
Frontiers in Plant Science

OPEN ACCESS

EDITED BY

Paterne Angelot AGRE,
International Institute of Tropical Agriculture
(IITA), Nigeria

REVIEWED BY

Champa Lal Khatik,
Sri Karan Narendra Agriculture University, India
Charan Singh,
Indian Institute of Wheat and Barley Research
(ICAR), India

*CORRESPONDENCE

Surendra Barpete

s.barpete@cgiar.or

Shiv Kumar

sk.agrawal@cgiar.org

RECEIVED 17 June 2025

REVISED 21 October 2025
ACCEPTED 29 October 2025

PUBLISHED 21 November 2025

CITATION

Barpete S, Das A, Parikh M, Yumnam S,
Aasim M, Ali SA, Singh A, Yadav AK,
Devate NB, Kaul S, Bhattacharya S, Roy S,
Gupta S and Kumar S (2025) Integrating
machine learning and the GGE biplot for
identification of climate-suitable
grasspea genotypes.
Front. Plant Sci. 16:1647903.
doi: 10.3389/fpls.2025.1647903

COPYRIGHT

© 2025 Barpete, Das, Parikh, Yumnam, Aasim,
Ali, Singh, Yadav, Devate, Kaul, Bhattacharya,
Roy, Gupta and Kumar. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 21 November 2025

DOI 10.3389/fpls.2025.1647903
Integrating machine learning
and the GGE biplot for
identification of climate-suitable
grasspea genotypes
Surendra Barpete1*, Arpita Das2, Mangla Parikh3,
Sonika Yumnam4, Muhammad Aasim5, Seyid Amjad Ali6,
Akanksha Singh7, Ashutosh Kumar Yadav1,
Narayana Bhat Devate1, Smita Kaul7, Sudip Bhattacharya2,
Soumyayan Roy2, Sanjeev Gupta8 and Shiv Kumar1,7*

1International Center for Agricultural Research in the Dry Areas (ICARDA)-Food Legumes Research
Platform, Sehore, India, 2Department of Genetics and Plant Breeding, Bidhan Chandra Krishi
Vishwavidyalaya, Mohanpur, West Bengal, India, 3Department of Genetics and Plant Breeding, Indira
Gandhi Krishi Vishwavidyalaya, Raipur, Chhattisgarh, India, 4Department of Genetics and Plant
Breeding, Central Agricultural University, Imphal, Manipur, India, 5Department of Precision Agriculture
and Agricultural Robotics, Faculty of Agricultural Sciences and Technologies, Sivas University of
Science and Technology, Sivas, Türkiye, 6Department of Information Systems and Technologies,
Bilkent University, Ankara, Türkiye, 7International Center for Agricultural Research in the Dry Areas
(ICARDA), New Delhi, India, 8Division of Crop Sciences, Indian Council of Agricultural Research, Krishi
Bhawan, New Delhi, India
Grasspea is a nutrient-rich food legume crop known for its resilience in the

challenging agro-ecosystems. However, information is scanty regarding the

recommendation of grasspea genotypes with respect to their suitability for

both general and specific adaptations. The primary goal of the study was to

delineate stable grasspea genotypes by nullifying the influence of intricate

interactions among multiple traits with the environment. Additionally, the study

aimed to identify suitable locations within diverse agro-climatic zones in India for

future evaluation while also validating and predicting results using machine

learning algorithms. From several hundred genotypes developed and tested in

station trials at Amlaha, India, a panel of 64 diverse promising grasspea genotypes

was identified, and their performance was subsequently assessed through

multilocation testing at four diverse locations in India during 2021–2022 using

the GGE biplot approach. Mean selection index of each genotype was

enumerated considering multi-trait performance for better elucidation of

genotype and environment ranking as well as selection of the mega-

environment. The findings revealed that the environment was the primary

contributor to variation across all studied traits, followed by genotype ×

environment interactions as the second most influential factor. Genotypes

such as FLRP-B54-1-S2, Prateek, 31-GP-F3-S7, 31-GP-F3-S4, FLRP-B38-S5,

48-GP-F3-S3, and BANG-288-S2 were identified as good performers with

promising multi-trait performance. Experimental results were validated using

multiple performance metrics, with the Random Forest (RF) model of machine

learning demonstrating superior predictive accuracy compared to the multilayer
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perceptron (MLP) model. Regression coefficient (R2) values ranged between

0.558 and 0.947, depending on the output variables. In conclusion, “Prateek,”

“31-GP-F3-S7,” and “48-GP-F3-S3” emerged as the most stable genotypes when

considering their combined yield-trait performance. These genotypes can be

recommended for widespread commercial cultivation in regions where grasspea

cultivation faces challenges of weather extremities.
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Introduction

Grasspea (Lathyrus sativus L.) is a highly adaptable and

nutrient-dense cool season food legume crop, cultivated globally

in resource-poor dry areas (Mahapatra et al., 2020). Its resilience to

varying climates makes it a valuable component for sustainable

agriculture and food security in the face of changing climatic

conditions (Banerjee et al., 2022; Barpete et al., 2024). This food

legume holds significant importance due to its diverse applications

in human food, animal feed, and ecosystem management as an

input rational crop with an ability to maintain soil health through

biological nitrogen fixation. Grasspea is renowned for its high seed

protein content (17.7%–49.3%), which boasts an excellent amino

acid balance (19.69–23.48 g in 100 g of seed) (Rizvi et al., 2016;

Sharma et al., 2022). Notably, the presence of valuable

nutraceuticals, such as L-homoarginine, further enhances its

nutritional value (Lambein, 2000; Das et al., 2021).

Grasspea is cultivated in rainfed dry regions of Southeast Asia,

including India, as well as the Mediterranean, Middle East, and

parts of Southern Europe, which are prone to weather whiplashes

like the concomitant occurrence of drought and waterlogging

(Barpete et al., 2023). The current total area under grasspea

cultivation is approximately 0.70 million ha, with a production

potential of 0.79 million tons along an average productivity of 1,130

kg per ha (Kumar et al., 2021), The plausible reason behind the

decline in area under grasspea cultivation includes the stigma of

neurotoxin b-N-oxalyl-L-a,b-diaminopropionic acid (b-ODAP),
indeterminate growth habit, and the challenge of maintaining

varietal purity due to frequent cross-pollination (Parihar et al.,

2022; Tripathi et al., 2022). Identification of early maturing and

stable grasspea genotypes that can harmonize optimum vegetative

and reproductive growth while maximizing biomass and yield is the

most seminal crop breeding property. Lack of comprehensive

studies on assessing grasspea genotypes across different locations

has created a pressing need to gain a deeper understanding of

cultivar behavior under diverse agro-climatic conditions.

