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Rice leaf diseases significantly impact yield and quality. Traditional diagnostic

methods rely on manual inspection and empirical knowledge, making them

subjective and prone to errors. This study proposes an improved YOLOv8-based

rice disease detection method (SSD-YOLO) to enhance diagnostic accuracy and

efficiency. We introduce the Squeeze-and-Excitation Network (SENet) attention

mechanism to optimize the Bottleneck structure of YOLOv8, improving feature

extraction capabilities. Additionally, we employ a Dynamic Sample (DySample)

lightweight dynamic upsampling module to address high similarity between rice

diseases and backgrounds, enhancing sampling accuracy. Furthermore, Shape-

aware Intersection over Union (ShapeIoU) Loss replaces the traditional Complete

Intersection over Union (CIoU) loss function, boosting model performance in

complex environments. We constructed a dataset of 3000 rice leaf disease

images for experimental validation of the SSD-YOLOmodel. Results indicate that

SSD-YOLO achieves average detection accuracies of 87.52%, 99.48%, and

98.99% for rice brown spot, rice blast, and bacterial blight respectively—

improving upon original YOLOv8 by 11.11%, 1.73%, and 3.81%. The model

remains compact at only 6MB while showing significant enhancements in both

detection accuracy and speed, providing robust support for timely identification

of rice diseases.
KEYWORDS

disease identification, object detection, deep learning, YOLOv8, attention mechanism
1 Introduction

Rice, as one of the world’s staple food crops, faces significant threats from various

diseases, resulting in substantial economic losses. Rice diseases predominantly manifest on

leaves, and their diagnosis currently relies heavily on expert experience and visual

assessment. This approach is not only inefficient but also prone to misjudgment, thereby

impacting the effectiveness and accuracy of disease management. Given the numerous

challenges associated with identifying rice leaf diseases, there is an urgent need to develop

more scientific and objective diagnostic methods to enhance both the precision and

efficiency of identification.
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The rapid advancement of information technology has

facilitated closer integration between agriculture and IT.

Leveraging innovative tools such as computer vision, machine

learning, and deep learning algori thms, agr icul tura l

informatization is advancing towards greater intelligence,

providing robust support for agricultural production. In the realm

of crop disease identification, drones equipped with image

acquisition devices enable more efficient collection of disease

images. Identification methods have evolved from rule-based

machine learning algorithms to data-driven deep learning

algorithms, shifting the reliance on expert experience for feature

extraction to automated processing, which significantly improves

the efficiency and accuracy of identification.

In recent years, deep learning models have demonstrated

outstanding performance in numerous tasks, particularly

convolutional neural networks (CNNs) which have achieved

breakthroughs in computer vision. CNN-based models offer end-

to-end processing capabilities, automatically learning and

extracting low-level features, enabling non-experts to perform

crop disease diagnosis using computer vision (Liu et al., 2018;

Sun et al., 2021). However, CNN models typically have a large

number of parameters and high computational costs. Most CNN

models used for diagnosing rice leaf diseases require high-

performance GPU cards for acceleration, limiting their

practicality in field applications (Agarwal et al., 2020). Therefore,

optimizing these models’ computational complexity and parameter

count is essential to enhance their usability and deployment

convenience in real-world environments.

In the field of crop disease and pest identification, while CNNs

have been widely applied, single-image classification methods alone

cannot meet practical application requirements. Beyond identifying

disease types, it is crucial to obtain detailed information such as the

number of infected leaves and their distribution areas. To address

this, object detection technology has emerged, achieving precise

localization of disease regions alongside classification, thus

providing more comprehensive diagnostic results.

Deep learning-based object detection methods are primarily

categorized into single-stage and two-stage approaches. Single-stage

algorithms like SSD (Liu et al., 2016) and the YOLO series

(Bochkovskiy et al., 2020; Jocher et al., 2021; Li et al., 2022) are

better suited for real-time applications due to their speed, whereas

two-stage algorithms like R-CNN (Girshick et al., 2014) and Fast R-

CNN (Girshick, 2015) are more complex. Among these, the YOLO

series has achieved remarkable success. To meet the specific needs of

rice disease detection, this study proposes an improved model based

on YOLOv8 called SSD-YOLO. This model incorporates the SENet

attention mechanism to optimize the Bottleneck structure, enhancing

feature extraction capabilities. Additionally, it introduces a DySample

lightweight dynamic upsampling module to focus sampling points on

target areas while ignoring background elements, addressing the issue

of high similarity between diseases and the background. Furthermore,

ShapeIoU Loss replaces the original CIoU loss function, improving

the model’s detection performance in complex environments.

The remainder of this paper is organized as follows: Section 2

reviews related works on traditional machine learning methods,
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lightweight CNNs, and attention mechanisms in crop disease

detection. Section 3 detai ls the proposed SSD-YOLO

methodology, including improvements to YOLOv8’s backbone

network (SENetV2), DySample upsampling, and ShapeIoU loss

function. Section 4 presents experimental results, covering dataset

construction, evaluation metrics, comparative analyses with other

models, and ablation studies. Finally, Section 5 concludes the study

and discusses future research directions.
2 Related works

2.1 Traditional machine learning methods

Traditional approaches to identifying plant diseases and pests

predominantly utilize image feature extraction techniques.

