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Accurately obtaining the total nitrogen and nicotine content of tobacco plants

and their vertical distribution within the canopy is crucial for smart management

and quality assessment. However, the complex field environment and uneven

vertical distribution pose significant challenges for precise estimation. This study

proposed a spectral and texture feature fusionmethod based on deep learning to

improve estimation accuracy, and an improved YOLOv8 model (AO-YOLOv8)

was developed for tobacco leaf instance segmentation. After segmentation, the

average spectral features from six image channels were extracted, and 474

texture features were obtained using Gray Level Co-occurrence Matrix

(GLCM), Local Binary Pattern (LBP), Fourier Transform, Gabor Filter, and

Wavelet Transform. Four deep neural networks, including LSTM, RNN, MLP,

and FCNN, were then applied to establish estimation models of nitrogen and

nicotine content at both the leaf and plant scales. The results showed that AO-

YOLOv8 achieved an mAP50 of 87.3 and an mIoU of 83.4 in the leaf instance

segmentation task, representing improvements of 6.99% and 8.88% over the

original YOLOv8, and effectively detected and separated overlapping leaves

under complex conditions. The fusion of spectral and texture features

significantly improved prediction accuracy, with the LSTM network achieving

the best performance, yielding R2 values of 0.8634 and 0.8735 for nitrogen and

nicotine prediction at the leaf scale in laboratory conditions. In the field

environment, the LSTM-based models for plant-scale nitrogen and nicotine

estimation achieved R2 values of 0.6771 and 0.5735, respectively, which

outperformed models using spectral features alone. In conclusion, this study

enabled accurate estimation and visualization of the vertical distribution of

nitrogen and nicotine content in field-grown tobacco plants, providing an

efficient, low-cost, and non-destructive solution for tobacco production and

quality control.
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1 Introduction

Nitrogen is an essential element that significantly influences the

growth and development of tobacco (Collins and Hawks, 1993). It is

also an important component of nicotine and has a significant impact

on the synthesis and accumulation of nicotine (MacKown and Sutton,

1997). Nicotine is a critical factor in determining the flavor of tobacco,

greatly affecting the quality of tobacco leaves and the final product

(Zhang et al., 2024). Compared to reducing sugars and proteins,

nitrogen and nicotine content undergo relatively small changes

before and after the curing process (Chen et al., 2021a). Therefore,

timely estimation of nitrogen and nicotine content in field-grown

tobacco is not only beneficial for precise implementation of field

management practices, such as fertilization, but also has an

important significance for the prediction of tobacco leaf quality after

roasting and the allocation of industrial enterprises.

Traditional methods for detecting the chemical compositions of

tobacco leaves, including chemical and laboratory analyses, often

require large quantities of time and high costs. These methods are

limited by sampling representativeness and operational complexity

accompanied with the disadvantage of result lag (Simonne et al.,

1997; Tang et al., 2019). With the development of smart agriculture

technologies, spectral analysis has gradually become an important

tool in plant research due to its non-destructive, rapid, and efficient

characteristics. Multispectral data, especially in the visible and near-

infrared range, can provide valuable information about the

chemical composition of plants. Some studies have utilized the

canopy spectra of tobacco fields, combined with first-order

derivative spectra, vegetation index and hyperspectral parameters,

and adopted multiple linear regression to establish a prediction

model. The characteristics highly correlated with nitrogen content

were studied and analyzed. The model verification results reached

R²=0.73 and RMSE=0.38, which can accurately predict the nitrogen

content of tobacco leaves (Guo et al., 2023). In terms of nicotine

content prediction, existing studies have shown that a prediction

model can be constructed by combining ultraviolet spectral data

with multiple regression methods, and there is a significant

correlation between the predicted values and the true values.

Furthermore, some scholars have adopted hyperspectral imaging

techniques to extract the average spectra of tobacco samples and

conducted modeling studies by combining multiple regression

algorithms such as PLSR, SVR, RF, and PLSR-VIP. Among them,

the PLSR model performs best throughout the entire band range

(R²=0.93). The PLSR-VIP model can maintain a relatively high

prediction accuracy (R²=0.91) even when using only five key bands

(Wei et al., 2018; Divyanth et al., 2022). There are also studies

applying NIR and MIR spectral fusion to rapidly predict total

nicotine, total sugar, reducing sugar, and total nitrogen in

tobacco. By combining variable selection with multiple

algorithms, these fusion approaches improve prediction accuracy

compared with single-spectrum models, demonstrating the

potential of spectral fusion for non-destructive chemical analysis
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of tobacco leaves (Wang et al., 2024a). Beyond spectral features,

texture information has been proven to be effective in capturing

fine-grained variations in leaf surface morphology, which

contributes to quality evaluation tasks. Color and texture features

extracted during different curing stages have been utilized to

develop a highly accurate moisture content prediction model,

achieving an R² of 0.9987 (Chen et al., 2021b). Therefore, we aim

to extract the sensitive features from multispectral images to

estimate the total nitrogen and nicotine content of tobacco

plants rapidly.

Current methods are generally limited to canopy-level

observations and lack the capacity to capture biochemical

information from the middle and lower leaf positions. To obtain

the biochemical information of the middle and lower leaves, the

segmentation of the leaves is the first problem to be solved. Liu et al.

