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Effects of grazing on

plant functional groups
across spatial scales in

Stipa breviflora desert steppe

Li Wang*, Xiaoyu Du?, Juhong Liu**, Jun Zhang' and Shijie Lv®

*College of Science, Inner Mongolia Agricultural University, Hohhot, China, ?College of Grassland
Science, Inner Mongolia Agricultural University, Hohhot, China

This study investigated the Stipa breviflora desert steppe through multi-scale
(50mx50m, 25mx25m, 2.5mx2.5m) and grazing intensity (no grazing vs. heavy
grazing) comparative analyses, revealing the response mechanisms of plant
functional group diversity, interspecific associations, and stability. Key findings
include: (1) Heavy grazing significantly reduced functional group diversity and
evenness, while the Margalef richness index increased at the 25mx25m scale due
to patchy invasion of grazing-tolerant species. (2) Interspecific associations
exhibited scale-dependent patterns: Large-scale (50mx50m) associations were
driven by environmental heterogeneity (e.g., resource competition and
complementarity), whereas small-scale (2.5mx2.5m) interactions were dominated
by direct species interactions (mutualism or exclusion). (3) Grazing-induced
structural simplification through “environmental filtering”, heavy grazing reduced
functional group quantity, forming simplified symbiotic networks (PC>0.6) between
perennial grasses and annual/biennial plants, while significantly suppressing woody
plants and forbs (Perennial forbs, Shrubs and semi-shrubs). (4) Stability analysis
demonstrated higher stability of perennial grasses and forbs in ungrazed areas,
though the overall system remained unstable. Annual/biennial plants and shrubs/
semi-shrubs generally exhibited low disturbance resistance. The study proposes a
multi-scale grassland restoration strategy: optimizing resource allocation at large
scales while enhancing key species interactions at small scales. These findings
provide theoretical foundations for the ecological restoration of degraded desert
steppes and adaptive grazing regimes. Future research should integrate climate
change and socioeconomic factors to develop more resilient grassland ecosystem
management frameworks.
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1 Introduction

The Stipa breviflora desert steppe in Inner Mongolia is a vital
grassland ecosystem, crucial for livestock production and ecological
security (Wang Y. et al., 2023). Characterized by arid to semi-arid
features, it is dominated by Stipa breviflora, with species like
Cleistogenes songorica and Artemisia frigida, forming a unique
plant functional group. As an ecologically fragile zone, it is highly
sensitive to grazing, with overgrazing causing vegetation
degradation and biodiversity loss (Du et al., 2024).

In desert steppe ecosystems, a “functional group” refers to a
combination of plant species sharing similar ecological functional
traits (Zhang et al., 2024). Vegetation in the Stipa breviflora desert
steppe can be classified into functional groups based on life forms
(e.g., Perennial grasses, Perennial forbs, Annual and biennial plants,
Shrubs and semi-shrubs) (Wang et al., 2020) or ecological guilds
(e.g., xerophytes vs. meso-xerophytes).

Grazing intensity has a significant effect on the importance
value of Stipa breviflora and other species. It was shown that the
competitive advantage of Stipa breviflora significantly increased
under heavy grazing conditions, and the importance value also
increased (Li et al.,, 2022b; Wang et al., 2025). Grazing simplifies
communities through environmental filtering (Ju et al., 2024). Plant
communities in ungrazed areas exhibited relatively high stability,
primarily attributed to their higher species diversity, more complex
community structure, and undisturbed resource allocation and
interspecific relationships (Du et al., 2024).

The increase in grazing intensity leads to a significant decline in
plant diversity and ecological functions (Wang Z. et al., 2023; Lv
etal., 2020; Zhang et al., 2021). The mechanism stems from selective
feeding reduces palatable species, lowers litter input, and weakens
the soil carbon and nitrogen cycle (Morin et al., 2014; del Rio et al.,
2017). Grazing inhibits the stability of dominant species and
weakens the compensation effect between functional groups,
thereby reducing the ecosystem’s resistance (Wang et al., 2020).

It was also found that there is a complex relationship between
grazing intensity and the structural stability of plant communities.
The structural stability of plant communities was higher under light
grazing conditions and significantly lower under heavy grazing
conditions (Lv et al., 2024).

The importance of plants and their relationship with grazing
intensity showed significant differences at different spatial scales. At
smaller spatial scales (e.g, 2.5 m x 2.5 m), the dominance of Stipa
breviflora was more pronounced, whereas at larger spatial scales (e.g.,
50 m x 50 m), the dominance of other species, such as saltbush, was
more pronounced (Du et al., 2024). This phenomenon suggests that
spatial scale has an important influence on the structure and function of
plant communities, especially under different grazing intensities.

However, existing studies have some limitations, most studies focus
on a single ecological indicator (such as the density of a certain species)
or a single functional group, ignoring the multi-dimensionality and
spatial scale dependence of ecosystem responses (Donohue et al., 2013;
Kang et al, 2020). The mechanism by which grazing affects functional
groups is complex and may be interactively regulated by spatial scale,
interspecific interactions, and environmental factors, but the
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mechanism of such cross-scale interactions remains unclear (Joubert
et al, 2017; Fayiah et al, 2019). This makes the differentiated grazing
management strategies based on functional group responses and
applicable to different spatial scales lack a solid theoretical foundation
(Yang et al,, 2021; Gerhard et al., 2022).

