolic processes
related to gene expression were predominantly activated in
response to both 4- and 8-hour drought stress.

Furthermore, the drought-tolerant cultivars (Miifitbey and
Gerek 79) exhibited increased expression levels of genes
associated with protein binding, metabolic processes, and cellular
functions, suggesting a greater adaptive capacity to drought stress
compared to the sensitive cultivar Atay 85. Similar findings have
been reported in Cucumis sativus L. under drought stress, where
significant increases in gene expression were observed, particularly
in metabolic processes, membrane-related functions, and catalytic
activity (Wang C. T. et al,, 2018).

Transcription factors (TFs) are key regulators of stress
responses and are frequently targeted as candidate genes for
improving stress tolerance (Moumeni et al, 2011). By binding
directly to the promoters of target genes in a sequence-specific
manner, TFs modulate the activation or repression of downstream
genes in response to environmental stimuli (Ciarmiello et al., 2014).
Therefore, identifying and characterizing stress-responsive TFs is
essential for advancing molecular breeding strategies aimed at
enhancing drought tolerance.

In our study, the sensitive cultivar exhibited over 25
differentially expressed TFs in leaf tissues under both 4- and 8-
hour drought stress, but only four TFs were identified in root
tissues. In contrast, the tolerant cultivar showed more than 80 TF
transcripts in both leaves and roots after 4 hours of drought stress,
with this number decreasing to 18 after 8 hours. These findings
underscore the role of TFs in drought tolerance and suggest that
multiple TF families contribute to the underlying resistance
mechanisms. This is consistent with studies in other crops such
as Hordeum vulgare, where TFs like HYWRKY12 and HvDRF1
have been implicated in mediating drought stress responses (Giirel
et al., 2016).

Metabolic and Energy Pathway Responses to Drought Stress
in Tolerant and Sensitive Wheat Cultivars:

Under 8-hour drought stress, leaf tissues exhibited decreased
expression of genes involved in hydrogen peroxide catabolism,
photorespiration, glycolysis, and photosystem II stabilization. This
suggests a decline in photosynthetic efficiency and overall metabolic
activity, likely due to stress-induced cellular damage. In contrast,
the upregulation of genes related to carbohydrate metabolism,
defence responses, and glucan metabolism in both leaf and root
tissues under 4- and 8-hour drought stress indicates an adaptive
strategy aimed at maintaining cellular energy balance and
enhancing stress resilience.

In the drought-sensitive cultivar Atay 85, root tissues under 8-
hour drought stress showed reduced expression of genes associated
with oxidative phosphorylation, aerobic respiration, ATP hydrolysis
and synthesis, and the electron transport chain (ETC). This points
to a disruption in energy production, potentially impairing root
functionality and increasing susceptibility to drought
stress (Figure 5A).

Cultivar-specific expression patterns in leaf tissues further
illustrate these differences. Atay 85 undergoes a near-complete
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shutdown of energy production under drought conditions,
rendering it highly vulnerable. Gerek 79 (moderately tolerant)
maintains partial metabolic activity while managing stress,
whereas Miifitbey (highly tolerant) sustains a balanced response
between energy production and stress adaptation, making it the
most drought-resilient cultivar.

A similar trend was observed in root tissues. Miifitbey showed
upregulation of genes involved in defence responses and secondary
metabolite biosynthesis, including lignin, flavonoid, and
phospholipid pathways. This indicates activation of structural
reinforcement and antioxidant mechanisms, contributing to
improved root survival and overall plant resilience (Figure 5A, B).

These findings underscore Miifitbey’s superior drought
tolerance, achieved through efficient energy management and
activation of protective pathways in both leaf and root tissues.

4.1 Metal ion binding plays a role in
drought response

Our study revealed drought-induced upregulation of metal ion-
binding genes in both leaf and root tissues of T. aestivum, including
those involved in heme, 2Fe-2S cluster, and zinc, iron, and copper
binding. Proteins such as AtTZF1-3 are known to regulate plant
growth and stress responses (Wang et al., 2008).

In Arabidopsis, 11 CCCH-type TZFs with plant-specific motifs
were identified (Wang et al., 2008; Pomeranz et al., 2010). AtTZF1-
6 and AtTZF9 are involved in ABA signaling, seed germination, and
PAMP-triggered immunity, and localize to stress granules and
processing bodies, influencing post-transcriptional and epigenetic
regulation (Anderson and Kedersha, 2009). Gain-of-function
AtTZF1 lines show enhanced drought and cold tolerance via
ABA/GA modulation (Lin et al., 2011).

