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Accurately obtaining the total nitrogen and nicotine content of tobacco plants
and their vertical distribution within the canopy is crucial for smart management
and quality assessment. However, the complex field environment and uneven
vertical distribution pose significant challenges for precise estimation. This study
proposed a spectral and texture feature fusion method based on deep learning to
improve estimation accuracy, and an improved YOLOv8 model (AO-YOLOV8)
was developed for tobacco leaf instance segmentation. After segmentation, the
average spectral features from six image channels were extracted, and 474
texture features were obtained using Gray Level Co-occurrence Matrix
(GLCM), Local Binary Pattern (LBP), Fourier Transform, Gabor Filter, and
Wavelet Transform. Four deep neural networks, including LSTM, RNN, MLP,
and FCNN, were then applied to establish estimation models of nitrogen and
nicotine content at both the leaf and plant scales. The results showed that AO-
YOLOV8 achieved an mAP50 of 87.3 and an mloU of 83.4 in the leaf instance
segmentation task, representing improvements of 6.99% and 8.88% over the
original YOLOVS8, and effectively detected and separated overlapping leaves
under complex conditions. The fusion of spectral and texture features
significantly improved prediction accuracy, with the LSTM network achieving
the best performance, yielding R? values of 0.8634 and 0.8735 for nitrogen and
nicotine prediction at the leaf scale in laboratory conditions. In the field
environment, the LSTM-based models for plant-scale nitrogen and nicotine
estimation achieved R? values of 0.6771 and 0.5735, respectively, which
outperformed models using spectral features alone. In conclusion, this study
enabled accurate estimation and visualization of the vertical distribution of
nitrogen and nicotine content in field-grown tobacco plants, providing an
efficient, low-cost, and non-destructive solution for tobacco production and
quality control.
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1 Introduction

Nitrogen is an essential element that significantly influences the
growth and development of tobacco (Collins and Hawks, 1993). It is
also an important component of nicotine and has a significant impact
on the synthesis and accumulation of nicotine (MacKown and Sutton,
1997). Nicotine is a critical factor in determining the flavor of tobacco,
greatly affecting the quality of tobacco leaves and the final product
(Zhang et al, 2024). Compared to reducing sugars and proteins,
nitrogen and nicotine content undergo relatively small changes
before and after the curing process (Chen et al., 2021a). Therefore,
timely estimation of nitrogen and nicotine content in field-grown
tobacco is not only beneficial for precise implementation of field
management practices, such as fertilization, but also has an
important significance for the prediction of tobacco leaf quality after
roasting and the allocation of industrial enterprises.

Traditional methods for detecting the chemical compositions of
tobacco leaves, including chemical and laboratory analyses, often
require large quantities of time and high costs. These methods are
limited by sampling representativeness and operational complexity
accompanied with the disadvantage of result lag (Simonne et al,
1997; Tang et al., 2019). With the development of smart agriculture
technologies, spectral analysis has gradually become an important
tool in plant research due to its non-destructive, rapid, and efficient
characteristics. Multispectral data, especially in the visible and near-
infrared range, can provide valuable information about the
chemical composition of plants. Some studies have utilized the
canopy spectra of tobacco fields, combined with first-order
derivative spectra, vegetation index and hyperspectral parameters,
and adopted multiple linear regression to establish a prediction
model. The characteristics highly correlated with nitrogen content
were studied and analyzed. The model verification results reached
R’=0.73 and RMSE=0.38, which can accurately predict the nitrogen
content of tobacco leaves (Guo et al.,, 2023). In terms of nicotine
content prediction, existing studies have shown that a prediction
model can be constructed by combining ultraviolet spectral data
with multiple regression methods, and there is a significant
correlation between the predicted values and the true values.
Furthermore, some scholars have adopted hyperspectral imaging
techniques to extract the average spectra of tobacco samples and
conducted modeling studies by combining multiple regression
algorithms such as PLSR, SVR, RF, and PLSR-VIP. Among them,
the PLSR model performs best throughout the entire band range
(R?=0.93). The PLSR-VIP model can maintain a relatively high
prediction accuracy (R=0.91) even when using only five key bands
(Wei et al, 2018; Divyanth et al., 2022). There are also studies
applying NIR and MIR spectral fusion to rapidly predict total
nicotine, total sugar, reducing sugar, and total nitrogen in
tobacco. By combining variable selection with multiple
algorithms, these fusion approaches improve prediction accuracy
compared with single-spectrum models, demonstrating the
potential of spectral fusion for non-destructive chemical analysis
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of tobacco leaves (Wang et al., 2024a). Beyond spectral features,
texture information has been proven to be effective in capturing
fine-grained variations in leaf surface morphology, which
contributes to quality evaluation tasks. Color and texture features
extracted during different curing stages have been utilized to
develop a highly accurate moisture content prediction model,
achieving an R? of 0.9987 (Chen et al., 2021b). Therefore, we aim
to extract the sensitive features from multispectral images to
estimate the total nitrogen and nicotine content of tobacco
plants rapidly.