Therefore, understanding grazing management strategies at
different spatial scales is essential to maintain the health of grassland
ecosystems. Based on this, this study proposes: Hypothesis 1: Heavy
grazing simplifies the composition of functional groups through
environmental filtering, but at a moderate scale (25mx25m),
diversity “peaks” occur due to plaque dynamics; Hypothesis 2:
Large-scale (50mx50m) interspecific associations are dominated by
resource competition, while small-scale (2.5mx2.5m) ones are driven
by microhabitat interactions. Hypothesis 3: Perennial herbaceous and
hybrid grasses have higher stability in herdless areas, but the system as
a whole is still in a non-equilibrium state.

To verify this, this study establishes a multi-scale experimental
design across the Stipa breviflora desert steppe, incorporating
contrasting spatial scales (2.5mx2.5m, 25mx25m, 50mx50m) and
grazing intensities (ungrazed vs. heavily grazed) to systematically
address the following scientific inquiries:

1. How does heavy grazing modify diversity attributes of plant
functional groups across spatial scales?

2. Do interspecific association patterns among functional
groups exhibit scale dependency under grazing disturbance?

3. How does the stability of distinct functional groups vary
with spatial scale and grazing intensity?

The research aims to elucidate the synergistic regulatory
mechanisms through which grazing and spatial scales jointly
govern plant functional group structure, interaction networks,
and stability, thereby providing theoretical foundations for multi-
scale restoration and adaptive management of degraded grasslands.
Concurrently, stability analysis reveals the disturbance resistance
capacities of key functional groups and their contributions to
ecosystem resilience. The findings not only advance mechanistic
understanding of grassland ecosystem degradation but also provide
scientific substantiation for optimizing grazing regimes and
formulating differentiated restoration strategies.

2 Materials and methods
2.1 Study site description

The study area is located in the Siziwang base of the Comprehensive
Experimental Demonstration Center of the Inner Mongolia Academy of
Agricultural and Animal Husbandry Sciences (41°47'17"N, 111°53'46"
E, elevation 1450 m), which belongs to the short-flowered coniferous
desert steppe zone, and the climate is a medium-temperate continental
type. The average annual precipitation is 280 mm, evapotranspiration is
2300 mm, the average annual temperature is 3.4°C, 210°C cumulative
temperature is 2200~2500°C, the frost-free period is 90~120 days, and
the soil is dominated by light chestnut-calcium soil, which provides a
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FIGURE 1

The location of Siziwang Banner in inner Mongolia and experiment plots in Siziwang Banner.

typical environment for exploring the spatial response of the vegetation
to the rate of livestock carrying.

2.2 Experimental setup

In this study, a grazing control experiment was established in June
2023 in a meadow in northern China, with a total test area of 8.4 ha,
and two gradient treatments were set up: a no-grazing control (CK)
and heavy grazing (HG) (Figure 1) (Zhang et al., 2023). Among them,
the HG treatment unit was configured at a loading rate of 0.45 sheep
hectare’ month™ and 12 healthy adult sheep were placed in each
independent sample plot (about 26.7 ha). CK1 and HG1 were selected
as the core observation plots, and the grazing intervention period
covered the complete plant growing season (June-November), with 12
hours (06:00-18:00) of continuous grazing per day. All experimental
sheep were uniformly bred as two-year-old de-stemmed rams to ensure
the consistency of individual physiological status and feeding behavior.

The study analyzed the vegetation distribution pattern through
nested multi-scale sampling: a 50 m x 50 m main sample plot (vertex
as the coordinate origin) was set up in the loading rate experimental
area, and 25 m x 25 m (5 m x 5 m grid) and 2.5 m x 2.5 m sample
plots were nested sequentially, the latter matching plant coordinates
through a virtual grid (0.25 m to 0.05 m scale), combining field
measurements with computer analysis to collect 36 grid vertex data
(species, height, biomass). The data integration covered both macro
(50 m/25 m) and micro (below 2.5 m) scales to analyze the variation
thresholds of interspecific competition intensity with spatial scales,
and to reveal the mechanism of the influence of stocking rate on the
spatial pattern of vegetation (Figure 2).
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The plant community of the Stipa breviflora desert grassland is
divided into four functional groups based on life type and ecological
function, and each functional group maintains the stability of the
ecosystem through synergistic effects (Wang et al., 2020). The perennial
grasses are the established functional groups in this grassland, with
Stipa breviflora as the dominant species. The functional groups of Stipa
breviflora desert grassland are categorized as follows (Table 1).

25m

FIGURE 2
The diagram of the spatial scale plot.
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TABLE 1 Functional group classification.

Perennial forbs

10.3389/fpls.2025.1643655

Shrubs and semi-shrubs

Functional groups

Perennial grasses
Stipa breviflora
Cleistogenes songorica
Species Leymus chinensis

Cleistogenes squarrosa

Stipa sareptana var. krylovii

2.3 Data analysis

2.3.1 Diversity indices calculation
To assess the structure and diversity of plant functional groups,
four widely used indices were calculated:

2.3.1.1 Shannon-Wiener diversity index

s
—>(pilnp;)
i=1

H/
2.3.1.2 Simpson dominance index

&2
D=1->p;
i=1

2.3.1.3 Margalef richness index

S-1
R:
InN

2.3.1.4 Pielou evenness index

7=

InS
The Shannon-Wiener index H' ranges between 0 < H < InS,
where higher values reflect communities with greater species diversity
and more balanced resource allocation. The Simpson dominance
index D quantifies the degree of resource monopolization by
dominant species within a community. Its value ranges between 0 <
D < 1, where values approaching 1 indicate strong dominance by one
or few species. The Margalef richness index R standardizes species
richness relative to sampling effort, enabling cross-habitat
comparisons. The Pielou evenness index J' evaluates the uniformity
of species abundance distribution. Its value ranges from 0 < J' < 1
where values approaching 1 indicate near-perfect resource
homogenization, while lower values suggest skewed distributions

favoring dominant species.

