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Cross-scale detection
and cross-crop generalization
verification of tomato
diseases in complex
agricultural environments
Jinghuan Hu1, Jinying Li2* and Heyang Wang1

1College of Information and Technology, Jilin Agricultural University, Changchun, China, 2College of
Horticulture, Jilin Agricultural University, Changchun, China
In order to overcome the key challenges associated with detecting tomato leaf

disease in complex agricultural environments, such as leaf occlusion, variation in

lesion size and light interference, this study presents a lightweight detection

model called ToMASD. This model integrates multi-scale feature decoupling and

an adaptive alignment mechanism. The model innovatively comprises a dual-

branch adaptive alignment module (TAAM) that achieves cross-scale lesion

semantic alignment via a dynamic feature pyramid, a local context-aware

gated unit (Faster-GLUDet) that uses a spatial attention mechanism to

suppress background noise interference, and a multi-scale decoupling

detection head (MDH) that balances the detection accuracy of small and

diffuse lesions. On a dataset containing six types of disease under various

weather conditions, ToMASD achieves an average precision of 84.3%,.by a

margin of 4.7% to 12.1% over thirteen mainstream models. The computational

load is compressed to 7.1 GFLOPs. Through the introduction of a transfer

learning paradigm, the pre-trained weights of the tomato disease detection

model can be transferred to common bean and potato detection tasks. Through

domain adaptation layers and adversarial feature decoupling strategies, the

domain shift problem is overcome, achieving an average precision of 92.7% on

the target crop test set. False detection rates in foggy and strong light conditions

are controlled at 6.3% and 9.8%, respectively. This study achieves dual

breakthroughs in terms of both high-precision detection in complex scenarios

and the cross-crop generalization ability of lightweight models. It provides a new

paradigm for universal agricultural disease monitoring systems that can be

deployed at the edge.
KEYWORDS
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detection, transfer learning
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1 Introduction

Global agricultural diseases cause over 220 billion US dollars in

economic losses each year. Among these, the early detection of leaf

diseases in crops is a key part of precision plant protection (Astani

et al., 2022). As an important economic crop cultivated worldwide,

the control of tomato diseases directly affects crop yield, quality, and

agricultural economic benefits. Although deep learning-based

detection methods have made significant progress in single-crop

scenarios, models generally perform poorly in cross-crop scenarios

due to domain specificity and the scarcity of labelled data. This

limitation is particularly evident in developing countries with

limited resources: small-scale farmers cannot afford the

development costs of multi-crop-specific models, and agricultural

expert systems lack the ability to generalise heterologous disease

features. This results in delayed disease warnings and the waste of

prevention and control resources. Therefore, innovating and

applying leaf disease detection technology is important for

ensuring food security, promoting sustainable agricultural

development, and advancing smart agricultural systems.

In natural farmland environments, leaf disease detection often

faces multiple challenges, such as leaves shading each other, disease

patches having diverse shapes, light conditions fluctuating and

diseases having weak early symptoms. Traditional image

processing methods mostly rely on colour space segmentation

combined with texture feature extraction for classification. For

example, Javidan et al. used K-means clustering to segment

diseased areas and applied morphological operations to optimise

edge detection, achieving a 98.97% accuracy rate under controlled

lighting conditions (Javidan et al., 2023). Similarly, Bhagat et al.

used a network search-based SVM for classification and detection of

plant leaf diseases (Bhagat et al., 2020), while Rodrıǵuez et al.

collected potato canopy images using a drone equipped with a

multispectral sensor (Rodrıǵuez et al., 2021). They combined

vegetation indices and machine learning algorithms to achieve

early detection and severity assessment of potato late blight.

Furthermore, Saleem et al. designed a leaf segmentation process

based on the ExG index and the region-growing method and

combined the proportion of the diseased area to assess severity

(Saleem et al., 2024). However, traditional methods face insufficient

generalization ability in complex farmland scenarios due to their

heavy reliance on manual feature design and experience-driven

parameter tuning, and are difficult to adapt to the multi-scale

disease representation requirements in dynamic field environments.

The advent of CNN has precipitated a paradigm shift in the

realm of agricultural disease detection, with end-to-end

architectures predicated on single-stage detectors becoming the

prevailing paradigm. This is primarily attributable to the

enhanced efficiency exhibited by these architectures. In the

context of tomato leaf disease detection, researchers frequently

employ a combination of deep learning models and conventional

image processing techniques to enhance the precision of lesion

localization. For instance, Barbedo proposed a threshold

segmentation approach based on the HSV color space and

morphological processing to extract lesion areas and verified the
Frontiers in Plant Science 02
feasibility of combining traditional methods with CNN

(Convolutional Neural Network) (Barbedo, 2018). Similarly, R.

et al. embedded an attention mechanism in a pre-trained residual

CNN, combined with multi-spectral data to enhance lesion feature

expression, improving the discrimination of lesion features in

complex environments (R. et al., 2020). Furthermore, Cong et al.

developed a lightweight Mask R-CNN variant, optimizing lesion

boundary localization through the integration of superpixel

segmentation and edge detection algorithms (Cong et al., 2023).