Current methods are generally limited to canopy-level
observations and lack the capacity to capture biochemical
information from the middle and lower leaf positions. To obtain
the biochemical information of the middle and lower leaves, the
segmentation of the leaves is the first problem to be solved. Liu et al.
(2020) applied the YOLOv3 and YOLOV3_tiny to detect the maize
crops and performed better than traditional image segmentation
methods. A two-stage soybean leaf segmentation model based on
leaf localization and guided segmentation achieved high accuracy
(AP=0.976, AR=0.981), effectively handling overlapping leaves
(Wang et al., 2023). YOLOv8-seg has been enhanced with Ghost
and BiFPN modules, reaching a Dice score of 86.4% on the CVPPP
Leaf Segmentation Challenge, especially improving small leaf
segmentation (Wang et al., 2024b). For tobacco, improvements to
MASK RCNN with feature fusion and hybrid attention achieved
AvgMIoU of 85.10% and Avg.MPA of 84.94%, and the Segment
Anything Model (SAM) demonstrated robust segmentation across
growth stages (Zhang et al., 2023). These studies highlight the
effectiveness of deep learning for high-precision leaf segmentation
under complex conditions. However, these studies are all based on
RGB images, and research on leaf segmentation using multispectral
grayscale images remains limited. Therefore, this study proposes an
instance segmentation algorithm specifically for multispectral
images, aiming to accurately separate individual leaves and
improve the estimation accuracy of leaf-related traits.

Uneven the total nitrogen and nicotine content vertical
distribution also pose a great challenge for accurate estimation in
field. As contents vary substantially across different leaf positions,
single-type feature fails to achieve satisfactory performance. In
recent years, the integration of spectral and texture features has
emerged as a promising approach for crop quality prediction,
driven by advancements in deep learning and data analytics. For
instance, when using the canopy spectral and texture features
obtained by drones to estimate the leaf area index (LAI) of plants,
integrating spectral and texture information significantly improves
the prediction accuracy of the model, outperforming the model that
only uses spectral features (Yuan et al., 2023; Qiao et al,, 2024).
Moreover, the fusion method of spectral and texture features has
also been widely applied in the research of estimating plant
chemical components. Relevant studies combined continuous
wavelet transform (CWT) to extract canopy spectral and texture
information of winter wheat, and fused thermal infrared
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temperature features, constructing a CNN and LSTM deep learning
model to estimate the leaf water content (LWC) of winter wheat.
The results showed that the multi-source feature fusion significantly
improved the prediction accuracy (Yang et al., 2025). Similarly, in
the tobacco field, there are also studies that use color, shape and
texture features to train convolutional neural networks for
monitoring the moisture content of cigar leaves (Hao et al,
2023). Therefore, we want to explore if deep learning-based
fusion of spectral and texture features can improve the estimation
of the chemical components of tobacco at different
vertical positions.

To address the problem of leaf missegmentation in complex
environment and the low accuracy arising from the uneven vertical
distribution of chemical components at canopy scale, this study
aims to propose an improved leave segmentation method and
integrate spectral and texture data based on deep learning for
estimation accuracy enhancement of total nitrogen and nicotine
content. The specific objectives are as follows:

i. To propose an instance segmentation on tobacco leaves
based on the improved YOLOv8 model compare it with
other commonly used methods, and validate its
performance at both leaf and canopy scales.

ii. To extract spectral and texture features based on GLCM,
Local Binary Pattern, Fourier Transform, Gabor Filter, and
Wavelet Transform, analyze the correlations between
features and total nitrogen and nicotine content, and
employ feature screening methods to identify sensitive
feature combinations.

iii. To establish estimation models based on fusion of spectral
and texture features by different deep learning methods,
compare their performance at leaf and canopy scales, and
conduct visualization of spatial distribution of total
nitrogen and nicotine in tobacco plants in field.

2 Materials and methods
2.1 Experimental design

In this study, the growth gradient of tobacco plant was
controlled by fertilizer gradient experiment. The experimental
variety was Zhongyan 100, and the experiment site was
Changgiao Town, Pingdingshan City, Henan Province. Five
fertilizer gradient treatments were designed (T0, T50, T100, T150,
and T200), representing nitrogen application rates of 0%, 50%,
100%, 150%, and 200% of the local standard nitrogen application
rate. Each treatment was implemented in three independent plots
(biological replicates), yielding 15 plots in total. To prevent the
influence of different fertilizer gradients, an isolation row was
placed between treatments. Additionally, each fertilizer gradient
was managed according to standardized fertilization methods to
ensure the representativeness and scientific validity of the
experimental results.
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2.2 Data acquisition

2.2.1 Multispectral image acquisition

The MicaSense Altum-PT multispectral camera was used for
image capture. The camera has a total of 6 multispectral lenses, and
a single capture can obtain images with six different spectral bands,
as shown in Table 1.

A total of 13 complete tobacco plants were selected from the five
treatments in the experimental field (T0, T50, T100, T150, and
T200), with 3 plants selected from TO0, T50, and T100, and 2 plants
selected from T150 and T200. Each plant was photographed using a
multispectral camera from three different angles, resulting in a total
of 234 (13 x 3 x 6) multispectral images of whole plants.
Subsequently, the selected plants were brought back to the
laboratory, where individual leaves from each plant were
photographed using the same camera for sampling. In total, 122
leaves were collected from the 13 plants. After excluding 2 leaves
with significant damage or small areas, 120 leaves were used in the
experiment, resulting in 720 (120 x 6) single-band multispectral
images. Figure 1 shows the spectral images of individual leaves and
whole plants in different spectral bands.

2.2.2 Determination of chemical constituents in
tobacco leaves

Fresh tobacco leaf samples were freeze-dried using a freeze
dryer (FreeZone2.5Plus, LABCONCO, USA). After freeze-drying,
the tobacco leaves were analyzed for nicotine, and total nitrogen
content (mass fraction) following the methods outlined in
standards YC/T 468-2013 and YC/T 161-200.

