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Grasspea is a nutrient-rich food legume crop known for its resilience in the
challenging agro-ecosystems. However, information is scanty regarding the
recommendation of grasspea genotypes with respect to their suitability for
both general and specific adaptations. The primary goal of the study was to
delineate stable grasspea genotypes by nullifying the influence of intricate
interactions among multiple traits with the environment. Additionally, the study
aimed to identify suitable locations within diverse agro-climatic zones in India for
future evaluation while also validating and predicting results using machine
learning algorithms. From several hundred genotypes developed and tested in
station trials at Amlaha, India, a panel of 64 diverse promising grasspea genotypes
was identified, and their performance was subsequently assessed through
multilocation testing at four diverse locations in India during 2021-2022 using
the GGE biplot approach. Mean selection index of each genotype was
enumerated considering multi-trait performance for better elucidation of
genotype and environment ranking as well as selection of the mega-
environment. The findings revealed that the environment was the primary
contributor to variation across all studied traits, followed by genotype X
environment interactions as the second most influential factor. Genotypes
such as FLRP-B54-1-S2, Prateek, 31-GP-F3-S7, 31-GP-F3-S4, FLRP-B38-S5,
48-GP-F3-S3, and BANG-288-S2 were identified as good performers with
promising multi-trait performance. Experimental results were validated using
multiple performance metrics, with the Random Forest (RF) model of machine
learning demonstrating superior predictive accuracy compared to the multilayer
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perceptron (MLP) model. Regression coefficient (R?) values ranged between
0.558 and 0.947, depending on the output variables. In conclusion, “Prateek,”
"31-GP-F3-S7," and "48-GP-F3-S3" emerged as the most stable genotypes when
considering their combined yield-trait performance. These genotypes can be
recommended for widespread commercial cultivation in regions where grasspea
cultivation faces challenges of weather extremities.
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Introduction

Grasspea (Lathyrus sativus L.) is a highly adaptable and
nutrient-dense cool season food legume crop, cultivated globally
in resource-poor dry areas (Mahapatra et al., 2020). Its resilience to
varying climates makes it a valuable component for sustainable
agriculture and food security in the face of changing climatic
conditions (Banerjee et al., 2022; Barpete et al., 2024). This food
legume holds significant importance due to its diverse applications
in human food, animal feed, and ecosystem management as an
input rational crop with an ability to maintain soil health through
biological nitrogen fixation. Grasspea is renowned for its high seed
protein content (17.7%-49.3%), which boasts an excellent amino
acid balance (19.69-23.48 g in 100 g of seed) (Rizvi et al., 20165
Sharma et al.,, 2022). Notably, the presence of valuable
nutraceuticals, such as L-homoarginine, further enhances its
nutritional value (Lambein, 2000; Das et al., 2021).

Grasspea is cultivated in rainfed dry regions of Southeast Asia,
including India, as well as the Mediterranean, Middle East, and
parts of Southern Europe, which are prone to weather whiplashes
like the concomitant occurrence of drought and waterlogging
(Barpete et al., 2023). The current total area under grasspea
cultivation is approximately 0.70 million ha, with a production
potential of 0.79 million tons along an average productivity of 1,130
kg per ha (Kumar et al,, 2021), The plausible reason behind the
decline in area under grasspea cultivation includes the stigma of
neurotoxin B-N-oxalyl-L-o,f-diaminopropionic acid (3-ODAP),
indeterminate growth habit, and the challenge of maintaining
varietal purity due to frequent cross-pollination (Parihar et al,
2022; Tripathi et al,, 2022). Identification of early maturing and
stable grasspea genotypes that can harmonize optimum vegetative
and reproductive growth while maximizing biomass and yield is the
most seminal crop breeding property. Lack of comprehensive
studies on assessing grasspea genotypes across different locations
has created a pressing need to gain a deeper understanding of
cultivar behavior under diverse agro-climatic conditions.

Comparing diverse genotypes in multiple environments is a
crucial approach that provides vital information for the selection
and recommendation of crop cultivars tailored to specific locations
(Das et al., 2019; 2020). The performance of a genotype concerning
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quantitative traits is determined by genotypic main effect (G),
environmental main effect (E), and genotype x environment
interaction (GEI) (Yan et al., 2007). This GEI can lead to
differential genotype ranking across environments based on the
key traits’ performance, which may often mislead the selection
process and further recommendation due to unfavorable traits’
association (Chatterjee et al., 2023). These challenges can be
addressed through two strategies, viz., independent culling and
enumeration of selection indices, both of which have been
considered for the ranking and selection of genotypes (Yan and
Fregeau-Reid, 2018).

Over the decade, GGE biplots have gained widespread
acceptance for ensuring precise identification of ideal test
environments along with successful recommendation of
genotypes for general and specific areas of adaptation in
numerous crops including grasspea (Sayar and Han, 2015;
Chatterjee et al., 2019). Nevertheless, in earlier studies, the
ranking of grasspea genotypes was focused solely on single trait
performance, rather than considering the evaluation of multiple
traits in accordance with the breeding objectives and specific
requirements of the target environment.

Machine learning (ML)-based algorithms are increasingly
recognized for their effectiveness in estimating, validating,
predicting, and optimizing output variables in relation to input
data (Hamdia et al, 2021; Soltis et al., 2020). Unlike traditional
methods, ML models do not require strict assumptions on data
distribution, sample size, or variance homogeneity, making them
highly robust and flexible to complex datasets (Hair et al., 2019).
Recent studies highlight ML applications in high-throughput
phenotyping, yield estimation, and plant counting (Nogueira
et al, 2023; Ninomiya, 2022; Barbosa et al., 2020). Additionally,
deep learning and image analysis have further enhanced data
interpretation, extracting valuable insights from high-dimensional
sources (Najafabadi et al, 2015). Artificial intelligence (AI) is
revolutionizing crop production practices by integrating weather,
soil, and crop data to improve yield predictions and precision
farming (Aasim et al, 2023). It also aids in understanding and
preserving genetic diversity, identifying beneficial traits, and
supporting efficient breeding programs (Tripodi et al., 2022;
Barpete et al,, 2025). Despite progress, AI/ML applications in
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agronomic traits remain limited (Song and Ying, 2015; Almeida
et al,, 2021; Khanal et al., 2024) due to the complexity of biological
systems in diverse environments. However, single or hybrid AI/ML
models have shown promising results in predicting plant biomass,
nutrient levels, chlorophyll content, and water availability,
contributing to more efficient agricultural practices (Osco et al,
2019; 2020; Teodoro et al., 2024).