2.3.2 Interspecific association
2.3.2.1 Overall interspecific association
The calculation formulas are as follows:

SZ
VR =-%
Or
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Convolvulus ammannii
Lagochilus ilicifolius
Allium tenuissimum
Sibbaldianthe bifurca

Asparagus cochinchinensis

Annual and biennial plants
Teloxys aristata ‘ Caragana stenophylla
Salsola collina ‘ Krascheninnikovia ceratoides
Euphorbia humifusa ‘ Bassia prostrata

Oxybasis glauca Artemisia frigida

Neopallasia pectinata ‘

s
or = Spi1-p;)
i=1
Statistic W = VR x N, if W & [¢305(N), x25(N)], then the
overall association is significant (Du et al., 2024).

2.3.2.2 Chi-square test

The Chi-square test evaluates whether the distributions of two
species across quadrats are statistically independent, determining
the significance of interspecific associations using 2x2 contingency
tables. The calculation formulas are as follows:

> (lad-bc|-N/2)’N
T(a+b)ct+d)a+o)(b+d)

X

When x?<3.841 (P >0.05) represents no significant
association When 3.841 < y? < 6.635 (0.01 < P < 0.05) represents
significant association. When y* > 6.635 (P < 0.01) represents
highly significant association (Du et al., 2024).

2.3.2.3 Association coefficient

AC quantifies the direction and strength of species associations
-1 to 1, addressing the limitations of Chi-square in sample size
dependency. AC — 1 means strong positive association. AC — —1
means strong negative association (Du et al, 2024). Three
calculation scenarios based on contingency tables

ad — bc

Casel ad > bc, AC= ——————

et ad =0 @+ b)b+d)
ad - bc
2 >g, AC=————
Case2 bc > ad and d > a, AC @ D@9
ad — bc
, AC=—
Case3 bc >ad and d<a, AC b ddio

2.3.2.4 Percentage co-occurrence

PC measures the relative frequency of co-occurrence events,
ignoring mutual absence d. Higher PC indicates stronger positive
associations. The calculation formulas are as follows:
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TABLE 2 Functional group diversity indices at different spatial scales with different grazing levels.

50mx50m 25mx25m 2.5mx2.5m
Diversity indices

No grazing = Heavy grazing No grazing Heavy grazing No Grazing Heavy grazing
Margalef richness index 1.108 1.028 1.108 1.542 1.251 1.116
Shannon-Wiener diversity index 0.599 0.436 0.599 0.587 0.583 0.439
Simpson dominance index 0.747 0.612 0.747 0.735 0.727 0.611
Pielou evenness index 0.432 0.397 0.432 0.423 0.420 0.400

PC = a (Davison et al., 2020; Tran et al., 2021), with closer distances indicating
a+b+c

2.3.2.5 Ochiai index

A standardized measure of co-occurrence sensitivity, ranging
from 0 to 1. Higher OI indicates stronger associations. The
calculation formulas are as follows:

a

V(a+b)a+c)

2.3.2.6 Dice index

Standardizes co-occurrence rate while ignoring mutual absence
d. Higher DI indicates stronger associations. The calculation
formulas are as follows:

[ = 2a
T 2a+b+c

2.3.3 Interspecific correlation
1. Pearson correlation coefficient: Measures linear correlation
between species abundances (biomass or density), ranging
from -1 to 1.
2. Spearman’s rank correlation coefficient: A non-parametric
measure of monotonic relationships between ranked
abundance data.

2.3.4 Stability

The stability of functional groups was assessed using the Godron
stability index by analyzing species occurrence frequencies. All plant
species within the functional groups were ranked according to their
occurrence frequencies. Cumulative inverse percentages and
cumulative relative frequencies were subsequently calculated. These
paired parameters were plotted to construct a graphical model. The
intersection coordinates between the model curve and the reference
line y=100—x were identified. Stability was quantified based on the
proximity of these coordinates to the theoretical equilibrium point
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higher functional group stability (Du et al., 2024).

2.4 Spatial structure analysis

To quantitatively verify the sensitivity of the sampling scale and
reveal the spatial pattern changes caused by grazing, we adopted
geostatistical semi-variogram analysis. Based on the importance values
of plant functional groups and their exact coordinates of each grid vertex
within splines, the empirical semi-variation function was calculated.

3 Results

3.1 Functional group classification and
diversity in Stipa breviflora desert steppe

Significant differences in functional group diversity indices were
observed across grazing treatments. At all spatial scales, heavy grazing
exhibited a reduced Shannon-Wiener diversity index (H’), Simpson’s
dominance index (D), and Pielou’s evenness index (J’) compared to
control groups. However, at the 25mx25m scale, heavy grazing
showed an elevated Margalef richness index relative to controls.

The effects of spatial scale on functional group diversity were non-
significant. At the finer 2.5mx25m scale, species diversity indices were
lower than those at broader scales (50mx50m and 25mx25m).
Nevertheless, minimal divergence occurred between 50mx50m and
25mx25m scales, indicating relatively weak scale-dependent impacts
on diversity within larger spatial extents (Table 2).