2.3 Data processing

2.3.1 Tobacco leaf segmentation model

To accurately obtain the image region data of each tobacco leaf
and eliminate the influence of the background, this study performs
instance segmentation on tobacco leaves based on the improved
YOLOv8 model (AO-YOLOVS8) to remove the background. AO-
YOLOVS8 enhances the feature learning ability of the model and
improves the accuracy of leaf segmentation by incorporating the
Aggregated Attention mechanism (Shi, 2023) and the Online

TABLE 1 Band information of MicaSense Altum-PT multispectral
camera.

sand Wa%‘:[:ﬁg 4 Bandwidth Resolution
Blue 475nm 32nm 2064 x 1544
Green 560nm 27nm 2064 x 1544
Red 668nm 16nm 2064 x 1544
Red Edge 717nm 12nm 2064 x 1544
Near Infrared 842nm 57nm 2064 x 1544
Pancolour 634.5nm 463nm 4112 x 3008
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H
Multispectral images at leaf and canopy scales. (A—=F) and (G-L) are tobacco leaf pictures in blue, green, red, red-edged, near-infrared and
panchromatic bands, respectively.

FIGURE 1

Reparameterized Convolutional Module (Hu et al., 2022)
into YOLOVS.

(1) C2f_AA

In the canopy scale of tobacco plants, large leaves may overlap
with other leaves or soil in the background. Since multispectral
images are presented in grayscale, the color differences between
leaves and between leaves and the soil are minimal, which can lead
the model to mistakenly recognize overlapping leaves as the same
leaf. To address this issue, this study proposes the C2f_AA module
to replace the C2f module in the backbone of YOLOVS. In this
study, the module adds an Aggregated Attention on the basis of the
original C2f. The Aggregated Attention mechanism mimics the
biological visual ability to dynamically adjust focus and employs a
dual-path design that combines fine-grained local perception with

10.3389/fpls.2025.1647566

coarse-grained global perception. This dual-path design has been
validated to capture information at different levels, improving the
segmentation accuracy of small regions while ensuring overall
segmentation integrity (Shi, 2023). Its workflow is shown
in Figure 2.

The first path focuses on fine-grained features around each
target pixel. Through detailed local perception, the model can better
handle overlapping areas between tobacco leaves, the edges of the
leaves, and cluttered background information. By extracting
features from local areas, the first path can focus on the details of
overlapping and blurred leaf boundaries, ensuring that the model
accurately segments individual tobacco leaves and avoids
misidentifying overlapping leaves as a single one. This improves
the segmentation accuracy of overlapping regions.
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FIGURE 2
Workflow flowchart for aggregated attention.
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The second path performs pooling on the entire feature map to
obtain coarse-grained global information. The role of this path is to
focus on the contextual information of the entire image, helping the
model understand the overall structure of the background and the
tobacco leaves. Through global perception, the second path ensures
the completeness of the tobacco leaf segmentation. In multispectral
images, the background interference can be very similar to the color
of the tobacco leaves, leading to missegmentation. Global
perception, by capturing large-scale features in the image,
effectively distinguishes the background from the tobacco leaf
region and ensures that the segmentation result is not influenced
by the cluttered background.

(2) OREPAGELAN

In addition, the GELAN (Wang et al., 2025) module, which
integrates CSPNet (Wang et al,, 2020) and ELAN (Wang et al,
2022), was used to replace the C2f module in the neck of YOLOVS.
And then, the re-parameterized convolutional module OREPA was
used to improve GELAN, naming the modified module
OREPAGELAN. The integration of OREPA and GELAN enables
multi-branch feature extraction during training and re-
parameterization of the branches into a single convolutional block
during inference. This design allows the model to learn diverse
features across multiple scales and viewpoints while maintaining
computational efficiency (Hu et al., 2022). Therefore,
OREPAGELAN enhances the network’s expressive power without
introducing significant complexity. The overall structure is shown
in Figure 3. OREPA is a two-stage multi-branch reparameterized
convolution module. The first stage, called the linearization stage,

10.3389/fpls.2025.1647566

simplifies complex computational blocks by removing the nonlinear
normalization layers and introducing a special linear scaling layer.
The second stage, known as the block compression stage,
compresses the already linearized blocks from the first stage and
simplifies them into a single convolutional layer.

In this study, OREPA consists of six branches, each of which
learns different features through multiple branches, as shown in
Figure 4. These branches are: 3x3 convolution block, serial
convolution block, 1x1 serial convolution block, average
convolution block, cosine convolution block, and linear depthwise
separable convolution block. By introducing the OREPA
reparameterization module, the model can learn diverse features
of the image from multiple branches at different angles and scales.
This enables the model to learn features at different levels and types,
providing a more comprehensive understanding of both the details
and global information of the tobacco leaf. Additionally, by using
linearization and block compression, the features extracted by each
branch are fused, improving model accuracy while reducing
model complexity.

This study used commonly used evaluation metrics mAP50 and
mAP50-95 in instance segmentation to evaluate the segmentation
performance of the AO-YOLOv8 model. mAP50 represents the
average accuracy calculated at a threshold of IoU (Intersection over
Union)=0.5, while mAP50-95 calculates the average accuracy at
multiple thresholds in steps of 0.05 between IoU=0.5 and IoU=0.95,
and takes the mean. Meanwhile, this article introduced the semantic
segmentation domain evaluation index mIoU to assess the degree of
overlap between the predicted mask and the true mask for each leaf.