Specifically, methods such as Histogram of Oriented Gradients

(HOG) (Dalal and Triggs, 2005), Scale-Invariant Feature

Transform (SIFT) (Lowe, 2004), and Speeded Up Robust Features

(SURF). (Bay et al., 2006) are employed to extract salient features

from images of affected plants. These extracted features subsequently

serve as inputs for training classifiers, including Support Vector

Machines (SVM) (Cortes and Vapnik, 1995) and k-Nearest

Neighbor (k-NN) (Wang and Hodges, 2005), thereby enabling

accurate classification of various types of diseases and pests.

(Chaudhary and Kumar, 2024) propose an advanced rice disease

detection method combining Gray-level Co-occurrence Matrix

(GLCM) and Intensity-Level Based Multi-Fractal Dimension

(ILMFD) for feature extraction, demonstrating 96.7% accuracy for

brown spot detection using SVM classifier, outperforming ANN and

Neuro-GA approaches in identifying major rice diseases including

leaf blast and bacterial blight. (Jamjoom et al., 2023) developed an

SVM-based image processing system for plant disease detection,

utilizing GLCM and LBP features to identify four diseases

(Phytophthora infestans, Fusarium graminearum, Puccinia

graminis, and tomato yellow leaf curl) with 97.2% accuracy. The

proposed method systematically processes images through

acquisition, pre-processing, segmentation, feature extraction, and

classification stages, demonstrating superior performance over

manual detection approaches. (Sahu and Minz, 2023) proposed an

advanced plant disease detection system combining AFKMRG

segmentation with Enhanced LSTM classification, optimized

through FSJ-FOA, achieving 98.35% accuracy and 98.40% precision

in multi-disease identification. The method significantly improved

upon traditional techniques by adaptively fusing region-growing

segmentation with evolutionary algorithm-enhanced feature

extraction and classification.

However, traditional machine learning methods face several

limitations, including the necessity for manual feature extraction

and selection, which is both time-consuming and requires

specialized knowledge. Additionally, these methods lack robust

tuning mechanisms and suffer from lower computational

efficiency. Consequently, in certain applications, these drawbacks

have led to the gradual adoption of deep learning techniques as a

more effective alternative.
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2.2 Lightweight convolutional neural
network

Deep learning is a subfield of machine learning, with

convolutional neural networks (CNNs) being one of its prominent

models. CNNs are primarily employed for image processing and

computational vision tasks such as image classification and object

detection. Common object detectionmodels include YOLO (Redmon

et al., 2016) and Faster R-CNN (Ren et al., 2017). (Abulizi et al., 2025)

propose DM-YOLO, an improved YOLOv9-based method for

tomato leaf disease detection, which integrates DySample for small

lesion feature extraction and MPDIoU for overlapping lesion

localization, achieving higher precision (92.5%) and mAP (86.4%)

compared to baseline models. (Li et al., 2025) propose YOLO v5s-

ours, an enhanced potato defect detection model integrating

Coordinate Attention (CA), Adaptive Spatial Feature Fusion

(ASFF), and Atrous Spatial Pyramid Pooling (ASPP), which

achieves 85.1% mAP (a 13.7% improvement over baseline) while

maintaining real-time performance (30.7 fps), enabling practical

automated sorting of defects like greening, rot, and mechanical

damage. (Huang et al., 2025) propose GDS-YOLO, an enhanced

YOLOv8n-based rice disease detection model incorporating GsConv

for efficiency, Dysample for feature preservation, SCAM for

background suppression, and WIoU v3 for precise localization,

achieving 4.1% higher mAP50 with 23% fewer parameters

compared to baseline, demonstrating effective feature extraction for

complex rice disease identification. (Feng et al., 2025) develop

LCDDN-YOLO, an efficient cotton pest detector combining

DSConv and BiFPN with CBAM attention, achieving 6.5% higher

mAP@50 than YOLOv8 at reduced computational costs (12.9% fewer

parameters), enabling real-time disease monitoring in resource-

constrained field environments.

These studies collectively demonstrate that lightweight CNN

models have exhibited superior performance in rice disease

identification and object detection tasks, significantly enhancing

detection accuracy and processing efficiency.
2.3 Attention mechanism

(Zhu et al., 2025) propose an improved YOLOv8-based model

for grape leaf disease detection, incorporating Spatial Pyramid

Dilated Convolution (SPD-Conv) and an Efficient Multi-Scale

Attention (EMA) Module, which achieves 96.17% AP (a 1.13%

improvement over YOLOv8) while maintaining a compact model

size (7.1 MB), significantly enhancing small-target recognition

accuracy for diseases like black rot. (Wang and Liu, 2025)