However, despite the recognition of grasspea’s resilience and
nutritional potential, little is known about its genotype x
environment dynamics when considering multiple traits together
rather than single-trait evaluations. Previous studies have not
integrated the GGE biplot (Sayar and Han, 2015; Chatterjee et al.,
2019) with modern ML approaches for multi-trait stability analysis
in grasspea. This study aims to fill this gap by explicitly testing the
hypothesis that combining the GGE biplot and ML models will
improve the identification of climate-suitable genotypes and
optimal testing locations in India. Therefore, the present
investigation integrates three objectives: (i) to identify the stable
grasspea genotypes by nullifying the effect of complex association of
multiple traits; (ii) to find the best locations among the tested zones
for future testing of grasspea genotypes; and (iii) to validate and
predict results with the aid of decision tree-based Random Forest
(RF) and neural network-based multilayer perceptron (MLP)
models with six different performance metrics.

Materials and methods

Grasspea genotypes and multilocational
testing

From the preliminary screening with 450 single plant progeny
lines during the 2020-2021 season, a diverse panel of 64 promising
grasspea genotypes were selected for further evaluation of the
different agro-climatic zones in India. These sets of genotypes
consist of advanced breeding lines and selections of Nepal,
Bangladesh, and Indian origin along with two popular checks
(Mahateora and Prateek) of Indian origin (Supplementary
Table S1).

The sample size of 64 genotypes was selected to balance genetic
diversity and manageability of field evaluation, ensuring sufficient
statistical power (>80%) to detect GEIs based on prior variance
component estimates in similar legume trials.

Grasspea genotypes were grown over four different locations of
varied agro-climatic zones in India during the winter season of
2021-2022. The testing locations represent four major grasspea-
growing agro-climatic zones in India (Figure 1). The Central
Plateau was represented by the International Center for
Agricultural Research in the Dry Areas (ICARDA), Food Legume
Research Platform (FLRP), Amlaha, Madhya Pradesh (henceforth
L1 [latitude of 23°71" N; longitude of 76°54" E and 508 m above
mean sea level (amsl)]) while the Indira Gandi Krishi
Viswavidyalaya (IGKV), Raipur, Chhattisgarh [henceforth L2 (21°
13’ N latitude; 81°41" E longitude with 285 m amsl)] testing location
falls under the Eastern Plateau region. The Gangetic Alluvial Zone
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was represented by a research farm under the guidance of Bidhan
Chandra Krishi Viswavidyalaya, Mohanpur, West Bengal
[henceforth L3 (latitude of 22°99" N; longitude of 88°42" E and 11
m amsl)], while the research farm of Central Agricultural
University, Imphal, Manipur [henceforth L4 (latitude of 24°49" N;
longitude of 93°57’ E and 790 m amsl)] falls under the North Hill
Zone of India. The weather data with respect to maximum and
minimum temperature (°C) as well as % of relative humidity for
each testing location during the crop season starting from sowing to
harvest are depicted in Figure 2. At each testing location, grasspea
genotypes were planted during the second fortnight of November
following an Alpha lattice (8 x 8) design with two replications
maintaining a proper plant geometry of 4 m row length with a 30-
cm spacing between rows, having a plot size of 4.8 m” Standard
agronomic practices were followed across all locations to raise good
crops. Data were collected and recorded using standardized
protocols/procedure for days to maturity while biological and
seed yield data were recorded at physiological maturity from the
whole plot and were expressed in tons per ha and kg per ha,
respectively, using the plot size as a factor.

Data analysis and computation of the GGE
biplot

Analysis of variance (ANOVA) was computed to reveal the
effects of G, E, and GE across the testing locations. The mean
significant difference within genotypes and testing locations was
calculated using the LSD test at a probability level of p = 0.05. The
relatedness of the genotypes and testing locations was represented
through hierarchical clustering following the Ward method. In the
present study, the Base Linear Phenotypic Selection Index (BLPST)
was enumerated considering the genetic correlation matrix of three
important key traits (days to maturity, biological yield, and seed
yield) necessary for varietal recommendation of grasspea genotypes.
The calculated BLPSI value was plotted as a variable in the GGE
biplot to aid in selection regarding the ranking and
recommendation of the genotypes as per their general and
specific areas of adaptation.

In the GGE biplot model, the main genotypic effect and the GE
effects in different test environments were taken into consideration,
while the environmental factor was nullified in the evaluation of
genotypes (Yan et al., 2000). The biplot was formulated considering
the first two principal components (PCs) derived from the singular
value decomposition (SVD) of the mean SI. The SVD process
decomposed the GGE biplot into eigenvalues of G, SI, and
singular values (Yan et al., 2007).

N
Yy = W+e+ > A, Yindn + 8
n=1

Y;; = yield of the ith grasspea genotypes (i = 1, ..., I) in the jth
test environments (j =1, ..., J)

¢ = grand mean

ej = environment deviations from the grand mean

Ay = the eigen value of PC analysis axis
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The current dataset was not subjected to scaling to construct an
environment-centered GGE biplot (Yan and Tinker, 2006). The
evaluation of genotypes was conducted using genotype-focused
singular value partitioning (SVP = 1), while for the testing
location evaluation, environment-focused SVP (SVP = 2) was
applied (Yan, 2001). The “Average Environment Coordination”
(AEC) view of the GGE biplot was created, enabling comparisons of
genotypes based on mean SI integrated with stability
across environments within a mega-environment (ME), following
the approach introduced by Yan (2002). Concomitantly, to
assess the test environments, the “discriminating power vs.
representativeness” view of the GGE biplot was constructed. The
ideal test environment should possess the ability to effectively
discriminate among genotypes while also being representative of
the ME (Yan et al., 2007). Furthermore, the “which-won-where”
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view of the GGE biplot was created to facilitate the detection of the
superiority of genotypes across the test environments followed by
grouping test environments into different MEs based on their

performance (Yan and Rajcan, 2002).