OREPANCSP
(0.5¢3,c4)

% OREPANBottleneck

(e3,c3)

Concat ¢=c3+2xc4 |

0.503 0503 OREPANCSP l
(cd.c4)
c4
c4
¥ I,
[ Concat ¢ =c3+2xc4 ]
()
FIGURE 3

Modified module OREPAGELAN.
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Six branches of OREPA. (A) 3x3 convolution block. (B) serial convolution block. (C) 1x1 serial convolution block. (D) mean convolution block.

(E) cosine convolution block. (F) linear depth-separable convolution block.

Additionally, to validate the capability of our proposed
segmentation method, comparative experiments were conducted
including the AO-YOLOv8 model and other YOLO-series models
(e.g., YOLOV5, YOLOv7, and YOLOV9), along with classical
instance segmentation models such as Mask R-CNN and YOLACT.

2.3.2 Feature extraction

(1) Spectral feature extraction

The images after segmentation were calibrated using ENVI
software in combination with a calibration board, and the difference
before and after calibration is shown in Figure 5. After calibration,
the images were used to extract the average spectral features of the
leaves. During the extraction process, pixels with black backgrounds

FIGURE 5
Original image (left) and reflectance-corrected image (right).
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(R =G =B=0) were ignored. Spectral features from six bands—blue,
green, red, red-edge, near-infrared, and panchromatic—were
extracted for each tobacco leaf.

(2) Texture feature extraction

Texture features reflect the physical structure, micro-distribution,
and indirectly the chemical properties of materials. In this study, five
texture analysis methods were selected: Gray-Level Co-occurrence
Matrix (GLCM), Local Binary Pattern (LBP), Fourier Transform,
Gabor Filter, and Wavelet Transform. They provide complementary
descriptions of leaf texture at different scales and domains. Specifically,
GLCM was used to extract contrast, dissimilarity, homogeneity, energy,
and correlation. For LBP, a neighborhood radius of 1 with 8
surrounding points was applied, and the distribution of the resulting
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local patterns was calculated to generate 10 statistical features. Fourier
Transform was employed to obtain the amplitude and phase
spectrums, from which the mean and standard deviation of both
magnitude and phase were derived. Gabor filters were applied with
four scales and four orientations, extracting mean, standard deviation,
and energy for each combination. Wavelet Transform decomposed the
image into four sub-bands (LL, LH, HL, and HH), and energy,
variance, and entropy were calculated for each sub-band.

Each tobacco leaf corresponds to six spectral images, five texture
analysis methods were applied to each spectral image, resulting in a
total of 474 texture features. These five methods were chosen
because they capture complementary aspects of leaf texture:
GLCM characterizes statistical gray-level relationships, LBP
encodes local venation and microstructural details, Fourier
describes global periodic patterns, Gabor emphasizes orientation
and scale-specific traits, and Wavelet provides multi-scale
representations. As nitrogen and nicotine contents are closely
related to venation and surface texture, this combination offers a
more comprehensive description than any single method alone.

2.3.3 Feature screening method

The initial extraction yielded 480 features (474 texture + 6
spectral), feature screening was necessary to reduce computational
redundancy and highlight the most informative descriptors for
nitrogen and nicotine prediction. Four representative methods
were employed: (i) Pearson correlation threshold (0.3, 0.5, 0.6) to
retain features with higher correlation to nitrogen or nicotine, (ii)
variance threshold to exclude features with little variation, (iii)
LASSO, which uses L1 regularization to shrink irrelevant feature
weights to zero, and (iv) Elastic Net, which combines L1 and L2
regularization to robustly select among correlated features. The
resulting subsets (Tables 2, 3) ensured that subsequent deep
learning models could focus on the most relevant features,
improving efficiency and generalization.

2.3.4 Data augmentation

This study employed three data augmentation methods:
Gaussian noise addition, random scaling, and random offset.
Gaussian noise was added to the data to make its values follow a
normal distribution, with a mean of 0 and a variance of 0.01,
simulating potential random errors or interference during data
acquisition. Random scaling was applied by multiplying the data
by a randomly selected factor within the range of (0.9, 1, 1),
adjusting the overall magnitude of the data. Random offset
involved adding a random value to the entire dataset to simulate
signal baseline drift or systematic measurement errors. This method
can effectively increase or decrease all data points by a fixed value,
with the random offset range set to (-0.01, 0.01) in this study.

2.3.5 Dataset partitioning and estimation model
establishment

In this study, the dataset was divided into training, validation,
and test sets in a 7:2:1 ratio. To prevent any influence on model
validation during training and testing after training, data
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TABLE 2 Number of retained features for each screening method
(laboratory leaves).

Characteristic

Characteristic

Dataset quantity (Total quantity
Nitrogen) (Nicotine)
Spectrum 6 6
Spectrum +
480 480
Texture
Spectrum +
Texture 149 158

(Pearson>0.3)

Spectrum +
Texture 56 87
(Pearson>0.5)

Spectrum +
Texture 5 -
(Pearson>0.6)

Spectrum +
Texture
(Variance
Threshold)

352 352

Spectrum +

35 42
Texture(LASSO)

Spectrum +
Texture(Elastic 64 83
Net)

TABLE 3 Retention characteristics of each screening method (leaves of
tobacco plants in the field).