As proposed by Shin et al., a feature extraction and data

augmentation strategy was proposed, combining a CNN with

RGB images (Shin et al., 2021). This strategy achieved an average

accuracy of 92.18% in the detection of strawberry leaf powdery

mildew. Despite the efficacy of the aforementioned method in

certain contexts, it remains confronted with numerous challenges

in the context of natural farmlands. The distinguishing

characteristics of disease spots are often obscured by leaf

occlusion in complex backgrounds, leading to ambiguity in

identification (Debnath et al. , 2023)This study adopts

EfficientNetV2B2 as the lightweight backbone network to achieve

efficient and accurate disease identification. sing the DL approach,

tomato leaf disease identification achieves nearly 100% accuracy on

a test dataset. Additionally, the presence of similar diseases can

result in confusion regarding texture, and the identification of early

disease spots with low contrast can be challenging (Saleem et al.,

2024). Furthermore, the method’s accuracy in distinguishing cross-

diseases with similar symptoms is often limited.

Currently, the field of plant disease detection generally faces the

bottleneck of model generalization caused by domain differences.

Existing research is mostly limited to customized training for single-

crop diseases and is difficult to effectively transfer to heterologous

crops. The detection of tomato leaf diseases in real-world

agricultural settings is hindered by several key challenges: leaf

occlusion and overlap.Different diseases share visual

characteristics, leading to misclassification. To address this issue,

this study proposes a cross-crop transfer learning framework that

breaks through the domain shift limitations of cross-species disease

recognition by sharing low-level feature representations and

domain adaptation optimization strategies. Specifically, a CNN

backbone model is trained with a tomato leaf disease dataset, and

the transfer learning framework freezes the shallow feature

extraction layers to retain the common texture and morphological

features of crops and adapt to the specific phenotypes of target crop

diseases, combined with adversarial training to minimize the

distribution differences between domains. This achievement

provides a cross-crop transfer learning paradigm for building a

universal plant disease intelligent monitoring system and promotes

the large-scale application of precision plant protection technology.

The primary contributions of this paper are as follows:
1. In order to address the challenges posed by the attenuation

of features in small target disease spots and the failure to

detect early disease spots, a novel dual-branch adaptive

alignment module has been designed. Through dynamic

feature alignment and cross-scale feature interaction, it
frontiersin.org
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Fron
significantly improves the detection accuracy and

robustness of tomato leaf diseases in complex

agricultural environments.

2. The Faster-GLUDet feature enhancement unit was

integrated, which employs partial convolution and local

context-aware gating mechanisms. This enhancement to

the model’s noise suppression capabilities is achieved while

maintaining its lightweight nature.

3. The construction of a multi-scale decoupled detection head

was undertaken. The model achieves balanced detection of

cross-scale diseases and efficient distinction between small

disease spots, spreading lesions, and mixed diseases

through hierarchical feature fusion and Group

Normalization optimization.
2 Materials and methods

2.1 Data processing

2.1.1 Data source
The tomato leaf disease dataset used in this study was sourced

from the “Tomato Leaf Diseases Detect” standardized dataset

released by the Roboflow open platform. It contains six typical

disease categories (bacterial spot, early blight, late blight, leaf mold,

target spot, and black spot) and healthy leaf samples, covering the

early, middle, and late stages of disease development. In total, it

includes 3,469 high-resolution RGB images. The six tomato leaf

diseases of interest in this study are highly prevalent in major

tomato-growing regions worldwide, causing yield losses of 20% to

65% (Lu et al., 2018; Panno et al., 2021). Table 1 provides a detailed

breakdown of the final image distribution across all categories after

augmentation and splitting. The common Bean Dataset was

captured at the Guoxin Modern Agricultural Base in Changchun

City, Jilin Province, and the public dataset Bean Disease Dataset.

The Potato dataset is from the public Potato disease dataset which

includes three categories: health, early disease and late disease

(https://gitcode.com/open-source-toolkit/829ec). The inclusion of

these diverse datasets from different crops is intended to rigorously
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validate the transferability of the features learned by our model

from tomatoes to other commercially important crops.