Machine learning application

In this study, decision tree-based RF models and artificial neural
network-based MLP were utilized for the validation and prediction
of different agronomic traits. Both models were chosen for their
versatility in handling regression and classification tasks, providing
robust predictive capabilities (Hesami et al., 2019; Everingham et al.,
2016). RF is a decision tree model that trained multiple trees
simultaneously and uses bagging, also known as bootstrap
aggregation, for trained trees and showing the final outcome
(Pavlov 2019). The fundamental idea behind the RF model is

presented in Equation 1.
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n

¥ = 305 — k(s ) + b (1)
=
y = observed value of the data point, n = number of samples.
MLP is a feedforward neural network model with three
completely interconnected multiple layers of processing nodes in
a feedforward manner. Backpropagation is used to train the data
until Equation 2 is lowered to update the error-related weights and
biases (Katirci et al., 2021).

E—1 S 7.)° 2
—fg(ﬂ—)’k (2)

Y = observed value of data point k, k = number of samples.

The leave-one-out cross-validation (LOO-CV) technique that is
used for cross-validation was employed in this study (Webb et al,
2011). In LOO-CV, number of folds and instances of data are equal,
and learning algorithm is applied to each instance individually. In
this way, while using the chosen instance as the single-item test set,
all other instances are set as a training set. To find the optimal
hyperparameters and building the best model, a grid search
approach was used. The open-source Python programming
language (Van Rossum and Drake 2009) was employed for
coding with the aid of the sklearn library (Pedregosa et al., 2011).
The performance of both models was evaluated by using six
performance metrics Equations 3-8, providing insights into their
effectiveness and suitability for different applications.

In regression-based ML analysis, regression of coefficient (R) is
the mainstay and exhibits the performance of the model by
computing the proportion of variation in the dependent variable.
Its value ranges from 0 to 1, and a value close to 1.0 reflects the
stronger predictive accuracy of the model.
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The root mean square error (RMSE) calculates the prediction
errors, and low error scores demonstrate better accuracy of the

model.

MSE =

The average difference between predicted and observed values is
measured by the mean absolute error (MAE), and low scores
present better accuracy and performance of the model.

1.
MAE=—3,

i=1

Y, - ?i] (5)

The mean absolute percentage error (MAPE) is the prediction
error given in percentage. A high MAPE score reflects a high error
and shows the model’s poor performance.

1. Y__?.
MAPE = — 3| —=——

nici i

x 100 (6)

The mean squared logarithmic error (MSLE) is the logarithmic
scale of errors and is suitable for datasets with exponential
relationships.

12 ~
MSLE = = (log (Y; + 1) - log (Y + 1))’ )
niz

The median absolute error (MedAE) is based on the median of
absolute differences by reducing the effect of outliers in error
evaluation.
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MedAE = median(|Y, - Y, Y, -Y,|) (8)

3eees

Y; = measured value; Y; = predicted value; Y = measured value’s
mean; n = count of samples.

Results
Significance of multilocational trial

ANOVA showcasing the relative contribution of each source of
variation to the total variations is presented in Table 1. The
ANOVA results indicated that the effects of genotype (G),
environment (E), and their interaction (GE) were all found to be
statistically significant for all the traits under investigation.
Concerning the relative contribution of various components of
variation, it was observed that environment has the highest
contribution followed by the GE for all the traits under study.
The highest contribution of environment was observed for
biological yield (86.02%), whereas the contribution of GE was
maximum in seed yield (14.98%). The contribution of genotype
exhibited the highest effect on seed yield followed by
biological yield.

Mean performance and descriptive
statistics of the grasspea genotypes over
the locations

The mean performance of the tested grasspea genotypes
considering their maturity, biological yield, and seed yield along
with the mean BLPSI is presented in Table 2. Across all locations,
FLRP-B54-1-S2 was the early maturity genotype (115 days) with the
highest seed yield (1,740.25 kg/ha) potential. The check variety
Mahateora matured early along with other six grasspea lines
(BANG-147-S3, BANG-234-S1, IGC-2012-4/6-23, BANG-15-S1,
IGC-2012-70/1-5, and IGC-2012-31/2-1), although all the
genotypes exhibited non-significant differences with each other.

10.3389/fpls.2025.1647903

Among the locations, genotypes matured early at L2 (106 days) and
late in L3 (131 days). Genotypic variance (ng) varied between 2.09
(L3) and 6.24 (L4) for the days to maturity trait. Biological yield was
significantly highest in genotype 23-GP-F3-S2 (10.51 t/ha) followed
by IGC-2012-76/5-14 (9.94 t/ha). Genotypes exhibited the highest
biological yield in L2 (11.78 t/ha), which was approximately 52%
higher than the average biological yield of the genotypes over the
locations. In contrast, L4 (Imphal) exhibited the lowest biological
yield (6.09 t/ha), which was approximately 26% lower than the
average biological yield of the tested grasspea genotypes over the
locations. For this trait, genotypic variance ranged from 0.28 (L1) to
7.45 (L4).

Among the check varieties, Prateek recorded the second highest
yield (1,684 kg/ha), while maturing within 118 days over the
locations. However, non-significant differences were observed
between the three promising grasspea genotypes (FLRP-B54-1-S2
> Prateek > 31-GP-F3-S7) concerning yield. All these three
genotypes exhibited moderate biological yield ranging from 7.23
to 7.59 t/ha. Among the locations, the highest yield was obtained in
L1 (2,000.71 kg/ha), while it was the lowest in L4 (818.25 kg/ha)
with a significant difference in the expression of yield potential. The
highest genotypic variance as well as GEI was observed for this trait.
In the present study, perusal of the data contemplating mean BLPSI
reflected that FLRP-B54-1-S2 was detected with having the highest
mean BLPSI (1,848.02) among all the tested grasspea genotypes,
making it the top-performing genotype considering multi-trait
performance. Additionally, Prateek (1,794.34), 31-GP-F3-S7
(1,733.64), 31-GP-F3-S4 (1,727.31), and FLRP-B38-S5 (1,724.99)
were also ascertained as good performers considering the mean
BLPSI. Among the locations, the highest mean BLPSI was observed
in L1 (2,122.22) followed by L3 (1,250.16) with the lowest at L4
(950.01). In L1 (Amlaha), FLRP-B54-1-S2, Prateek, and 31-GP-F3-
S7 combined early maturity with high seed yield (>1,600 kg/ha). L2
(Raipur) favored 31-GP-F3-54, IGC-2012-31/2-44, and 23-GP-F3-
S2, which recorded the highest biomass (>9 t/ha). In L3
(Mohanpur), FLRP-B38-S5 and BANG-288-S2 showed a stable
seed yield performance (>1,500 kg/ha), while in L4 (Imphal),
IGC-2012-67/13-25 exhibited good adaptability with a superior

TABLE 1 Analysis of variance for maturity, biological yield, and seed yield of grasspea genotypes tested across the locations.