3.2 Importance values

At different spatial scales, perennial grasses had the highest
importance values when there was no grazing, and under heavy
grazing conditions, perennial grasses continued to have higher
importance values, but the importance values of Annual and
biennial plants increased significantly, and those of perennial
forbs and shrubs and semi-scrubs decreased significantly (Table 3).
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TABLE 3 Importance values of functional groups at different spatial scales and different grazing intensities.

Functional groups  20mMx50m 25mx25m 2.5mx2.5m

Importance values  No grazing Heavy grazing No grazing Heavy grazing No grazing Heavy grazing
Perennial grasses 0.56 0.54 0.45 0.57 0.62 0.63

Perennial forbs 0.20 0.04 0.25 0.04 0.17 0.01

Annual and biennial plants 0.06 0.42 0.08 0.39 0.02 0.37

Shrubs and semi-shrubs 0.17 0.00 0.22 0.00 0.18 0.00

3.3 Overall interspecific association

The Across spatial scales, the overall interspecific association
(variance ratio, VR) in heavily grazed areas consistently exceeded
that in ungrazed areas (Table 4).

At a scale of 50mx50m, under non-grazing conditions, there
was an overall insignificant negative correlation among functional
groups (VR< 1), while under heavy grazing, there was no
correlation (VR = 1), and it was also insignificant. This indicates
that on a larger scale, there is interspecific competition for
environmental resources among functional groups in ungrazed
areas, and grazing may alleviate this competitive relationship to a
certain extent. At the 25mx25m scale, the functional groups under
both grazing treatments showed an insignificant positive correlation
(VR > 1), and the VR value under heavy grazing was higher than
that under non-grazing conditions. At a fine scale of 2.5mx2.5m,
ungrazing still showed an insignificant negative correlation (VR<
1); However, heavy grazing triggered a significant positive
association (VR > 1, P< 0.05). This result indicates that on a
smaller spatial scale, grazing may have promoted facilitating
interactions among functional groups or significantly altered the
original competitive landscape.

3.4 Interspecific association

3.4.1 Chi-square test (y? Test)

At the 50mx50m spatial scale (Figure 3), functional groups in
the ungrazed area exhibited no significant associations, whereas, in
the heavily grazed area, highly significant associations were
observed among functional groups. Specifically, annual/biennial
plants showed a positive association with perennial grasses, but

negative associations with perennial forbs. Additionally, a negative
association existed between perennial grasses and perennial forbs.

At the 25mx25m spatial scale (Figure 3), no significant
associations were detected among functional groups in the
ungrazed area. In contrast, under heavy grazing, highly significant
associations were identified among most functional groups, except
between perennial forbs and shrub/semi-shrub groups, which
showed no association. Perennial grasses displayed a positive
association with annual/biennial plants, while all other functional
group pairs exhibited negative associations.

At the 2.5mx2.5m spatial scale (Figure 3), the ungrazed area
demonstrated highly significant positive associations between
perennial grasses and both perennial forbs and shrub/semi-shrub
groups, alongside a highly significant negative association (P<
0.001) between perennial grasses and annual/biennial plants.
Associations among other functional groups were non-significant.
In the heavily grazed area, all functional groups showed highly
significant associations. A positive association was observed
between perennial grasses and annual/biennial plants, while
negative associations occurred between perennial grasses and
perennial forbs, as well as between annual/biennial plants and
perennial forbs.

3.4.2 Association coefficient

At the 50mx50m spatial scale (Figure 4), distinct negative
associations were observed between perennial grasses and both
perennial forbs and shrub/semi-shrub groups in the ungrazed area,
while a weak positive association existed between perennial forbs and
shrub/semi-shrub groups. Annual/biennial plants exhibited weak
negative associations with all other functional groups. In the heavily
grazed area, annual/biennial plants displayed a weak positive association
with perennial grasses, whereas weak negative correlations were

TABLE 4 The overall association of desert grasslands at different spatial scales and different grazing intensities.

Variance ratio

Statistic W

Association

Spatial scale

Habitat type

(Chi0.95, Chi0.05)

No Grazing 0.76 27.36 (23.27, 51.00) Negative correlation, not significant
50mx50m

Heavy Grazing 1 36 (23.27, 51.00) No correlation, not significant

No Grazing 1.32 38.04 (23.27, 51.00) Positive correlation, not significant
25mx25m

Heavy Grazing 1.11 39.82 (23.27, 51.00) Positive correlation, not significant

No Grazing 0.92 23.09 (14.61, 37.65) Negative correlation, not significant
2.5mx2.5m

Heavy Grazing 1 25 (14.61, 37.65) No correlation, not significant
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FIGURE 3
Chi-square (x?) tests at different scales under different grazing intensities

observed between perennial forbs and annual/biennial plants, as well as
between perennial forbs and perennial grasses.

At the 25mx25m spatial scale (Figure 4), the ungrazed area
demonstrated a significant negative association between shrub/semi-
shrub groups and perennial grasses, along with a weak negative
association between shrub/semi-shrub groups and annual/biennial
plants. Weak positive associations were observed between annual/
biennial plants and both perennial grasses and perennial forbs. In the
heavily grazed area, perennial forbs showed a significant positive
association with shrub/semi-shrub groups, while a weak positive

Frontiers in Plant Science

association occurred between perennial grasses and annual/biennial
plants. All other functional group pairs exhibited negative associations.