(2020) applied the YOLOv3 and YOLOv3_tiny to detect the maize

crops and performed better than traditional image segmentation

methods. A two-stage soybean leaf segmentation model based on

leaf localization and guided segmentation achieved high accuracy

(AP=0.976, AR=0.981), effectively handling overlapping leaves

(Wang et al., 2023). YOLOv8-seg has been enhanced with Ghost

and BiFPN modules, reaching a Dice score of 86.4% on the CVPPP

Leaf Segmentation Challenge, especially improving small leaf

segmentation (Wang et al., 2024b). For tobacco, improvements to

MASK RCNN with feature fusion and hybrid attention achieved

Avg.MIoU of 85.10% and Avg.MPA of 84.94%, and the Segment

Anything Model (SAM) demonstrated robust segmentation across

growth stages (Zhang et al., 2023). These studies highlight the

effectiveness of deep learning for high-precision leaf segmentation

under complex conditions. However, these studies are all based on

RGB images, and research on leaf segmentation using multispectral

grayscale images remains limited. Therefore, this study proposes an

instance segmentation algorithm specifically for multispectral

images, aiming to accurately separate individual leaves and

improve the estimation accuracy of leaf-related traits.

Uneven the total nitrogen and nicotine content vertical

distribution also pose a great challenge for accurate estimation in

field. As contents vary substantially across different leaf positions,

single-type feature fails to achieve satisfactory performance. In

recent years, the integration of spectral and texture features has

emerged as a promising approach for crop quality prediction,

driven by advancements in deep learning and data analytics. For

instance, when using the canopy spectral and texture features

obtained by drones to estimate the leaf area index (LAI) of plants,

integrating spectral and texture information significantly improves

the prediction accuracy of the model, outperforming the model that

only uses spectral features (Yuan et al., 2023; Qiao et al., 2024).

Moreover, the fusion method of spectral and texture features has

also been widely applied in the research of estimating plant

chemical components. Relevant studies combined continuous

wavelet transform (CWT) to extract canopy spectral and texture

information of winter wheat, and fused thermal infrared
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temperature features, constructing a CNN and LSTM deep learning

model to estimate the leaf water content (LWC) of winter wheat.

The results showed that the multi-source feature fusion significantly

improved the prediction accuracy (Yang et al., 2025). Similarly, in

the tobacco field, there are also studies that use color, shape and

texture features to train convolutional neural networks for

monitoring the moisture content of cigar leaves (Hao et al.,

2023). Therefore, we want to explore if deep learning-based

fusion of spectral and texture features can improve the estimation

of the chemical components of tobacco at di fferent

vertical positions.

To address the problem of leaf missegmentation in complex

environment and the low accuracy arising from the uneven vertical

distribution of chemical components at canopy scale, this study

aims to propose an improved leave segmentation method and

integrate spectral and texture data based on deep learning for

estimation accuracy enhancement of total nitrogen and nicotine

content. The specific objectives are as follows:
Fron
i. To propose an instance segmentation on tobacco leaves

based on the improved YOLOv8 model compare it with

other commonly used methods, and validate its

performance at both leaf and canopy scales.

ii. To extract spectral and texture features based on GLCM,

Local Binary Pattern, Fourier Transform, Gabor Filter, and

Wavelet Transform, analyze the correlations between

features and total nitrogen and nicotine content, and

employ feature screening methods to identify sensitive

feature combinations.

iii. To establish estimation models based on fusion of spectral

and texture features by different deep learning methods,

compare their performance at leaf and canopy scales, and

conduct visualization of spatial distribution of total

nitrogen and nicotine in tobacco plants in field.
2 Materials and methods

2.1 Experimental design

In this study, the growth gradient of tobacco plant was

controlled by fertilizer gradient experiment. The experimental

variety was Zhongyan 100, and the experiment site was

Changqiao Town, Pingdingshan City, Henan Province. Five

fertilizer gradient treatments were designed (T0, T50, T100, T150,

and T200), representing nitrogen application rates of 0%, 50%,

100%, 150%, and 200% of the local standard nitrogen application

rate. Each treatment was implemented in three independent plots

(biological replicates), yielding 15 plots in total. To prevent the

influence of different fertilizer gradients, an isolation row was

placed between treatments. Additionally, each fertilizer gradient

was managed according to standardized fertilization methods to

ensure the representativeness and scientific validity of the

experimental results.
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2.2 Data acquisition

2.2.1 Multispectral image acquisition
The MicaSense Altum-PT multispectral camera was used for

image capture. The camera has a total of 6 multispectral lenses, and

a single capture can obtain images with six different spectral bands,

as shown in Table 1.

A total of 13 complete tobacco plants were selected from the five

treatments in the experimental field (T0, T50, T100, T150, and

T200), with 3 plants selected from T0, T50, and T100, and 2 plants

selected from T150 and T200. Each plant was photographed using a

multispectral camera from three different angles, resulting in a total

of 234 (13 × 3 × 6) multispectral images of whole plants.

Subsequently, the selected plants were brought back to the

laboratory, where individual leaves from each plant were

photographed using the same camera for sampling. In total, 122

leaves were collected from the 13 plants. After excluding 2 leaves

with significant damage or small areas, 120 leaves were used in the

experiment, resulting in 720 (120 × 6) single-band multispectral

images. Figure 1 shows the spectral images of individual leaves and

whole plants in different spectral bands.