Sources of variation

Degrees of freedom

Mean sum of square % contribution

Environment 3 13,223.81 <0.001 82.41
Days to maturity Genotype 63 794.30 <0.001 4.95
Environment x Genotype 189 2,028.26 <0.001 12.64
Environment 3 814.64 <0.001 86.02
Biomass Genotype 63 55.59 <0.001 5.87
Environment x Genotype 189 76.80 <0.001 8.11
Environment 3 28,142,885.31 <0.001 78.34
Seed yield Genotype 63 2,399,725.22 <0.001 6.68
Environment x Genotype 189 5,381,419.73 <0.001 14.98

**p < 0.01; **p < 0.001.
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TABLE 2 Mean performance of the grasspea genotypes across the locations.

Genotype Genotype/

Status  country of  Days to Biological Mean selection
code Environment origin maturity yield (t/ha) index (BLPSI)

Based on genotype

Gl BANG-113-S5 Germplasm Bangladesh 118 6.75 1,153.49 1,264.74

G2 32-GP-F3-S2 Germplasm Nepal 118 7.84 1,424.25 1,534.04

G3 BANG-147-S3 Germplasm Bangladesh 117 6.59 1,195.74 1,305.90

G4 32-GP-F3-S5 Germplasm Nepal 120 7.1 1,469.45 1,582.23

G5 BANG-188-54 Germplasm Bangladesh 119 7.13 1,154.06 1,266.06

G6 39-GP-F3-S2 Germplasm Nepal 121 8.34 1,341.17 1,453.58

G7 BANG-277-S1 Germplasm Bangladesh 119 7.68 1,395.31 1,507.01

G8 40-GP-F3-S3 Germplasm Nepal 120 8.2 1,320.93 1,432.48

G9 BANG-233-S1 Germplasm Bangladesh 120 8.09 1,289.89 1,401.55
G10 FLRP-B38-S5 b::;’:;igle ICARDA 119 6.74 1,613.23 1,724.99
G11 40-GP-F3-S6 Germplasm Nepal 119 6.71 1,302.11 1,414.53
G12 BANG-234-S1 Germplasm Bangladesh 117 6.46 1,153.26 1,263.80
G13 FLRP-B54-1-S2 . ::S;?:;;ie ICARDA 115 7.23 1,740.25 1,848.02
G14 48-GP-F3-S3 Germplasm Nepal 119 7.74 1,519.10 1,630.49
Gl15 BANG-271-S2 Germplasm Bangladesh 119 8.03 1,286.40 1,397.50
Gl6 21-GP-F3-S5 Germplasm Nepal 120 7.07 1,064.53 1,177.71
G17 48-GP-F3-510 Germplasm Nepal 119 7.53 1,450.54 1,562.01
G18 BANG-288-S2 Germplasm Bangladesh 119 9.26 1,503.74 1,612.98
G19 23-GP-F3-S1 Germplasm Nepal 119 7.3 1,174.82 1,286.40
G20 48-GP-F3-S15 Germplasm Nepal 120 8.64 1,488.27 1,599.13
G21 BANG-307-S2 Germplasm Bangladesh 118 7.19 1,382.04 1,493.10
G22 23-GP-F3-S2 Germplasm Nepal 119 10.51 1,213.38 1,321.87
G23 74-GP-F3-S1 Germplasm Nepal 118 6.82 1,091.02 1,203.45
G24 BANG-307-S3 Germplasm Bangladesh 119 7.41 1,269.14 1,380.73
G25 23-GP-F3-S5 Germplasm Nepal 119 8.57 1,224.43 1,334.86
G26 74-GP-F3-S5 Germplasm Nepal 119 7.19 1,035.71 1,148.52
G27 BANG-27-S2 Germplasm Bangladesh 119 6.67 1,156.34 1,268.30
G28 25-GP-F3-S3 Germplasm Nepal 120 9.81 1,285.19 1,395.13
G29 BANG-31-S6 Germplasm Bangladesh 119 6.76 1,255.60 1,367.97
G30 31-GP-F3-S2 Germplasm Nepal 118 7.76 1,222.84 1,333.08
G31 BANG-15-S1 Germplasm Bangladesh 117 7.37 1,062.22 1,173.10
G32 31-GP-F3-54 Germplasm Nepal 120 9.16 1,616.97 1,727.31
G33 31-GP-F3-S7 Germplasm Nepal 121 7.54 1,620.68 1,733.64
G34 1GC-2012-70/1-8 Advanced ICARDA 119 6.65 915.09 1,028.82

breeding line

(Continued)
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TABLE 2 Continued

Genotype Genotype/

Status Country of Days to Biological Mean selection
code Environment origin maturity yield (t/ha) index (BLPSI)

Based on genotype

G35 1GC-2012-31/2-37 Advanced ICARDA 119 8.13 907.65 1,021.40
breeding line

Advanced

G36 1GC-2012-6/3-36 ance ICARDA 118 8.24 1,057.88 1,167.89
breeding line
A
G37 1GC-2012-78/4-19 dvanced ICARDA 120 8.69 1,080.97 1,193.41
breeding line
Advanced
G38 1GC-2012-76/5-42 vance ICARDA 120 7.44 1,072.42 1,186.36