2.1.2 Data enhancement
To enhance the robustness of the model, the dataset was

expanded to 7370 images using data augmentation techniques. In

order to prevent the original image and enhanced image from

appearing simultaneously in the training set and validation set, the

original image is initially divided into a training set, validation set,

and test set in a ratio of approximately 8:1:1. Subsequently, five

techniques including horizontal flipping, vertical flipping, grayscale,

contrast adjustment, and brightness adjustment were randomly

applied to the original data to enhance the image and labels. The

enhanced example image is shown in Figure 1, and the label

distribution is shown in Table 1.

In order to simulate the complex weather changes in the real

tomato cultivation environment, this study adopts the RGB channel

synthesis technology based on the atmospheric scattering model to

generate enhanced images with controllable weather features on

50% of the typical samples in the training set. The synthesis formula

is shown in Equation 1.

I(x) = J(x) · t(x) + A · (1 − t(x)) (1)

In this study, x denotes the pixel coordinate, I(x) signifies the

synthesized image, J(x) represents the original image, the

transmittance map t(x) is constrained within the interval [0.2,

0.8] and controls the weather intensity gradient, and the

atmospheric light value A restricts the amplitude of illumination

attenuation. Figure 2 presents an image of medium-intensity

synthetic weather.
2.2 Methodology

2.2.1 Tomato multi-scenario adaptive scale
detector

While general-purpose detectors like YOLOv11 have

demonstrated strong performance on common datasets, their

inherent architecture is not optimally designed for the unique

challenges presented by complex agricultural environments, such

as severe scale variation of lesions, leaf occlusions, and pervasive

background noise. These limitations often lead to feature

misalignment, reduced sensitivity to small objects, and

compromised robustness under fluctuating lighting conditions.

To address these specific issues, we propose the Tomato Multi-

scenario Adaptive Scale Detector (ToMASD), a novel lightweight

architecture specifically engineered for high-precision disease

detection in real-world field settings. The overarching design

philosophy of ToMASD is to achieve an optimal balance between

computational efficiency and detection accuracy by introducing

three dedicated core modules that work in concert throughout the

feature extraction and fusion pipeline.

As illustrated in Figure 3, the Two-branch Adaptive Alignment

Module (TAAM) is integrated into the backbone network. Its

purpose is to dynamically align and calibrate multi-scale features
TABLE 1 Data distribution.

Data
distribution

Training
set

Validation
set

Test
set

All

Bacterial Spot 2841 465 221 3527

Early Blight 4994 618 669 6281

Healthy 1621 227 271 2119

Late Blight 2908 408 202 3524

Leaf Mold 2871 274 361 3506

Target Spot 2296 281 244 2821

Black Spot 3710 335 143 4418

All 21241 2608 2111 25960
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at the earliest stage, effectively mitigating the semantic

misalignment between healthy and diseased tissue regions caused

by occlusion and scale variance. The Faster-Gated Linear Unit

(Faster-GLUDet) is embedded within the neck network. This

module acts as an adaptive feature refiner, leveraging a gating

mechanism to suppress irrelevant background noise. The Multi-

scale Decoupling Head (MDH) is designed as the detection head. It

replaces the conventional coupled head with a decoupled structure,

allowing for independent optimization for classification and

regression tasks at different feature scales. This synergistic design

ensures that ToMASD is uniquely capable of handling the

complexities of agricultural disease detection.

2.2.2 Two-branch adaptive alignment module
The present study focuses on the problems of insufficient feature

extraction of small-scale targets and redundant shallow computations

in the YOLOv11 backbone for leaf lesion detection. It proposes a

novel dual-branch adaptive alignment module, the Two-branch

Adaptive Alignment Module (TAAM), as shown in Figure 4. The

module under discussion achieves efficient computation through a

multi-level feature sharing architecture. Firstly, the Pointwise Spatial

Attention Stem (PSAStem) is utilised as the shared initial extraction
Frontiers in Plant Science 04
layer, which pre-calibrates the input features through 1×1 pointwise

convolution and an adaptive mechanism, thereby enabling the

network to form dynamic spatial focusing capabilities at the input

stage. Subsequently, the feature maps are processed through dual

paths. The primary pathway integrates two C3k2 modules,each

containing three standard 3×3 convolutions with 64 output

channels, and a standard 3×3 convolution to preserve intricate

features. The secondary pathway employs a 1×1 dimension-

reducing convolution (reducing channels by a factor of 2) and

subsequently connects to the optimised PSABlock. The initial

feature extraction module combines pointwise convolution and

spatial attention mechanisms, enabling the network to prioritise

key regions in the input image and enhance the dynamic focusing

ability on key spatial regions in the input stage while maintaining

computational efficiency.