propose TomatoGuard-YOLO, an advanced lightweight

framework based on YOLOv10, which integrates Multi-Path

Inverted Residual Units (MPIRU) for enhanced multi-scale

feature extraction and a Dynamic Focusing Attention Framework

(DFAF) for adaptive region prioritization, achieving state-of-the-art

performance (94.23% mAP50 at 129.64 FPS) with an ultra-compact

model size (2.65 MB), offering a transformative solution for

intelligent tomato disease detection systems. (Wang et al., 2025)
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propose RGC-YOLO, an efficient multi-scale rice pest detection

model based on YOLOv8n, which integrates RepGhost for feature

reuse, GhostConv for computational efficiency, and CBAM for

enhanced feature extraction, achieving 93.2% mAP50 with 33.2%

fewer parameters and 21.3% faster inference on embedded devices

compared to baseline, enabling real-time monitoring in field

conditions. (Kumar et al., 2023) propose a Multi-scale YOLOv5

network with DenseNet-201 backbone and Bidirectional Feature

Attention Pyramid Network (Bi-FAPN) for early-stage rice disease

detection, achieving 94.87% accuracy and 0.71 IoU while reducing

computational costs through principled pruning, demonstrating

superior performance on the RLD dataset compared to existing

methods. (Li et al., 2024) propose GhostNet_Triplet_YOLOv8s, an

enhanced YOLOv8s model incorporating GhostNet for lightweight

backbone architecture and Triplet Attention for precise disease

localization, achieving 91.40% mAP@0.5 with 50.2% model size

reduction and 43.1% lower FLOPs compared to baseline,

successfully deployed on a WeChat mini-program for real-time

maize disease detection.

In summary, the addition of attention mechanisms can

significantly improve model performance, enabling it to focus

more effectively on important features and enhancing the

model’s interpretability.
2.4 Comparison of methods and existing
problems

The existing rice disease detection methods, as shown in

Table 1, can be classified into three technical routes: (1) Feature

engineering methods based on traditional machine learning (such

as SVM+GLCM) can achieve an accuracy of 96.7%, but rely on

manual feature design; (2) Lightweight CNN models (such as DM-

YOLO and GDS-YOLO) increase mAP to 92.5% through structural

optimization (DySample+MPDIoU), but have insufficient

sensitivity for small object detection; (3) Attention mechanism

enhanced models (such as EMA-YOLO, RGC-YOLO) combined

with CBAM/EMA modules can achieve mAP50 up to 96.17%, but

model complexity and lesion background similarity (>0.7) remain

the main bottlenecks. The current method achieves a good balance

between parameter size (2.65MB~7.1MB) and inference speed

(30~129 FPS), but still needs to break through the dynamic

feature decoupling of edge blur (IoU loss>15%) and small lesions

(<5px) unique to rice leaf lesions. These bottleneck problems

provide clear directions for model optimization.
3 Method

3.1 YOLOv8

YOLOv8 is the next major update version of YOLOv5, which

was open-sourced by Ultralytics on January 10, 2023. YOLOv8

inherits the achievements of the previous YOLO series and has been

widely applied in multiple fields such as image classification, object
frontiersin.org
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detection, and instance segmentation. When YOLOv8 was released,

five different-sized network models were introduced, marked as n

(nano), s (small), m (medium), l (large), and x (extra-large). The

number of parameters and computational cost of these models

increase successively, and their accuracy also improves accordingly.

Considering the resource constraints of mobile and embedded

devices and the demand for lightweight models, this study selected

the YOLOv8n model with the smallest number of parameters and

computational cost. As shown in Figure 1, the main structure of

YOLOv8 consists of three parts: the backbone network, the neck

network, and the head network. In the backbone network part,

YOLOv8 adopts the C2f structure with richer gradient flow, which

is mainly responsible for feature fusion. It can effectively fuse feature

maps of different levels, enabling the model to obtain more

abundant information, reduce information loss, and significantly

enhance the model’s ability to recognize image content. The design

of the C2f module enables YOLOv8 to more effectively capture and

utilize various details in the image, thereby improving the accuracy

of object detection. In the neck network part, YOLOv8 adopts the

C2f module and Path Aggregation Network (PANet) structure for

feature aggregation, layer by layer aggregating information from

shallow to deep, further enhancing the feature expression ability. In

the head network part, YOLOv8 adopts the mainstream decoupled

head structure, separating the classification and detection heads,

and introduces the Anchor-Free strategy. Through these

improvement strategies, YOLOv8 has made significant progress in

loss calculation and network structure, enhancing the overall

performance of the model.
3.2 Improve the backbone network

Squeeze-and-Excitation Network(SENet) (Hu et al., 2020) is a

channel-wise attention mechanism that enhances feature

representation by recalibrating channel-wise feature responses. In
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2023, Mahendran introduced Squeeze-and-Excitation Network

Version 2 (SENetV2), which integrates the squeeze-and-excitation

operations with the multi-branch architecture of ResNeXt, thereby

improving the granularity of feature expression and the integration

of global information. The C2f module in YOLOv8’s neck network

employs two convolutional layers, a Split operation, concatenation,

and Bottleneck blocks to facilitate feature extraction and fusion,

thereby enhancing the model’s feature representation capabilities.