breeding line

Advanced

G39 1GC-2012-4/6-50 ance ICARDA 119 6.67 1,122.80 1235.38
breeding line
A
G40 1GC-2012-2/8-8 dvanced ICARDA 121 7.95 1,399.11 1,511.66
breeding line
Advanced
G4l 1GC-2012-74/10-7 vanee ICARDA 119 7.26 122234 1,333.71
breeding line
Advanced
G42 1GC-2012-88/11-50 vanee ICARDA 118 7.82 1,138.27 1,250.58
breeding line
Advanced
G43 1GC-2012-24/12-43 vance ICARDA 118 6.98 924.70 1,037.72
breeding line
A
Ga4 1GC-2012-31/2-1 dvanced ICARDA 117 7.75 75832 871.70
breeding line
A
G45 1GC-2012-6/3-42 dvanced ICARDA 119 7.86 1,046.71 1,159.48
breeding line
Advanced
G46 1GC-2012-78/4-5 vance ICARDA 118 7.37 905.93 1,020.31
breeding line
G47 1GC-2012-76/5-14 Advanced ICARDA 121 9.94 1,154.18 1,265.12
breeding line
Ad d
G48 1GC-2012-4/6-8 vanee ICARDA 119 7.04 1,148.55 1,260.64
breeding line
Advanced
G49 1GC-2012-74/10-41 vanee ICARDA 119 7.93 1,154.61 1,265.81
breeding line
Advanced
G50 1GC-2012-24/12-26 vanee ICARDA 119 7.86 1,034.07 1,146.34
breeding line
Advanced
Gs1 1GC-2012-70/1-5 vance ICARDA 117 7.51 979.95 1,090.82
breeding line
Ad d
G52 1GC-2012-6/3-39 vance ICARDA 119 9.69 1,299.26 1,408.57

breeding line

Advanced

G53 1GC-2012-31/2-44 ance ICARDA 118 9.91 1,315.60 1,423.57
breeding line
Advanced
G54 1GC-2012-6/3-47 vanee ICARDA 118 7.11 961.53 1,073.80
breeding line
Advanced
G55 1GC-2012-4/6-23 vance ICARDA 117 7.36 1,061.78 1,174.67

breeding line

G56 1GC-2012-14/7-44 Advanced ICARDA 119 8.86 1,396.80 1,506.57
breeding line

(Continued)
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TABLE 2 Continued

Genotype

Genotype/
Environment

Country of

NEWH o
origin

code

10.3389/fpls.2025.1647903

Mean selection
index (BLPSI)

Days to
maturity

Biological
yield (t/ha)

Based on genotype

Advanced
G57 1GC-2012-2/8-35 vance ICARDA 118 5.7 1,376.27 1,488.20
breeding line
A
G58 1GC-2012-73/9-5 dvanced ICARDA 119 8.01 1,329.43 1,440.42
breeding line
Ad
G59 1GC-2012-74/10-1 vanced ICARDA 121 8.17 1,193.07 1,306.15
breeding line
Advanced
G60 1GC-2012-6/3-43 vance ICARDA 118 7.02 1,254.02 1,365.38
breeding line
Advanced
G61 1GC-2012-24/12-24 vance ICARDA 118 7.68 868.99 983.69
breeding line
Advanced
G62 1GC-2012-67/13-25 vance ICARDA 119 7.76 127861 1,391.98
breeding line
Released
G63 Mahateora clease India 117 6.65 1,440.39 1,550.37
variety
Released
G64 Prateek clease India 118 7.79 1,684.00 1,794.34
variety
Based on locations
L1 FLRP, Amlaha 115 6.19 2,000.71
12 IGKV, Raipur 106 11.78 1,003.36
L3 BCKV, Mohanpur 131 6.81 1,112.64
L4 CAU, Imphal 126 6.09 818.25
LSD (5%) 6.32 0.55 283.3
cv 53 14.86 13.56
o’ 0.92 0.66 16,536.58
Gen x Loc
, 439 2.78 95,370.46
variance

yield. Overall, FLRP-B54-1-S2, Prateek, 31-GP-F3-S7, and 48-GP-
F3-S3 consistently ranked highest across most environments, with
seed yield advantages of 8%-15% over the trial mean (Table 2;
Figure 3). In the present dataset, it was observed that in L1, out of 64
genotypes, 26 genotypes matured within 105-106 days while 3
genotypes matured beyond 120 days (Figure 3). Interestingly, in L2,
maximum genotypic classes were observed and seven genotypes
matured within 102 days. In L3, the genotypes matured within the
range of 127-133 days while 10 genotypes matured early (127-128
days). In L4, only three classes were obtained, where only 11
genotypes matured within 121 days. In the case of biological
yield, in L2, genotypes were divided into five classes, while four
classes were observed in the rest of the locations. In contrast, in the
case of seed yield, the highest classes were observed in L2 (seven
classes) followed by six classes in L4. All the traits exhibited normal
distribution over the locations.

Frontiers in Plant Science

Boxplot analysis represented the distribution of environments
concerning three yield components over the locations (Figure 4).
For days to maturity, consistent performances were seen in L2. For
biological yield and seed yield, a congruous performance was
observed in L4 and L1, respectively. In the case of biological yield,
L4 and L1 exhibited a stable performance with relatively low
variation. Similarly, for seed yield, L4 demonstrated the most
uniform performance, suggesting greater consistency in this trait.

Genetic parameters of the 64 grasspea genotypes for three traits
over the locations are presented in Table 3. The mean value for days to
maturity was found to be 119 days, and across all the genotypes and
locations, the maturity period ranged from 115 to 122 days. In the case
of biological trait, moderate variability was observed. Maximum
variability was reflected in the case of seed yield and varied between
758 and 1,740 kg/ha. Heritability for maturity (76%) and biological
yield (67%) was high, whereas for seed yield, it was moderate (58%).
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FIGURE 3

Frequency distribution of yield-attributing traits (days to maturity, biological yield: t/ha; seed yield: kg/ha) in grasspea genotypes over the locations.
(a) Frequency distribution of yield-attributing traits in grasspea genotypes at ICARDA-FLRP, Amlaha. (b) Frequency distribution of yield-attributing
traits in grasspea genotypes at IGKV, Raipur. (c) Frequency distribution of yield-attributing traits in grasspea genotypes at BCKV, Mohanpur. (d)
Frequency distribution of yield-attributing traits in grasspea genotypes CAU, Imphal.

Genotypic appraisal over the location
considering mean vs. stability

The mean performance and stability of the grasspea genotype

across different locations considering their mean SI were visually
represented using the AEC view of the GGE biplot (Figure 5). In

Frontiers in Plant Science

essence, the AEC coordination view of the GGE biplot is a
genotype-metric-preserving biplot with an SVP equal to 1. It
allows for the visualization of genotype discrimination
considering their mean performance. In this graph, the first two
PCs enabled to explain 80.93% of the total variation considering
mean SI.
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o

Boxplot view of yield-attributing traits of the grasspea genotypes over the locations. (a) Boxplot view of days to maturity of the grasspea genotypes
over the locations. (b) Boxplot view of biological yield (t/ha) of the grasspea genotypes over the locations. (c) Boxplot view of seed yield (kg/ha) of

the grasspea genotypes over the locations.