Comparing diverse genotypes in multiple environments is a

crucial approach that provides vital information for the selection

and recommendation of crop cultivars tailored to specific locations

(Das et al., 2019; 2020). The performance of a genotype concerning
02
quantitative traits is determined by genotypic main effect (G),

environmental main effect (E), and genotype × environment

interaction (GEI) (Yan et al., 2007). This GEI can lead to

differential genotype ranking across environments based on the

key traits’ performance, which may often mislead the selection

process and further recommendation due to unfavorable traits’

association (Chatterjee et al., 2023). These challenges can be

addressed through two strategies, viz., independent culling and

enumeration of selection indices, both of which have been

considered for the ranking and selection of genotypes (Yan and

Frégeau-Reid, 2018).

Over the decade, GGE biplots have gained widespread

acceptance for ensuring precise identification of ideal test

environments along with successful recommendation of

genotypes for general and specific areas of adaptation in

numerous crops including grasspea (Sayar and Han, 2015;

Chatterjee et al., 2019). Nevertheless, in earlier studies, the

ranking of grasspea genotypes was focused solely on single trait

performance, rather than considering the evaluation of multiple

traits in accordance with the breeding objectives and specific

requirements of the target environment.

Machine learning (ML)-based algorithms are increasingly

recognized for their effectiveness in estimating, validating,

predicting, and optimizing output variables in relation to input

data (Hamdia et al., 2021; Soltis et al., 2020). Unlike traditional

methods, ML models do not require strict assumptions on data

distribution, sample size, or variance homogeneity, making them

highly robust and flexible to complex datasets (Hair et al., 2019).

Recent studies highlight ML applications in high-throughput

phenotyping, yield estimation, and plant counting (Nogueira

et al., 2023; Ninomiya, 2022; Barbosa et al., 2020). Additionally,

deep learning and image analysis have further enhanced data

interpretation, extracting valuable insights from high-dimensional

sources (Najafabadi et al., 2015). Artificial intelligence (AI) is

revolutionizing crop production practices by integrating weather,

soil, and crop data to improve yield predictions and precision

farming (Aasim et al., 2023). It also aids in understanding and

preserving genetic diversity, identifying beneficial traits, and

supporting efficient breeding programs (Tripodi et al., 2022;

Barpete et al., 2025). Despite progress, AI/ML applications in
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agronomic traits remain limited (Song and Ying, 2015; Almeida

et al., 2021; Khanal et al., 2024) due to the complexity of biological

systems in diverse environments. However, single or hybrid AI/ML

models have shown promising results in predicting plant biomass,

nutrient levels, chlorophyll content, and water availability,

contributing to more efficient agricultural practices (Osco et al.,

2019; 2020; Teodoro et al., 2024).

However, despite the recognition of grasspea’s resilience and

nutritional potential, little is known about its genotype ×

environment dynamics when considering multiple traits together

rather than single-trait evaluations. Previous studies have not

integrated the GGE biplot (Sayar and Han, 2015; Chatterjee et al.,

2019) with modern ML approaches for multi-trait stability analysis

in grasspea. This study aims to fill this gap by explicitly testing the

hypothesis that combining the GGE biplot and ML models will

improve the identification of climate-suitable genotypes and

optimal testing locations in India. Therefore, the present

investigation integrates three objectives: (i) to identify the stable

grasspea genotypes by nullifying the effect of complex association of

multiple traits; (ii) to find the best locations among the tested zones

for future testing of grasspea genotypes; and (iii) to validate and

predict results with the aid of decision tree-based Random Forest

(RF) and neural network-based multilayer perceptron (MLP)

models with six different performance metrics.
Materials and methods

Grasspea genotypes and multilocational
testing

From the preliminary screening with 450 single plant progeny

lines during the 2020–2021 season, a diverse panel of 64 promising

grasspea genotypes were selected for further evaluation of the

different agro-climatic zones in India. These sets of genotypes

consist of advanced breeding lines and selections of Nepal,

Bangladesh, and Indian origin along with two popular checks

(Mahateora and Prateek) of Indian origin (Supplementary

Table S1).

The sample size of 64 genotypes was selected to balance genetic

diversity and manageability of field evaluation, ensuring sufficient

statistical power (>80%) to detect GEIs based on prior variance

component estimates in similar legume trials.

Grasspea genotypes were grown over four different locations of

varied agro-climatic zones in India during the winter season of

2021–2022. The testing locations represent four major grasspea-

growing agro-climatic zones in India (Figure 1). The Central

Plateau was represented by the International Center for

Agricultural Research in the Dry Areas (ICARDA), Food Legume

Research Platform (FLRP), Amlaha, Madhya Pradesh (henceforth

L1 [latitude of 23°71′ N; longitude of 76°54′ E and 508 m above

mean sea level (amsl)]) while the Indira Gandi Krishi

Viswavidyalaya (IGKV), Raipur, Chhattisgarh [henceforth L2 (21°

13′N latitude; 81°41′ E longitude with 285 m amsl)] testing location

falls under the Eastern Plateau region. The Gangetic Alluvial Zone
Frontiers in Plant Science 03
was represented by a research farm under the guidance of Bidhan

Chandra Krishi Viswavidyalaya, Mohanpur, West Bengal

[henceforth L3 (latitude of 22°99′ N; longitude of 88°42′ E and 11

m amsl)], while the research farm of Central Agricultural

University, Imphal, Manipur [henceforth L4 (latitude of 24°49′ N;
longitude of 93°57′ E and 790 m amsl)] falls under the North Hill

Zone of India. The weather data with respect to maximum and

minimum temperature (°C) as well as % of relative humidity for

each testing location during the crop season starting from sowing to

harvest are depicted in Figure 2. At each testing location, grasspea

genotypes were planted during the second fortnight of November

following an Alpha lattice (8 × 8) design with two replications

maintaining a proper plant geometry of 4 m row length with a 30-

cm spacing between rows, having a plot size of 4.8 m2. Standard

agronomic practices were followed across all locations to raise good

crops. Data were collected and recorded using standardized

protocols/procedure for days to maturity while biological and

seed yield data were recorded at physiological maturity from the

whole plot and were expressed in tons per ha and kg per ha,

respectively, using the plot size as a factor.
Data analysis and computation of the GGE
biplot

Analysis of variance (ANOVA) was computed to reveal the

effects of G, E, and GE across the testing locations. The mean

significant difference within genotypes and testing locations was

calculated using the LSD test at a probability level of p = 0.05. The

relatedness of the genotypes and testing locations was represented

through hierarchical clustering following the Ward method. In the

present study, the Base Linear Phenotypic Selection Index (BLPSI)

was enumerated considering the genetic correlation matrix of three

important key traits (days to maturity, biological yield, and seed

yield) necessary for varietal recommendation of grasspea genotypes.

The calculated BLPSI value was plotted as a variable in the GGE

biplot to aid in selection regarding the ranking and

recommendation of the genotypes as per their general and

specific areas of adaptation.