Characteristic

Characteristic

Dataset quantity (Total quantity
Nitrogen) (Nicotine)
Spectrum 6 6
Spectrum + Texture 480 480
Spectrum + Texture 372 37
(Variance threshold)
Spectrum + Texture
41 44
(LASSO)
Spect: Text
pectrum + Texture 68 80

(Elastic Net)

augmentation using Gaussian noise addition, random scaling, and
random offset was applied only to the training set.

In this experiment, four deep neural network models, namely
Long Short-Term Memory Network (LSTM), Recurrent Neural
Network (RNN), multi-layer Perceptron (MLP), and Fully
Connected Neural Network (FCNN), were adopted to predict
the total nitrogen and nicotine content of tobacco leaves. (i)RNN
aims to utilize its sequence processing capability to mine the
spatial ordered correlation of texture features; (ii)LSTM
overcomes the memory limitations of RNN in long sequences
through its unique gate system and better captures complex
texture relationships; (iii)MLP is used as a simple and universal
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benchmark model to handle fixed-dimensional inputs; (iv)FCNN
focuses on high-dimensional feature fusion and end-to-end
prediction, effectively combining multi-source information such
as spectra and textures.

The performance of the estimation models was evaluated with
determination coefficient of test set (R?) and the root mean square
error (RMSE).

3 Results

3.1 Correlation analysis of total nitrogen
and nicotine with spectral and texture
features

To explore the correlation between different spectral features
and texture features with nitrogen and nicotine content, the Pearson
correlation coefficient method was used to analyze the laboratory
single tobacco leaves, as shown in Figures 6 and 7. Due to the large
number of features, only those with Pearson correlation coefficients
greater than 0.5 were presented. From the figures, it was evident that

10.3389/fpls.2025.1647566

most texture features showed a significant correlation with total
nitrogen and nicotine content. Additionally, in terms of spectral
features, the correlation coefficients of the NIR and green bands
with total nitrogen content were 0.618 and 0.557, respectively,
indicating a strong correlation. The strong correlation of the NIR
and green bands with total nitrogen content is due to two factors: (i)
nitrogen influences chlorophyll concentration, which strongly
absorbs blue and red light while reflecting green light, making the
green band sensitive to nitrogen content; (ii) nitrogen affects leaf
internal structure and water content, which primarily alter NIR
reflectance, resulting in a high correlation between NIR bands and
total nitrogen (Wang et al., 2021). However, no spectral features had
a correlation coefficient greater than 0.5 with nicotine content.

3.2 Performance analysis of proposed
tobacco leaf segmentation model

3.2.1 Validation of AO-YOLOv8 model
To verify the effectiveness of the improved model, three ablation
experiments were conducted in this section. The C2f AA and
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Correlation between spectral and texture features and total nitrogen.
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Correlation between spectral and texture features and nicotine.

OREPAGELAN modules were sequentially applied to the YOLOv8
model to evaluate the contribution of each improvement to the
multispectral tobacco leaf segmentation task. The results of the
ablation experiments are shown in Table 4.

YOLOVS achieved 81.6%, 57.4% and 76.6% in mAP50, MAP50—
95 and mloU, respectively. On this basis, after the introduction of
C2f_AA, the model had a significant improvement in all evaluation
indexes, mAP50 increased to 86.0%, MAP50-95 increased to 62.0%,
mloU increased to 82.0%, indicating that the improvement
enhances the model’s ability to detect and segment target
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instances. After the further introduction of OREPAGELAN, the
model performance was further optimized, among which mAP50
increased to 87.3%, MAP50-95 increased to 67.3%, mIoU increased
to 83.4%, and the three indexes increased by 6.99%, 17.25% and
8.88% respectively. These results validated the effectiveness of the
proposed method in the case segmentation task.

Figure 8 visually illustrates the effects of each improvement on
multispectral tobacco leaf instance segmentation taken three scenes
as examples. When segmenting instances A and B, the YOLOvS
model showed a tendency to miss small targets. After introducing
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TABLE 4 Ablation experiment.

mAP50/  mAP50- @ mloU/
No. Model & o o
% 95/% %
1 YOLOvS 81.6 57.4 76.6
2 YOLOVS + C2f_AA 86.0 62.0 82.0
YOLOVS + C2f_AA +
87.3 67.3 83.4

OREPAGELAN

Bold values indicate the best performance under each evaluation metric.

the C2f_ AA module, the model’s capability for detecting and
segmenting small targets improved, with the improvement being
more evident in instance B. However, overlapping segmentation
masks between leaves still occurred. With the further integration of
the OREPAGELAN module, the segmentation results for both
instances A and B became more refined, enabling accurate

Instance A

YOLOVS

YOLOvVS
+ C2f_AA

YOLOv8
+C2f AA
+ OREPAGELAN

FIGURE 8
Results of ablation experiment segmentation.
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detection and segmentation of small leaves while maintaining
segmentation integrity and eliminating mask overlaps. For the
segmentation of a single tobacco leaf in a controlled laboratory
setting (Instance C), all three models achieved complete
leaf segmentation.