The graph’s single arrowhead line represents the AEC abscissa,
which passes through the biplot origin and indicates a higher mean
SI value of the grasspea genotypes, expressing their overall
superiority. The perpendicular line to the AEC, extending
outward from the biplot origin, is referred to as the “AEC
ordinates”, serving as an indicator of the stability of the
genotypes. Inversely, genotypes with longer vector lengths from
the AEC abscissa exhibited lower stability, while those with shorter
vector lengths were considered more stable. Genotypes FLRP-B54-
1-S2 (G13), Prateek (G64), 31-GP-F3-S7 (G33), 31-GP-F3-S4
(G32), FLRP-B38-S5 (G10), 48-GP-F3-S3 (G14), and BANG-288-
S2 (G18) exhibited strong multi-trait performance, as they were
positioned favorably concerning the “AEC ordinate.” On the other
hand, genotypes IGC-2012-31/2-1 (G44), IGC-2012-24/12-24
(G61), and IGC-2012-78/4-5 (G46) performed poorly, as they
were positioned in the opposite direction to the “AEC ordinate.”
Within the group of good performers, Prateek (G64) and 31-GP-
F3-S7 (G33) stood out as the most stable genotypes, as they had
shorter projections from the “AEC abscissa.” Despite being the best
performer, FLRP-B54-1-S2 (G13) was characterized as an unstable
genotype. The present study revealed that Prateek (G64) and 31-
GP-F3-57 (G33) emerged as the most ideal genotypes due to their
excellent performance in terms of combined yield-duration profile
as well as good stability. The genotypes positioned close to the ideal
genotype were regarded as desirable genotypes, and the distance
between them is measured using the Euclidean distance.
Consequently, 48-GP-F3-S3 (G14) was identified as a desirable
genotype because of its proximity to the ideal genotype and nearly
stable response in terms of multi-trait performance. Using the mean

SI, the tested grasspea genotypes were categorized into seven
clusters with promising grasspea genotypes (G13), (G64), (G33),
(G32), (G10), (G14), and (G18) in cluster I (Figure 6).

Environment evaluation following
discriminativeness vs. representativeness

In the GGE biplot approach, the critical factors for identifying
desirable testing locations and eliminating redundant ones are
discrimination power (ability to discriminate genotypes),
representativeness (ability to represent corresponding MEs), and
the desirability index. In the “discriminativeness vs.
representativeness” view of the GGE biplot, the lines connecting
the test environments are referred to as environment vectors. From
the graph, it was observed that L1 (Amlaha) and L3 (Mohanpur)
revealed an acute angle with each other, while the two remaining
locations indicated an obtuse angle (Figure 7).

The information rendered by L4 (Imphal) was distinct from the
other locations. Thus, it can be deduced that L1 and L3
environments were positively correlated and had closer
relationships with each other. The presence of a close association
between these environments suggested that similar information
could be obtained regarding genotype performance from these
environments.In contrast, an obtuse angle was observed between
L1 and L3 on one side and L2 and L4 on the other, indicating a
negative association and distant relationships among these
environments. The length of the environmental vectors generally
represents the discriminating power of the test environments.

TABLE 3 Descriptive statistics of the tested grasspea genotypes over the locations.

. T Genetic GA as % over
Traits Heritabilit
Y advance (GA) mean
Days to maturity 119 ‘ 115 122 0.8 0.92 ‘ 0.76 ‘ 1.72 1.44
Biological yield (kg/ha) ‘ 7.72 ‘ 5.7 10.51 10.53 12.87 ‘ 0.67 ‘ 1.37 ‘ 17.76
Seed yield (kg/ha) ‘ 1,233.74 ‘ 75832 | 1,740.25 10.42 13.69 ‘ 0.58 ‘ 201.72 ‘ 16.35
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FIGURE 5

Mean performance and stability of the grasspea genotypes tested across different locations.

Therefore, among the four testing locations, L3 (Mohanpur)
followed by L1 (Amlaha) were the most discriminative whereas
L4 (Imphal) was the least discriminative environment (Table 4).
The least discriminative location is also considered as the least
informative; thus, this environment can be considered as a
redundant testing location for the assessment of grasspea
genotypes. The indication of environmental representativeness is
typically conveyed by the angle existing between the environment
vectors and the AEC. It was observed that L4 (Imphal) reflected

with the smallest angle between AEC and was thus identified as the
most representative testing location. The desirability index of the
test locations encompasses the combined outcome of both
discriminative capability and representativeness. L3 (Mohanpur)
with the highest desirability index was identified as the ideal testing
location for the testing of mini core collection or advance breeding
materials as well as for selecting genotypes with general adaptability.
However, locations with good discrimination power and less
representativeness such as L2 (Raipur) would be meaningful for
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Hierarchical clustering of grasspea genotypes based on days to maturity (DTM), biological yield (BY), seed yield (SY), and the BLPSI over the tested

locations.
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FIGURE 7

GGE biplot analysis: discriminativeness vs. representativeness of grasspea genotypes tested across different locations.

winnowing genotypes with a specific adaptation. The relatedness of
the genotypes and testing locations was represented through
hierarchical clustering based on days to maturity, biological yield,
and seed yield of the tested grasspea genotypes. All the testing
locations were grouped into two clusters (Figure 6).

Delineation of the mega-environment and
the winning genotypes

Another crucial aspect of the GGE biplot involves the
identification of genotypes suitable for test environments through
the graphical depiction known as the “which-won-where”
representation. Initially, a polygon was sketched around the
genotypes located farthest from the biplot origin, encompassing
all the remaining genotypes within its boundaries. Genotypes
situated at the polygon’s vertices represent either the most
superior or the least favorable performers in one or multiple
environments. In the current study, the biplot proved highly
informative in effectively distinguishing between environments
and displaying a well-distributed polygon (Figure 8). The equality

TABLE 4 Evaluation parameter of the testing environment.

Location

Discriminating power

lines divided the graph into seven sectors, with all 4 locations being
situated within three of these sectors, which could be designated as
“MEs”. The first ME constituted of L1 (Amlaha) and L3
(Mohanpur), and the second and third ME consisted of single
location L2 (Raipur) and L4 (Imphal), respectively. The analysis
revealed that FLRP-B54-1-S2 (G13) emerged as the winning
genotype in ME-I, while in ME-II, FLRP-B38-S5 (G10) was
detected as the winning genotype. In the case of ME-III, the
genotype positioned in the outer vertex was the poor-performing
one; therefore, IGC-2012-67/13-25 (G62) present on the vertex
towards the center was considered as the winning genotype.