After the dual-branch channels process the features in parallel,

they are connected to the Adaptive Alignment Module (AAM), as

shown in Figure 5. The input dual-channel features F1 and F2 are

first compressed in the channel dimension through 1×1

convolution layers to obtain F1’ and F2’, and then adaptive

alignment weights - Adaptive Align Weight are generated

through the cross-branch feature interaction layer to dynamically
FIGURE 1

Data enhancement methods for tomato leaf images: (a) original image; (b) horizontal flip; (c) vertical flip; (d) grayscale conversion; (e) contrast
adjustment; (f) brightness adjustment.
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balance the contribution of the two paths. They are input into a 3×3

dilated convolution to capture long-range context dependencies

and generate dynamic path selection weights a through the Sigmoid

activation function. After spatial alignment of the two paths, the key

region responses are enhanced through element-wise

multiplication, as shown in Equations 2 and 3, where s
represents the Sigmoid activation function and W_a is a

learnable weight matr ix . Final ly , mult i-scale feature

complementarity is achieved through element-wise addition, and

the results are merged and output.

x1 _weight = s (W1
a ⊗ F

0
1)        a ,s ∈ ½0, 1� (2)

x2 _weight = s (W2
a ⊗ F

0
2)        a ,s ∈ ½0, 1� (3)

The innovation of this module can be attributed to the

following: The following two mechanisms are introduced: 1) A

dynamic weight adjustment mechanism is employed to optimise

branch weights in real time based on the semantic distribution of

the input features. This mechanism alleviates the spatial offset

problem of heterogeneous features, such as misalignment
Frontiers in Plant Science 05
interference between leaf lesions and healthy tissues. 2)

Through the collaborative design of dilated convolution and

gated attention, computational redundancy is reduced while

l o c a l d e t a i l s and g loba l pa tho l og i c a l pa t t e rn s a r e

jointly modelled.
2.2.3 Faster-gated linear unit
The neck network of YOLOv11 employs depthwise separable

convolution and channel pruning strategies, which have been

shown to enhance the recall rate of small targets while

concurrently reducing the model’s parameters. Tomato leaf

diseases frequently manifest as minute spots, and the receptive

field of the P5 layer in the feature pyramid is overly extensive, which

may impede the learning of small target features. Secondly, when

the brown necrotic spots of tomato late blight are similar in colour

to the soil, the feature pyramid network may confuse the target with

the background. In order to address these issues, we propose Faster-

GLUDet, whose core lies in enhancing the model’s ability to extract

disease features in complex backgrounds through a gating

mechanism while maintaining model lightweight. The Faster-
FIGURE 2

Randomly select a leaf image for weather synthesis: (a) original image; (b) rain simulation; (c) fog simulation; (d) solar flare simulation; (e)
overexposure simulation; (f) snow simulation.
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GLUDet module integrates FasterNetBlock and Convolutional

GLU (Chen et al., 2023; Shi, 2023), as illustrated in Figure 6.

The module’s primary function is the extraction of feature units

through the utilisation of FasterNet Block, employing a 3x3 Partial

Convolution to extract spatial features from a quarter of the input

channels. This approach results in a 25% reduction in

computational load when compared with traditional convolution,

while retaining edge detail information. Subsequently, two 1x1

convolutions are connected to perform channel dimension

reduction and feature fusion, thereby ensuring the effective

preservation of multi-scale disease features. In order to enhance

the feature interaction between modules, a dynamic gated feature

enhancement unit, known as the Convolutional Gated Linear Unit

(ConvGLU), is connected after the Faster Block. The model

employs a dual-branch convolution to generate feature maps and

gating signals, dynamically suppressing background noise and

enhancing the response in the lesion area through element-wise

multiplication. In the gating branch of the traditional gated linear

unit (GLU), ConvGLU decomposes the standard 3x3 convolution

into a cascade structure of depthwise convolution (DWConv) and

pointwise convolution (PWConv), and combines a linear projection

layer and GELU activation function to construct a lightweight

feature enhancement path. A lightweight 3x3 depthwise

convolution operation is introduced prior to the activation

function in order to construct a gating channel attention

mechanism based on neighbourhood features. The design

converts global channel attention into local context-aware
Frontiers in Plant Science 06
dynamic weight adjustment through the local receptive field

characteristics of the convolution kernel. This retains the

important information filtering ability in the channel dimension

while significantly reducing computational complexity. ConvGLU

employs convolution operations to capture local features in the

image, thereby enhancing its efficacy in processing local

information in comparison to traditional FFN. It is also capable

of adaptively enhancing small target features.

The integration of Faster-GLUDet has been demonstrated to

enhance the model’s feature extraction and expression capabilities

to a considerable extent. The lightweight design of FasterBlock

provides low-latency input for CGLU, while the gated weight

generation module of CGLU further optimises multi-scale feature

interaction, enabling the model to maintain lightweight while

enhancing the diversity and hierarchy of features. This, in turn,

helps better capture the details and context information of the target

object. The system has been engineered to achieve dynamic

regulation of feature channels, thereby further enhancing the

semantic segmentation and spatial understanding capabilities of

features. The combination of these two approaches has been shown

to more effectively fuse multi-scale features and alleviate the

problem of information loss, significantly improving the model’s

performance in challenging plant disease recognition tasks.