In the GGE biplot model, the main genotypic effect and the GE

effects in different test environments were taken into consideration,

while the environmental factor was nullified in the evaluation of

genotypes (Yan et al., 2000). The biplot was formulated considering

the first two principal components (PCs) derived from the singular

value decomposition (SVD) of the mean SI. The SVD process

decomposed the GGE biplot into eigenvalues of G, SI, and

singular values (Yan et al., 2007).

Yij = m + ej +o
N

n=1
lng indjn + eij

Yij = yield of the ith grasspea genotypes (i = 1, …, I) in the jth

test environments (j = 1, …, J)

µ = grand mean

ej = environment deviations from the grand mean

ln = the eigen value of PC analysis axis
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gin and djn = genotype and environment PC scores for axis n

N = number of PCs retained in the model

eij = error term ~ N (0, s2)
The current dataset was not subjected to scaling to construct an

environment-centered GGE biplot (Yan and Tinker, 2006). The

evaluation of genotypes was conducted using genotype-focused

singular value partitioning (SVP = 1), while for the testing

location evaluation, environment-focused SVP (SVP = 2) was

applied (Yan, 2001). The “Average Environment Coordination”

(AEC) view of the GGE biplot was created, enabling comparisons of

genotypes based on mean SI integrated with stability

across environments within a mega-environment (ME), following

the approach introduced by Yan (2002). Concomitantly, to

assess the test environments, the “discriminating power vs.

representativeness” view of the GGE biplot was constructed. The

ideal test environment should possess the ability to effectively

discriminate among genotypes while also being representative of

the ME (Yan et al., 2007). Furthermore, the “which-won-where”
Frontiers in Plant Science 04
view of the GGE biplot was created to facilitate the detection of the

superiority of genotypes across the test environments followed by

grouping test environments into different MEs based on their

performance (Yan and Rajcan, 2002).
Machine learning application

In this study, decision tree-based RF models and artificial neural

network-based MLP were utilized for the validation and prediction

of different agronomic traits. Both models were chosen for their

versatility in handling regression and classification tasks, providing

robust predictive capabilities (Hesami et al., 2019; Everingham et al.,

2016). RF is a decision tree model that trained multiple trees

simultaneously and uses bagging, also known as bootstrap

aggregation, for trained trees and showing the final outcome

(Pavlov 2019). The fundamental idea behind the RF model is

presented in Equation 1.
FIGURE 1

Geographical distribution of the testing locations in different agro-ecological zones in India.
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y =o
n

i=1
(ai − a*i )k(x, xi) + b (1)

y = observed value of the data point, n = number of samples.

MLP is a feedforward neural network model with three

completely interconnected multiple layers of processing nodes in

a feedforward manner. Backpropagation is used to train the data

until Equation 2 is lowered to update the error-related weights and

biases (Katırcı et al., 2021).

E =
1
K o

K

k=1

(yk − by k)
2 (2)

Y = observed value of data point k, k = number of samples.

The leave-one-out cross-validation (LOO-CV) technique that is

used for cross-validation was employed in this study (Webb et al.,

2011). In LOO-CV, number of folds and instances of data are equal,

and learning algorithm is applied to each instance individually. In

this way, while using the chosen instance as the single-item test set,

all other instances are set as a training set. To find the optimal

hyperparameters and building the best model, a grid search

approach was used. The open-source Python programming

language (Van Rossum and Drake 2009) was employed for

coding with the aid of the sklearn library (Pedregosa et al., 2011).

The performance of both models was evaluated by using six

performance metrics Equations 3–8, providing insights into their

effectiveness and suitability for different applications.

In regression-based ML analysis, regression of coefficient (R2) is

the mainstay and exhibits the performance of the model by

computing the proportion of variation in the dependent variable.

Its value ranges from 0 to 1, and a value close to 1.0 reflects the

stronger predictive accuracy of the model.
Frontiers in Plant Science 05
R2 = 1 −o
n
i=1(Yi − bY i)

2

on
i=1(Yi − ~Y)2

(3)

The root mean square error (RMSE) calculates the prediction

errors, and low error scores demonstrate better accuracy of the

model.

MSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
no

n

i=1
(Yi − bY i)

2

s
(4)

The average difference between predicted and observed values is

measured by the mean absolute error (MAE), and low scores

present better accuracy and performance of the model.

MAE =
1
no

n

i=1
Yi − bY i

��� ��� (5)

The mean absolute percentage error (MAPE) is the prediction

error given in percentage. A high MAPE score reflects a high error

and shows the model’s poor performance.

MAPE =
1
no

n

i=1

Yi − bY i

Yi

�����
������ 100 (6)

The mean squared logarithmic error (MSLE) is the logarithmic

scale of errors and is suitable for datasets with exponential

relationships.

MSLE =
1
no

n

i=1
( log (Yi + 1) − log (bY i + 1))2 (7)

The median absolute error (MedAE) is based on the median of

absolute differences by reducing the effect of outliers in error

evaluation.
FIGURE 2

Meteorological observations during winter season of 2021–2022 across the testing locations.
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MedAE = median( Y1 − bY 1

��� ���,…, Yn − bY n

��� ���) (8)

Yi = measured value; Y
⌢
i = predicted value; �Y = measured value’s

mean; n = count of samples.
Results

Significance of multilocational trial

ANOVA showcasing the relative contribution of each source of

variation to the total variations is presented in Table 1. The

ANOVA results indicated that the effects of genotype (G),

environment (E), and their interaction (GE) were all found to be

statistically significant for all the traits under investigation.

Concerning the relative contribution of various components of

variation, it was observed that environment has the highest

contribution followed by the GE for all the traits under study.

The highest contribution of environment was observed for

biological yield (86.02%), whereas the contribution of GE was

maximum in seed yield (14.98%). The contribution of genotype

exhibited the highest effect on seed yield followed by

biological yield.
Mean performance and descriptive
statistics of the grasspea genotypes over
the locations

The mean performance of the tested grasspea genotypes

considering their maturity, biological yield, and seed yield along

with the mean BLPSI is presented in Table 2. Across all locations,

FLRP-B54-1-S2 was the early maturity genotype (115 days) with the

highest seed yield (1,740.25 kg/ha) potential. The check variety

Mahateora matured early along with other six grasspea lines

(BANG-147-S3, BANG-234-S1, IGC-2012-4/6-23, BANG-15-S1,

IGC-2012-70/1-5, and IGC-2012-31/2-1), although all the

genotypes exhibited non-significant differences with each other.
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Among the locations, genotypes matured early at L2 (106 days) and

late in L3 (131 days). Genotypic variance (s2g) varied between 2.09

(L3) and 6.24 (L4) for the days to maturity trait. Biological yield was

significantly highest in genotype 23-GP-F3-S2 (10.51 t/ha) followed

by IGC-2012-76/5-14 (9.94 t/ha). Genotypes exhibited the highest

biological yield in L2 (11.78 t/ha), which was approximately 52%

higher than the average biological yield of the genotypes over the

locations. In contrast, L4 (Imphal) exhibited the lowest biological

yield (6.09 t/ha), which was approximately 26% lower than the

average biological yield of the tested grasspea genotypes over the

locations. For this trait, genotypic variance ranged from 0.28 (L1) to

7.45 (L4).