2.2.2 Determination of chemical constituents in
tobacco leaves

Fresh tobacco leaf samples were freeze-dried using a freeze

dryer (FreeZone2.5Plus, LABCONCO, USA). After freeze-drying,

the tobacco leaves were analyzed for nicotine, and total nitrogen

content (mass fraction) following the methods outlined in

standards YC/T 468–2013 and YC/T 161-200.
2.3 Data processing

2.3.1 Tobacco leaf segmentation model
To accurately obtain the image region data of each tobacco leaf

and eliminate the influence of the background, this study performs

instance segmentation on tobacco leaves based on the improved

YOLOv8 model (AO-YOLOv8) to remove the background. AO-

YOLOv8 enhances the feature learning ability of the model and

improves the accuracy of leaf segmentation by incorporating the

Aggregated Attention mechanism (Shi, 2023) and the Online
TABLE 1 Band information of MicaSense Altum-PT multispectral
camera.

Band
name

Center
wavelength

Bandwidth Resolution

Blue 475nm 32nm 2064 × 1544

Green 560nm 27nm 2064 × 1544

Red 668nm 16nm 2064 × 1544

Red Edge 717nm 12nm 2064 × 1544

Near Infrared 842nm 57nm 2064 × 1544

Pancolour 634.5nm 463nm 4112 × 3008
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Reparameterized Convolutional Module (Hu et al., 2022)

into YOLOv8.

(1) C2f_AA

In the canopy scale of tobacco plants, large leaves may overlap

with other leaves or soil in the background. Since multispectral

images are presented in grayscale, the color differences between

leaves and between leaves and the soil are minimal, which can lead

the model to mistakenly recognize overlapping leaves as the same

leaf. To address this issue, this study proposes the C2f_AA module

to replace the C2f module in the backbone of YOLOv8. In this

study, the module adds an Aggregated Attention on the basis of the

original C2f. The Aggregated Attention mechanism mimics the

biological visual ability to dynamically adjust focus and employs a

dual-path design that combines fine-grained local perception with
Frontiers in Plant Science 04
coarse-grained global perception. This dual-path design has been

validated to capture information at different levels, improving the

segmentation accuracy of small regions while ensuring overall

segmentation integrity (Shi, 2023). Its workflow is shown

in Figure 2.

The first path focuses on fine-grained features around each

target pixel. Through detailed local perception, the model can better

handle overlapping areas between tobacco leaves, the edges of the

leaves, and cluttered background information. By extracting

features from local areas, the first path can focus on the details of

overlapping and blurred leaf boundaries, ensuring that the model

accurately segments individual tobacco leaves and avoids

misidentifying overlapping leaves as a single one. This improves

the segmentation accuracy of overlapping regions.
FIGURE 1

Multispectral images at leaf and canopy scales. (A–F) and (G–L) are tobacco leaf pictures in blue, green, red, red-edged, near-infrared and
panchromatic bands, respectively.
FIGURE 2

Workflow flowchart for aggregated attention.
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The second path performs pooling on the entire feature map to

obtain coarse-grained global information. The role of this path is to

focus on the contextual information of the entire image, helping the

model understand the overall structure of the background and the

tobacco leaves. Through global perception, the second path ensures

the completeness of the tobacco leaf segmentation. In multispectral

images, the background interference can be very similar to the color

of the tobacco leaves, leading to missegmentation. Global

perception, by capturing large-scale features in the image,

effectively distinguishes the background from the tobacco leaf

region and ensures that the segmentation result is not influenced

by the cluttered background.

(2) OREPAGELAN

In addition, the GELAN (Wang et al., 2025) module, which

integrates CSPNet (Wang et al., 2020) and ELAN (Wang et al.,

2022), was used to replace the C2f module in the neck of YOLOv8.

And then, the re-parameterized convolutional module OREPA was

used to improve GELAN, naming the modified module

OREPAGELAN. The integration of OREPA and GELAN enables

multi-branch feature extraction during training and re-

parameterization of the branches into a single convolutional block

during inference. This design allows the model to learn diverse

features across multiple scales and viewpoints while maintaining

computational efficiency (Hu et al. , 2022). Therefore,

OREPAGELAN enhances the network’s expressive power without

introducing significant complexity. The overall structure is shown

in Figure 3. OREPA is a two-stage multi-branch reparameterized

convolution module. The first stage, called the linearization stage,
Frontiers in Plant Science 05
simplifies complex computational blocks by removing the nonlinear

normalization layers and introducing a special linear scaling layer.

The second stage, known as the block compression stage,

compresses the already linearized blocks from the first stage and

simplifies them into a single convolutional layer.

In this study, OREPA consists of six branches, each of which

learns different features through multiple branches, as shown in

Figure 4. These branches are: 3×3 convolution block, serial

convolution block, 1×1 serial convolution block, average

convolution block, cosine convolution block, and linear depthwise

separable convolution block. By introducing the OREPA

reparameterization module, the model can learn diverse features

of the image from multiple branches at different angles and scales.

This enables the model to learn features at different levels and types,

providing a more comprehensive understanding of both the details

and global information of the tobacco leaf. Additionally, by using

linearization and block compression, the features extracted by each

branch are fused, improving model accuracy while reducing

model complexity.