3.2.2 Comparison of mainstream case
segmentation models

Furthermore, this study conducted comparative experiments
between AO-YOLOVS8 and other YOLO-series models (YOLOVS5,
YOLOvV7, and YOLOV9), as well as classical instance segmentation
models, including Mask R-CNN and YOLACT. All experiments
were performed under the same experimental conditions. The
results of each model are presented in Table 5. As shown in the
results, AO-YOLOV8 outperformed all other models in terms of

mAP50 and mlIoU, while also achieving a relatively high

Instance C

Instance B
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TABLE 5 Comparison of experimental results between AO-YOLOvVS8 and
other segmentation methods.

No. Model mAf’SO/ mAP5°0—95/ mlooU/

% % %
1 AO-YOLOVS 873 67.3 83.4
2 YOLOv7 85.0 66.3 78.0
3 YOLOVS 76.3 50.5 732
4 YOLOV9 845 683 77.4
5 Mask R- 80.3 638 77.5

CNN

6 YOLACT 78.0 59.0 712

Bold values indicate the best performance under each evaluation metric.

performance in mAP50-95. These findings indicated that the
proposed method can more effectively perform instance
segmentation and demonstrated superior generalization ability
and robustness compared to several mainstream approaches.

Figure 9 illustrates the segmentation results of various models.
From the comparison of segmentation performance, it can be
observed that for the relatively sparse tobacco plant instance A,
AO-YOLOV8 effectively segmented each leaf without mask
overlapping. In contrast, other models such as YOLOv7,
YOLOV5, and YOLACT exhibited incomplete leaf segmentation,
while YOLOvV5 and YOLOV9 suffered from mask overlap or
misidentification of small leaf regions as separate leaves. Mask R-
CNN achieved relatively complete segmentation but failed to
identify smaller leaves. For Example B, in the case of denser
blades, AO-YOLOVS can achieve relatively accurate segmentation,
while other models have problems such as incomplete recognition,
mask overlap and missed targets. In the case of instance C, AO-
YOLOVS8 achieved complete segmentation, whereas other models
showed incomplete segmentation at leaf tips, tails, and edges. These
results demonstrated that the integration of C2f_AA and
OREPAGELAN enhanced the model’s ability to extract tobacco
leaf features in field environments, effectively distinguishing leaf
boundaries and overlapping regions, thereby achieving higher
segmentation accuracy.

Figure 10 shows the segmentation results of the same tobacco leaf
in different environments, and compares its segmentation effect in the
field tobacco plant image and the laboratory single tobacco leaf image.
Under laboratory and natural field conditions, tobacco leaves can be
well segmented even if they were significantly bent or deformed.

3.3 Establishment of laboratory leaf scale
estimation model

In this study, four deep learning models—MLP, LSTM, RNN,

and FCNN—were employed to predict nitrogen and nicotine
content in individual tobacco leaves captured in laboratory
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conditions. The experiments were conducted using the eight data
types listed in Table 2, and the results are presented in Table 6.

The experimental results indicated that when predicting total
nitrogen content using only spectral data, the R* of all four deep
learning models were approximately 0.62, suggesting that spectral
data alone provided limited prediction accuracy. However, after
incorporating texture data, the R* improved significantly. Among
the models, LSTM achieved the highest R* of 0.8634 when using
both spectral and texture data. The other three models also reached
their highest R* when combining spectral and texture data, though
the optimal feature selection method varied across models.
Figure 11 illustrates the R* for different models under various
feature selection methods when predicting total nitrogen content.
The results showed an increasing trend in R* as the number of
features increased, indicating that the extracted texture features
effectively enhanced the accuracy of total nitrogen content
prediction. Deep learning models are capable of handling
complex nonlinear data relationships. As network depth
increases, these models can automatically learn intricate features,
adapt to different data distributions and patterns, and extract multi-
level features, thereby enhancing predictive accuracy for complex,
multivariate data. Figure 12 shows the fitting effect of four models
on the true and predicted values in the dataset with the highest R .

The results of nicotine content prediction are shown in Table 7,
where texture features have a more significant impact on the
accuracy of prediction. The MLP, RNN, and FCNN models all
achieved the highest R* when using both spectral and texture data,
with R* of 0.8278, 0.8343, and 0.7704, respectively. After applying
variance threshold filtering to the spectral and texture data, the
LSTM model achieved the highest prediction accuracy for nicotine
content, with an R of 0.8735. Figure 13 visually illustrates the R * of
nicotine prediction under different datasets. Figure 14 shows the
fitting effect of four models on the true and predicted values in the
dataset with the highest R 2.

3.4 Validation of estimation model of total
nitrogen and nicotine in tobacco plants in
field

The LSTM model, which achieved the highest accuracy for
predicting total nitrogen and nicotine content in single tobacco
leaves in the laboratory, was extended to predict total nitrogen and
nicotine content at the field tobacco plant scale. This model
extension required the inclusion of segmented images of field
tobacco plants in the dataset for training and evaluation. A total
of 195 tobacco leaves were segmented from spectral images of
tobacco plants from three perspectives of 13 plants. Combined with
120 laboratory leaf samples, the dataset consisted of 315 samples,
which were divided into training, validation, and test sets in a 7:2:1
ratio. The experimental results, as shown in Table 8, indicated that
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Instance A Instance B Instance C

AO-YOLOvVS

YOLACT

Mask R-CNN

YOLOVS

YOLOv7

YOLOV9

FIGURE 9
Comparison of segmentation effects of each model.

the model’s predictive performance decreased after adding  nitrogen content prediction model was 0.3249, and the nicotine
segmented field tobacco leaves to the dataset compared to using  content prediction model’s R* was only 0.0667. After adding texture
only laboratory single-leaf data (Tables 6, 7), which proved the  data, the R* values improved to 0.6771 and 0.5735, respectively.
difficulty of estimating the component content in field. When using ~ However, after applying different feature selection methods, the R?
only spectral data for estimation, the R” of the tobacco plant total  values slightly decreased, but they were still higher than those using
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Leaves in tobacco plant

Leaves in lab

FIGURE 10

.