To further exploit the potential of feature expression, we

incorporate SENetV2’s multi-branch structure and squeeze-and-

excitation mechanism into the feature fusion process.

As illustrated in Figure 2, the SENet module applies global

average pooling to compress the spatial dimensions of feature map

U from H×W×C to a 1×1×C channel descriptor. This descriptor

then undergoes two fully connected layers for nonlinear

transformation, resulting in a set of channel-wise weights. These

weights are subsequently multiplied element-wise with the original

feature map U, producing a recalibrated feature map X. By

increasing the sensitivity of each channel, SENet effectively

emphasizes important features while suppressing less relevant ones.

SENetV2 integrates the squeeze-and-excitation operations from

SENet with the multi-branch architecture of ResNeXt. It employs

multi-branch fully connected layers for the compression and

excitation steps, followed by feature scaling. This design slightly

increases the model’s parameter count but significantly enhances its

performance. Figure 3 illustrates a comparison between the

structures of SENetV2 and SENet. Both architectures can

selectively transmit key features, but SENetV2 introduces

increased cardinality between layers, aggregating feature

information from multiple branches. Consequently, SENetV2

achieves richer and more diverse feature learning, making it

better suited for representing complex features.

This study integrates the SENetV2 attention mechanism into

the neck network of YOLOv8, which enables the network to capture

diverse features from input data. This integration refines feature
TABLE 1 Comparison of existing disease detection methods.

Method type Representative models Key improvements Feature

Traditional ML

SVM + GLCM/ILMFD
Combines GLCM and multi-fractal

dimension features
Manual feature engineering,

poor generalization

AFKMRG + Enhanced LSTM
(Sahu and Minz, 2023)

Adaptive region-growing segmentation with
FSJ-FOA optimization

High computational complexity

Lightweight CNN

DM-YOLO DySample + MPDIoU Low sensitivity to small lesions

YOLO v5s-ours CA attention + ASFF + ASPP High real-time demand (30.7 fps)

GDS-YOLO GsConv + DySample + SCAM 23% fewer parameters

Attention Mechanisms

EMA-YOLOv8 SPD-Conv + EMA Model size: 7.1MB

TomatoGuard-YOLO MPIRU + DFAF Ultra-lightweight (2.65MB)

RGC-YOLO RepGhost + CBAM Optimized for embedded devices

Multi-Scale Fusion
Bi-FAPN-YOLOv5

DenseNet-201 + Bidirectional Feature
Attention Pyramid

Requires model pruning

GhostNet_Triplet_YOLOv8 GhostNet + Triplet Attention 50.2% smaller model size
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representation, enhances the model’s capability to extract disease

characteristics in complex backgrounds, and consequently

improves detection accuracy.
3.3 Introduce DySample

In the upsampling layer of YOLOv8, the commonly used

method is nearest neighbor interpolation, which achieves
Frontiers in Plant Science 05
upsampling by replicating the values of the nearest neighbor

pixels. However, this method ignores the smooth transition

characteristics between pixels, relies only on a few surrounding

pixels for prediction, and overly focuses on spatial information

while failing to fully consider the semantic information of the

feature map. Additionally, the traditional upsampling process

based on convolution kernels is usually accompanied by high

computational complexity and parameter overhead, which

contradicts the design goal of lightweight network architectures.
FIGURE 2

SENet module.
FIGURE 1

YOLOv8 architecture diagram.
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Therefore, the DySample upsampling module (Liu et al., 2023) is

introduced in the feature fusion step to replace the original

upsampling method.

DySample adopts a point sampling strategy, which can generate

content-aware upsampling results in a simple and efficient way

without the need for additional high-resolution feature maps as

input. This approach not only helps maintain the model’s high

performance but also significantly reduces model complexity and

computational costs. The upsampling process of DySample is

shown in Figure 4.

Given a feature map X of size C×H×W and a point sampling set

S of 2g×sH×sW, where 2g represents the x and y coordinates, the

grid_sample function re-samples X using the positions in the point

sampling set S, generating a feature map X’ of size C×sH×sW, as

shown in Equation 1:

X 0 = Gridsample(X, S) (1)
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The point sampling set S is generated in a manner of “linear +

pixel recombination”, and the offset range can be determined by

static and dynamic range factors, as depicted in Figure 5.