This study used commonly used evaluation metrics mAP50 and

mAP50–95 in instance segmentation to evaluate the segmentation

performance of the AO-YOLOv8 model. mAP50 represents the

average accuracy calculated at a threshold of IoU (Intersection over

Union)=0.5, while mAP50–95 calculates the average accuracy at

multiple thresholds in steps of 0.05 between IoU=0.5 and IoU=0.95,

and takes the mean. Meanwhile, this article introduced the semantic

segmentation domain evaluation index mIoU to assess the degree of

overlap between the predicted mask and the true mask for each leaf.
FIGURE 3

Modified module OREPAGELAN.
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Additionally, to validate the capability of our proposed

segmentation method, comparative experiments were conducted

including the AO-YOLOv8 model and other YOLO-series models

(e.g., YOLOv5, YOLOv7, and YOLOv9), along with classical

instance segmentation models such as Mask R-CNN and YOLACT.

2.3.2 Feature extraction
(1) Spectral feature extraction

The images after segmentation were calibrated using ENVI

software in combination with a calibration board, and the difference

before and after calibration is shown in Figure 5. After calibration,

the images were used to extract the average spectral features of the

leaves. During the extraction process, pixels with black backgrounds
Frontiers in Plant Science 06
(R = G = B=0) were ignored. Spectral features from six bands—blue,

green, red, red-edge, near-infrared, and panchromatic—were

extracted for each tobacco leaf.

(2) Texture feature extraction

Texture features reflect the physical structure, micro-distribution,

and indirectly the chemical properties of materials. In this study, five

texture analysis methods were selected: Gray-Level Co-occurrence

Matrix (GLCM), Local Binary Pattern (LBP), Fourier Transform,

Gabor Filter, and Wavelet Transform. They provide complementary

descriptions of leaf texture at different scales and domains. Specifically,

GLCMwas used to extract contrast, dissimilarity, homogeneity, energy,

and correlation. For LBP, a neighborhood radius of 1 with 8

surrounding points was applied, and the distribution of the resulting
FIGURE 4

Six branches of OREPA. (A) 3×3 convolution block. (B) serial convolution block. (C) 1×1 serial convolution block. (D) mean convolution block.
(E) cosine convolution block. (F) linear depth-separable convolution block.
FIGURE 5

Original image (left) and reflectance-corrected image (right).
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local patterns was calculated to generate 10 statistical features. Fourier

Transform was employed to obtain the amplitude and phase

spectrums, from which the mean and standard deviation of both

magnitude and phase were derived. Gabor filters were applied with

four scales and four orientations, extracting mean, standard deviation,

and energy for each combination. Wavelet Transform decomposed the

image into four sub-bands (LL, LH, HL, and HH), and energy,

variance, and entropy were calculated for each sub-band.

Each tobacco leaf corresponds to six spectral images, five texture

analysis methods were applied to each spectral image, resulting in a

total of 474 texture features. These five methods were chosen

because they capture complementary aspects of leaf texture:

GLCM characterizes statistical gray-level relationships, LBP

encodes local venation and microstructural details, Fourier

describes global periodic patterns, Gabor emphasizes orientation

and scale-specific traits, and Wavelet provides multi-scale

representations. As nitrogen and nicotine contents are closely

related to venation and surface texture, this combination offers a

more comprehensive description than any single method alone.

2.3.3 Feature screening method
The initial extraction yielded 480 features (474 texture + 6

spectral), feature screening was necessary to reduce computational

redundancy and highlight the most informative descriptors for

nitrogen and nicotine prediction. Four representative methods

were employed: (i) Pearson correlation threshold (0.3, 0.5, 0.6) to

retain features with higher correlation to nitrogen or nicotine, (ii)

variance threshold to exclude features with little variation, (iii)

LASSO, which uses L1 regularization to shrink irrelevant feature

weights to zero, and (iv) Elastic Net, which combines L1 and L2

regularization to robustly select among correlated features. The

resulting subsets (Tables 2, 3) ensured that subsequent deep

learning models could focus on the most relevant features,

improving efficiency and generalization.

2.3.4 Data augmentation
This study employed three data augmentation methods:

Gaussian noise addition, random scaling, and random offset.

Gaussian noise was added to the data to make its values follow a

normal distribution, with a mean of 0 and a variance of 0.01,

simulating potential random errors or interference during data

acquisition. Random scaling was applied by multiplying the data

by a randomly selected factor within the range of (0.9, 1, 1),

adjusting the overall magnitude of the data. Random offset

involved adding a random value to the entire dataset to simulate

signal baseline drift or systematic measurement errors. This method

can effectively increase or decrease all data points by a fixed value,

with the random offset range set to (-0.01, 0.01) in this study.

2.3.5 Dataset partitioning and estimation model
establishment

In this study, the dataset was divided into training, validation,

and test sets in a 7:2:1 ratio. To prevent any influence on model

validation during training and testing after training, data
Frontiers in Plant Science 07
augmentation using Gaussian noise addition, random scaling, and

random offset was applied only to the training set.

In this experiment, four deep neural network models, namely

Long Short-Term Memory Network (LSTM), Recurrent Neural

Network (RNN), multi-layer Perceptron (MLP), and Fully

Connected Neural Network (FCNN), were adopted to predict

the total nitrogen and nicotine content of tobacco leaves. (i)RNN

aims to utilize its sequence processing capability to mine the

spatial ordered correlation of texture features; (ii)LSTM

overcomes the memory limitations of RNN in long sequences

through its unique gate system and better captures complex

texture relationships; (iii)MLP is used as a simple and universal
TABLE 2 Number of retained features for each screening method
(laboratory leaves).

