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In order to overcome the key challenges associated with detecting tomato leaf
disease in complex agricultural environments, such as leaf occlusion, variation in
lesion size and light interference, this study presents a lightweight detection
model called TOMASD. This model integrates multi-scale feature decoupling and
an adaptive alignment mechanism. The model innovatively comprises a dual-
branch adaptive alignment module (TAAM) that achieves cross-scale lesion
semantic alignment via a dynamic feature pyramid, a local context-aware
gated unit (Faster-GLUDet) that uses a spatial attention mechanism to
suppress background noise interference, and a multi-scale decoupling
detection head (MDH) that balances the detection accuracy of small and
diffuse lesions. On a dataset containing six types of disease under various
weather conditions, TOMASD achieves an average precision of 84.3%,.by a
margin of 4.7% to 12.1% over thirteen mainstream models. The computational
load is compressed to 7.1 GFLOPs. Through the introduction of a transfer
learning paradigm, the pre-trained weights of the tomato disease detection
model can be transferred to common bean and potato detection tasks. Through
domain adaptation layers and adversarial feature decoupling strategies, the
domain shift problem is overcome, achieving an average precision of 92.7% on
the target crop test set. False detection rates in foggy and strong light conditions
are controlled at 6.3% and 9.8%, respectively. This study achieves dual
breakthroughs in terms of both high-precision detection in complex scenarios
and the cross-crop generalization ability of lightweight models. It provides a new
paradigm for universal agricultural disease monitoring systems that can be
deployed at the edge.

tomato leaf disease, precision agriculture, agricultural artificial intelligence, multi-scale
detection, transfer learning
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1 Introduction

Global agricultural diseases cause over 220 billion US dollars in
economic losses each year. Among these, the early detection of leaf
diseases in crops is a key part of precision plant protection (Astani
et al,, 2022). As an important economic crop cultivated worldwide,
the control of tomato diseases directly affects crop yield, quality, and
agricultural economic benefits. Although deep learning-based
detection methods have made significant progress in single-crop
scenarios, models generally perform poorly in cross-crop scenarios
due to domain specificity and the scarcity of labelled data. This
limitation is particularly evident in developing countries with
limited resources: small-scale farmers cannot afford the
development costs of multi-crop-specific models, and agricultural
expert systems lack the ability to generalise heterologous disease
features. This results in delayed disease warnings and the waste of
prevention and control resources. Therefore, innovating and
applying leaf disease detection technology is important for
ensuring food security, promoting sustainable agricultural
development, and advancing smart agricultural systems.

In natural farmland environments, leaf disease detection often
faces multiple challenges, such as leaves shading each other, disease
patches having diverse shapes, light conditions fluctuating and
diseases having weak early symptoms. Traditional image
processing methods mostly rely on colour space segmentation
combined with texture feature extraction for classification. For
example, Javidan et al. used K-means clustering to segment
diseased areas and applied morphological operations to optimise
edge detection, achieving a 98.97% accuracy rate under controlled
lighting conditions (Javidan et al., 2023). Similarly, Bhagat et al.
used a network search-based SVM for classification and detection of
plant leaf diseases (Bhagat et al., 2020), while Rodriguez et al.
collected potato canopy images using a drone equipped with a
multispectral sensor (Rodriguez et al, 2021). They combined
vegetation indices and machine learning algorithms to achieve
early detection and severity assessment of potato late blight.
Furthermore, Saleem et al. designed a leaf segmentation process
based on the ExG index and the region-growing method and
combined the proportion of the diseased area to assess severity
(Saleem et al., 2024). However, traditional methods face insufficient
generalization ability in complex farmland scenarios due to their
heavy reliance on manual feature design and experience-driven
parameter tuning, and are difficult to adapt to the multi-scale
disease representation requirements in dynamic field environments.

The advent of CNN has precipitated a paradigm shift in the
realm of agricultural disease detection, with end-to-end
architectures predicated on single-stage detectors becoming the
prevailing paradigm. This is primarily attributable to the
enhanced efficiency exhibited by these architectures. In the
context of tomato leaf disease detection, researchers frequently
employ a combination of deep learning models and conventional
image processing techniques to enhance the precision of lesion
localization. For instance, Barbedo proposed a threshold
segmentation approach based on the HSV color space and
morphological processing to extract lesion areas and verified the
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feasibility of combining traditional methods with CNN
(Convolutional Neural Network) (Barbedo, 2018). Similarly, R.
et al. embedded an attention mechanism in a pre-trained residual
CNN, combined with multi-spectral data to enhance lesion feature
expression, improving the discrimination of lesion features in
complex environments (R. et al., 2020). Furthermore, Cong et al.
developed a lightweight Mask R-CNN variant, optimizing lesion
boundary localization through the integration of superpixel
segmentation and edge detection algorithms (Cong et al., 2023).
As proposed by Shin et al., a feature extraction and data
augmentation strategy was proposed, combining a CNN with
RGB images (Shin et al., 2021). This strategy achieved an average
accuracy of 92.18% in the detection of strawberry leaf powdery
mildew. Despite the efficacy of the aforementioned method in
certain contexts, it remains confronted with numerous challenges
in the context of natural farmlands. The distinguishing
characteristics of disease spots are often obscured by leaf
occlusion in complex backgrounds, leading to ambiguity in
identification (Debnath et al., 2023)This study adopts
EfficientNetV2B2 as the lightweight backbone network to achieve
efficient and accurate disease identification. sing the DL approach,
tomato leaf disease identification achieves nearly 100% accuracy on
a test dataset. Additionally, the presence of similar diseases can
result in confusion regarding texture, and the identification of early
disease spots with low contrast can be challenging (Saleem et al.,
2024). Furthermore, the method’s accuracy in distinguishing cross-
diseases with similar symptoms is often limited.