In wheat, 269 TaZFPs exhibit stress-responsive cis-elements
and tissue-specific expression, suggesting roles in growth and
abiotic stress adaptation (Wu et al., 2022). Notably, TaZFP36 was
significantly upregulated in both tissues of drought-tolerant
cultivars, but not in the sensitive cultivar Atay 85, indicating its
potential role in drought tolerance, consistent with AtTZF1 studies.

We also observed regulation of TaFER, a ferritin gene involved
in iron storage and oxidative stress response (Wu et al., 2022).
Ferritin accumulation in chloroplasts is triggered by various
stressors including ozone, ethylene, and iron overload (Fobis-
Loisy et al., 1995; Van Wuytswinkel and Briat, 1995; Murgia
et al, 2002). Our qRT-PCR results showed differential TaFER
expression in leaf tissues of tolerant and sensitive cultivars,

highlighting its role in iron regulation and drought adaptation.

4.2 Cell wall proteins clearly play a role in
drought response

Differential gene expression analysis under drought stress

revealed several cell wall-related genes, including Beta-galactosidase
1, Glucose-6-phosphate/phosphate-translocator, TaExLP4, TaExLP6,
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TaGLP9-1, and lignin biosynthesis genes. Three were selected for
further analysis due to elevated expression: TaPME49, TaExLP, and
TaGLP9-1 (Supplementary Table S3).

TaPME49, involved in pectin demethylesterification, affecting
cell wall plasticity (Kohli et al., 2015) showed increased in drought-
stressed leaf tissues of both tolerant and sensitive cultivars, but
decreased in roots, indicating tissue-specific regulation (Al-Qsous
et al., 2004; Micheli, 2001). TaExLP, a hydroxyproline-rich
glycoprotein (HRGP) involved in development and stress
responses (Kurepa and Smalle, 2023) was strongly induced in
roots at 4 hours, with higher early expression in sensitive
cultivars. Its suppression in tolerant ones suggests a role in early
stress signaling rather than long-term adaptation. TaGLP9-1, a
Germin-like proteins contribute to ROS-mediated defence and are
associated with abiotic stress responses (Christensen et al., 2004;
Cevher-Keskin et al., 2019), was upregulated in drought-tolerant
leaf tissues, supporting its role in resistance, consistent with
proteomic data (Faghani et al., 2015).

4.3 Defence response proteins in drought
stress

ABA regulates drought responses and interacts with salicylic acid
(SA) pathways to modulate defence against pathogens (Gupta et al.,
2020; Cao et al,, 2011) with defence-related genes, including TaADT5
and TaMC5, were upregulated in drought-stressed leaf tissues.
TaADTS5, a key enzyme in lignin biosynthesis and possibly
anthocyanin production (Corea et al, 2012a; Corea et al., 2012b;
Muhammad et al., 2023) showed increased expression in tolerant
cultivars suggests a role in drought resilience. Related genes ADT1
and ADT3 also contribute to anthocyanin synthesis under stress
(Chen et al,, 2016). TaMCS5, a metacaspase involved in programmed
cell death (PCD) and defence (Uren et al., 2000; Valandro et al., 2020)
was elevated in 8-hour drought-stressed root and leaf tissues of
Miifitbey, indicating its role in drought tolerance via PCD regulation.

4.4 Drought stress activates carbohydrate
degradation-related genes

Phosphoglycerate/Bisphosphoglycerate Mutase (PGM) is a key
enzyme in the glycolysis pathway, catalyzing the transfer of
phosphate groups among the three carbon atoms of
phosphoglycerate. PGM also dephosphorylates and activates
Actin-Depolymerizing Factor 1 (ADF1), a protein that governs
the re-modelling of the actin cytoskeleton which is essential for
maintaining cell structure and intracellular transport under stress
conditions (Oslund et al., 2017).

In our study, TaPGM expression significantly increased in the
roots of the drought-sensitive cultivar Atay 85 after 8 hours of stress
(Figure 9E, F). In contrast, the tolerant cultivar showed early
induction in leaf tissue at 4 hours, with no notable change at 8
hours (Figure 7E, F). This suggests a dual role for TaPGM in

Frontiers in Plant Science

19

10.3389/fpls.2025.1649378

drought response: late root-specific induction in sensitive plants
may reflect a delayed compensatory mechanism, while early leaf
expression in tolerant plants indicates a proactive adaptation
strategy. Overall, TaPGM expression timing and tissue specificity
appear to be key factors in drought tolerance in T. aestivum.