Dataset
Characteristic
quantity (Total

Nitrogen)

Characteristic
quantity
(Nicotine)

Spectrum 6 6

Spectrum +
Texture

480 480

Spectrum +
Texture

(Pearson>0.3)
149 158

Spectrum +
Texture

(Pearson>0.5)
56 87

Spectrum +
Texture

(Pearson>0.6)
5 –

Spectrum +
Texture
(Variance
Threshold)

352 352

Spectrum +
Texture(LASSO)

35 42

Spectrum +
Texture(Elastic

Net)
64 83
TABLE 3 Retention characteristics of each screening method (leaves of
tobacco plants in the field).

Dataset
Characteristic
quantity (Total

Nitrogen)

Characteristic
quantity
(Nicotine)

Spectrum 6 6

Spectrum + Texture 480 480

Spectrum + Texture
(Variance threshold)

372 372

Spectrum + Texture
(LASSO)

41 44

Spectrum + Texture
(Elastic Net)

68 80
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benchmark model to handle fixed-dimensional inputs; (iv)FCNN

focuses on high-dimensional feature fusion and end-to-end

prediction, effectively combining multi-source information such

as spectra and textures.

The performance of the estimation models was evaluated with

determination coefficient of test set (R2) and the root mean square

error (RMSE).
3 Results

3.1 Correlation analysis of total nitrogen
and nicotine with spectral and texture
features

To explore the correlation between different spectral features

and texture features with nitrogen and nicotine content, the Pearson

correlation coefficient method was used to analyze the laboratory

single tobacco leaves, as shown in Figures 6 and 7. Due to the large

number of features, only those with Pearson correlation coefficients

greater than 0.5 were presented. From the figures, it was evident that
Frontiers in Plant Science 08
most texture features showed a significant correlation with total

nitrogen and nicotine content. Additionally, in terms of spectral

features, the correlation coefficients of the NIR and green bands

with total nitrogen content were 0.618 and 0.557, respectively,

indicating a strong correlation. The strong correlation of the NIR

and green bands with total nitrogen content is due to two factors: (i)

nitrogen influences chlorophyll concentration, which strongly

absorbs blue and red light while reflecting green light, making the

green band sensitive to nitrogen content; (ii) nitrogen affects leaf

internal structure and water content, which primarily alter NIR

reflectance, resulting in a high correlation between NIR bands and

total nitrogen (Wang et al., 2021). However, no spectral features had

a correlation coefficient greater than 0.5 with nicotine content.
3.2 Performance analysis of proposed
tobacco leaf segmentation model

3.2.1 Validation of AO-YOLOv8 model
To verify the effectiveness of the improved model, three ablation

experiments were conducted in this section. The C2f_AA and
FIGURE 6

Correlation between spectral and texture features and total nitrogen.
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OREPAGELAN modules were sequentially applied to the YOLOv8

model to evaluate the contribution of each improvement to the

multispectral tobacco leaf segmentation task. The results of the

ablation experiments are shown in Table 4.

YOLOv8 achieved 81.6%, 57.4% and 76.6% in mAP50, MAP50–

95 and mIoU, respectively. On this basis, after the introduction of

C2f_AA, the model had a significant improvement in all evaluation

indexes, mAP50 increased to 86.0%, MAP50–95 increased to 62.0%,

mIoU increased to 82.0%, indicating that the improvement

enhances the model’s ability to detect and segment target
Frontiers in Plant Science 09
instances. After the further introduction of OREPAGELAN, the

model performance was further optimized, among which mAP50

increased to 87.3%, MAP50–95 increased to 67.3%, mIoU increased

to 83.4%, and the three indexes increased by 6.99%, 17.25% and

8.88% respectively. These results validated the effectiveness of the

proposed method in the case segmentation task.

Figure 8 visually illustrates the effects of each improvement on

multispectral tobacco leaf instance segmentation taken three scenes

as examples. When segmenting instances A and B, the YOLOv8

model showed a tendency to miss small targets. After introducing
FIGURE 7

Correlation between spectral and texture features and nicotine.
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the C2f_AA module, the model’s capability for detecting and

segmenting small targets improved, with the improvement being

more evident in instance B. However, overlapping segmentation

masks between leaves still occurred. With the further integration of

the OREPAGELAN module, the segmentation results for both

instances A and B became more refined, enabling accurate
Frontiers in Plant Science 10
detection and segmentation of small leaves while maintaining

segmentation integrity and eliminating mask overlaps. For the

segmentation of a single tobacco leaf in a controlled laboratory

setting (Instance C), all three models achieved complete

leaf segmentation.

3.2.2 Comparison of mainstream case
segmentation models

Furthermore, this study conducted comparative experiments

between AO-YOLOv8 and other YOLO-series models (YOLOv5,

YOLOv7, and YOLOv9), as well as classical instance segmentation

models, including Mask R-CNN and YOLACT. All experiments

were performed under the same experimental conditions. The

results of each model are presented in Table 5. As shown in the

results, AO-YOLOv8 outperformed all other models in terms of

mAP50 and mIoU, while also achieving a relatively high
TABLE 4 Ablation experiment.