At the 2.5mx2.5m spatial scale under ungrazed conditions
(Figure 4), perennial grasses exhibited positive associations with
perennial forbs and shrub/semi-shrub groups but a negative
association with annual/biennial plants. Perennial forbs displayed
distinct negative associations with shrub/semi-shrub groups and
pronounced positive associations with annual/biennial plants. In
the heavily grazed area, reduced functional group diversity was
observed: perennial forbs showed negative associations with both

frontiersin.org


https://doi.org/10.3389/fpls.2025.1643655
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Wang et al. 10.3389/fpls.2025.1643655
Heavy Grazing No Grazing
Perennial grasses o
Perennial forbs 0.50 —— 0.37 &
Annual and biennial plants 0.50 -0.48 -0.34 -0.05 :
Shrubs and semi-shrubs 031 I oo

Perennial grasses
Perennial forbs -0.05 0.01 §
Annual and biennial plants 0.50 -0.05 0.31 0.51 b

Shrubs and semi-shrubs  [IEE040 N NGO =045 0.02 -0.04

Perennial grasses
Perennial forbs -0.14 %
Annual and biennial plants 0.50 -0.14 b4

Shrubs and semi-shrubs

& o &
‘,g,e \0{0 (}’DQ \\0‘9
$ 2 & &
& N & &
Q @ & &
X Q% > >
& > N
Q & )
S &
& 2
&
e T
-1.0 -0.5
FIGURE 4

Association coefficient (AC) values at the 2.5mx2.5m scale under different grazing intensities.

perennial grasses and annual/biennial plants, while annual/biennial
plants maintained a positive association with perennial grasses.

3.4.3 Percentage co-occurrence

At the 50mx50m spatial scale (Figure 5), PC values between
perennial forbs and both perennial grasses and shrub/semi-shrub
groups in the ungrazed area fell within the range [0.6, 1], while PC
values among other functional group pairs ranged between [0.3,
0.6). In the heavily grazed area, PC values between perennial grasses
and annual/biennial plants were within [0.6, 1], with all other
functional group pairs exhibiting PC values in the [0.3, 0.6) range.

At the 25mx25m spatial scale under ungrazed conditions
(Figure 5), two functional group pairs—perennial forbs with
perennial grasses and perennial forbs with annual/biennial plants—
showed PC values within [0.6, 1], whereas PC values for other pairs
ranged between [0.3, 0.6). In the heavily grazed area, only the annual/
biennial plant-perennial grass pair exhibited PC values in [0.6, 1]. PC
values between shrub/semi-shrub groups and both perennial grasses
and annual/biennial plants fell below 0.3 ([0, 0.3)), with remaining
functional group pairs ranging between [0.3, 0.6).

At the 2.5mx2.5m spatial scale in the ungrazed area (Figure 5),
PC values for perennial grass-perennial forb and perennial grass-
shrub/semi-shrub pairs were within [0.6, 1], while annual/biennial
plants displayed PC values below 0.3 ([0, 0.3)) when paired with
other functional groups. In the heavily grazed area, reduced
functional group diversity was observed: only the perennial grass-
annual/biennial plant pair maintained PC values in [0.6, 1], with all
other pairs exhibiting PC values below 0.3 ([0, 0.3)).
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3.4.4 Ochiai index and dice index

At the 50mx50m spatial scale (Figure 5), OI values in the
ungrazed area were distributed across the intervals [0.6,1] and
[0.3,0.6), whereas in the heavily grazed area, values clustered
within [0.6,1], though with reduced functional group diversity
compared to ungrazed conditions.

At the 25mx25m spatial scale under ungrazed conditions
(Figure 5), only the shrub/semi-shrub-annual/biennial plant pair
exhibited OI values within [0.3,0.6), while all other functional group
pairs showed tightly clustered OI values in [0.6,1]. In contrast,
heavily grazed conditions resulted in OI values between annual/
biennial plants and other functional groups uniformly declining to
the [0.3,0.6) range, indicating weakened associations.

At the 2.5mx2.5m spatial scale (Figure 5), the heavily grazed
area displayed fewer functional groups than the ungrazed area,
accompanied by significantly lower OI values. DI values exhibited
congruent patterns with OI values across all scales and treatments.

3.5 Interspecific correlation (Pearson
correlation coefficient, Spearman'’s rank
correlation coefficient)

At the 50mx50m spatial scale (Figure 6), Pearson correlation
coefficients revealed positive correlations between shrub/semi-shrub
groups and perennial forbs, as well as between shrub/semi-shrub
groups and annual/biennial plants in the ungrazed area, whereas
negative correlations were observed among -all other functional
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Ochiai index (Ol) values and percentage co-occurrence (PC) at different scales under different grazing intensities.

group pairs. In the heavily grazed area, positive correlations occurred
between annual/biennial plants and perennial forbs, with negative
correlations prevailing among all remaining functional groups.

At the 25mx25m spatial scale (Figure 6), Pearson correlation
coefficients indicated positive correlations between annual/biennial
plants and both perennial forbs and shrub/semi-shrub groups in the
ungrazed area, while negative correlations characterized other
functional group pairs. In the heavily grazed area, only shrub/
semi-shrub groups and perennial forbs exhibited a positive
correlation. Spearman’s rank correlation coefficients yielded
congruent results with Pearson coefficients across all analyses.

At the 2.5 m x 2.5 m spatial scale (Figure 6), Pearson and
Spearman correlation coefficients show that only perennial forbs
and annual and biennial plants are positively correlated in both
ungrazed and heavily grazed areas. In contrast, the remaining
functional groups are negatively correlated.