Taking the sampling method based on the static range factor as

an example, given a feature map X of size C×H×W and an

upsampling factor s. X first passes through a linear layer with

input and output channels of C and 2gs2, and then uses the pixel

recombination method to reshape it into an offset O of 2g×sH×sW,

while the sampling set S is the sum of the offset O and the original

sampling grid G. The specific calculation definitions are as follows

(as shown in Equations 2, 3):

O = Linear(X) (2)

S = G + O (3)

This method dynamically adjusts each point of upsampling by

learning offsets, thereby more accurately restoring the detailed features
FIGURE 3

Comparison diagram of SENet and SENetV2 (a) SENet; (b) SENetV2.
FIGURE 4

Upsampling process of Dysample.
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of rice diseases, enhancing the model’s perception of details, and

enabling more precise localization and identification of rice diseases.
3.4 Optimization of the loss function

YOLOv8 uses CIoU Loss to calculate the regression loss of

bounding boxes. This loss function comprehensively considers the

overlap area between the detection box and the target box, the loss

being 0 when the bounding boxes do not intersect, the distance

between the center points of the bounding boxes, and scale

information such as the aspect ratio, thereby further improving

the detection accuracy. However, CIoU Loss fails to fully consider

the impact of the shape and size of the bounding box itself on the

regression results. Based on this, we choose ShapeIoU (Zhang and

Zhang, 2023) as the loss function for bounding box regression to

focus on the shape and size characteristics of the bounding box.

ShapeIoU can be derived from Figure 6, and the definition is as

follows (as shown in Equations 4–7):

LShape−IoU = 1 − LIoU + distanceshape + 0:5�Wshape (4)

LIoU =
B ∩ Bgt

�� ��
B ∪ Bgt

�� �� (5)
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distanceshape = ha �
(xc − xgtc )2

c2
+ wb �

(yc − ygtc )2

c2
(6)

Wshape =ot=,h(1 − e−w
t

)q (7)
3.5 SSD-YOLO

This study has implemented three improvements on the

original YOLOv8 model, proposing an enhanced model named

SSD-YOLO. The modified network structure is depicted in Figure 7.

The specific improvements include:
1. The loss function CIoU in the original YOLOv8 is

substituted with ShapeIoU. The updated loss function can

generate higher-quality bounding boxes and significantly

mitigate potential biases in the evaluation results.

2. SENet is incorporated into the enhanced feature fusion

module C2F to strengthen the feature selection and the

fusion capability of features from different channels,

thereby achieving efficient computation and enhancing the

model’s recognition ability of diseases in complex scenarios.

3. The DySample lightweight dynamic upsampling module is

introduced, conducting upsampling from the perspective of
FIGURE 5

Process of point sampling data collection and generation.
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Fron
point sampling. This approach effectively enhances the

model’s anti-interference ability and, in contrast to the

kernel-based dynamic upsampling module, demands fewer

parameters, thereby conserving computing resources and

being more applicable for real-time detection applications.
4 Analysis of experimental results

4.1 Rice leaf disease dataset

To acquire a large-scale dataset of rice leaf disease images, this

study developed an automated web crawler system utilizing the

Selenium library. This system systematically collected and

downloaded batches of images related to rice leaf diseases from

the Internet. By employing specific keywords such as “rice leaf

diseases” in major search engines including Baidu, Bing, and

Google, we gathered a comprehensive dataset comprising 3,000

images. These images cover three primary types of rice leaf diseases:

brown spot, blast, and bacterial blight. Figure 8 illustrates the

characteristic features of different rice leaf diseases.

The feature variations in rice leaf disease images are influenced

by multiple factors, including shape, variety, and environmental

conditions, leading to inconsistencies in resolution and contrast. To

address these variations and ensure data consistency, we conducted

preprocessing on the rice leaf disease dataset. First, we applied size

normalization to standardize the spatial dimensions, enabling

consistent comparisons across images. Second, we utilized image

enhancement techniques such as histogram equalization and
tiers in Plant Science 08
contrast stretching to adjust pixel value distributions, thereby

enhancing the visibility of image details and edges. Finally, we

simulated various weather conditions and time periods through

digital processing to more accurately reflect real-world scenarios.

These preprocessing steps enhanced the representativeness of the

dataset and improved the model’s robustness and generalization

capability in practical applications.
4.2 Evaluation metrics

This section delineates the comprehensive evaluation metrics

utilized to rigorously assess the performance of the rice leaf diseases

detection model. The key performance indicators encompass

precision (P), recall (R), mean average precision (mAP), model

size, and inference speed, which collectively provide a robust

framework for model assessment.

P =
TP

TP + FP
(8)

R =
TP

TP + FN
(9)

AP =
Z 1

0
PRdR (10)

mAP =

Z N

q=1
AP(q)

N
(11)
FIGURE 6

Illustration of Shape-IoU parameters.
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In Equations 8, 9, the calculation of precision (P) and recall (R)

relies on three key indicators: true positives (TP), false positives

(FP), and false negatives (FN). When the model successfully

identifies rice leaf diseases, it is classified as TP; conversely, FP

represents the number of incorrect detections of non-existent

targets, while FN denotes the instances where actual targets are

missed. Precision (P) assesses the model’s ability to accurately

identify rice leaf diseases among all predicted targets, whereas

recall (R) evaluates the proportion of successful identifications of

actual targets by the model.