2.2.4 Multi-scale decoupling head
In order to address the issue of uneven detection accuracy of

traditional detection heads for small and large-scale lesions, the Multi-
FIGURE 3

ToMASD model structure diagram.
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scale Decoupling Head (MDH) has been proposed, as illustrated in

Figure 7. The core process is as follows: MDH receives three different-

scale feature maps - P3, P4 and P5 - from the Feature Pyramid

Network (FPN) in parallel, which respectively carry high-resolution

details, medium-scale information and large receptive field context,
Frontiers in Plant Science 07
thereby constructing a multi-scale perception foundation. The features

of each scale first enter a unified feature enhancement pathway, which

is composed of a series of grouped normalized convolutional modules:

First, the channel dimension is adjusted and fused through a 1×1

Conv_GN, and then two 3×3 Conv_GN modules are continuously
FIGURE 4

TAAM internal structure diagram.
FIGURE 5

AAM structure diagram.
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used to enhance the spatial feature expression. At the same time, group

normalization is utilized to ensure the stability of the model under

small-batch training. After feature enhancement, the network flow is

completely decoupled into two independent branches dedicated to

their respective functions: The classification branch precisely extracts

features through two consecutive 1×1 convolutional layers and

ultimately outputs a probability graph with a dimension of nc,

accurately determining the category of the target within each anchor

box; The regression branch adopts the same structure, but its output

dimension is 4 × reg_max, which indicates that it uses an advanced

distributed focus loss mechanism. By predicting the discrete

distribution of bounding box coordinates, it greatly improves the

accuracy of lesion location, where reg_max defines the flexible

maximum value of the distribution. Ultimately, the outputs of the

two branches are respectively normalized and integrated through a

scale layer to generate the final detection results.
Frontiers in Plant Science 08
3 Analysis of experimental results

3.1 Experimental platform and parameter
settings

In this study, the image input size is set to 640×640 pixels. To

accelerate the convergence speed, the initial learning rate is set to

0.01, the stochastic gradient descent algorithm (SGD) is used for

training, the weight decay coefficient is set to 0.0005, the

momentum factor is set to 0.937, a total of 200 periods, and the

size of the training batch is set to 32 times, and the workers are set

to 12. All the experiments are performed on a Linux server. All the

experiments are realized on a Linux server, and the specific

configuration of the experimental environment is shown

in Table 2.
FIGURE 6

Faster GLUDet module structure diagram.
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3.2 Analysis and evaluation of the
identification results

3.2.1 Evaluation index
In this paper, the metrics Precision, Recall, and mAP are utilised

to evaluate the detection performance of the model. TP, FP, and FN

represent the number of true positive, false positive, and false

negative samples, respectively. C denotes the set of object

categories, and |C| is the total number of categories. As shown in

Equations 4, 5 and 6

Precision = TP
TP+FP (4)

Recall = TP
TP+FN (5)

mAP = 1
Cj j o

c∈C
AP(c) (6)
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P denotes the proportion of correctly detected disease samples

among all positive detections, thereby reflecting the model’s

capacity to avoid false positives. R signifies the proportion of
FIGURE 7

MDH detection head structure.
TABLE 2 Experimental environment configuration.

Environment Configuration Parameters

GPU 2*A100(80GB)

CPU
Intel(R)Xeon(R)Gold 6148 CPU
@2.40GHz

Development environment PyCharm 2023.2.5

Language Python 3.8.10

Framework PyTorch 2.0.1

Operating platform CUDA 11.8

Operating System Linux
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correctly detected disease samples among the actual existing disease

samples, thus measuring the model’s ability to reduce false

negatives. AP quantifies the detection performance of the model

for a single disease category by calculating the area under the

precision-recall curve. mAP is the average of APs for all categories,

and a higher mAP indicates that the model’s detection effect on

various disease categories is more balanced and accurate.

3.2.2 Comparative experiments of different
models

To comprehensively evaluate the detection and generalization

performance of the proposed ToMASD model, we conducted

extensive comparative experiments with thirteen state-of-the-art

object detection models on the same tomato leaf disease dataset. As

summarized in Table 3, ToMASD achieved the highest scores in

both precision and mAP, significantly outperforming all other

contenders. RT-DETR achieves high accuracy but at the cost of

high computational complexity, making it unsuitable for edge

deployment. In comparison with the unimproved YOLOv11n,

ToMASD has increased P, mAP, and Recall by 6.6%, 7.8%, and

5.9%, respectively, demonstrating its superior ability in target

localization and classification in complex scenarios. Despite the

fact that YOLOv11n exhibits a modestly diminished number of

FLOPs in comparison with ToMASD, a notable deterioration in

accuracy is evident, suggesting the potential for optimisation

shortcomings within the feature ex-traction process. Despite the

advantages in parameter quantity and computational cost of

YOLOv5n and YOLOv11n, their accuracy still lags significantly

behind ToMASD, further confirming the dual improvements in

accuracy and recognition performance of the ToMASD model.