Currently, the field of plant disease detection generally faces the
bottleneck of model generalization caused by domain differences.
Existing research is mostly limited to customized training for single-
crop diseases and is difficult to effectively transfer to heterologous
crops. The detection of tomato leaf diseases in real-world
agricultural settings is hindered by several key challenges: leaf
occlusion and overlap.Different diseases share visual
characteristics, leading to misclassification. To address this issue,
this study proposes a cross-crop transfer learning framework that
breaks through the domain shift limitations of cross-species disease
recognition by sharing low-level feature representations and
domain adaptation optimization strategies. Specifically, a CNN
backbone model is trained with a tomato leaf disease dataset, and
the transfer learning framework freezes the shallow feature
extraction layers to retain the common texture and morphological
features of crops and adapt to the specific phenotypes of target crop
diseases, combined with adversarial training to minimize the
distribution differences between domains. This achievement
provides a cross-crop transfer learning paradigm for building a
universal plant disease intelligent monitoring system and promotes
the large-scale application of precision plant protection technology.

The primary contributions of this paper are as follows:

1. In order to address the challenges posed by the attenuation
of features in small target disease spots and the failure to
detect early disease spots, a novel dual-branch adaptive
alignment module has been designed. Through dynamic
feature alignment and cross-scale feature interaction, it
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significantly improves the detection accuracy and
robustness of tomato leaf diseases in complex
agricultural environments.

2. The Faster-GLUDet feature enhancement unit was
integrated, which employs partial convolution and local
context-aware gating mechanisms. This enhancement to
the model’s noise suppression capabilities is achieved while
maintaining its lightweight nature.

3. The construction of a multi-scale decoupled detection head
was undertaken. The model achieves balanced detection of
cross-scale diseases and efficient distinction between small
disease spots, spreading lesions, and mixed diseases
through hierarchical feature fusion and Group
Normalization optimization.

2 Materials and methods
2.1 Data processing

2.1.1 Data source

The tomato leaf disease dataset used in this study was sourced
from the “Tomato Leaf Diseases Detect” standardized dataset
released by the Roboflow open platform. It contains six typical
disease categories (bacterial spot, early blight, late blight, leaf mold,
target spot, and black spot) and healthy leaf samples, covering the
early, middle, and late stages of disease development. In total, it
includes 3,469 high-resolution RGB images. The six tomato leaf
diseases of interest in this study are highly prevalent in major
tomato-growing regions worldwide, causing yield losses of 20% to
65% (Lu et al., 2018; Panno et al., 2021). Table 1 provides a detailed
breakdown of the final image distribution across all categories after
augmentation and splitting. The common Bean Dataset was
captured at the Guoxin Modern Agricultural Base in Changchun
City, Jilin Province, and the public dataset Bean Disease Dataset.
The Potato dataset is from the public Potato disease dataset which
includes three categories: health, early disease and late disease
(https://gitcode.com/open-source-toolkit/829¢ec). The inclusion of
these diverse datasets from different crops is intended to rigorously

TABLE 1 Data distribution.

_ D_ata. Training Validation Test All
distribution set set set

Bacterial Spot 2841 465 221 3527
Early Blight 4994 618 669 6281
Healthy 1621 227 271 2119
Late Blight 2908 408 202 3524
Leaf Mold 2871 274 361 3506
Target Spot 2296 281 244 2821
Black Spot 3710 335 143 4418
All 21241 2608 2111 25960
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validate the transferability of the features learned by our model
from tomatoes to other commercially important crops.

2.1.2 Data enhancement

To enhance the robustness of the model, the dataset was
expanded to 7370 images using data augmentation techniques. In
order to prevent the original image and enhanced image from
appearing simultaneously in the training set and validation set, the
original image is initially divided into a training set, validation set,
and test set in a ratio of approximately 8:1:1. Subsequently, five
techniques including horizontal flipping, vertical flipping, grayscale,
contrast adjustment, and brightness adjustment were randomly
applied to the original data to enhance the image and labels. The
enhanced example image is shown in Figure 1, and the label
distribution is shown in Table 1.