To evaluate detection performance for rice leaf diseases across

different categories, a precision-recall (P-R) curve can be

constructed. In Equations 10, 11, the average precision (AP) is

defined as the area under this curve; thus, a higher AP value—closer

to 1—indicates superior detection performance for that specific

category. Mean Average Precision (MAP) refers to the weighted

average of AP values across all categories and serves as a widely

accepted metric for performance evaluation in object detection

tasks. This metric offers both visualization and a comprehensive

representation of overall model performance, with N in the

equation denoting the total number of target categories.

Additionally, object detection speed is quantified in frames per

second (FPS), where higher FPS values signify enhanced real-time
Frontiers in Plant Science 09
processing capabilities. A thorough evaluation encompassing these

indicators provides an exhaustive assessment of model performance,

facilitating multidimensional comparisons and optimizations.
4.3 Experimental equipment

The experiment was conducted on a high-performance deep

learning server equipped with two Nvidia RTX 3090 graphics cards,

each with 24GB of VRAM. The operating system was Windows 11.

The implementation of this method was based on Pytorch 1.9. The

details of the experimental setup are shown in Table 2.

To optimize the network parameters, we utilized the Adam

optimizer during the training of the SSD-YOLO model. To enhance

convergence speed and ensure stable training, we set the initial learning

rate (lr0) to 0.001 and gradually decayed it to a final learning rate (lrf)

of 0.001. The loss function employed was ShapeIoU, with a

momentum parameter of 0.937 and a weight decay of 0.0056. A

warm-up strategy was implemented, where the learning rate started at

a lower value for the first 5 epochs before gradually increasing to adapt

to the data’s feature changes. Additionally, an early stopping

mechanism was introduced to prevent overfitting and unnecessary

training. Specifically, if the model’s performance did not improve
FIGURE 7

SSD-YOLO architecture diagram.
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significantly over 300 consecutive epochs, training would be halted.

This approach ensures timely detection and intervention in case of

suboptimal convergence, thereby maintaining the model’s

optimal state.
4.4 Accuracy comparison of different
attention mechanisms

The attentionmechanism significantly enhances the model’s ability

to capture key information in the input data by enabling the model to

adaptively weight the importance of different positions or features in

the sequence data. To systematically evaluate the impact of the
FIGURE 8

Common three types of rice diseases, (D-1) Rice Brown Spot, (D-2) Rice Blast, (D-3) Bacterial Leaf Blight.
TABLE 2 High-performance server configuration table.

Item Specification

CPU Intel® Core i9-10920X

GPU Nvidia RTX 3090 24GB

Memory 128GB

Hard disk drive
storage space

2TB

Operating system Windows11(64-bit)

Programming
environment

Python 3.8.8, Cuda 11.7, torch 1.9.1, torchaudio 0.9.1,
torchvision 0.10.1
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SENetv2 attention mechanism on the performance of rice leaf disease

recognition in the SSD-YOLO model, this study designed a

comparative experiment to compare the performance of multiple

mainstream attention mechanisms with the SSD-YOLO baseline

model. Specifically, we selected four representative attention

mechanisms for comparative analysis: (A) Context-aware attention

mechanism, which dynamically adjusts feature weights based on global

context relationships; (B) Multi-scale pyramid attention network,

which captures cross-scale feature dependencies by constructing a

hierarchical feature pyramid; (C) Residual attention bottleneck

module, which innovatively combines residual connection with

channel attention mechanism to achieve more refined feature

optimization; (D) The improved SENetv2 attention mechanism

proposed in this study. By comparing the experimental performance

of these mechanisms, the effectiveness of different attention paradigms

in disease identification tasks can be comprehensively evaluated.

Table 3 shows the performance comparison results of different

attention mechanisms on the yolov8 model. The experimental data

show that after the introduction of attention mechanism, the model

has achieved significant improvement in the two key indicators of

map50 and map50-90. It is particularly noteworthy that the model

using lightweight senetv2 attention mechanism has the most

outstanding performance, with 94.3% and 77.1% excellent

performance respectively. This result fully confirms the effectiveness
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of senetv2 attention mechanism in ssd-yolo architecture. Through the

innovative lightweight design, the mechanism not only ensures the

detection accuracy, but also significantly improves the computational

efficiency and reduces the complexity of the model. This advantage of

balancing performance and efficiency makes it particularly suitable for

deployment in embedded devices or mobile terminals with limited

computing resources.
4.5 Heat map visualization

This study employed Grad-CAM (Selvaraju et al., 2020)

technology to construct a visualization heatmap for the detection of

rice leaf diseases, providing an intuitive display of the target detection

effect of rice leaf diseases and fully comparing the performance

differences before and after the improvement of the YOLOv8n

model. As shown in Figure 9, five groups of heatmap comparison

results were generated. It can be clearly observed from the figure that

the red high-confidence regions of the SSD-YOLO algorithm are more

concentrated and highly consistent with the true center of the target,

indicating that its positioning accuracy is significantly better than that

of the original model and other comparison algorithms. This

improvement mainly benefits from the following three technological

innovations: Firstly, by introducing the SENet attention mechanism,
TABLE 3 Experimental results of different attention mechanisms.