No. Model
mAP50/

%
mAP50-
95/%

mIoU/
%

1 YOLOv8 81.6 57.4 76.6

2 YOLOv8 + C2f_AA 86.0 62.0 82.0

3
YOLOv8 + C2f_AA +

OREPAGELAN
87.3 67.3 83.4
Bold values indicate the best performance under each evaluation metric.
FIGURE 8

Results of ablation experiment segmentation.
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performance in mAP50-95. These findings indicated that the

proposed method can more effectively perform instance

segmentation and demonstrated superior generalization ability

and robustness compared to several mainstream approaches.

Figure 9 illustrates the segmentation results of various models.

From the comparison of segmentation performance, it can be

observed that for the relatively sparse tobacco plant instance A,

AO-YOLOv8 effectively segmented each leaf without mask

overlapping. In contrast, other models such as YOLOv7,

YOLOv5, and YOLACT exhibited incomplete leaf segmentation,

while YOLOv5 and YOLOv9 suffered from mask overlap or

misidentification of small leaf regions as separate leaves. Mask R-

CNN achieved relatively complete segmentation but failed to

identify smaller leaves. For Example B, in the case of denser

blades, AO-YOLOv8 can achieve relatively accurate segmentation,

while other models have problems such as incomplete recognition,

mask overlap and missed targets. In the case of instance C, AO-

YOLOv8 achieved complete segmentation, whereas other models

showed incomplete segmentation at leaf tips, tails, and edges. These

results demonstrated that the integration of C2f_AA and

OREPAGELAN enhanced the model’s ability to extract tobacco

leaf features in field environments, effectively distinguishing leaf

boundaries and overlapping regions, thereby achieving higher

segmentation accuracy.

Figure 10 shows the segmentation results of the same tobacco leaf

in different environments, and compares its segmentation effect in the

field tobacco plant image and the laboratory single tobacco leaf image.

Under laboratory and natural field conditions, tobacco leaves can be

well segmented even if they were significantly bent or deformed.
3.3 Establishment of laboratory leaf scale
estimation model

In this study, four deep learning models—MLP, LSTM, RNN,

and FCNN—were employed to predict nitrogen and nicotine

content in individual tobacco leaves captured in laboratory
Frontiers in Plant Science 11
conditions. The experiments were conducted using the eight data

types listed in Table 2, and the results are presented in Table 6.

The experimental results indicated that when predicting total

nitrogen content using only spectral data, the R² of all four deep

learning models were approximately 0.62, suggesting that spectral

data alone provided limited prediction accuracy. However, after

incorporating texture data, the R² improved significantly. Among

the models, LSTM achieved the highest R² of 0.8634 when using

both spectral and texture data. The other three models also reached

their highest R² when combining spectral and texture data, though

the optimal feature selection method varied across models.

Figure 11 illustrates the R² for different models under various

feature selection methods when predicting total nitrogen content.

The results showed an increasing trend in R² as the number of

features increased, indicating that the extracted texture features

effectively enhanced the accuracy of total nitrogen content

prediction. Deep learning models are capable of handling

complex nonlinear data relationships. As network depth

increases, these models can automatically learn intricate features,

adapt to different data distributions and patterns, and extract multi-

level features, thereby enhancing predictive accuracy for complex,

multivariate data. Figure 12 shows the fitting effect of four models

on the true and predicted values in the dataset with the highest R ².

The results of nicotine content prediction are shown in Table 7,

where texture features have a more significant impact on the

accuracy of prediction. The MLP, RNN, and FCNN models all

achieved the highest R² when using both spectral and texture data,

with R² of 0.8278, 0.8343, and 0.7704, respectively. After applying

variance threshold filtering to the spectral and texture data, the

LSTM model achieved the highest prediction accuracy for nicotine

content, with an R² of 0.8735. Figure 13 visually illustrates the R ² of

nicotine prediction under different datasets. Figure 14 shows the

fitting effect of four models on the true and predicted values in the

dataset with the highest R ².
3.4 Validation of estimation model of total
nitrogen and nicotine in tobacco plants in
field

The LSTM model, which achieved the highest accuracy for

predicting total nitrogen and nicotine content in single tobacco

leaves in the laboratory, was extended to predict total nitrogen and

nicotine content at the field tobacco plant scale. This model

extension required the inclusion of segmented images of field

tobacco plants in the dataset for training and evaluation. A total

of 195 tobacco leaves were segmented from spectral images of

tobacco plants from three perspectives of 13 plants. Combined with

120 laboratory leaf samples, the dataset consisted of 315 samples,

which were divided into training, validation, and test sets in a 7:2:1

ratio. The experimental results, as shown in Table 8, indicated that
TABLE 5 Comparison of experimental results between AO-YOLOv8 and
other segmentation methods.

No. Model
mAP50/

%
mAP50-95/

%
mIoU/

%

1 AO-YOLOv8 87.3 67.3 83.4

2 YOLOv7 85.0 66.3 78.0

3 YOLOv5 76.3 50.5 73.2

4 YOLOv9 84.5 68.3 77.4

5
Mask R-
CNN

80.3 63.8 77.5

6 YOLACT 78.0 59.0 71.2
Bold values indicate the best performance under each evaluation metric.
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the model’s predictive performance decreased after adding

segmented field tobacco leaves to the dataset compared to using

only laboratory single-leaf data (Tables 6, 7), which proved the

difficulty of estimating the component content in field. When using

only spectral data for estimation, the R² of the tobacco plant total
Frontiers in Plant Science 12
nitrogen content prediction model was 0.3249, and the nicotine

content prediction model’s R² was only 0.0667. After adding texture

data, the R² values improved to 0.6771 and 0.5735, respectively.