Whilst sustaining its position of being lightweight, it has

considerably surpassed the constraints of prevailing algorithms in
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the trade-off between ac-curacy and computational resource

consumption. As illustrated in Figure 8, a performance

comparison of the six models with the highest mAP is presented.

A selection of six algorithms with comparable performance was

made for the purpose of a comprehensive comparison, as illustrated

in Figure 9. The performance of the metric is optimised by the

distance of each axis of the curve from the intersection point. The

area enclosed by the curve is positively correlated with the strength

of the algorithm’s comprehensive performance. The comparison

results demonstrate that the ToMASD model proposed in this

paper exhibits advantages in all metrics, not only improving

performance but also achieving lightweight, thus rendering it

more suitable for practical scenarios.

To verify the performance of the TAAM module, this study

systematically evaluated the effects of four mainstream attention

modules as the Stem, as shown in Table 4. PSA achieved the best

balance between accuracy and computational efficiency, reducing

the computational complexity by 17.7% compared to the ECA

module with the sec-ond-highest accuracy, verifying the

performance of PSA.

Figure 10 shows the detection performance of the five models

with the highest accuracy under different weather conditions, where

gray boxes indicate missed detec-tions and black boxes indicate

false positives. Under foggy conditions, except for To-MASD, the

other four models misjudged fog points as diseases. When the light

intensity was too high, the comparison models also failed to

effectively suppress the exposed areas, resulting in missed

detections of some real lesions. Figure 11 shows the detection

results of the four lightweight models in conventional

environments. Comprehensive comparative analysis shows that

ToMASD exhibits the most superior performance under various

complex weather conditions and has superior feature extraction and
TABLE 3 Comparison of object detection results of different algorithms.

Models P% mAP% Recall% FLOPs/G Parameters

SSD (Liu et al., 2016) 76.5 72.3 70.7 200.6 4.48×107

YOLOv3-tiny (Redmon and Farhadi, 2018) 73.6 66.8 61.1 18.9 1.21×107

YOLOv5n 74.5 71.3 69.1 4.2 1.76×106

YOLOv6 (Li et al., 2022) 69.1 68.2 65.6 11.1 4.23×106

YOLOv7-tiny (Wang et al., 2022) 70.0 69.4 68.9 13.2 6.07×106

YOLOv8n 73.8 72.5 68.8 8.7 3.00×106

YOLOv8s 77.8 75.6 77.5 28.6 1.12×107

YOLOv9t (Wang et al., 2024b) 69.1 67.8 70.1 7.9 2.01×106

YOLOv9s 73.9 71.5 72.4 26.7 7.17×106

YOLOv10n (Wang et al., 2024a) 76.2 70.8 67.9 8.2 2.69×106

YOLOv11n 74.9 73.9 74.7 6.7 2.76×106

YOLOv11s 77.7 75.4 77.8 9.4 2.15×107

RT-DETR 80.1 77.6 78.9 56.9 3.27×107

ToMASD 84.3 81.7 80.6 7.1 2.46×106
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denoising capabilities in real agricultural environments. Figure 12

shows ToMASD’s detection of potato and common bean leaf

diseases, and the experimental results show that ToMASD

maintains high accuracy in the cross-crop task, achieving 92.1%

and 93.5% accuracy in the detection of bean and potato leaf
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diseases, respectively, demonstrating its efficient generalization

ability and transferability nature of cross-species training. Table 5

shows the recognition accuracy of ToMASD for different spots,

Figure 13 shows the confusion matrix of this experiment, the model

still maintains stable recognition performance in the category
FIGURE 8

Performance bar charts of six models.
FIGURE 9

Comprehensive comparison of performance of six models.
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imbalance dataset, the recognition accuracy of Late Blight, Early

Blight is close to 90%, Leaf Mold has a similar chromaticity of the

yellow spot and the healthy tissues, which leads to the relatively low

detection accuracy. Bacterial Spot and Target Spot have similar

water-damaged spot characteristics, but the model still achieved

82.1% and 74.1% mAP values through multi-scale texture analysis,

indicating the effectiveness of the feature decoupling mechanism.
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3.2.3 Ablation experiment
The proposed ToMASD model is based on YOLOv11n and has

been optimised by introducing TAAM, Faster-GLUDet, and MDH.