10.3389/fpls.2025.1647566

The segmentation effects of AO-YOLOvV8 on tobacco leaves in the laboratory and on tobacco plants respectively.

TABLE 6 Predicted results of total nitrogen content in leaves in laboratory.

Dataset
Spectrum 0.6273 0.2480 0.6515
Spectrum + Texture 0.7464 0.2045 0.8634
Spectrum + Texture (Pearson>0.3) 0.8246 0.1701 0.8241
Spectrum + Texture (Pearson>0.5) 0.7355 0.2089 0.7553
Spectrum + Texture (Pearson>0.6) 0.6880 0.2269 0.6363
Spectrum + Texture (Variance 0.7962 01834 07717
threshold)
Spectrum + Texture (LASSO) 0.6170 0.2514 0.5756
Spectrum + Texture (Elastic Net) 0.7854 0.1882 0.6645

Bold values indicate the best performance under each evaluation metric.

spectral features alone. Figure 15 shows the fitting effect of LSTM on
the true and predicted values in the dataset with the highest R >.

3.5 Visualization of spatial distribution of
total nitrogen and nicotine in tobacco
plants in the field

After training the field-scale prediction model, it was applied to
predict the total nitrogen and nicotine content of each tobacco leaf in
the test set. The specific process involved using the AO-YOLOv8
segmentation algorithm to segment the tobacco leaves in the field

Frontiers in Plant Science

0.2398 0.6279 0.2419 0.6089 0.2540
0.1501 0.6003 0.2507 0.7642 0.1972
0.1704 0.6488 0.2350 0.8550 0.1547
0.2010 0.5258 0.2731 0.6728 0.2324
0.2450 0.6167 0.2455 0.7367 0.2084
0.1941 0.6984 0.2178 0.7329 0.2099
0.2647 0.6374 0.2388 0.7172 0.2160
0.2353 0.7126 0.2126 0.8050 0.1794

images from the test set, obtaining the image data for each leaf’s
individual region. Spectral and texture features were then extracted
from the leaf images and input into the trained LSTM model for
accurate prediction of the total nitrogen and nicotine content for each
leaf. Once the predictions were completed, to present the results more
intuitively, the predicted total nitrogen and nicotine content data were
visualized. The content information was mapped onto the original field
tobacco plant images using different colors. The final visualization
results, as shown in Figures 16, 17, clearly displayed the distribution of
total nitrogen and nicotine in different parts of the tobacco leaves in the
field. There were significant differences in the content of different leaf
positions. The total nitrogen content gradually increased from the
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https://doi.org/10.3389/fpls.2025.1647566
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Liu et al. 10.3389/fpls.2025.1647566
1.0
0.8 - . — -
0.6 m | DIRE —
0.4
0.2 -
0.0 T T v T T r v \
& SN & & & & & &
S N NI RS SN NP & S
% o o S > AN or v
&v*' 7Q N «Cj" %%0 KT /7Q(7 &C’j' %0 K 76\’ ' \o\b N
6\)( X § % &x \’?. &\x :,OQ 6\>< "\\0 x ; OQ <\x g‘::_} @x
X A
& & &Y T T TS TS 8
& Q & & & = Q & & ¥
2 B B R R B R
QP
O
FIGURE 11

Prediction result curve of total leaf nitrogen in laboratory.

bottom to the top of the leaves, while the nicotine content presented the
opposite trend.

4 Discussion

In terms of leaf segmentation, the results of this study showed that
the improved AO-YOLOV8 algorithm could accurately segment
tobacco leaves from multispectral images under field conditions. On
the test set, the model achieved an mAP50 of 87.3%, an mAP50-95 of
67.3%, and an mloU of 83.4%. In terms of segmentation accuracy,
Zhang et al. first applied the SAM model for tobacco leaf segmentation
and reported an mlIoU of 83.81%, which is lower than the
corresponding metrics achieved in this study (Zhang et al., 2023). Gu
et al. proposed the BCMask model for instance segmentation of
chrysanthemum seedlings, obtaining an mAP50 of 83.07%, which is
also lower than our results (Gu et al., 2023).

In terms of chemical composition estimation methods,
traditional determination of total nitrogen and nicotine in
tobacco relies on destructive laboratory analyses, which, although
accurate, are time-consuming and unsuitable for large-scale
monitoring. Hyperspectral or multispectral imaging enables rapid
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and non-destructive detection (Guo et al., 2023; Tian et al., 2025). In
this study, both spectral and texture features were combined to
estimate total nitrogen and nicotine. The results demonstrated that
texture features played an important complementary role in
chemical composition estimation, which is consistent with the
findings of Yang et al (Yang et al., 2025).