3.6 Stability analysis of functional groups
Stability analysis of functional groups using M. Godron’s

stability method revealed differential stability patterns across
spatial scales and grazing treatments. The importance values
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show that perennial grasses and perennial forbs are the dominant
functional groups, and the number of species of perennial grasses
and perennial forbs is high in the experimental area. In contrast,
Annual and biennial plants, shrubs, and semi-shrubs show
functional group deficiency at smaller spatial scales and under
heavy grazing conditions, so their stability is not investigated.
Perennial grasses exhibited higher stability in ungrazed areas
compared to heavily grazed areas at all spatial scales, though
remaining in an unstable state (Table 5). Perennial forbs
demonstrated greater stability at larger spatial scales (50mx50m),
with higher stability in ungrazed areas than in grazed conditions
(Table 6). The maximum stability for perennial forbs occurred in
ungrazed 50mx50m plots, evidenced by an intersection point at
(19.97, 80.03), closest to the theoretical stable equilibrium (Davison
et al., 2020; Tran et al., 2021). Annual/biennial plants and shrub/
semi-shrub groups consistently remained unstable across all spatial
scales and grazing treatments. According to the Godron stability
method, the functional groups under all treatments did not reach
the theoretical stable state (Euclidean distance > 0). However,
perennial forbs show a tendency to be closer to the theoretical
equilibrium point in no-grazing areas than in heavily grazing areas,
and their Euclidean distance (50mx50m scale: 17.9) is significantly
smaller than the corresponding value under heavily grazing
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Interspecific correlation (Pearson correlation coefficient, Spearman’s rank correlation coefficient) values at different scales under different grazing

intensities.

conditions (50mx50m scale: 37.8). This indicates that although the
system as a whole is unstable, the absence of grazing interference
enhances the relative stability of this functional group.

3.7 Semi-variogram

In the absence of grazing, the semivariance of perennial grasses
increases significantly with distance, indicating increasing spatial
heterogeneity. Under heavy grazing, the semivariance remains low
and flat, suggesting that grazing pressure destroys patch structure,
leading to either uniform distribution or fragmentation, and
suppressing spatial heterogeneity (Bisigato et al., 2005). For
perennial forbs, in ungrazed areas of 25m, the semivariance
reaches a peak at medium to short distances before declining,
implying the presence of local patches at small scales; in 50m
ungrazed areas, the semivariance increases slowly, reflecting weak
spatial autocorrelation at large scales; under heavy grazing, the
extremely low semivariance indicates that grazing pressure
eliminates local heterogeneity, resulting in a random distribution
(Bisigato et al., 2005) (Figure 7). For annual and biennial plants,
under heavy grazing, the semivariance increases significantly at
medium distances, reflecting how grazing pressure creates
microhabitats that promote the establishment of annual plants
and the formation of medium-scale patches. The fluctuating and

Frontiers in Plant Science 10

disorderly curves in ungrazed areas indicate weak spatial
autocorrelation (Figure 7). For shrubs and semi-shrubs, in 50m
ungrazed areas, the semivariance continues to increase with
distance, demonstrating strong spatial autocorrelation at large
scales; in 25m ungrazed areas, the semivariance increases at short
distances before declining, suggesting more concentrated shrub
patches at small scales; under heavy grazing, the extremely low
semivariance shows that grazing pressure suppresses shrub growth
and destroys their spatial heterogeneity (Komac et al,, 2011)
(Figure 7).

4 Discussion

4.1 Analysis of functional group diversity
across spatial scales and grazing intensities

Grazing intensity significantly alters plant functional group
diversity in Stipa breviflora desert steppe, exhibiting pronounced
spatial scale dependency. Overall, heavy grazing markedly reduces
diversity indices (e.g., Shannon-Wiener, Simpson, Pielou) due to
decreased species evenness and simplified functional group
structure (Tran et al, 2021). This simplification manifests as
overconsumption of dominant species (e.g., Stipa breviflora)
causing community homogenization, while grazing-tolerant
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TABLE 5 Stability analysis of Perennial grasses at different spatial scales and grazing intensities (M.Godron method).
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) y = -0.0041x + 1.4094x + ,
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TABLE 6 Stability analysis of perennial forbs at different spatial scales and grazing intensities (M.Godron method).
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72.7907
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0.0000
=-0.0041x> + 0.7797x +
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species (e.g., annual weeds) rapidly colonize released niches to
establish dominance (Sachura et al., 2024). Consequently, high-
nutritional-value grass functional groups decline, whereas
disturbance-resistant, high-fiber plants increase. Diversity
responses diverge across spatial scales: At finer scales
(2.5mx2.5m), diversity indices are generally lower, constrained by
limited environmental heterogeneity and sampling bias—Stipa
breviflora root competition inhibits coexistence of sensitive
species, and sparsely distributed forbs may be undersampled
(Ravenek, 2015). Conversely, at intermediate scales (25mx25m),
the Margalef richness index shows a distinct increase, likely driven
by localized outbreaks of grazing-tolerant species (e.g.,
Chenopodium aristatum) and patch dynamics. Heavy grazing
suppresses dominant species expansion, enabling annual plants to
rapidly colonize vacated niches and transiently boost species
richness (Bajwa et al.,, 2021). Grazing-induced vegetation
patchiness allows this scale to capture more ephemeral species in
residual grazing areas, while control plots exhibit lower species
counts due to uniform dominance—aligning with the scale-
dependent intermediate disturbance hypothesis, where medium
scales show greater sensitivity to short-term disturbance
responses than broader scales (50mx50m), where spatial
averaging masks local variations (Stone, 1995; Mayor et al., 2015;
McConaghy, 2016). At broad scales, non-significant diversity
differences between grazing treatments likely stem from
compensatory effects among functional groups (e.g., spatial
complementarity between deep-rooted shrubs and shallow-rooted
grasses buffering individual group impacts) (Bakker, 2018;
Gamadaerji et al., 2020; Wang et al.,, 2022). Collectively, grazing
regulates diversity dynamics through multi-scale mechanisms: local
competition and morphological adaptations [e.g., cuticle thickening
in Cleistogenes songorica (Sachura et al., 2024)] dominate species
turnover at finer scales, while functional complementarity and
resource partitioning sustain system stability at broader scales
(Guo et al,, 20205 Li et al., 2022a; Montoya et al., 2015).

