AUTHOR=Diallo Mamadou Bailo , Li Yue , Chukwuka Okafor Sylevester , Boamah Solomon , Gao Yuhong , Kana Kone Mohamed Meyer , Rocho Gelebo , Wei Linjing TITLE=Enhanced-RICAP: a novel data augmentation strategy for improved deep learning-based plant disease identification and mobile diagnosis JOURNAL=Frontiers in Plant Science VOLUME=Volume 16 - 2025 YEAR=2025 URL=https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2025.1646611 DOI=10.3389/fpls.2025.1646611 ISSN=1664-462X ABSTRACT=IntroductionPlant diseases pose a significant threat to global food security and agricultural productivity, making accurate and timely disease identification essential for effective crop management and minimizing economic losses. Although data augmentation techniques such as RICAP improve model robustness, their reliance on randomly extracted image regions can introduce label noise, potentially misleading the training of deep learning models.MethodsThis study introduces Enhanced-RICAP, an advanced data augmentation technique designed to improve the accuracy of deep learning models for plant disease detection. Enhanced-RICAP replaces random patch selection with an attention module guided by class activation maps, focusing on discriminative regions, Enhanced-RICAP reduces label noise and improves model accuracy for plant disease detection, addressing a key limitation of traditional augmentation methods. The method was evaluated using several deep learning architectures, such as ResNet18, ResNet34, ResNet50, EfficientNet-b, and Xception, on the cassava leaf disease and PlantVillage tomato leaf disease datasets.ResultsThe experimental results demonstrate that Enhanced-RICAP consistently outperforms existing augmentation methods, including CutMix, MixUp, CutOut, Hide-and-Seek, and RICAP, across key evaluation metrics: accuracy, precision, recall, and F1-score. The ResNet18+Enhanced-RICAP configuration achieved 99.86% accuracy on the tomato leaf disease dataset, whereas the Xception+Enhanced-RICAP model attained 96.64% accuracy in classifying four cassava leaf disease categories.Discussion and ConclusionTo bridge the gap between research and practical application, the ResNet18+Enhanced-RICAP model was deployed in PlantDisease, a mobile application that enables real-time disease identification and management recommendations. This approach supports sustainable agriculture and strengthens food security by providing farmers with accessible and reliable diagnostic tools.