Among the check varieties, Prateek recorded the second highest

yield (1,684 kg/ha), while maturing within 118 days over the

locations. However, non-significant differences were observed

between the three promising grasspea genotypes (FLRP-B54-1-S2

> Prateek > 31-GP-F3-S7) concerning yield. All these three

genotypes exhibited moderate biological yield ranging from 7.23

to 7.59 t/ha. Among the locations, the highest yield was obtained in

L1 (2,000.71 kg/ha), while it was the lowest in L4 (818.25 kg/ha)

with a significant difference in the expression of yield potential. The

highest genotypic variance as well as GEI was observed for this trait.

In the present study, perusal of the data contemplating mean BLPSI

reflected that FLRP-B54-1-S2 was detected with having the highest

mean BLPSI (1,848.02) among all the tested grasspea genotypes,

making it the top-performing genotype considering multi-trait

performance. Additionally, Prateek (1,794.34), 31-GP-F3-S7

(1,733.64), 31-GP-F3-S4 (1,727.31), and FLRP-B38-S5 (1,724.99)

were also ascertained as good performers considering the mean

BLPSI. Among the locations, the highest mean BLPSI was observed

in L1 (2,122.22) followed by L3 (1,250.16) with the lowest at L4

(950.01). In L1 (Amlaha), FLRP-B54-1-S2, Prateek, and 31-GP-F3-

S7 combined early maturity with high seed yield (>1,600 kg/ha). L2

(Raipur) favored 31-GP-F3-S4, IGC-2012-31/2-44, and 23-GP-F3-

S2, which recorded the highest biomass (>9 t/ha). In L3

(Mohanpur), FLRP-B38-S5 and BANG-288-S2 showed a stable

seed yield performance (≥1,500 kg/ha), while in L4 (Imphal),

IGC-2012-67/13-25 exhibited good adaptability with a superior
TABLE 1 Analysis of variance for maturity, biological yield, and seed yield of grasspea genotypes tested across the locations.

Traits Sources of variation Degrees of freedom Mean sum of square p-value % contribution

Days to maturity

Environment 3 13,223.81 <0.001 82.41

Genotype 63 794.30 <0.001 4.95

Environment × Genotype 189 2,028.26 <0.001 12.64

Biomass

Environment 3 814.64 <0.001 86.02

Genotype 63 55.59 <0.001 5.87

Environment × Genotype 189 76.80 <0.001 8.11

Seed yield

Environment 3 28,142,885.31 <0.001 78.34

Genotype 63 2,399,725.22 <0.001 6.68

Environment × Genotype 189 5,381,419.73 <0.001 14.98
**p < 0.01; ***p < 0.001.
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TABLE 2 Mean performance of the grasspea genotypes across the locations.

Genotype
code

Genotype/
Environment

Status
Country of

origin
Days to
maturity

Biological
yield (t/ha)

Seed
yield
(kg/
ha)

Mean selection
index (BLPSI)

Based on genotype

G1 BANG-113-S5 Germplasm Bangladesh 118 6.75 1,153.49 1,264.74

G2 32-GP-F3-S2 Germplasm Nepal 118 7.84 1,424.25 1,534.04

G3 BANG-147-S3 Germplasm Bangladesh 117 6.59 1,195.74 1,305.90

G4 32-GP-F3-S5 Germplasm Nepal 120 7.1 1,469.45 1,582.23

G5 BANG-188-S4 Germplasm Bangladesh 119 7.13 1,154.06 1,266.06

G6 39-GP-F3-S2 Germplasm Nepal 121 8.34 1,341.17 1,453.58

G7 BANG-277-S1 Germplasm Bangladesh 119 7.68 1,395.31 1,507.01

G8 40-GP-F3-S3 Germplasm Nepal 120 8.2 1,320.93 1,432.48

G9 BANG-233-S1 Germplasm Bangladesh 120 8.09 1,289.89 1,401.55

G10 FLRP-B38-S5
Advanced

breeding line
ICARDA 119 6.74 1,613.23 1,724.99

G11 40-GP-F3-S6 Germplasm Nepal 119 6.71 1,302.11 1,414.53

G12 BANG-234-S1 Germplasm Bangladesh 117 6.46 1,153.26 1,263.80

G13 FLRP-B54-1-S2
Advanced

breeding line
ICARDA 115 7.23 1,740.25 1,848.02

G14 48-GP-F3-S3 Germplasm Nepal 119 7.74 1,519.10 1,630.49

G15 BANG-271-S2 Germplasm Bangladesh 119 8.03 1,286.40 1,397.50

G16 21-GP-F3-S5 Germplasm Nepal 120 7.07 1,064.53 1,177.71

G17 48-GP-F3-S10 Germplasm Nepal 119 7.53 1,450.54 1,562.01

G18 BANG-288-S2 Germplasm Bangladesh 119 9.26 1,503.74 1,612.98

G19 23-GP-F3-S1 Germplasm Nepal 119 7.3 1,174.82 1,286.40

G20 48-GP-F3-S15 Germplasm Nepal 120 8.64 1,488.27 1,599.13

G21 BANG-307-S2 Germplasm Bangladesh 118 7.19 1,382.04 1,493.10

G22 23-GP-F3-S2 Germplasm Nepal 119 10.51 1,213.38 1,321.87

G23 74-GP-F3-S1 Germplasm Nepal 118 6.82 1,091.02 1,203.45

G24 BANG-307-S3 Germplasm Bangladesh 119 7.41 1,269.14 1,380.73

G25 23-GP-F3-S5 Germplasm Nepal 119 8.57 1,224.43 1,334.86

G26 74-GP-F3-S5 Germplasm Nepal 119 7.19 1,035.71 1,148.52

G27 BANG-27-S2 Germplasm Bangladesh 119 6.67 1,156.34 1,268.30

G28 25-GP-F3-S3 Germplasm Nepal 120 9.81 1,285.19 1,395.13

G29 BANG-31-S6 Germplasm Bangladesh 119 6.76 1,255.60 1,367.97

G30 31-GP-F3-S2 Germplasm Nepal 118 7.76 1,222.84 1,333.08

G31 BANG-15-S1 Germplasm Bangladesh 117 7.37 1,062.22 1,173.10

G32 31-GP-F3-S4 Germplasm Nepal 120 9.16 1,616.97 1,727.31

G33 31-GP-F3-S7 Germplasm Nepal 121 7.54 1,620.68 1,733.64

G34 IGC-2012-70/1-8
Advanced

breeding line
ICARDA 119 6.65 915.09 1,028.82

(Continued)
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TABLE 2 Continued