4.2 Analysis of interspecific associations
across spatial scales and grazing intensities

Grazing intensity and spatial scale interactively reconfigure
interspecific associations among plant functional groups in Stipa
breviflora desert steppe. Variance Ratio (VR) analysis reveals scale-
dependent patterns: at finer scales (2.5mx2.5m), heavy grazing
generates significantly positive associations (VR > 1) as it
suppresses dominant groups (e.g., perennial grasses), releasing
niche space for complementary distributions between grazing-
tolerant species (e.g., annual/biennial plants) and residual
dominants (Tang et al., 2019; Liu et al., 2022). Conversely, at larger
scales (50mx50m), ungrazed areas exhibit non-significant negative
VR values indicating inherent resource competition, plants achieve
resource division through spatial division of their root systems (root
domain territorialization), forming symmetrical competition
(resource allocation in proportion to biomass), and reducing
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intraspecific consumption (de Kroon et al, 2003), while heavy
grazing homogenizes resource consumption, driving VR toward
neutrality (VR = 1) (Le Bagousse-Pinguet et al, 2012). This
supports the Competitive Release Hypothesis where disturbances
reduce niche overlap (Segre et al, 2016). The fine-scale positive
associations under grazing arise from synergistic environmental
filtering, habitat heterogeneity, and interspecific facilitation -
reflecting adaptive coordination among stress-tolerant species
rather than classical competitive antagonism (Magura et al., 2018;
Dai et al., 2020; Jiang et al., 2022).

Functional group pairwise associations show distinct scale-
grazing interactions: Ungrazed conditions feature non-significant
associations at larger/intermediate scales (50mx50m,25mx25m)
due to stable coexistence via resource partitioning (Yang et al,
2018; Pescador et al., 2021; Beck et al., 2022; Homulle et al., 2022;
Yang et al, 2015; Sinclair et al., 2020), but significant positive
perennial grass-forb correlations at fine scales (2.5mx2.5m) via
microhabitat root complementarity (Lencinas et al., 2007; Nagel
etal, 2015; Liu et al,, 2023). Heavy grazing fundamentally disrupts
these patterns: at large scales, grazing-tolerant species form positive
associations (Cole, 2003) while grass-forb competition intensifies
(Fu et al, 2019); at fine scales, amplified competition generates
negative associations among most groups (Pescador et al,, 2021),
though transient grass-annual plant cooperation persists through
shared resource exploitation (Nagel et al., 2015; Zhang et al., 2021).
Shrub-related associations further demonstrate scale effects:
negative grass-shrub correlations at large ungrazed scales
[resource competition (Gamadaerji et al., 2020)] shift to positive
shrub-forb associations under grazing [collaborative stress
tolerance (Alvarez et al., 2011; Puigdefabregas et al., 1999; Thorpe
et al, 1998; Saldo and Bartolome Filella, 2021)]. Collectively,
grazing reshapes association networks by altering resource
distribution and competitive hierarchies (Saiz and Alados, 2012;
Zhang et al., 2020; Newman, 2006; Olesen et al., 2007).

Co-occurrence (PC) and association strength (OI/DI) indices
corroborate these dynamics: Ungrazed large scales show high PC
(0.6-1) and distributed OI values ([0.3,1]), (Dai et al., 2019; Shan
et al, 2018) indicating multi-tiered networks sustained by
environmental heterogeneity (Zainelabdeen et al., 2021; Rodriguez
et al., 2023; Zheng et al.,, 2024; Zainelabdeen et al., 2020; Ren et al.,
2018). Heavy grazing universally reduces PC values and
concentrates OI in higher ranges ([0.6,1]) but with fewer
functional groups, forming simplified high-co-occurrence/low-
biodiversity communities (Saiz and Alados, 2012; Zainelabdeen
et al., 2021; Hao et al., 2022; Zainelabdeen et al., 2020; Ren et al.,
2018). Scale reduction intensifies these trends at fine scales
(2.5mx2.5m), ungrazed communities maintain elevated OI
through microhabitat symbiosis (Gamadaerji et al., 2020; Hu
et al,, 2022; Hu et al.,, 2020), while grazing collapses associations
to near-zero PC/OI values for most pairs, leaving only rudimentary
grass-annual plant networks (Saiz and Alados, 2012; Jiménez et al.,
2014). Grazing consistently weakens interspecific linkages by
reducing species occurrence probabilities, with scale diminution
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exacerbating this effect (Tsutsumi et al., 2002; Saiz and Alados,
2012; Zhang et al., 2013; Liang et al., 2018).