In order to simulate the complex weather changes in the real
tomato cultivation environment, this study adopts the RGB channel
synthesis technology based on the atmospheric scattering model to
generate enhanced images with controllable weather features on
50% of the typical samples in the training set. The synthesis formula
is shown in Equation 1.

I(x) = J(x) - 1(x) + A - (1 - 1(x)) (1)

In this study, x denotes the pixel coordinate, I(x) signifies the
synthesized image, J(x) represents the original image, the
transmittance map #(x) is constrained within the interval [0.2,
0.8] and controls the weather intensity gradient, and the
atmospheric light value A restricts the amplitude of illumination
attenuation. Figure 2 presents an image of medium-intensity
synthetic weather.

2.2 Methodology

2.2.1 Tomato multi-scenario adaptive scale
detector

While general-purpose detectors like YOLOv11 have
demonstrated strong performance on common datasets, their
inherent architecture is not optimally designed for the unique
challenges presented by complex agricultural environments, such
as severe scale variation of lesions, leaf occlusions, and pervasive
background noise. These limitations often lead to feature
misalignment, reduced sensitivity to small objects, and
compromised robustness under fluctuating lighting conditions.

To address these specific issues, we propose the Tomato Multi-
scenario Adaptive Scale Detector (ToOMASD), a novel lightweight
architecture specifically engineered for high-precision disease
detection in real-world field settings. The overarching design
philosophy of TOMASD is to achieve an optimal balance between
computational efficiency and detection accuracy by introducing
three dedicated core modules that work in concert throughout the
feature extraction and fusion pipeline.

As illustrated in Figure 3, the Two-branch Adaptive Alignment
Module (TAAM) is integrated into the backbone network. Its
purpose is to dynamically align and calibrate multi-scale features
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(a) original figure

(b)Horizontal flip

(c)vertical flip

(d)grayscale

FIGURE 1

(e)contrast adjustment

(f)brightness adjustment

Data enhancement methods for tomato leaf images: (a) original image; (b) horizontal flip; (c) vertical flip; (d) grayscale conversion; (e) contrast

adjustment; (f) brightness adjustment.

at the earliest stage, effectively mitigating the semantic
misalignment between healthy and diseased tissue regions caused
by occlusion and scale variance. The Faster-Gated Linear Unit
(Faster-GLUDet) is embedded within the neck network. This
module acts as an adaptive feature refiner, leveraging a gating
mechanism to suppress irrelevant background noise. The Multi-
scale Decoupling Head (MDH) is designed as the detection head. It
replaces the conventional coupled head with a decoupled structure,
allowing for independent optimization for classification and
regression tasks at different feature scales. This synergistic design
ensures that TOMASD is uniquely capable of handling the
complexities of agricultural disease detection.

2.2.2 Two-branch adaptive alignment module

The present study focuses on the problems of insufficient feature
extraction of small-scale targets and redundant shallow computations
in the YOLOv11 backbone for leaf lesion detection. It proposes a
novel dual-branch adaptive alignment module, the Two-branch
Adaptive Alignment Module (TAAM), as shown in Figure 4. The
module under discussion achieves efficient computation through a
multi-level feature sharing architecture. Firstly, the Pointwise Spatial
Attention Stem (PSAStem) is utilised as the shared initial extraction
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layer, which pre-calibrates the input features through 1x1 pointwise
convolution and an adaptive mechanism, thereby enabling the
network to form dynamic spatial focusing capabilities at the input
stage. Subsequently, the feature maps are processed through dual
paths. The primary pathway integrates two C3k2 modules,each
containing three standard 3x3 convolutions with 64 output
channels, and a standard 3x3 convolution to preserve intricate
features. The secondary pathway employs a 1x1 dimension-
reducing convolution (reducing channels by a factor of 2) and
subsequently connects to the optimised PSABlock. The initial
feature extraction module combines pointwise convolution and
spatial attention mechanisms, enabling the network to prioritise
key regions in the input image and enhance the dynamic focusing
ability on key spatial regions in the input stage while maintaining
computational efficiency.

After the dual-branch channels process the features in parallel,
they are connected to the Adaptive Alignment Module (AAM), as
shown in Figure 5. The input dual-channel features F; and F, are
first compressed in the channel dimension through 1x1
convolution layers to obtain F;” and F,’, and then adaptive
alignment weights - Adaptive Align Weight are generated
through the cross-branch feature interaction layer to dynamically

frontiersin.org
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(d) solar flare

FIGURE 2

Randomly select a leaf image for weather synthesis: (a) original image; (b) rain simulation; (c) fog simulation; (d) solar flare simulation; (e)

overexposure simulation; (f) snow simulation.