Genotype
code

Genotype/
Environment

Status
Country of

origin
Days to
maturity

Biological
yield (t/ha)

Seed
yield
(kg/
ha)

Mean selection
index (BLPSI)

Based on genotype

G35 IGC-2012-31/2-37
Advanced

breeding line
ICARDA 119 8.13 907.65 1,021.40

G36 IGC-2012-6/3-36
Advanced

breeding line
ICARDA 118 8.24 1,057.88 1,167.89

G37 IGC-2012-78/4-19
Advanced

breeding line
ICARDA 120 8.69 1,080.97 1,193.41

G38 IGC-2012-76/5-42
Advanced

breeding line
ICARDA 120 7.44 1,072.42 1,186.36

G39 IGC-2012-4/6-50
Advanced

breeding line
ICARDA 119 6.67 1,122.80 1,235.38

G40 IGC-2012-2/8-8
Advanced

breeding line
ICARDA 121 7.95 1,399.11 1,511.66

G41 IGC-2012-74/10-7
Advanced

breeding line
ICARDA 119 7.26 1,222.34 1,333.71

G42 IGC-2012-88/11-50
Advanced

breeding line
ICARDA 118 7.82 1,138.27 1,250.58

G43 IGC-2012-24/12-43
Advanced

breeding line
ICARDA 118 6.98 924.70 1,037.72

G44 IGC-2012-31/2-1
Advanced

breeding line
ICARDA 117 7.75 758.32 871.70

G45 IGC-2012-6/3-42
Advanced

breeding line
ICARDA 119 7.86 1,046.71 1,159.48

G46 IGC-2012-78/4-5
Advanced

breeding line
ICARDA 118 7.37 905.93 1,020.31

G47 IGC-2012-76/5-14
Advanced

breeding line
ICARDA 121 9.94 1,154.18 1,265.12

G48 IGC-2012-4/6-8
Advanced

breeding line
ICARDA 119 7.04 1,148.55 1,260.64

G49 IGC-2012-74/10-41
Advanced

breeding line
ICARDA 119 7.93 1,154.61 1,265.81

G50 IGC-2012-24/12-26
Advanced

breeding line
ICARDA 119 7.86 1,034.07 1,146.34

G51 IGC-2012-70/1-5
Advanced

breeding line
ICARDA 117 7.51 979.95 1,090.82

G52 IGC-2012-6/3-39
Advanced

breeding line
ICARDA 119 9.69 1,299.26 1,408.57

G53 IGC-2012-31/2-44
Advanced

breeding line
ICARDA 118 9.91 1,315.60 1,423.57

G54 IGC-2012-6/3-47
Advanced

breeding line
ICARDA 118 7.11 961.53 1,073.80

G55 IGC-2012-4/6-23
Advanced

breeding line
ICARDA 117 7.36 1,061.78 1,174.67

G56 IGC-2012-14/7-44
Advanced

breeding line
ICARDA 119 8.86 1,396.80 1,506.57

(Continued)
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yield. Overall, FLRP-B54-1-S2, Prateek, 31-GP-F3-S7, and 48-GP-

F3-S3 consistently ranked highest across most environments, with

seed yield advantages of 8%–15% over the trial mean (Table 2;

Figure 3). In the present dataset, it was observed that in L1, out of 64

genotypes, 26 genotypes matured within 105–106 days while 3

genotypes matured beyond 120 days (Figure 3). Interestingly, in L2,

maximum genotypic classes were observed and seven genotypes

matured within 102 days. In L3, the genotypes matured within the

range of 127–133 days while 10 genotypes matured early (127–128

days). In L4, only three classes were obtained, where only 11

genotypes matured within 121 days. In the case of biological

yield, in L2, genotypes were divided into five classes, while four

classes were observed in the rest of the locations. In contrast, in the

case of seed yield, the highest classes were observed in L2 (seven

classes) followed by six classes in L4. All the traits exhibited normal

distribution over the locations.
Frontiers in Plant Science 09
Boxplot analysis represented the distribution of environments

concerning three yield components over the locations (Figure 4).

For days to maturity, consistent performances were seen in L2. For

biological yield and seed yield, a congruous performance was

observed in L4 and L1, respectively. In the case of biological yield,

L4 and L1 exhibited a stable performance with relatively low

variation. Similarly, for seed yield, L4 demonstrated the most

uniform performance, suggesting greater consistency in this trait.

Genetic parameters of the 64 grasspea genotypes for three traits

over the locations are presented in Table 3. The mean value for days to

maturity was found to be 119 days, and across all the genotypes and

locations, the maturity period ranged from 115 to 122 days. In the case

of biological trait, moderate variability was observed. Maximum

variability was reflected in the case of seed yield and varied between

758 and 1,740 kg/ha. Heritability for maturity (76%) and biological

yield (67%) was high, whereas for seed yield, it was moderate (58%).
TABLE 2 Continued

Genotype
code

Genotype/
Environment

Status
Country of

origin
Days to
maturity

Biological
yield (t/ha)

Seed
yield
(kg/
ha)

Mean selection
index (BLPSI)

Based on genotype

G57 IGC-2012-2/8-35
Advanced

breeding line
ICARDA 118 5.7 1,376.27 1,488.20

G58 IGC-2012-73/9-5
Advanced

breeding line
ICARDA 119 8.01 1,329.43 1,440.42

G59 IGC-2012-74/10-1
Advanced

breeding line
ICARDA 121 8.17 1,193.07 1,306.15

G60 IGC-2012-6/3-43
Advanced

breeding line
ICARDA 118 7.02 1,254.02 1,365.38

G61 IGC-2012-24/12-24
Advanced

breeding line
ICARDA 118 7.68 868.99 983.69

G62 IGC-2012-67/13-25
Advanced

breeding line
ICARDA 119 7.76 1,278.61 1,391.98

G63 Mahateora
Released
variety

India 117 6.65 1,440.39 1,550.37

G64 Prateek
Released
variety

India 118 7.79 1,684.00 1,794.34

Based on locations

L1 FLRP, Amlaha 115 6.19 2,000.71

L2 IGKV, Raipur 106 11.78 1,003.36

L3 BCKV, Mohanpur 131 6.81 1,112.64

L4 CAU, Imphal 126 6.09 818.25

LSD (5%) 6.32 0.55 283.3

CV 5.3 14.86 13.56

s2g 0.92 0.66 16,536.58

Gen × Loc
variance

4.39 2.78 95,370.46
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Genotypic appraisal over the location
considering mean vs. stability