Machine learning modeling and
delimitation of suitable genotypes of
grasspea

The present study revealed that the MLP model had the highest
R? scores, with values for maturity (MAT) and biological yield (BY)
of 0.947 and 0.608, respectively. On the other hand, seed yield (SY)
(0.682) and BLPSI (0.679) received the greatest R? values from the

Representativeness Desirability index

L2 7.07 0.47 5.81
L3 7.32 0.87 7.22
L4 4.17 0.91 3.41
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FIGURE 8
Which-won-where pattern of grasspea genotypes in the GGE biplot analysis tested over the locations.

RF model (Table 5; Figure 9). These scores indicate the extent to
which the independent variables in the model can explain the
variance in the dependent variable. Results for MAPE, RMSE, and
MLSE were in line with the R? scores, and the lowest scores for
MAT and BY from the MLP model demonstrate its superior
accuracy and predictive ability. With regard to SY and BLPSI, the
RF model performed better as seen by its lower RMSE, MAPE, and
MLSE scores. The performance of the MLP model was further
validated using the MAE results. The MLP model demonstrated its
accuracy in predicting MAT, BY, and SY by achieving the lowest
MAE scores for these parameters. The MLSE results showed that

both models’ responses to MAT were similar, indicating a similar
performance for this metric. For BY, the MLSE score that the MLP
model obtained was the lowest. For both SY and BLPSI, the RF
model had the lowest MLSE score. The results of the MedAE
showed how well the MLP model performed for all parameters.
For all parameters, the MLP model showed lower MedAE
values than the RF model, indicating a higher overall predictive
accuracy. Overall, the MLP model showed the lowest RMSE,
MAPE, MLSE, MAE, and MedAE scores for these parameters,
and the highest R scores for MAT and BY. In contrast, the RF
model had the lowest RMSE, MAPE, MLSE, and MAE scores for SY

TABLE 5 Performance metrics of the utilized ML models for different parameters.

Traits*

MAT 0.947 2.304 1.797 1.539 0.000 1.515
BY 0.608 1.880 1.286 20.605 0.057 0.822
SY 0.674 328.307 245249 24.646 0.091 187.791

BLPSI 0.661 333.412 254337 21304 0.069 198.004

Traits*
MAT 0.940 2.458 1.903 1.627 0.000 1.594
BY 0.558 1.995 1.392 22.131 0.063 0.895
SY 0.682 324.400 254.340 24.873 0.086 222252
BLPSI 0.679 324.768 251.203 21.12 0.065 203.566

*MAT, days to maturity; BY, biological yield; SY, seed yield; BLPSI: Base Linear Phenotypic Selection Index.
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Actual versus predicted scores of grasspea genotypes obtained from the MLP and RF machine learning models across four traits. (A) Performance
metrics of the utilized ML models for maturity (MAT), (B) Performance metrics of the utilized ML models for biological yield (BY), (C) Performance
metrics of the utilized ML models for seed yield (SY), (D) Performance metrics of the utilized ML models for Base Linear Phenotypic Selection

Index (BLPSI).

and BLPSI along with the highest R* scores. The MLP model
demonstrated exceptional performance in MAE and MedAE, two
crucial metrics for evaluating prediction accuracy and resilience.

Discussion

Plant breeders frequently conduct multi-location trials (MLTSs)
to assess the test entries. This practice forms a strong foundation for
the adoption and commercial release of varieties. Grasspea is a
versatile crop concerning its wide adaptability (Das et al., 2021). The
testing locations in the present study represent the diverse agro-
climatic zones in India. In multi-locational trials, the variance
components are mainly divided into three classes, main effect of
genotype, environment, and their interaction (GE). The presence of
the GE component adds ambiguity to genotype evaluation due to
inconsistency in the performance of cultivars across different
locations. Understanding the GEI is crucial for refining breeding
strategies, selecting non-redundant testing sites, and recommending
varieties for specific or broad adaptation. Over the past decade,
Additive Main Effect and Multiplicative Interaction (AMMI)
(Ahmadi et al., 2012; Rajendran et al., 2018; Rubiales et al., 2020)
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and the GGE biplot (Yan et al., 2007; Chatterjee et al., 2019) have
gained prominence for the visual representation of GEIs, facilitating
the identification of stable genotypes and optimal environments.
The GGE biplot surpasses AMMI in ME analysis through
elucidating a greater proportion of G+GE and providing insights
into optimizing test environments through the “discrimination
power vs. representativeness” graph (Yan et al, 2007). The
present study attempted to cull out stable grasspea genotypes with
a minimal GEI impact and a greater genetic buffering capacity
employing the GGE biplot methodology.

In the present study, ANOVA confirmed the significant
contributions of the environment and GEI for all the studied
traits, which were considered for estimating the mean BLPSI,
thereby corroborating the relevance of MLTs. Earlier literature
(Gauch and Zobel, 1997) suggested that, in MLT data, the
primary source of variation is the environment, accounting for
over 80% of the total variation. In mungbean (Das et al., 2020; Singh
et al., 2020), fieldpea (Das et al., 2019; Biswas et al., 2021), chickpea
(Tamang et al., 2021), and lentil (Bhattacharya et al., 2022a, 2022b;
Chatterjee et al.,, 2023), studies aligned with the current results,
highlighting the prominence of environmental variation. In the
current investigation, the substantial contribution of GEI was also
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evident, underscoring the presence of distinct MEs within the tested
locations (Gore et al., 2021).

In MLTs, breeders must recommend genotypes based on
combined yield-trait performance. However, most studies focus
on single trait analysis, leaving other traits unexplored (Yan and
Tinker, 2006). To address this, decisions must be taken considering
the breeder’s experience and judgment for framing a selection index
or subjective weight for multiple traits. In the present study, we have
tried to visualize the GEI effect based on combined multi-trait
performance of the grasspea genotypes wherein beside yield
performance, maturity and biomass were also taken into
consideration. It was observed that the performance of grasspea
genotypes was unpredictable and inconsistent at different locations
and ratified the presence of crossover interaction (COI). Genotypes
G13, G33, G10, G63, and G6 showed promise in L1, while in L2,
G32, G53, G21, G4, and G50 excelled. The presence of COI implied
breeding for specific adaptation (Yan and Hunt, 2002; Rakshit et al.,
2012). However, some genotypes (G13 and G33) exhibited non-
CO], aligning with previous studies showing the presence of both
COI and non-COI within the same datasets (Das et al., 2019; Singh
et al,, 2020). This complexity may diminish the genetic gain due to
the intricacies during the selection procedure (Comstock and
Moll, 1963).