Model Class P (%) R (%) mAP50 (50%) mAP50-90 (%) Size (M) FPS (frame/s)

YOLOv8n

All 91.0 84.4 89.7 64.8

5.99 46
Brown spot 89.2 67.0 76.4 49.3

Rice blast 93.8 97.1 97.7 74.1

Bacterial Blight 90.1 89.1 95.2 71.1

YOLOv8n+A

All 92.7 86.8 91.9 73.8

15.53 20
Brown spot 88.6 71.7 81.3 54.1

Rice blast 94.9 97.6 98.1 83.2

Bacterial Blight 94.7 90.9 96.2 84.1

YOLOv8n+B

All 95.8 87.9 93.1 76.5

6.02 38
Brown spot 92.9 72.5 83.3 58.7

Rice blast 98.6 98.4 98.9 85.7

Bacterial Blight 95.9 92.7 97.1 85.1

YOLOv8n+C

All 92.7 89.3 93.2 75.9

8.24 29
Brown spot 85.8 75.3 83.6 58.0

Rice blast 96.1 98.8 98.5 84.3

Bacterial Blight 96.1 93.9 97.5 85.3

YOLOv8n+D

All 94.7 90.3 94.3 77.1

6.05 40
Brown spot 89.0 77.8 85.0 58.9

Rice blast 98.1 98.4 99.3 86.1

Bacterial Blight 96.9 94.7 98.6 86.4
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the Bottleneck structure of YOLOv8 was optimized, significantly

enhancing the model’s feature extraction capability. Secondly, the

DySample lightweight dynamic upsampling module was adopted,

specifically addressing the issue of high similarity between rice

diseases and the background, further improving the model’s

discrimination ability. Additionally, the ShapeIoU Loss was used to

replace the traditional CIoU loss function, effectively enhancing the

model’s detection performance in complex environments.

The visualization results fully confirm that the improved

algorithm can achieve a dual advantage of detection accuracy and

anti-interference ability in complex scenarios. The heatmap

visualization experiment further verified that the model proposed

in this study has higher accuracy and stronger feature extraction

ability in feature extraction compared to the original model.
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4.6 Analysis of detection results

The rice disease leaf detection model proposed in this study has

been systematically verified under various environmental conditions

and multi-object scenarios. The experimental results show that the

model can not only accurately identify the leaves of rice with a single

disease type and their background, but also maintain excellent

detection performance in complex situations where multiple diseased

leaves overlap and the disease feature areas have significant differences.

To comprehensively evaluate the performance advantages of the

proposed SSD-YOLO model in the identification of rice leaf lesions,

this study designed and implemented a multi-model comparison

experiment. Specifically, SSD-YOLO, the original YOLOv8n, an

improved version using the ShapeIoU loss function, an optimized
FIGURE 9

Heatmap experiment comparison.
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model incorporating the SE attentionmechanism, and a variantmodel

integrating the Dysample upsampling module were respectively

applied to the test set images, and their detection results were

thoroughly compared and analyzed. The relevant experimental

results are shown in Figure 10, which fully verify the significant

advantages of the SSD-YOLO model in the disease recognition task.
4.7 Comparison of the accuracy of
different models

To objectively highlight the advantages of the SSD-YOLO

model, this study conducted a systematic comparison with a two-

stage object detection model (Faster R-CNN) and several one-stage

object detection algorithms, including RT-DETR, YOLOv5 through

YOLOv11,YOLOv8-DiDL (Guo et al., 2025), YOLOv8n-SMAFM

(Jin et al., 2025), S-ZFFTNet (Muthusamy et al., 2025). The detailed

results are presented in Table 4. This comparative analysis seeks to
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thoroughly evaluate the performance of different models in rice

disease detection.

According to the data presented in Table 4, the SSD-YOLO model

proposed for rice disease detection demonstrates superior performance

in identifying diseases from images. The mAP and accuracy of SSD-

YOLO reached 95.32% and 95.19%, respectively, representing

improvements of 5.51% and 3.74% over the baseline model YOLOv8.

Compared with other state-of-the-art algorithms, SSD-YOLO achieved

higher mAP values than RT-DETR, YOLOv5, YOLOv6, YOLOv9,

YOLOv10, YOLOv11, YOLOv8-DiDL, YOLOv8n-SMAFM and S-

ZFFTNet by 15 .2%, 24 .76%, 7 .34%, 9 .42%, 2 .87%,

6.04%,4.52%,11.62% and 4.46%, respectively. In addition to evaluating

average accuracy, frames per second (FPS) is a critical performance

metric that reflects the number of target detection frames processed per

second. SSD-YOLO exhibits a notable detection speed, making it

suitable for most real-time applications. Moreover, SSD-YOLO not

only boasts a smaller model size but also maintains an efficient detection

speed, enhancing its practicality in resource-constrained. environments.
FIGURE 10

Detection result comparison.
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4.8 Ablation study
To validate the individual contribution of each new module

in SSD-YOLO to the overall performance, we conducted a

systematic ablation analysis on the rice disease dataset. The results

of all ablation experiments are detailed in Table 5. Specifically, “A”

denotes the addition of SENetv2 attention, “B” represents the adoption

of the DySample sampling module, and “C” signifies the use of

ShapeIoU as the loss function. The final model incorporates all

these enhancements.