However, after applying different feature selection methods, the R²

values slightly decreased, but they were still higher than those using
FIGURE 9

Comparison of segmentation effects of each model.
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spectral features alone. Figure 15 shows the fitting effect of LSTM on

the true and predicted values in the dataset with the highest R ².
3.5 Visualization of spatial distribution of
total nitrogen and nicotine in tobacco
plants in the field

After training the field-scale prediction model, it was applied to

predict the total nitrogen and nicotine content of each tobacco leaf in

the test set. The specific process involved using the AO-YOLOv8

segmentation algorithm to segment the tobacco leaves in the field
Frontiers in Plant Science 13
images from the test set, obtaining the image data for each leaf’s

individual region. Spectral and texture features were then extracted

from the leaf images and input into the trained LSTM model for

accurate prediction of the total nitrogen and nicotine content for each

leaf. Once the predictions were completed, to present the results more

intuitively, the predicted total nitrogen and nicotine content data were

visualized. The content information was mapped onto the original field

tobacco plant images using different colors. The final visualization

results, as shown in Figures 16, 17, clearly displayed the distribution of

total nitrogen and nicotine in different parts of the tobacco leaves in the

field. There were significant differences in the content of different leaf

positions. The total nitrogen content gradually increased from the
FIGURE 10

The segmentation effects of AO-YOLOv8 on tobacco leaves in the laboratory and on tobacco plants respectively.
TABLE 6 Predicted results of total nitrogen content in leaves in laboratory.

Dataset
MLP LSTM RNN FCNN

R² RMSE R² RMSE R² RMSE R² RMSE

Spectrum 0.6273 0.2480 0.6515 0.2398 0.6279 0.2419 0.6089 0.2540

Spectrum + Texture 0.7464 0.2045 0.8634 0.1501 0.6003 0.2507 0.7642 0.1972

Spectrum + Texture (Pearson>0.3) 0.8246 0.1701 0.8241 0.1704 0.6488 0.2350 0.8550 0.1547

Spectrum + Texture (Pearson>0.5) 0.7355 0.2089 0.7553 0.2010 0.5258 0.2731 0.6728 0.2324

Spectrum + Texture (Pearson>0.6) 0.6880 0.2269 0.6363 0.2450 0.6167 0.2455 0.7367 0.2084

Spectrum + Texture (Variance
threshold)

0.7962 0.1834 0.7717 0.1941 0.6984 0.2178 0.7329 0.2099

Spectrum + Texture (LASSO) 0.6170 0.2514 0.5756 0.2647 0.6374 0.2388 0.7172 0.2160

Spectrum + Texture (Elastic Net) 0.7854 0.1882 0.6645 0.2353 0.7126 0.2126 0.8050 0.1794
Bold values indicate the best performance under each evaluation metric.
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bottom to the top of the leaves, while the nicotine content presented the

opposite trend.
4 Discussion

In terms of leaf segmentation, the results of this study showed that

the improved AO-YOLOv8 algorithm could accurately segment

tobacco leaves from multispectral images under field conditions. On

the test set, the model achieved an mAP50 of 87.3%, an mAP50–95 of

67.3%, and an mIoU of 83.4%. In terms of segmentation accuracy,

Zhang et al. first applied the SAMmodel for tobacco leaf segmentation

and reported an mIoU of 83.81%, which is lower than the

corresponding metrics achieved in this study (Zhang et al., 2023). Gu

et al. proposed the BCMask model for instance segmentation of

chrysanthemum seedlings, obtaining an mAP50 of 83.07%, which is

also lower than our results (Gu et al., 2023).

In terms of chemical composition estimation methods,

traditional determination of total nitrogen and nicotine in

tobacco relies on destructive laboratory analyses, which, although

accurate, are time-consuming and unsuitable for large-scale

monitoring. Hyperspectral or multispectral imaging enables rapid
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and non-destructive detection (Guo et al., 2023; Tian et al., 2025). In

this study, both spectral and texture features were combined to

estimate total nitrogen and nicotine. The results demonstrated that

texture features played an important complementary role in

chemical composition estimation, which is consistent with the

findings of Yang et al (Yang et al., 2025).

Under laboratory conditions, the fused dataset of spectral and

texture features achieved high prediction accuracy (R² = 0.8634 for

nitrogen, R² = 0.8735 for nicotine), showing clear advantages

compared with methods based solely on spectral features for

estimating total nitrogen (R² = 0.73) (Guo et al., 2023) and

nicotine (R² = 0.797) (Tian et al., 2025). This confirms that, in

addition to spectral features, the structural information of leaf

surfaces expressed by texture features (such as veins, roughness,

and uniformity) can serve as an effective supplement, providing a

more comprehensive characterization of tobacco leaves. However,

when extended to field validation, the performance decreased (R² =

0.6771 for nitrogen, R² = 0.5735 for nicotine). This decline can be

explained by three factors: (i) shadow interference from overlapping

leaves affecting spectral acquisition; (ii) the curved and drooping

morphology of field-grown leaves reducing texture reliability; and

(iii) residual segmentation errors introducing local noise. Such
FIGURE 11

Prediction result curve of total leaf nitrogen in laboratory.
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FIGURE 12

Comparison between the predicted and real values of leaf total nitrogen in the laboratory.
TABLE 7 Predicted results of nicotine content in leaves in laboratory.