(e)overexposure

balance the contribution of the two paths. They are input into a 3x3
dilated convolution to capture long-range context dependencies
and generate dynamic path selection weights o through the Sigmoid
activation function. After spatial alignment of the two paths, the key
region responses are enhanced through element-wise
multiplication, as shown in Equations 2 and 3, where ©
represents the Sigmoid activation function and W_a is a
learnable weight matrix. Finally, multi-scale feature
complementarity is achieved through element-wise addition, and
the results are merged and output.

x1 —weight = O-(Wé: ®F,1) o,0E [0, 1} 2)

X2 g = 6(WZ®F,) a0 € [0,1] (3)

The innovation of this module can be attributed to the
following: The following two mechanisms are introduced: 1) A
dynamic weight adjustment mechanism is employed to optimise
branch weights in real time based on the semantic distribution of
the input features. This mechanism alleviates the spatial offset
problem of heterogeneous features, such as misalignment
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interference between leaf lesions and healthy tissues. 2)
Through the collaborative design of dilated convolution and
gated attention, computational redundancy is reduced while
local details and global pathological patterns are
jointly modelled.

2.2.3 Faster-gated linear unit

The neck network of YOLOv11 employs depthwise separable
convolution and channel pruning strategies, which have been
shown to enhance the recall rate of small targets while
concurrently reducing the model’s parameters. Tomato leaf
diseases frequently manifest as minute spots, and the receptive
field of the P5 layer in the feature pyramid is overly extensive, which
may impede the learning of small target features. Secondly, when
the brown necrotic spots of tomato late blight are similar in colour
to the soil, the feature pyramid network may confuse the target with
the background. In order to address these issues, we propose Faster-
GLUDet, whose core lies in enhancing the model’s ability to extract
disease features in complex backgrounds through a gating
mechanism while maintaining model lightweight. The Faster-
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FIGURE 3

ToMASD model structure diagram.

GLUDet module integrates FasterNetBlock and Convolutional
GLU (Chen et al,, 2023; Shi, 2023), as illustrated in Figure 6.

The module’s primary function is the extraction of feature units
through the utilisation of FasterNet Block, employing a 3x3 Partial
Convolution to extract spatial features from a quarter of the input
channels. This approach results in a 25% reduction in
computational load when compared with traditional convolution,
while retaining edge detail information. Subsequently, two 1x1
convolutions are connected to perform channel dimension
reduction and feature fusion, thereby ensuring the effective
preservation of multi-scale disease features. In order to enhance
the feature interaction between modules, a dynamic gated feature
enhancement unit, known as the Convolutional Gated Linear Unit
(ConvGLU), is connected after the Faster Block. The model
employs a dual-branch convolution to generate feature maps and
gating signals, dynamically suppressing background noise and
enhancing the response in the lesion area through element-wise
multiplication. In the gating branch of the traditional gated linear
unit (GLU), ConvGLU decomposes the standard 3x3 convolution
into a cascade structure of depthwise convolution (DWConv) and
pointwise convolution (PWConv), and combines a linear projection
layer and GELU activation function to construct a lightweight
feature enhancement path. A lightweight 3x3 depthwise
convolution operation is introduced prior to the activation
function in order to construct a gating channel attention
mechanism based on neighbourhood features. The design
converts global channel attention into local context-aware
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dynamic weight adjustment through the local receptive field
characteristics of the convolution kernel. This retains the
important information filtering ability in the channel dimension
while significantly reducing computational complexity. ConvGLU
employs convolution operations to capture local features in the
image, thereby enhancing its efficacy in processing local
information in comparison to traditional FFN. It is also capable
of adaptively enhancing small target features.

The integration of Faster-GLUDet has been demonstrated to
enhance the model’s feature extraction and expression capabilities
to a considerable extent. The lightweight design of FasterBlock
provides low-latency input for CGLU, while the gated weight
generation module of CGLU further optimises multi-scale feature
interaction, enabling the model to maintain lightweight while
enhancing the diversity and hierarchy of features. This, in turn,
helps better capture the details and context information of the target
object. The system has been engineered to achieve dynamic
regulation of feature channels, thereby further enhancing the
semantic segmentation and spatial understanding capabilities of
features. The combination of these two approaches has been shown
to more effectively fuse multi-scale features and alleviate the
problem of information loss, significantly improving the model’s
performance in challenging plant disease recognition tasks.