The GGE biplot simplifies the complex interaction between the
genotype, environment, and GEI in the form of different PCs, and
their contribution justifies the usefulness of the methodology for
explaining the sources of variation (Yan and Tinker, 2005). In this
study, the two PCs explained more than 80% of the variation, which
rationalized the adequacy of the MLT in grasspea. The ideal
genotype selection in the GGE biplot is based on both mean
performance and stability. In the present study, Prateek (G64)
and 31-GP-F3-S7 (G33) were considered as the ideal genotypes
due to their high BLPSI value considering multi-trait performance
and minimal interaction with the environment in the form of less
projection from “the AEC abscissa” (Yan and Falk, 2002).
Genotypes that are close to the “ideal” genotypes are considered
as “desirable” genotypes due to having their high genetic
relationship with the “ideal” genotype (Yan and Tinker, 2005).
48-GP-F3-S3 (G14) was identified as a desirable genotype due to its
close positional proximity with the ideal genotype. Genotype
positioning along the AEC ordinate indicated performance
variation across environments, likely influenced by weather
parameters such as rainfall, temperature, and humidity (Dehghani
et al., 2006). Thus, genotypes with low homeostasis exhibit high
responsiveness towards environments.

Another important feature of the GGE biplot is the culling out
of the optimal testing location judiciously with an aim of efficiently
distributing resources, while also minimizing the overall trial costs.
Importantly, this allocation strategy was designed to ensure that
trial heritability and genetic gain under selection were not
compromised in the process (Yan, 2001). Within the GGE
framework, the projection of the vector onto the “AEC abscissa”
plays a pivotal role in determining both the overall impact of the
environment and the effectiveness of the methodology employed
(Allen, 1978; Flores et al., 2013). In legume crops such as grasspea,
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where the additive component of variation holds a dominant role,
the vector projection of the testing location on the GGE biplot
serves as an indirect selection parameter, which is instrumental in
confirming the effectiveness of the methodology being used (Yan
and Holland, 2010). Taking all factors into account, L3 (Mohanpur)
emerged as the optimal testing location due to its highest
desirability index, being both discriminative and representative of
the target environments. This selection makes it the ideal choice for
evaluating advanced breeding materials, especially with a meager
seed quantity that needs to be adjusted across various locations.

Additionally, the GGE biplot was able to separate all the testing
locations into three MEs to aid the restructuring of agro-ecological
zonation with the winning genotype for each center. An ME can be
defined as a group of analogous locations delivering a similar
genotypic response and sharing the same set of genotypes across
the year (Yan and Rajcan, 2002). The “ideal” genotype identified in
the present study, G13 (FLRP-B54-1-S2), was also the winning
genotype in ME-I, while FLRP-B38-S5 (G10) for ME-II and IGC-
2012-67/13-25 (G62) in ME-III revealed specific adaptation for the
respective MEs. Prior research has utilized the GGE approach to
assess testing locations and delineate specific environmental zones
in a similar manner (Sayar and Han, 2015; Chatterjee et al., 2019;
Vaezi et al., 2023).

The application of ML models in this study provided deeper
insights into GEls, improving predictive accuracy for key yield
traits. The MLP model, with its ability to capture nonlinear
relationships, performed well in predicting maturity and
biological yield, benefiting from automated feature learning and
multicollinearity handling (Sarker, 2021; Akay et al., 2022). Its
strength in modeling continuous variables contributed to
improved accuracy, particularly for traits influenced by multiple
factors. Comparable integrative approaches using the GGE biplot
and ML have been reported in cereals, providing useful benchmarks
for our findings. For instance, Omrani et al. (2025) applied RF and
MLP models alongside GGE analysis in wheat and found that
combining multi-trait indices with predictive modeling improved
genotype ranking stability compared to single-trait models, which is
consistent with our observation that ML integration better captured
genotype X environment patterns in grasspea.

Conversely, the RF model proved more effective in handling
high-dimensional data, particularly for seed yield and soil-related
traits (Wani et al., 2022). Its ensemble averaging approach reduced
sensitivity to noise and outliers, resulting in more stable predictions.
Additionally, its ability to rank feature importance provided
valuable insights into the most influential agronomic factors
(Fawagreh et al, 2014). The integration of ML with the GGE
biplot approach further improved genotype selection for the
Indian climate. ML models identified complex genotype x
environment patterns, facilitating the selection of high-yielding
and climate-adapted grasspea genotypes (Bello et al., 2015). This
data-driven approach enhanced selection efficiency, making trait
evaluation more precise and supporting climate-resilient
breeding strategies.

The observed performance differences between MLP and RF
highlight the importance of model selection based on trait
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characteristics. While MLP was effective for complex, continuous
traits, RF provided robustness in high-dimensional datasets,
making it particularly useful for trait selection and stability
analysis. These findings emphasize the role of ML in improving
prediction accuracy and decision-making in crop improvement
programs. Thus, Al-driven tools can efficiently model and
visualize these interactions, enabling researchers to identify
genotypes with superior adaptability and yield potential in varied
Indian climates. This approach makes data-driven decisions in
genotype selection and breeding strategies, improving the
efficiency and accuracy of identifying suitable grasspea genotypes.

Conclusion

The present study highlighted the significant environmental
and genotype x environment effects on grasspea performance
across diverse Indian locations. GGE biplot analysis grouped the
sites into three MEs, identifying FLRP-B54-1-S2, Prateek, and 31-
GP-F3-S7 as ideal genotypes, and 48-GP-F3-S3 as a desirable
genotype for targeted adaptation. ML models complemented
traditional analyses, with MLP performing best for maturity and
biomass, and RF for seed yield and BLPSI. This synergistic data-
driven approach for genotype selection and identifying the ideal test
environment can strengthen the substantial selection of location
with optimization of resources in future breeding programs.
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