Dataset
MLP LSTM RNN FCNN

R² RMSE R² RMSE R² RMSE R² RMSE

Spectrum 0.4594 0.3112 0.3688 0.3363 0.4587 0.3114 0.3867 0.3315

Spectrum + Texture 0.8278 0.1757 0.8211 0.1791 0.8343 0.1723 0.7704 0.2028

Spectrum + Texture
(Pearson>0.3)

0.7294 0.2202 0.7247 0.2221 0.6387 0.2544 0.7034 0.2305

Spectrum + Texture
(Pearson>0.5)

0.7381 0.2166 0.8378 0.1705 0.7470 0.2129 0.6138 0.2630

Spectrum + Texture (Variance
threshold)

0.8139 0.1826 0.8735 0.1505 0.8275 0.1758 0.6310 0.2571

Spectrum + Texture (LASSO) 0.6958 0.2334 0.6814 0.2389 0.7929 0.1926 0.5288 0.5288

Spectrum + Texture(Elastic
Net)

0.7524 0.2106 0.7699 0.2030 0.7974 0.1905 0.7492 0.2120
F
rontiers in Plant Science
 15
Bold values indicate the best performance under each evaluation metric.
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discrepancies between laboratory and field results are consistent

with previous remote sensing studies, where canopy complexity and

occlusion were shown to constrain model generalization.

Comparative analysis revealed that this discrepancy primarily

originated from three environmental factors: first, shadow

interference caused by mutual leaf occlusion in the field directly

affected the accuracy of spectral acquisition; second, compared to

the full-view observation of flat leaf samples in laboratory settings,

the curved and drooping morphology of tobacco leaves under

natural growth conditions led to difficulties in texture feature
Frontiers in Plant Science 16
extraction. Finally, although leaf segmentation was applied,

overlapping leaves and slight segmentation inaccuracies in the

field could still introduce local feature errors.

As shown in Figure 17, in the visualization of the spatial

distribution of nicotine prediction, the magnitude of nicotine

content differed among canopy (lower part> middle part > upper

part), which was consistent with the previous research results (Fan

et al., 2016; Zhang et al., 2006; Li et al., 2005). In the early growth

stage of tobacco, the nicotine content of lower part was higher than

middle part, followed by upper parts. After topper, a large amount
FIGURE 13

Nicotine prediction curve of leaves in laboratory.
TABLE 8 Predicted results of total nitrogen and nicotine content in tobacco plants in the field.

Dataset
Total nitrogen Nicotine

R² RMSE R² RMSE

Spectrum 0.3136 0.3012 0.0667 0.3043

Spectrum + Texture 0.6771 0.2030 0.5735 0.2193

Spectrum + Texture (Variance threshold) 0.6021 0.2293 0.4640 0.2458

Spectrum + Texture (LASSO) 0.5089 0.2548 0.5627 0.2329

Spectrum + Texture (Elastic Net) 0.5297 0.2493 0.5470 0.2260
Bold values indicate the best performance under each evaluation metric.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1647566
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Liu et al. 10.3389/fpls.2025.1647566
FIGURE 15

Fitting effect between predicted and true values of total nitrogen and nicotine in field tobacco plants.
FIGURE 14

Comparison between the predicted and real values of leaf total nitrogen in the laboratory.
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of nicotine was synthesized and mainly transported and

accumulated in the upper leaves, and the nicotine content of

upper part was higher than middle part, followed by lower part.

Compared with traditional spectral analysis methods, this study

has achieved innovative breakthroughs in two dimensions: data

processing and model construction: (i) Effectively compensating for

the deficiency of spectral information through texture parameters.

(ii) Four deep learning architectures such as LSTMwere introduced.

The nonlinear activation function among them can capture the

complex interaction between spectral reflectance and texture

features, thereby improving the accuracy of the final prediction.
5 Conclusion

Aiming to enhance the accuracy of estimating total nitrogen

and nicotine content for tobacco plants in field, this study proposed
Frontiers in Plant Science 18
an innovative approach that improved leaf instance segmentation

method and integrated spectral and texture data based on deep

learning algorithm. The AO-YOLOv8 improved by C2f_AA and

OREPAGELAN achieved higher segmentation accuracy at leaf and

canopy scales compared to several methods, which effectively

distinguished leaf boundaries and overlapping regions. The fusion

method of multispectral and texture features established by LSTM

network achieved optimal prediction accuracy for total nitrogen

and nicotine at the laboratory leaf scale, with coefficients of

determination (R²) of 0.8634 and 0.8735, respectively. The

estimation model results of the LSTM at the plant scale in field

showed coefficients of determination (R²) of 0.6771 for total

nitrogen and 0.5735 for nicotine. The proposed method enables

spatial visualization and accurate measurement of nitrogen and

nicotine distribution across the plant, offering a cost-effective and

non-destructive solution for tobacco quality monitoring and

production control.
FIGURE 16

Distribution of true and predicted total nitrogen content.
FIGURE 17

Distribution of true and predicted nicotine content.
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