2.2.4 Multi-scale decoupling head
In order to address the issue of uneven detection accuracy of
traditional detection heads for small and large-scale lesions, the Multi-

06 frontiersin.org
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FIGURE 4
TAAM internal structure diagram.

scale Decoupling Head (MDH) has been proposed, as illustrated in
Figure 7. The core process is as follows: MDH receives three different-
scale feature maps - P3, P4 and P5 - from the Feature Pyramid
Network (FPN) in parallel, which respectively carry high-resolution
details, medium-scale information and large receptive field context,

thereby constructing a multi-scale perception foundation. The features
of each scale first enter a unified feature enhancement pathway, which
is composed of a series of grouped normalized convolutional modules:
First, the channel dimension is adjusted and fused through a 1x1
Conv_GN, and then two 3x3 Conv_GN modules are continuously

Conv x1_aligned * x1_weight
1x1
Feature1
.m Conv Conv
3x3 1x1
cony x2_aligned * x2 ight
1x1 _aligned * x2_weig
Feature2 ® . element-wise summation
@ . element-wise multiplication
FIGURE 5
AAM structure diagram.
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Input

FasterNet ’
Block

\ 4

Gate Linear Unit ‘

\

FIGURE 6
Faster GLUDet module structure diagram.

used to enhance the spatial feature expression. At the same time, group
normalization is utilized to ensure the stability of the model under
small-batch training. After feature enhancement, the network flow is
completely decoupled into two independent branches dedicated to
their respective functions: The classification branch precisely extracts
features through two consecutive 1x1 convolutional layers and
ultimately outputs a probability graph with a dimension of nc,
accurately determining the category of the target within each anchor
box; The regression branch adopts the same structure, but its output
dimension is 4 x reg_max, which indicates that it uses an advanced
distributed focus loss mechanism. By predicting the discrete
distribution of bounding box coordinates, it greatly improves the
accuracy of lesion location, where reg max defines the flexible
maximum value of the distribution. Ultimately, the outputs of the
two branches are respectively normalized and integrated through a
scale layer to generate the final detection results.
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3 Analysis of experimental results

3.1 Experimental platform and parameter
settings

In this study, the image input size is set to 640x640 pixels. To
accelerate the convergence speed, the initial learning rate is set to
0.01, the stochastic gradient descent algorithm (SGD) is used for
training, the weight decay coefficient is set to 0.0005, the
momentum factor is set to 0.937, a total of 200 periods, and the
size of the training batch is set to 32 times, and the workers are set
to 12. All the experiments are performed on a Linux server. All the
experiments are realized on a Linux server, and the specific
configuration of the experimental environment is shown
in Table 2.
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FIGURE 7

MDH detection head structure.

3.2 Analysis and evaluation of the
identification results

3.2.1 Evaluation index

In this paper, the metrics Precision, Recall, and mAP are utilised

to evaluate the detection performance of the model. TP, FP, and FN

represent the number of true positive, false positive, and false

negative samples, respectively. C denotes the set of object
categories, and |C| is the total number of categories. As shown in

Equations 4, 5 and 6

.« . _ TP
Precision = TPLEP
__ 1P
Recall = w55

mAP = ﬁ > AP(c)

ceC
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)

09

P denotes the proportion of correctly detected disease samples

among all positive detections, thereby reflecting the model’s

capacity to avoid false positives. R signifies the proportion of

TABLE 2 Experimental environment configuration.

Environment Configuration Parameters

GPU

CPU

2*A100(80GB)

Intel(R)Xeon(R)Gold 6148 CPU
@2.40GHz

Development environment

PyCharm 2023.2.5

Language

Python 3.8.10

Framework
Operating platform

Operating System

PyTorch 2.0.1
CUDA 11.8

Linux
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correctly detected disease samples among the actual existing disease
samples, thus measuring the model’s ability to reduce false
negatives. AP quantifies the detection performance of the model
for a single disease category by calculating the area under the
precision-recall curve. mAP is the average of APs for all categories,
and a higher mAP indicates that the model’s detection effect on
various disease categories is more balanced and accurate.

3.2.2 Comparative experiments of different
models

To comprehensively evaluate the detection and generalization
performance of the proposed ToMASD model, we conducted
extensive comparative experiments with thirteen state-of-the-art
object detection models on the same tomato leaf disease dataset. As
summarized in Table 3, TOMASD achieved the highest scores in
both precision and mAP, significantly outperforming all other
contenders. RT-DETR achieves high accuracy but at the cost of
high computational complexity, making it unsuitable for edge
deployment. In comparison with the unimproved YOLOvlln,
ToMASD has increased P, mAP, and Recall by 6.6%, 7.8%, and
5.9%, respectively, demonstrating its superior ability in target
localization and classification in complex scenarios. Despite the
fact that YOLOv11n exhibits a modestly diminished number of
FLOPs in comparison with ToMASD, a notable deterioration in
accuracy is evident, suggesting the potential for optimisation
shortcomings within the feature ex-traction process. Despite the
advantages in parameter quantity and computational cost of
YOLOvV5n and YOLOvl1ln, their accuracy still lags significantly
behind ToMASD, further confirming the dual improvements in
accuracy and recognition performance of the ToMASD model.
Whilst sustaining its position of being lightweight, it has
considerably surpassed the constraints of prevailing algorithms in

TABLE 3 Comparison of object detection results of different algorithms.