Pearson correlations integrate these patterns: Positive shrub-
forb/annual correlations in ungrazed large scales reflect
microhabitat amelioration (Archer et al, 2017; Davison et al,
2020), contrasting with grazing-induced positive annual-forb
correlations through complementary resource-use (Herlocker
et al,, 1999; Mbembok et al., 2017). Intermediate scales strengthen
mutualistic networks ungrazed (Setiawan et al., 2023) but only
retain shrub-forb synergies under grazing (Bascompte et al., 2003;
Bascompte and Jordano, 2007). Critically, large-scale associations
are primarily environmentally mediated [heterogeneity-driven
resource allocation (Wang et al., 2014; Hai et al, 2021)], while
fine-scale linkages are governed by direct biotic interactions
(Losapio et al.,, 2018). Grazing drives transitions from
multispecies synergies to simplified tolerance-dominated networks
via resource redistribution and physiological stress (Abu Bakar
et al, 2023), offering actionable insights: restoring degraded
grasslands requires optimizing resource heterogeneity at broad
scales while enhancing key species interactions at fine scales
(Peters et al., 2006; Wang et al.,, 2018; Zhao et al., 2023).

4.3 Stability analysis of functional groups
across spatial scales and grazing intensities

Plant functional groups exhibited distinct stability responses to
grazing across spatial scales in Stipa breviflora desert steppe. Perennial
grasses showed higher stability in ungrazed areas than heavily grazed
plots at all spatial scales yet maintained overall instability. Their long
life cycles and regenerative capacity supported greater biomass and
structural stability without grazing (Zhang et al., 2020), but grazing
directly damaged aboveground tissues (reducing photosynthesis and
reproduction), while soil compaction and nutrient depletion in heavily
grazed areas further impaired recovery (Hamza and Anderson, 2005).
Notably, even ungrazed perennial grasses displayed relatively low
stability, likely due to natural disturbances (e.g., climatic
fluctuations) and interspecific competition (Rayburn, 2011; Siebert
et al., 2020). Perennial forbs reached peak stability at broader scales
(50mx50m) under ungrazed conditions [intersection point
approaching (Davison et al, 2020; Tran et al., 2021)], where
increased environmental heterogeneity enabled adaptive niche
strategies (e.g., divergent root architectures and nutrient uptake) to
buffer environmental fluctuations (Liang et al., 2022; Ning et al., 2022;
Meng et al., 2023). Heavy grazing reduced forb stability by damaging
biomass and disrupting soil-nutrient cycles (Giuliani et al., 2024; Hao
et al,, 2024). Conversely, annual/biennial plants and shrubs/semi-
shrubs remained unstable across all scales and grazing intensities:
short-lived species exhibited high vulnerability to environmental
variability due to brief life cycles and seed-dependent regeneration
(Zhang et al., 2020), further compromised by grazing consumption of
seedlings/seeds; woody plants suffered from slow growth, browsing/
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trampling sensitivity, patchy distributions, and weak interspecific
interactions (EI-Mahi, 1990). These differential responses arise from
scale-grazing interactions modulating growth traits, ecological
strategies, and disturbance resilience—perennial groups show
grazing-sensitive stability (especially at broader scales), while short-
lived and woody groups persist unstable throughout the
grazing gradient.

5 Conclusions

Based on a systematic investigation into the response
mechanisms of plant functional groups in the Stipa breviflora
desert steppe under varying spatial scales and grazing intensities,
the following key conclusions were drawn:

1. Grazing intensity significantly influenced plant functional
group diversity, with effects exhibiting distinct spatial scale
dependence. Heavy grazing generally reduced community
Shannon-Wiener diversity, Simpson dominance, and Pielou
evenness indices. However, at the intermediate 25mx25m
scale, the Margalef richness index increased, indicating that
this scale is most sensitive to grazing disturbance—likely due
to patchy invasion of grazing-tolerant species and the scale-
dependent effects of the intermediate disturbance hypothesis.

. Interspecific associations showed significant scale-dependent
characteristics. At larger scales (50mx50m), interactions were
primarily driven by resource competition and environmental
heterogeneity, while at finer scales (2.5mx2.5m), direct
biological interactions (e.g., facilitation or exclusion) played
a dominant role. Heavy grazing markedly altered interspecific
association networks, leading to simplified, high-co-
occurrence symbiotic structures between perennial grasses
and annual/biennial plants, while strongly suppressing
perennial forbs and shrubs/semi-shrubs.

3. The stability of different functional groups responded differently
to grazing and spatial scale. Perennial grasses and forbs
exhibited relatively higher stability under grazing exclusion,
particularly at larger scales (50mx50m). In contrast, annual/
biennial plants and shrubs/semi-shrubs remained unstable
across all treatments, showing high dependence on
environmental fluctuations and disturbance conditions.

. This study underscores the importance of multi-scale analysis
in understanding and managing grazing ecosystems. The
25mx25m scale was identified as critical for characterizing
grazing impacts and should be prioritized as a key spatial unit
for future monitoring and restoration practices. Based on
these findings, we propose integrated multi-scale restoration
strategies: optimizing resource allocation and habitat
heterogeneity at broad scales, and enhancing community
stability through functional group combinations and
mutualistic species assemblies at fine scales.

frontiersin.org


https://doi.org/10.3389/fpls.2025.1643655
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Wang et al.

In conclusion, this research provides a theoretical basis and
practical guidance for multi-scale grazing management in the Stipa
breviflora desert steppe, highlighting the necessity of designing
spatially explicit restoration measures based on underlying
mechanisms in dynamic environments under anthropogenic
disturbance.
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