Under laboratory conditions, the fused dataset of spectral and
texture features achieved high prediction accuracy (R* = 0.8634 for
nitrogen, R* = 0.8735 for nicotine), showing clear advantages
compared with methods based solely on spectral features for
estimating total nitrogen (R* = 0.73) (Guo et al, 2023) and
nicotine (R*> = 0.797) (Tian et al, 2025). This confirms that, in
addition to spectral features, the structural information of leaf
surfaces expressed by texture features (such as veins, roughness,
and uniformity) can serve as an effective supplement, providing a
more comprehensive characterization of tobacco leaves. However,
when extended to field validation, the performance decreased (R* =
0.6771 for nitrogen, R* = 0.5735 for nicotine). This decline can be
explained by three factors: (i) shadow interference from overlapping
leaves affecting spectral acquisition; (ii) the curved and drooping
morphology of field-grown leaves reducing texture reliability; and
(iii) residual segmentation errors introducing local noise. Such

frontiersin.org
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FIGURE 12
Comparison between the predicted and real values of leaf total nitrogen in the laboratory.

TABLE 7 Predicted results of nicotine content in leaves in laboratory.

Dataset
Spectrum 0.4594 0.3112 0.3688 0.3363 0.4587 0.3114 0.3867 0.3315
Spectrum + Texture 0.8278 0.1757 0.8211 0.1791 0.8343 0.1723 0.7704 0.2028
Spectrum + Texture
0.7294 0.2202 0.7247 0.2221 0.6387 0.2544 0.7034 0.2305
(Pearson>0.3)
Spectrum + Texture
0.7381 0.2166 0.8378 0.1705 0.7470 0.2129 0.6138 0.2630
(Pearson>0.5)
Spectrum + Texture (Variance
0.8139 0.1826 0.8735 0.1505 0.8275 0.1758 0.6310 0.2571
threshold)
Spectrum + Texture (LASSO) 0.6958 0.2334 0.6814 0.2389 0.7929 0.1926 0.5288 0.5288
Spectrum + Texture(Elastic
Net) 0.7524 0.2106 0.7699 0.2030 0.7974 0.1905 0.7492 0.2120

Bold values indicate the best performance under each evaluation metric.
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FIGURE 13

Nicotine prediction curve of leaves in laboratory.

TABLE 8 Predicted results of total nitrogen and nicotine content in tobacco plants in the field.

Total nitrogen Nicotine
Dataset
R2

Spectrum 0.3136 0.3012 0.0667 0.3043
Spectrum + Texture 0.6771 0.2030 0.5735 0.2193
Spectrum + Texture (Variance threshold) 0.6021 0.2293 0.4640 0.2458
Spectrum + Texture (LASSO) 0.5089 0.2548 0.5627 0.2329
Spectrum + Texture (Elastic Net) 0.5297 0.2493 0.5470 0.2260

Bold values indicate the best performance under each evaluation metric.

discrepancies between laboratory and field results are consistent
with previous remote sensing studies, where canopy complexity and
occlusion were shown to constrain model generalization.
Comparative analysis revealed that this discrepancy primarily
originated from three environmental factors: first, shadow
interference caused by mutual leaf occlusion in the field directly
affected the accuracy of spectral acquisition; second, compared to
the full-view observation of flat leaf samples in laboratory settings,
the curved and drooping morphology of tobacco leaves under
natural growth conditions led to difficulties in texture feature

Frontiers in Plant Science

extraction. Finally, although leaf segmentation was applied,
overlapping leaves and slight segmentation inaccuracies in the
field could still introduce local feature errors.

As shown in Figure 17, in the visualization of the spatial
distribution of nicotine prediction, the magnitude of nicotine
content differed among canopy (lower part> middle part > upper
part), which was consistent with the previous research results (Fan
et al, 2016; Zhang et al., 2006; Li et al., 2005). In the early growth
stage of tobacco, the nicotine content of lower part was higher than
middle part, followed by upper parts. After topper, a large amount

16 frontiersin.org
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FIGURE 15

Fitting effect between predicted and true values of total nitrogen and nicotine in field tobacco plants.
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FIGURE 16
Distribution of true and predicted total nitrogen content

FIGURE 17
Distribution of true and predicted nicotine content.

of nicotine was synthesized and mainly transported and
accumulated in the upper leaves, and the nicotine content of
upper part was higher than middle part, followed by lower part.
Compared with traditional spectral analysis methods, this study
has achieved innovative breakthroughs in two dimensions: data
processing and model construction: (i) Effectively compensating for
the deficiency of spectral information through texture parameters.
(ii) Four deep learning architectures such as LSTM were introduced.
The nonlinear activation function among them can capture the
complex interaction between spectral reflectance and texture
features, thereby improving the accuracy of the final prediction.

5 Conclusion

Aiming to enhance the accuracy of estimating total nitrogen
and nicotine content for tobacco plants in field, this study proposed
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an innovative approach that improved leaf instance segmentation
method and integrated spectral and texture data based on deep
learning algorithm. The AO-YOLOV8 improved by C2f_AA and
OREPAGELAN achieved higher segmentation accuracy at leaf and
canopy scales compared to several methods, which effectively
distinguished leaf boundaries and overlapping regions. The fusion
method of multispectral and texture features established by LSTM
network achieved optimal prediction accuracy for total nitrogen
and nicotine at the laboratory leaf scale, with coefficients of
determination (R*) of 0.8634 and 0.8735, respectively. The
estimation model results of the LSTM at the plant scale in field
showed coefficients of determination (R?) of 0.6771 for total
nitrogen and 0.5735 for nicotine. The proposed method enables
spatial visualization and accurate measurement of nitrogen and
nicotine distribution across the plant, offering a cost-effective and
non-destructive solution for tobacco quality monitoring and
production control.
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