In order to evaluate the performance of each optimisation module,

an experiment was conducted using the variable control method.

The training and testing were carried out on the same dataset and

training parameters, and the results are shown in Table 6. It is

evident that Model C attained an mAP% of 77.9%, while

concurrently sustaining a minimal computational cost. However,

Model D, which introduced TAAM and Faster-GLUDet, exhibited

an increase in computational cost to 12 FLOPs/G, attributable to

parameter redundancy, yielding an accuracy of only 79.2%. The

experiments indicated that the joint application of TAAM and

MDH caused feature decoupling conflicts. The Model E achieved an

82.1% P% and 80.1% mAP%, thereby demonstrating the viability of

multi-module collaborative optimisation through its lightweight

design. The ToMASD model proposed in this paper was found to
TABLE 4 Comparison of different attention modules.

PSA CBAM ECA ELAN P% FLOPs/G

✓ 77.4 20.9

✓ 72.8 20.9

✓ 76.2 25.4

✓ 73.6 23.1
FIGURE 10

Detection results of five models under different weather conditions (gray boxes indicate missed detections and black boxes indicate false positives).
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achieve the optimal balance in parameters, computational

efficiency, and performance. In comparison with the baseline

model A, it enhanced the accuracy by 9.4% whilst escalating the

computational cost by a mere 0.4G. This outcome serves to

demonstrate the efficacy of the collaborative design of multi-

dimensional attention mechanisms and lightweight architectures

for object detection tasks.

3.2.4 Heat map visualization analysis
The present study employed the gradient-weighted class

activation mapping technique (Selvaraju et al., 2017) to visualise

the small target detection mechanism of the ToMASD model

(Figure 14). The experimental findings demonstrate that the

tomato leaf disease detection model, based on transfer learning,

exhibits adapted feature capabilities in different crop disease

recognition tasks. When the model is transferred from the source
Frontiers in Plant Science 13
domain of tomatoes to the target domain of common beans, the

heatmap analysis indicates that the lesion areas can still be

effectively captured, although the the extent of the activated

regions of highlighted areas is lower than that in the source

domain. This suggests that the model has initially acquired the

ability to locate disease spots across species through transfer

learning. When the heatmap is transferred to potatoes with more

distinct morphological features, more concentrated highlighted

areas are shown, which may be related to the reticulate vein

s t ruc tu r e o f po t a to l eave s , the r eby enhanc ing the

distinguishability of texture features. It is noteworthy that the

heatmaps of all three crops demonstrate a substantial contrast

between the lesion areas and healthy tissues, thereby confirming

that the model, while retaining key pathological features, has

achieved adaptive adjustments to different crop leaf diseases

through weight transfer. This cross-species disease recognition
FIGURE 11

Detection results of the four models in a conventional detection environment.
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capability provides a feasible solution for intelligent diagnosis of

multiple crop pests and diseases under resource-limited conditions.
4 Discussion

4.1 Resource identification initiative

The present study proposes a detection model, ToMASD, which

integrates multi-scale feature fusion and dynamic attention
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mechanisms, with a view to addressing the challenges of tomato

leaf disease detection in complex agricultural environments. The

prevailing field of agricultural disease detection frequently grapples

with challenges such as leaf occlusion, a wide spectrum of lesion

morphologies, and intricate lighting conditions. Conventional

methodologies are predicated on manually designed features,

which are challenging to adapt to the multi-scale representation

requirements of dynamic field environments. Despite its promising

performance, ToMASD has several limitations: real-time

deployment, Although lightweight, the model may still struggle
FIGURE 12

The detection results of leaf diseases of common beans and potatoes by ToMASD: (a) bean disease, (b) tomato disease. The models from left to
right are YOLOv8n, YOLOv10n, YOLOv11n.
TABLE 5 Evaluation indicators for different diseases.

Evaluation index Bacterial Spot Early Blight Healthy Late Blight Leaf Mold Target Spot Black Spot

P% 85.4 90.1 99.8 85.2 71.9 77.8 80.3

mAP% 82.1 88.0 98.7 82.4 69.5 74.1 76.1
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on low-end edgedevices. Knowledge distillation or quantization

could further compress the model. The research under discussion

addresses the issue of misalignment between diseased and healthy

tissues by designing a Two-branch Adaptive Alignment Module

with a dynamic weight allocation mechanism. Secondly, the Faster-

GLUDet module enhances noise suppression capabilities while

maintaining a lightweight model through a local context-aware

gating unit. The innovative architecture of the model integrates
Frontiers in Plant Science 15
deep convolution and pointwise convolution to construct gating

signals, thereby achieving a substantial reduction in background

false detection rates, particularly in conditions characterized by

foggy and strong light. It is evident that the multi-scale decoupled

detection head (MDH) successfully achieves balanced detection of

both small and diffuse lesions. This is achieved through the

implementation of group normalisation and the establishment of

independent classification and regression branches. A series of
FIGURE 13

Confusion matrix.
TABLE 6 Results of model improvement ablation experiment.