Models P%

SSD (Liu et al,, 2016) 76.5
YOLOV3-tiny (Redmon and Farhadi, 2018) 73.6
YOLOvV5n 74.5

YOLOV6 (Li et al., 2022) 69.1
YOLOV7-tiny (Wang et al., 2022) 70.0
YOLOvV8n 73.8

YOLOvVS8s 77.8

YOLOV9t (Wang et al., 2024b) 69.1
YOLOV9s 73.9
YOLOvV10n (Wang et al., 2024a) 76.2
YOLOvlIn 74.9
YOLOvlls 77.7

RT-DETR 80.1

ToMASD 84.3
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the trade-off between ac-curacy and computational resource
consumption. As illustrated in Figure 8, a performance
comparison of the six models with the highest mAP is presented.
A selection of six algorithms with comparable performance was
made for the purpose of a comprehensive comparison, as illustrated
in Figure 9. The performance of the metric is optimised by the
distance of each axis of the curve from the intersection point. The
area enclosed by the curve is positively correlated with the strength
of the algorithm’s comprehensive performance. The comparison
results demonstrate that the ToMASD model proposed in this
paper exhibits advantages in all metrics, not only improving
performance but also achieving lightweight, thus rendering it
more suitable for practical scenarios.

To verify the performance of the TAAM module, this study
systematically evaluated the effects of four mainstream attention
modules as the Stem, as shown in Table 4. PSA achieved the best
balance between accuracy and computational efficiency, reducing
the computational complexity by 17.7% compared to the ECA
module with the sec-ond-highest accuracy, verifying the
performance of PSA.

Figure 10 shows the detection performance of the five models
with the highest accuracy under different weather conditions, where
gray boxes indicate missed detec-tions and black boxes indicate
false positives. Under foggy conditions, except for To-MASD, the
other four models misjudged fog points as diseases. When the light
intensity was too high, the comparison models also failed to
effectively suppress the exposed areas, resulting in missed
detections of some real lesions. Figure 11 shows the detection
results of the four lightweight models in conventional
environments. Comprehensive comparative analysis shows that
ToMASD exhibits the most superior performance under various
complex weather conditions and has superior feature extraction and

mAP% Recall% FLOPs/G Parameters
72.3 70.7 200.6 4.48x107
66.8 61.1 18.9 1.21x107
71.3 69.1 42 1.76x10°
68.2 65.6 11.1 4.23x10°
69.4 68.9 13.2 6.07x10°
72.5 68.8 8.7 3.00x10°
75.6 77.5 28.6 1.12x107
67.8 70.1 7.9 2.01x10°
715 724 26.7 7.17x10°
70.8 67.9 8.2 2.69x10°
73.9 74.7 6.7 2.76x10°
75.4 77.8 9.4 2.15x107
77.6 78.9 56.9 3.27x107
81.7 80.6 7.1 2.46x10°
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FIGURE 8
Performance bar charts of six models.

denoising capabilities in real agricultural environments. Figure 12
shows ToMASD’s detection of potato and common bean leaf
diseases, and the experimental results show that ToMASD
maintains high accuracy in the cross-crop task, achieving 92.1%
and 93.5% accuracy in the detection of bean and potato leaf

diseases, respectively, demonstrating its efficient generalization
ability and transferability nature of cross-species training. Table 5
shows the recognition accuracy of ToOMASD for different spots,
Figure 13 shows the confusion matrix of this experiment, the model
still maintains stable recognition performance in the category

Parameters(M

P% ~  YOLOV5n

[ _yoLovsn
[ | YOLOvSs
~_YOLOV11n
~ YOLOv11s
'RT-DETR

' ToMASD

g2 84 mAP%

FLOPs/G

FIGURE 9
Comprehensive comparison of performance of six models.

Recall%
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TABLE 4 Comparison of different attention modules.

PSA CBAM ECA ELAN P% FLOPs/G
v 77.4 20.9
v 72.8 20.9
v 76.2 25.4
v 73.6 231

imbalance dataset, the recognition accuracy of Late Blight, Early
Blight is close to 90%, Leaf Mold has a similar chromaticity of the
yellow spot and the healthy tissues, which leads to the relatively low
detection accuracy. Bacterial Spot and Target Spot have similar
water-damaged spot characteristics, but the model still achieved
82.1% and 74.1% mAP values through multi-scale texture analysis,
indicating the effectiveness of the feature decoupling mechanism.