The mean performance and stability of the grasspea genotype

across different locations considering their mean SI were visually

represented using the AEC view of the GGE biplot (Figure 5). In
Frontiers in Plant Science 10
essence, the AEC coordination view of the GGE biplot is a

genotype-metric-preserving biplot with an SVP equal to 1. It

allows for the visualization of genotype discrimination

considering their mean performance. In this graph, the first two

PCs enabled to explain 80.93% of the total variation considering

mean SI.
FIGURE 3

Frequency distribution of yield-attributing traits (days to maturity, biological yield: t/ha; seed yield: kg/ha) in grasspea genotypes over the locations.
(a) Frequency distribution of yield-attributing traits in grasspea genotypes at ICARDA-FLRP, Amlaha. (b) Frequency distribution of yield-attributing
traits in grasspea genotypes at IGKV, Raipur. (c) Frequency distribution of yield-attributing traits in grasspea genotypes at BCKV, Mohanpur. (d)
Frequency distribution of yield-attributing traits in grasspea genotypes CAU, Imphal.
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The graph’s single arrowhead line represents the AEC abscissa,

which passes through the biplot origin and indicates a higher mean

SI value of the grasspea genotypes, expressing their overall

superiority. The perpendicular line to the AEC, extending

outward from the biplot origin, is referred to as the “AEC

ordinates”, serving as an indicator of the stability of the

genotypes. Inversely, genotypes with longer vector lengths from

the AEC abscissa exhibited lower stability, while those with shorter

vector lengths were considered more stable. Genotypes FLRP-B54-

1-S2 (G13), Prateek (G64), 31-GP-F3-S7 (G33), 31-GP-F3-S4

(G32), FLRP-B38-S5 (G10), 48-GP-F3-S3 (G14), and BANG-288-

S2 (G18) exhibited strong multi-trait performance, as they were

positioned favorably concerning the “AEC ordinate.” On the other

hand, genotypes IGC-2012-31/2-1 (G44), IGC-2012-24/12-24

(G61), and IGC-2012-78/4-5 (G46) performed poorly, as they

were positioned in the opposite direction to the “AEC ordinate.”

Within the group of good performers, Prateek (G64) and 31-GP-

F3-S7 (G33) stood out as the most stable genotypes, as they had

shorter projections from the “AEC abscissa.” Despite being the best

performer, FLRP-B54-1-S2 (G13) was characterized as an unstable

genotype. The present study revealed that Prateek (G64) and 31-

GP-F3-S7 (G33) emerged as the most ideal genotypes due to their

excellent performance in terms of combined yield-duration profile

as well as good stability. The genotypes positioned close to the ideal

genotype were regarded as desirable genotypes, and the distance

between them is measured using the Euclidean distance.

Consequently, 48-GP-F3-S3 (G14) was identified as a desirable

genotype because of its proximity to the ideal genotype and nearly

stable response in terms of multi-trait performance. Using the mean
Frontiers in Plant Science 11
SI, the tested grasspea genotypes were categorized into seven

clusters with promising grasspea genotypes (G13), (G64), (G33),

(G32), (G10), (G14), and (G18) in cluster I (Figure 6).
Environment evaluation following
discriminativeness vs. representativeness

In the GGE biplot approach, the critical factors for identifying

desirable testing locations and eliminating redundant ones are

discrimination power (ability to discriminate genotypes),

representativeness (ability to represent corresponding MEs), and

the desirabil i ty index. In the “discriminativeness vs.

representativeness” view of the GGE biplot, the lines connecting

the test environments are referred to as environment vectors. From

the graph, it was observed that L1 (Amlaha) and L3 (Mohanpur)

revealed an acute angle with each other, while the two remaining

locations indicated an obtuse angle (Figure 7).

The information rendered by L4 (Imphal) was distinct from the

other locations. Thus, it can be deduced that L1 and L3

environments were positively correlated and had closer

relationships with each other. The presence of a close association

between these environments suggested that similar information

could be obtained regarding genotype performance from these

environments.In contrast, an obtuse angle was observed between

L1 and L3 on one side and L2 and L4 on the other, indicating a

negative association and distant relationships among these

environments. The length of the environmental vectors generally

represents the discriminating power of the test environments.
TABLE 3 Descriptive statistics of the tested grasspea genotypes over the locations.

Traits Mean
Range

GCV PCV Heritability
Genetic
advance (GA)

GA as % over
meanMin Max

Days to maturity 119 115 122 0.8 0.92 0.76 1.72 1.44

Biological yield (kg/ha) 7.72 5.7 10.51 10.53 12.87 0.67 1.37 17.76

Seed yield (kg/ha) 1,233.74 758.32 1,740.25 10.42 13.69 0.58 201.72 16.35
FIGURE 4

Boxplot view of yield-attributing traits of the grasspea genotypes over the locations. (a) Boxplot view of days to maturity of the grasspea genotypes
over the locations. (b) Boxplot view of biological yield (t/ha) of the grasspea genotypes over the locations. (c) Boxplot view of seed yield (kg/ha) of
the grasspea genotypes over the locations.
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Therefore, among the four testing locations, L3 (Mohanpur)

followed by L1 (Amlaha) were the most discriminative whereas

L4 (Imphal) was the least discriminative environment (Table 4).

The least discriminative location is also considered as the least

informative; thus, this environment can be considered as a

redundant testing location for the assessment of grasspea

genotypes. The indication of environmental representativeness is

typically conveyed by the angle existing between the environment

vectors and the AEC. It was observed that L4 (Imphal) reflected
Frontiers in Plant Science 12
with the smallest angle between AEC and was thus identified as the

most representative testing location. The desirability index of the

test locations encompasses the combined outcome of both

discriminative capability and representativeness. L3 (Mohanpur)

with the highest desirability index was identified as the ideal testing

location for the testing of mini core collection or advance breeding

materials as well as for selecting genotypes with general adaptability.