Based on the analysis of the experimental results, it can be

concluded that in the task of identifying rice leaf diseases, the

combination of SENetv2, ShapeIoU bounding box regression loss

function, and DySample module significantly enhances the overall

performance of the model. Compared with YOLOv8, the SSD-

YOLOv8 algorithm achieves improvements of 3.74% in accuracy,

7.0% in recall rate, and 5.51% in mAP. The integrated application of

these strategies not only boosts the precision of rice disease

detection but also enhances target localization, thereby providing

more robust support for practical applications.
TABLE 4 Experimental results of different models.

Model
P
(%)

mAP50
(50%)

Size
(M)

FPS
(frame/s)

Faster-RCNN 56.12 80.12 113.5 20

RT-DETR 75.67 70.56 63.1 24

YOLO v5 87.61 87.98 5.05 45

YOLO v6 88.62 85.9 8.31 41

YOLO v8 91.45 89.7 5.99 46

YOLO v9 90.22 92.45 14.5 26

YOLO v10 85.87 88.1 5.51 33

YOLO v11 91.32 89.28 5.25 43

YOLOv8-DiDL 91.4 90.8 4.8 55

YOLOv8n-
SMAF

85.1 83.7 3.37 59

S-ZFFTNet 92.65 90.86 9.85 43

SSD-YOLO 95.19 95.32 6.08 50
TABLE 5 Ablation study results.

Model Class P (%) R (%) mAP50 (50%) mAP50-90 (%) Size (M) FPS (frame/s)

YOLOv8n

All 91.0 84.4 89.7 64.8

5.99 46
Brown spot 89.2 67.0 76.4 49.3

Rice blast 93.8 97.1 97.7 74.1

Bacterial Blight 90.0 89.1 95.2 71.1

YOLOv8n+A

All 94.7 90.3 94.3 77.1

6.05 40
Brown spot 89.0 77.8 85.0 58.9

Rice blast 98.1 98.4 99.3 86.1

Bacterial Blight 96.9 94.7 98.6 86.4

YOLOv8n+B

All 96.1 88.8 94.1 79.9

6.01 43
Brown spot 91.9 74.9 85.0 62.0

Rice blast 98.9 98.8 99.0 87.6

Bacterial Blight 97.5 92.7 98.5 90.1

YOLOv8n+C

All 96.1 89.6 94.2 80.1

6.31 45
Brown spot 91.7 76.7 85.2 61.8

Rice blast 98.6 98.8 98.8 88.3

Bacterial Blight 98.1 93.3 98.6 90.1

YOLOv8n+A+B

All 94.6 90.8 93.7 77.8

6.08 41
Brown spot 88.7 79.2 85.5 60.1

Rice blast 96.9 98.8 98.5 87.1

Bacterial Blight 98.1 94.3 97.1 86.1

YOLOv8n+A+C

All 93.2 91.1 93.7 78.2

6.08 39Brown spot 86.3 80.2 85.9 60.1

Rice blast 98.0 98.7 98.4 87.2

(Continued)
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5 Conclusion

This study introduces SSD-YOLO, an enhanced model based on

YOLOv8 for the detection of rice leaf diseases. The model integrates

SENetV2 to optimize feature extraction, employs DySample for

lightweight upsampling, and utilizes ShapeIoU for precise

localization. Experimental results indicate significant improvements

in performance, achieving detection accuracies of 87.52%, 99.48%,

and 98.99% for brown spot, blast, and bacterial blight respectively,

while maintaining a compact model size of just 6MB.

Despite these advancements, SSD-YOLO exhibits notable

limitations: (1) Generalization to highly variable field conditions—

such as variations in lighting and occlusions—remains a challenge; (2)

The model’s dependence on high-quality training data may limit its

applicability in resource-constrained regions where datasets are sparse.

Future work will focus on deploying SSD-YOLO in large-scale

rice farms through partnerships with agricultural technology

companies. By integrating the model with autonomous drones and

soil sensors, we aim to build a closed-loop digital agriculture system

that not only detects diseases but also recommends optimal treatment

strategies based on historical data and environmental factors.
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TABLE 5 Continued

Model Class P (%) R (%) mAP50 (50%) mAP50-90 (%) Size (M) FPS (frame/s)

Bacterial Blight 95.1 94.6 96.8 87.2

YOLOv8n+B+C

All 93.3 89.8 93.3 75.1

6.02 38
Brown spot 88.8 77.0 83.7 59.7

Rice blast 96.9 98.6 98.9 82.3

Bacterial Blight 94.2 93.9 97.2 83.2

SSD-YOLO

All 95.1 90.7 95.3 78.7

6.08 50
Brown spot 89.9 78.8 87.5 61.7

Rice blast 97.3 98.8 99.4 87.0

Bacterial Blight 98.1 94.5 98.9 87.5
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