10.3389/fpls.2025.1644271

3.2.3 Ablation experiment

The proposed ToOMASD model is based on YOLOv11n and has
been optimised by introducing TAAM, Faster-GLUDet, and MDH.
In order to evaluate the performance of each optimisation module,
an experiment was conducted using the variable control method.
The training and testing were carried out on the same dataset and
training parameters, and the results are shown in Table 6. It is
evident that Model C attained an mAP% of 77.9%, while
concurrently sustaining a minimal computational cost. However,
Model D, which introduced TAAM and Faster-GLUDet, exhibited
an increase in computational cost to 12 FLOPs/G, attributable to
parameter redundancy, yielding an accuracy of only 79.2%. The
experiments indicated that the joint application of TAAM and
MDH caused feature decoupling conflicts. The Model E achieved an
82.1% P% and 80.1% mAP%, thereby demonstrating the viability of
multi-module collaborative optimisation through its lightweight
design. The TOMASD model proposed in this paper was found to

YOLOV8s

YOLOv10n

YOLOv1ls

RT-DETR

ToMASD

FIGURE 10

Detection results of five models under different weather conditions (gray boxes indicate missed detections and black boxes indicate false positives).
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FIGURE 11

Detection results of the four models in a conventional detection environment.

achieve the optimal balance in parameters, computational
efficiency, and performance. In comparison with the baseline
model A, it enhanced the accuracy by 9.4% whilst escalating the
computational cost by a mere 0.4G. This outcome serves to
demonstrate the efficacy of the collaborative design of multi-
dimensional attention mechanisms and lightweight architectures
for object detection tasks.

3.2.4 Heat map visualization analysis

The present study employed the gradient-weighted class
activation mapping technique (Selvaraju et al.,, 2017) to visualise
the small target detection mechanism of the ToMASD model
(Figure 14). The experimental findings demonstrate that the
tomato leaf disease detection model, based on transfer learning,
exhibits adapted feature capabilities in different crop disease
recognition tasks. When the model is transferred from the source
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domain of tomatoes to the target domain of common beans, the
heatmap analysis indicates that the lesion areas can still be
effectively captured, although the the extent of the activated
regions of highlighted areas is lower than that in the source
domain. This suggests that the model has initially acquired the
ability to locate disease spots across species through transfer
learning. When the heatmap is transferred to potatoes with more
distinct morphological features, more concentrated highlighted
areas are shown, which may be related to the reticulate vein
structure of potato leaves, thereby enhancing the
distinguishability of texture features. It is noteworthy that the
heatmaps of all three crops demonstrate a substantial contrast
between the lesion areas and healthy tissues, thereby confirming
that the model, while retaining key pathological features, has
achieved adaptive adjustments to different crop leaf diseases
through weight transfer. This cross-species disease recognition
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(a)bean disease
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FIGURE 12

The detection results of leaf diseases of common beans and potatoes by TOMASD: (a) bean disease, (b) tomato disease. The models from left to

right are YOLOv8n, YOLOv10n, YOLOv11n.

capability provides a feasible solution for intelligent diagnosis of
multiple crop pests and diseases under resource-limited conditions.

4 Discussion
4.1 Resource identification initiative

The present study proposes a detection model, ToMASD, which
integrates multi-scale feature fusion and dynamic attention

TABLE 5 Evaluation indicators for different diseases.

mechanisms, with a view to addressing the challenges of tomato
leaf disease detection in complex agricultural environments. The
prevailing field of agricultural disease detection frequently grapples
with challenges such as leaf occlusion, a wide spectrum of lesion
morphologies, and intricate lighting conditions. Conventional
methodologies are predicated on manually designed features,
which are challenging to adapt to the multi-scale representation
requirements of dynamic field environments. Despite its promising
performance, ToMASD has several limitations: real-time
deployment, Although lightweight, the model may still struggle

Evaluation index Bacterial Spot = Early Blight Healthy Late Blight Leaf Mold Target Spot Black Spot
P% ‘ 85.4 ‘ 90.1 ‘ 99.8 85.2 ‘ 719 77.8 80.3
mAP% ‘ 82.1 ‘ 88.0 ‘ 98.7 82.4 ‘ 69.5 74.1 76.1
Frontiers in Plant Science 14 frontiersin.org
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background
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FIGURE 13
Confusion matrix.

on low-end edgedevices. Knowledge distillation or quantization
could further compress the model. The research under discussion
addresses the issue of misalignment between diseased and healthy
tissues by designing a Two-branch Adaptive Alignment Module
with a dynamic weight allocation mechanism. Secondly, the Faster-
GLUDet module enhances noise suppression capabilities while
maintaining a lightweight model through a local context-aware
gating unit. The innovative architecture of the model integrates

TABLE 6 Results of model improvement ablation experiment.