However, locations with good discrimination power and less

representativeness such as L2 (Raipur) would be meaningful for
FIGURE 5

Mean performance and stability of the grasspea genotypes tested across different locations.
FIGURE 6

Hierarchical clustering of grasspea genotypes based on days to maturity (DTM), biological yield (BY), seed yield (SY), and the BLPSI over the tested
locations.
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winnowing genotypes with a specific adaptation. The relatedness of

the genotypes and testing locations was represented through

hierarchical clustering based on days to maturity, biological yield,

and seed yield of the tested grasspea genotypes. All the testing

locations were grouped into two clusters (Figure 6).
Delineation of the mega-environment and
the winning genotypes

Another crucial aspect of the GGE biplot involves the

identification of genotypes suitable for test environments through

the graphical depiction known as the “which-won-where”

representation. Initially, a polygon was sketched around the

genotypes located farthest from the biplot origin, encompassing

all the remaining genotypes within its boundaries. Genotypes

situated at the polygon’s vertices represent either the most

superior or the least favorable performers in one or multiple

environments. In the current study, the biplot proved highly

informative in effectively distinguishing between environments

and displaying a well-distributed polygon (Figure 8). The equality
Frontiers in Plant Science 13
lines divided the graph into seven sectors, with all 4 locations being

situated within three of these sectors, which could be designated as

“MEs”. The first ME constituted of L1 (Amlaha) and L3

(Mohanpur), and the second and third ME consisted of single

location L2 (Raipur) and L4 (Imphal), respectively. The analysis

revealed that FLRP-B54-1-S2 (G13) emerged as the winning

genotype in ME-I, while in ME-II, FLRP-B38-S5 (G10) was

detected as the winning genotype. In the case of ME-III, the

genotype positioned in the outer vertex was the poor-performing

one; therefore, IGC-2012-67/13-25 (G62) present on the vertex

towards the center was considered as the winning genotype.
Machine learning modeling and
delimitation of suitable genotypes of
grasspea

The present study revealed that the MLP model had the highest

R2 scores, with values for maturity (MAT) and biological yield (BY)

of 0.947 and 0.608, respectively. On the other hand, seed yield (SY)

(0.682) and BLPSI (0.679) received the greatest R2 values from the
FIGURE 7

GGE biplot analysis: discriminativeness vs. representativeness of grasspea genotypes tested across different locations.
TABLE 4 Evaluation parameter of the testing environment.

Location Discriminating power Representativeness Desirability index

L1 7.29 0.79 6.76

L2 7.07 0.47 5.81

L3 7.32 0.87 7.22

L4 4.17 0.91 3.41
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RF model (Table 5; Figure 9). These scores indicate the extent to

which the independent variables in the model can explain the

variance in the dependent variable. Results for MAPE, RMSE, and

MLSE were in line with the R2 scores, and the lowest scores for

MAT and BY from the MLP model demonstrate its superior

accuracy and predictive ability. With regard to SY and BLPSI, the

RF model performed better as seen by its lower RMSE, MAPE, and

MLSE scores. The performance of the MLP model was further

validated using the MAE results. The MLP model demonstrated its

accuracy in predicting MAT, BY, and SY by achieving the lowest

MAE scores for these parameters. The MLSE results showed that
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both models’ responses to MAT were similar, indicating a similar

performance for this metric. For BY, the MLSE score that the MLP

model obtained was the lowest. For both SY and BLPSI, the RF

model had the lowest MLSE score. The results of the MedAE

showed how well the MLP model performed for all parameters.

For all parameters, the MLP model showed lower MedAE

values than the RF model, indicating a higher overall predictive

accuracy. Overall, the MLP model showed the lowest RMSE,

MAPE, MLSE, MAE, and MedAE scores for these parameters,

and the highest R2 scores for MAT and BY. In contrast, the RF

model had the lowest RMSE, MAPE, MLSE, and MAE scores for SY
FIGURE 8

Which-won-where pattern of grasspea genotypes in the GGE biplot analysis tested over the locations.
TABLE 5 Performance metrics of the utilized ML models for different parameters.

MLP

Traits* R2 RMSE MAE MAPE MLSE MedAE

MAT 0.947 2.304 1.797 1.539 0.000 1.515

BY 0.608 1.880 1.286 20.605 0.057 0.822

SY 0.674 328.307 245.249 24.646 0.091 187.791

BLPSI 0.661 333.412 254.337 21.304 0.069 198.004

RF

Traits* R2 RMSE MAE MAPE MLSE MedAE

MAT 0.940 2.458 1.903 1.627 0.000 1.594

BY 0.558 1.995 1.392 22.131 0.063 0.895

SY 0.682 324.400 254.340 24.873 0.086 222.252

BLPSI 0.679 324.768 251.203 21.12 0.065 203.566
*MAT, days to maturity; BY, biological yield; SY, seed yield; BLPSI: Base Linear Phenotypic Selection Index.
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and BLPSI along with the highest R2 scores. The MLP model

demonstrated exceptional performance in MAE and MedAE, two

crucial metrics for evaluating prediction accuracy and resilience.
Discussion

Plant breeders frequently conduct multi-location trials (MLTs)

to assess the test entries. This practice forms a strong foundation for

the adoption and commercial release of varieties. Grasspea is a

versatile crop concerning its wide adaptability (Das et al., 2021). The

testing locations in the present study represent the diverse agro-

climatic zones in India. In multi-locational trials, the variance

components are mainly divided into three classes, main effect of

genotype, environment, and their interaction (GE). The presence of

the GE component adds ambiguity to genotype evaluation due to

inconsistency in the performance of cultivars across different

locations. Understanding the GEI is crucial for refining breeding

strategies, selecting non-redundant testing sites, and recommending

varieties for specific or broad adaptation. Over the past decade,

Additive Main Effect and Multiplicative Interaction (AMMI)

(Ahmadi et al., 2012; Rajendran et al., 2018; Rubiales et al., 2020)
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and the GGE biplot (Yan et al., 2007; Chatterjee et al., 2019) have

gained prominence for the visual representation of GEIs, facilitating

the identification of stable genotypes and optimal environments.

The GGE biplot surpasses AMMI in ME analysis through

elucidating a greater proportion of G+GE and providing insights

into optimizing test environments through the “discrimination

power vs. representativeness” graph (Yan et al., 2007). The

present study attempted to cull out stable grasspea genotypes with

a minimal GEI impact and a greater genetic buffering capacity

employing the GGE biplot methodology.

In the present study, ANOVA confirmed the significant

contributions of the environment and GEI for all the studied

traits, which were considered for estimating the mean BLPSI,

thereby corroborating the relevance of MLTs. Earlier literature

(Gauch and Zobel, 1997) suggested that, in MLT data, the

primary source of variation is the environment, accounting for

over 80% of the total variation. In mungbean (Das et al., 2020; Singh

et al., 2020), fieldpea (Das et al., 2019; Biswas et al., 2021), chickpea

(Tamang et al., 2021), and lentil (Bhattacharya et al., 2022a, 2022b;

Chatterjee et al., 2023), studies aligned with the current results,

highlighting the prominence of environmental variation. In the

current investigation, the substantial contribution of GEI was also
FIGURE 9

Actual versus predicted scores of grasspea genotypes obtained from the MLP and RF machine learning models across four traits. (A) Performance
metrics of the utilized ML models for maturity (MAT), (B) Performance metrics of the utilized ML models for biological yield (BY), (C) Performance
metrics of the utilized ML models for seed yield (SY), (D) Performance metrics of the utilized ML models for Base Linear Phenotypic Selection
Index (BLPSI).
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evident, underscoring the presence of distinct MEs within the tested

locations (Gore et al., 2021).