4.5 Involvement of ABA-related genes in
drought stress

Protein Phosphatase 2A (PP2A), a serine/threonine phosphatase,
plays diverse roles in biotic and abiotic stress responses (Pais et al.,
2009). It negatively regulates ABA signaling and influences ABA-
dependent gene expression and light-mediated nitrate reductase
activation (Chen et al.,, 2015; Creighton et al., 2017).

In rice (Oryza sativa), all five catalytic subunit genes (OsPP2A-
1-5) are upregulated under salinity stress (Yu et al., 2003). Similarly,
salt stress elevates StPP2Acl-3 transcripts in potato leaves, and
okadaic acid inhibition confirms PP2A’s positive role in stress
regulation (Pais et al., 2009). In wheat, TaPP2Ac-1 accumulates
under water deficit, and its overexpression in tobacco enhances
drought tolerance (Xu et al, 2007). In Arabidopsis, PP2A-C5
overexpression activates chloride channels (AtCLCa, AtCLCc),
improving ion sequestration and tolerance to salt and drought
(Hu et al., 2017; Balasubramanian et al., 2022).

In our study, TaPP2CA expression was significantly
upregulated in both leaf and root tissues of tolerant and sensitive
cultivars after 4 and 8 hours of drought stress (Figure 12A, B). This
early and sustained induction suggests a key role in drought
perception and ABA-mediated signalling.

4.6 Regulation of photoperiodism in
drought stress

Prolonged drought (8 hours) led to downregulation of genes
involved in photosynthesis, light harvesting, photosystem I
stabilization, and photorespiration in both tolerant and sensitive
cultivars, indicating reduced photosynthetic activity due to stress-
induced damage and energy conservation.

One key regulator is GIGANTEA (GI), a multifunctional protein
involved in circadian rhythm, photoperiodism, phytochrome B
signaling, and flowering (Krahmer et al., 2018). GI is modulated by
environmental cues such as cold, hydrogen peroxide, blue light, and
karrikin (Waters et al.,, 2014; Krahmer et al,, 2018), and stabilizes
ADO3 and ADO1/ZTL, regulating CONSTANS (CO) in the long-
day flowering pathway. GI also enhances salinity tolerance via SOS2
interaction and induces EARLY FLOWERING (ELF) under drought
(Kim et al,, 2013; Riboni et al., 2013). Mutations in GI improve
oxidative and freezing stress tolerance through CDF upregulation
(Fornara et al,, 2015). GI also promotes the “Drought Escape” (DE)
response, accelerating flowering under drought (Bader et al., 2023).

In our study, TaGI expression was reduced in 8-hour drought-
stressed leaf tissues of the tolerant cultivar Miifitbey (Figure 12C,
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D), supporting its negative role in drought tolerance, consistent
with GI knockout studies.

RNA-Binding Protein RBP45B, part of the hnRNP family, binds
poly(A) tails and is involved in mRNA maturation and translation
initiation. RBPs are widely upregulated under abiotic stress (salt,
drought, heat, cold, ozone, hypoxia, flooding), highlighting their
role in stress tolerance (Yan et al., 2022). TaRBP45B was induced in
drought-stressed root tissues at both time points, with cultivar-
specific expression in leaves (Figure 12E, F), suggesting a positive
role in drought adaptation.

The three wheat cultivars examined in this study exhibit distinct
physiological and molecular responses to drought stress. Atay 85,
the drought-sensitive cultivar, shows pronounced metabolic
suppression and a decline in ATP production. This is
accompanied by poor coordination between root and leaf
responses, resulting in oxidative damage and premature
senescence. In contrast, Gerek 79, which displays moderate
tolerance, manages to conserve energy while activating
osmoprotective mechanisms and reinforcing structural
components. Miifitbey, the highly tolerant cultivar, maintains
metabolic stability and initiates robust hormonal and antioxidant
responses. It appears to adopt a dormancy-like strategy, allowing it
to endure prolonged drought conditions more effectively.

Across all cultivars, photosynthesis-related genes are generally
downregulated under drought stress, while genes associated with
stress responses and structural integrity are upregulated.
Mitochondrial activity varies among cultivars, reflecting species-
specific metabolic adjustments. These findings highlight the diverse
drought adaptation strategies employed by wheat and point to
potential genetic targets for breeding more resilient cultivars.

This study identifies candidate drought-responsive genes in
wheat (e.g., TaZFP36, TaFER, TaPP2CA, TaGI, TaRBP45B) and
highlights cultivar-specific strategies of tolerance. These genes
provide targets for functional validation and genome editing to
improve drought resilience. They also represent potential molecular
markers that could be incorporated into breeding programs for
selecting drought-tolerant genotypes. Integrating transcriptomic
insights with breeding tools could support sustainable wheat
production under water-limited conditions.
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