0.36

0.02

017

0.13

—-04

0.04

0.16 -02

0.12 025

-0.0

'
background

o -

deep convolution and pointwise convolution to construct gating
signals, thereby achieving a substantial reduction in background
false detection rates, particularly in conditions characterized by
foggy and strong light. It is evident that the multi-scale decoupled
detection head (MDH) successfully achieves balanced detection of
both small and diffuse lesions. This is achieved through the
implementation of group normalisation and the establishment of
independent classification and regression branches. A series of

Faster-GLUDet mAP% Parameters FLOPs/G
A v 77.4 726 1.75x107 209
B v 79.9 74.4 2.45x10° 6.1
C v 80.3 77.9 1.84x10° 43
D v/ v/ 79.2 723 4.46x10° 12.0
E v/ v 82.1 80.1 2.36x10° 6.5
F v v 78.8 77.1 2.69x10° 7.6
ToMASD v v v 84.3 81.7 2.46x10° 7.1
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(a) tomato

FIGURE 14

(c) potato

Feature visualization of leaf disease patterns across different crops: (a) tomato; (b) common bean; (c) potato.

ablation experiments were conducted, the results of which
demonstrate that MDH enhances the mAP value of imbalanced
datasets by 7.8%, particularly with regard to the recognition
accuracy of low-contrast diseases such as leaf mold.

Despite the fact that TOMASD demonstrates superiority over
existing models in a number of metrics, there is still scope for
enhancement. For instance, the mAP for Black Spot detection is
only 76.1%, indicating that the ability to distinguish similar texture
diseases needs further optimization. It is reccommended that future
research explore the potential of knowledge distillation techniques
to further compress the model size. In addition, the combination of
spatio-temporal features could enhance the prediction of disease
spread dynamics. In conclusion, TOMASD has been demonstrated
to provide an efficient and reliable solution for precise disease
diagnosis in complex agricultural scenarios through the
collaborative design of multi-dimensional attention mechanisms
and lightweight architectures. This suggests that there is significant
practical value and potential for promotion.

This study further validates the potential of TOMASD model for
transfer learning in cross-crop disease detection. The weights of the
tomato disease detection model were migrated to the potato and
common bean tasks, and the cross-crop features were fused by
domain adaptive layer state, and an adversarial feature decoupling
strategy was used to suppress the inter-domain distribution bias.
Experiments show that the migration model achieves 93.5% and
92.1% accuracy values on the potato and common bean test sets,
respectively. The technical innovation is that by decoupling the
cross-crop shared features and crop-specific features, the model
overcomes the problem of confusing the small brown spots of bean
rust with the background leaf vein texture while retaining the
accuracy of tomato disease detection, supporting the joint
monitoring of multi-crop diseases. The results show that the
lightweight architecture and domain adaptive mechanism of
ToMASD provide a cross-species generalization paradigm for
building a general-purpose agricultural disease monitoring
system, which significantly reduces the model development cost
for multi-crop disease detection.

Frontiers in Plant Science

5 Conclusions

This study proposed ToMASD, a novel lightweight detection
model, to address the critical challenges of tomato disease detection
in complex agricultural environments. The core contributions of this
work are threefold, each validated by extensive experimental results:

Firstly, to mitigate the feature attenuation of small lesions and
the misalignment interference between diseased and healthy tissues,
we designed the Two-branch Adaptive Alignment Module
(TAAM). This module dynamically aligns cross-scale features,
which was a key factor in achieving the overall mAP of 81.7%, a
significant improvement over all baseline models.

Secondly, to enhance feature representation while suppressing
complex background noise, we integrated the Faster-GLUDet feature
enhancement unit. Its local context-aware gating mechanism eftectively
reduced false positives, as evidenced by the low misdetection rates of
6.3% in foggy and 9.8% in strong light conditions, while maintaining a
low computational cost of only 7.1 GFLOPs.

Thirdly, to balance the detection accuracy between tiny spots
and large lesions, we developed the Multi-scale Decoupling Head
(MDH). By employing Group Normalization and independent
task-specific branches, the MDH ensured balanced detection,
which is reflected in the stable performance across all six disease
categories, even under severe class imbalance.

Future research can be extended in three aspects: first, integrating
hyperspectral imaging technology to enhance the characterisation of
chromaticity gradient diseases; second, verifying the generalization of
the model in economic crops such as chili peppers, grapes. based on the
current migration learning framework; third, exploring the deployment
scheme of edge computing to build a low-power field monitoring
network in combination with LoRaWAN wireless transmission, to
realize spatio-temporal prediction of disease spreading and precise
prevention and control. The study is based on a lightweight
architecture and a low-power edge computing deployment scheme.
Through the deep integration of lightweight architecture and migration
learning technology, this study provides a scalable solution for
intelligent diagnosis of agricultural diseases, promotes the digital
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transformation of disease monitoring from single-crop scenarios to
multi-species and multi-environment collaborative management, and
assists the sustainable development of agriculture.
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