In MLTs, breeders must recommend genotypes based on

combined yield-trait performance. However, most studies focus

on single trait analysis, leaving other traits unexplored (Yan and

Tinker, 2006). To address this, decisions must be taken considering

the breeder’s experience and judgment for framing a selection index

or subjective weight for multiple traits. In the present study, we have

tried to visualize the GEI effect based on combined multi-trait

performance of the grasspea genotypes wherein beside yield

performance, maturity and biomass were also taken into

consideration. It was observed that the performance of grasspea

genotypes was unpredictable and inconsistent at different locations

and ratified the presence of crossover interaction (COI). Genotypes

G13, G33, G10, G63, and G6 showed promise in L1, while in L2,

G32, G53, G21, G4, and G50 excelled. The presence of COI implied

breeding for specific adaptation (Yan and Hunt, 2002; Rakshit et al.,

2012). However, some genotypes (G13 and G33) exhibited non-

COI, aligning with previous studies showing the presence of both

COI and non-COI within the same datasets (Das et al., 2019; Singh

et al., 2020). This complexity may diminish the genetic gain due to

the intricacies during the selection procedure (Comstock and

Moll, 1963).

The GGE biplot simplifies the complex interaction between the

genotype, environment, and GEI in the form of different PCs, and

their contribution justifies the usefulness of the methodology for

explaining the sources of variation (Yan and Tinker, 2005). In this

study, the two PCs explained more than 80% of the variation, which

rationalized the adequacy of the MLT in grasspea. The ideal

genotype selection in the GGE biplot is based on both mean

performance and stability. In the present study, Prateek (G64)

and 31-GP-F3-S7 (G33) were considered as the ideal genotypes

due to their high BLPSI value considering multi-trait performance

and minimal interaction with the environment in the form of less

projection from “the AEC abscissa” (Yan and Falk, 2002).

Genotypes that are close to the “ideal” genotypes are considered

as “desirable” genotypes due to having their high genetic

relationship with the “ideal” genotype (Yan and Tinker, 2005).

48-GP-F3-S3 (G14) was identified as a desirable genotype due to its

close positional proximity with the ideal genotype. Genotype

positioning along the AEC ordinate indicated performance

variation across environments, likely influenced by weather

parameters such as rainfall, temperature, and humidity (Dehghani

et al., 2006). Thus, genotypes with low homeostasis exhibit high

responsiveness towards environments.

Another important feature of the GGE biplot is the culling out

of the optimal testing location judiciously with an aim of efficiently

distributing resources, while also minimizing the overall trial costs.

Importantly, this allocation strategy was designed to ensure that

trial heritability and genetic gain under selection were not

compromised in the process (Yan, 2001). Within the GGE

framework, the projection of the vector onto the “AEC abscissa”

plays a pivotal role in determining both the overall impact of the

environment and the effectiveness of the methodology employed

(Allen, 1978; Flores et al., 2013). In legume crops such as grasspea,
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where the additive component of variation holds a dominant role,

the vector projection of the testing location on the GGE biplot

serves as an indirect selection parameter, which is instrumental in

confirming the effectiveness of the methodology being used (Yan

and Holland, 2010). Taking all factors into account, L3 (Mohanpur)

emerged as the optimal testing location due to its highest

desirability index, being both discriminative and representative of

the target environments. This selection makes it the ideal choice for

evaluating advanced breeding materials, especially with a meager

seed quantity that needs to be adjusted across various locations.

Additionally, the GGE biplot was able to separate all the testing

locations into three MEs to aid the restructuring of agro-ecological

zonation with the winning genotype for each center. An ME can be

defined as a group of analogous locations delivering a similar

genotypic response and sharing the same set of genotypes across

the year (Yan and Rajcan, 2002). The “ideal” genotype identified in

the present study, G13 (FLRP-B54-1-S2), was also the winning

genotype in ME-I, while FLRP-B38-S5 (G10) for ME-II and IGC-

2012-67/13-25 (G62) in ME-III revealed specific adaptation for the

respective MEs. Prior research has utilized the GGE approach to

assess testing locations and delineate specific environmental zones

in a similar manner (Sayar and Han, 2015; Chatterjee et al., 2019;

Vaezi et al., 2023).

The application of ML models in this study provided deeper

insights into GEIs, improving predictive accuracy for key yield

traits. The MLP model, with its ability to capture nonlinear

relationships, performed well in predicting maturity and

biological yield, benefiting from automated feature learning and

multicollinearity handling (Sarker, 2021; Akay et al., 2022). Its

strength in modeling continuous variables contributed to

improved accuracy, particularly for traits influenced by multiple

factors. Comparable integrative approaches using the GGE biplot

and ML have been reported in cereals, providing useful benchmarks

for our findings. For instance, Omrani et al. (2025) applied RF and

MLP models alongside GGE analysis in wheat and found that

combining multi-trait indices with predictive modeling improved

genotype ranking stability compared to single-trait models, which is

consistent with our observation that ML integration better captured

genotype × environment patterns in grasspea.

Conversely, the RF model proved more effective in handling

high-dimensional data, particularly for seed yield and soil-related

traits (Wani et al., 2022). Its ensemble averaging approach reduced

sensitivity to noise and outliers, resulting in more stable predictions.

Additionally, its ability to rank feature importance provided

valuable insights into the most influential agronomic factors

(Fawagreh et al., 2014). The integration of ML with the GGE

biplot approach further improved genotype selection for the

Indian climate. ML models identified complex genotype ×

environment patterns, facilitating the selection of high-yielding

and climate-adapted grasspea genotypes (Bello et al., 2015). This

data-driven approach enhanced selection efficiency, making trait

evaluation more precise and supporting climate-resilient

breeding strategies.

The observed performance differences between MLP and RF

highlight the importance of model selection based on trait
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characteristics. While MLP was effective for complex, continuous

traits, RF provided robustness in high-dimensional datasets,

making it particularly useful for trait selection and stability

analysis. These findings emphasize the role of ML in improving

prediction accuracy and decision-making in crop improvement

programs. Thus, AI-driven tools can efficiently model and

visualize these interactions, enabling researchers to identify

genotypes with superior adaptability and yield potential in varied

Indian climates. This approach makes data-driven decisions in

genotype selection and breeding strategies, improving the

efficiency and accuracy of identifying suitable grasspea genotypes.
Conclusion

The present study highlighted the significant environmental

and genotype × environment effects on grasspea performance

across diverse Indian locations. GGE biplot analysis grouped the

sites into three MEs, identifying FLRP-B54-1-S2, Prateek, and 31-

GP-F3-S7 as ideal genotypes, and 48-GP-F3-S3 as a desirable

genotype for targeted adaptation. ML models complemented

traditional analyses, with MLP performing best for maturity and

biomass, and RF for seed yield and BLPSI. This synergistic data-

driven approach for genotype selection and identifying the ideal test

environment can strengthen the substantial selection of location

with optimization of resources in future breeding programs.
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