Model TAAM Faster-GLUDet MDH P% mAP% Parameters FLOPs/G

A ✓ 77.4 72.6 1.75×107 20.9

B ✓ 79.9 74.4 2.45×106 6.1

C ✓ 80.3 77.9 1.84×106 4.3

D ✓ ✓ 79.2 72.3 4.46×106 12.0

E ✓ ✓ 82.1 80.1 2.36×106 6.5

F ✓ ✓ 78.8 77.1 2.69×106 7.6

ToMASD ✓ ✓ ✓ 84.3 81.7 2.46×106 7.1
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ablation experiments were conducted, the results of which

demonstrate that MDH enhances the mAP value of imbalanced

datasets by 7.8%, particularly with regard to the recognition

accuracy of low-contrast diseases such as leaf mold.

Despite the fact that ToMASD demonstrates superiority over

existing models in a number of metrics, there is still scope for

enhancement. For instance, the mAP for Black Spot detection is

only 76.1%, indicating that the ability to distinguish similar texture

diseases needs further optimization. It is recommended that future

research explore the potential of knowledge distillation techniques

to further compress the model size. In addition, the combination of

spatio-temporal features could enhance the prediction of disease

spread dynamics. In conclusion, ToMASD has been demonstrated

to provide an efficient and reliable solution for precise disease

diagnosis in complex agricultural scenarios through the

collaborative design of multi-dimensional attention mechanisms

and lightweight architectures. This suggests that there is significant

practical value and potential for promotion.

This study further validates the potential of ToMASDmodel for

transfer learning in cross-crop disease detection. The weights of the

tomato disease detection model were migrated to the potato and

common bean tasks, and the cross-crop features were fused by

domain adaptive layer state, and an adversarial feature decoupling

strategy was used to suppress the inter-domain distribution bias.

Experiments show that the migration model achieves 93.5% and

92.1% accuracy values on the potato and common bean test sets,

respectively. The technical innovation is that by decoupling the

cross-crop shared features and crop-specific features, the model

overcomes the problem of confusing the small brown spots of bean

rust with the background leaf vein texture while retaining the

accuracy of tomato disease detection, supporting the joint

monitoring of multi-crop diseases. The results show that the

lightweight architecture and domain adaptive mechanism of

ToMASD provide a cross-species generalization paradigm for

building a general-purpose agricultural disease monitoring

system, which significantly reduces the model development cost

for multi-crop disease detection.
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5 Conclusions

This study proposed ToMASD, a novel lightweight detection

model, to address the critical challenges of tomato disease detection

in complex agricultural environments. The core contributions of this

work are threefold, each validated by extensive experimental results:

Firstly, to mitigate the feature attenuation of small lesions and

the misalignment interference between diseased and healthy tissues,

we designed the Two-branch Adaptive Alignment Module

(TAAM). This module dynamically aligns cross-scale features,

which was a key factor in achieving the overall mAP of 81.7%, a

significant improvement over all baseline models.

Secondly, to enhance feature representation while suppressing

complex background noise, we integrated the Faster-GLUDet feature

enhancement unit. Its local context-aware gating mechanism effectively

reduced false positives, as evidenced by the low misdetection rates of

6.3% in foggy and 9.8% in strong light conditions, while maintaining a

low computational cost of only 7.1 GFLOPs.

Thirdly, to balance the detection accuracy between tiny spots

and large lesions, we developed the Multi-scale Decoupling Head

(MDH). By employing Group Normalization and independent

task-specific branches, the MDH ensured balanced detection,

which is reflected in the stable performance across all six disease

categories, even under severe class imbalance.

Future research can be extended in three aspects: first, integrating

hyperspectral imaging technology to enhance the characterisation of

chromaticity gradient diseases; second, verifying the generalization of

themodel in economic crops such as chili peppers, grapes. based on the

current migration learning framework; third, exploring the deployment

scheme of edge computing to build a low-power field monitoring

network in combination with LoRaWAN wireless transmission, to

realize spatio-temporal prediction of disease spreading and precise

prevention and control. The study is based on a lightweight

architecture and a low-power edge computing deployment scheme.

Through the deep integration of lightweight architecture andmigration

learning technology, this study provides a scalable solution for

intelligent diagnosis of agricultural diseases, promotes the digital
FIGURE 14

Feature visualization of leaf disease patterns across different crops: (a) tomato; (b) common bean; (c) potato.
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transformation of disease monitoring from single-crop scenarios to

multi-species and multi-environment collaborative management, and

assists the sustainable development of agriculture.
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