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Rice leaf diseases significantly impact yield and quality. Traditional diagnostic
methods rely on manual inspection and empirical knowledge, making them
subjective and prone to errors. This study proposes an improved YOLOv8-based
rice disease detection method (SSD-YOLO) to enhance diagnostic accuracy and
efficiency. We introduce the Squeeze-and-Excitation Network (SENet) attention
mechanism to optimize the Bottleneck structure of YOLOVS8, improving feature
extraction capabilities. Additionally, we employ a Dynamic Sample (DySample)
lightweight dynamic upsampling module to address high similarity between rice
diseases and backgrounds, enhancing sampling accuracy. Furthermore, Shape-
aware Intersection over Union (ShapeloU) Loss replaces the traditional Complete
Intersection over Union (CloU) loss function, boosting model performance in
complex environments. We constructed a dataset of 3000 rice leaf disease
images for experimental validation of the SSD-YOLO model. Results indicate that
SSD-YOLO achieves average detection accuracies of 87.52%, 99.48%, and
98.99% for rice brown spot, rice blast, and bacterial blight respectively—
improving upon original YOLOvV8 by 11.11%, 1.73%, and 3.81%. The model
remains compact at only 6MB while showing significant enhancements in both
detection accuracy and speed, providing robust support for timely identification
of rice diseases.

KEYWORDS

disease identification, object detection, deep learning, YOLOVS, attention mechanism

1 Introduction

Rice, as one of the world’s staple food crops, faces significant threats from various
diseases, resulting in substantial economic losses. Rice diseases predominantly manifest on
leaves, and their diagnosis currently relies heavily on expert experience and visual
assessment. This approach is not only inefficient but also prone to misjudgment, thereby
impacting the effectiveness and accuracy of disease management. Given the numerous
challenges associated with identifying rice leaf diseases, there is an urgent need to develop
more scientific and objective diagnostic methods to enhance both the precision and
efficiency of identification.
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The rapid advancement of information technology has
facilitated closer integration between agriculture and IT.
Leveraging innovative tools such as computer vision, machine
learning, and deep learning algorithms, agricultural
informatization is advancing towards greater intelligence,
providing robust support for agricultural production. In the realm
of crop disease identification, drones equipped with image
acquisition devices enable more efficient collection of disease
images. Identification methods have evolved from rule-based
machine learning algorithms to data-driven deep learning
algorithms, shifting the reliance on expert experience for feature
extraction to automated processing, which significantly improves
the efficiency and accuracy of identification.

In recent years, deep learning models have demonstrated
outstanding performance in numerous tasks, particularly
convolutional neural networks (CNNs) which have achieved
breakthroughs in computer vision. CNN-based models offer end-
to-end processing capabilities, automatically learning and
extracting low-level features, enabling non-experts to perform
crop disease diagnosis using computer vision (Liu et al, 2018;
Sun et al, 2021). However, CNN models typically have a large
number of parameters and high computational costs. Most CNN
models used for diagnosing rice leaf diseases require high-
performance GPU cards for acceleration, limiting their
practicality in field applications (Agarwal et al., 2020). Therefore,
optimizing these models” computational complexity and parameter
count is essential to enhance their usability and deployment
convenience in real-world environments.

In the field of crop disease and pest identification, while CNNs
have been widely applied, single-image classification methods alone
cannot meet practical application requirements. Beyond identifying
disease types, it is crucial to obtain detailed information such as the
number of infected leaves and their distribution areas. To address
this, object detection technology has emerged, achieving precise
localization of disease regions alongside classification, thus
providing more comprehensive diagnostic results.

Deep learning-based object detection methods are primarily
categorized into single-stage and two-stage approaches. Single-stage
algorithms like SSD (Liu et al, 2016) and the YOLO series
(Bochkovskiy et al., 2020; Jocher et al., 2021; Li et al., 2022) are
better suited for real-time applications due to their speed, whereas
two-stage algorithms like R-CNN (Girshick et al., 2014) and Fast R-
CNN (Girshick, 2015) are more complex. Among these, the YOLO
series has achieved remarkable success. To meet the specific needs of
rice disease detection, this study proposes an improved model based
on YOLOVS called SSD-YOLO. This model incorporates the SENet
attention mechanism to optimize the Bottleneck structure, enhancing
feature extraction capabilities. Additionally, it introduces a DySample
lightweight dynamic upsampling module to focus sampling points on
target areas while ignoring background elements, addressing the issue
of high similarity between diseases and the background. Furthermore,
ShapeloU Loss replaces the original CIoU loss function, improving
the model’s detection performance in complex environments.

The remainder of this paper is organized as follows: Section 2
reviews related works on traditional machine learning methods,
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lightweight CNNs, and attention mechanisms in crop disease
detection. Section 3 details the proposed SSD-YOLO
methodology, including improvements to YOLOv8’s backbone
network (SENetV2), DySample upsampling, and ShapeloU loss
function. Section 4 presents experimental results, covering dataset
construction, evaluation metrics, comparative analyses with other
models, and ablation studies. Finally, Section 5 concludes the study
and discusses future research directions.

2 Related works
2.1 Traditional machine learning methods

Traditional approaches to identifying plant diseases and pests
predominantly utilize image feature extraction techniques.
Specifically, methods such as Histogram of Oriented Gradients
(HOG) (Dalal and Triggs, 2005), Scale-Invariant Feature
Transform (SIFT) (Lowe, 2004), and Speeded Up Robust Features
(SURE). (Bay et al., 2006) are employed to extract salient features
from images of affected plants. These extracted features subsequently
serve as inputs for training classifiers, including Support Vector
Machines (SVM) (Cortes and Vapnik, 1995) and k-Nearest
Neighbor (k-NN) (Wang and Hodges, 2005), thereby enabling
accurate classification of various types of diseases and pests.
(Chaudhary and Kumar, 2024) propose an advanced rice disease
detection method combining Gray-level Co-occurrence Matrix
(GLCM) and Intensity-Level Based Multi-Fractal Dimension
(ILMFD) for feature extraction, demonstrating 96.7% accuracy for
brown spot detection using SVM classifier, outperforming ANN and
Neuro-GA approaches in identifying major rice diseases including
leaf blast and bacterial blight. (Jamjoom et al., 2023) developed an
SVM-based image processing system for plant disease detection,
utilizing GLCM and LBP features to identify four diseases
(Phytophthora infestans, Fusarium graminearum, Puccinia
graminis, and tomato yellow leaf curl) with 97.2% accuracy. The
proposed method systematically processes images through
acquisition, pre-processing, segmentation, feature extraction, and
classification stages, demonstrating superior performance over
manual detection approaches. (Sahu and Minz, 2023) proposed an
advanced plant disease detection system combining AFKMRG
segmentation with Enhanced LSTM classification, optimized
through FSJ-FOA, achieving 98.35% accuracy and 98.40% precision
in multi-disease identification. The method significantly improved
upon traditional techniques by adaptively fusing region-growing
segmentation with evolutionary algorithm-enhanced feature
extraction and classification.

However, traditional machine learning methods face several
limitations, including the necessity for manual feature extraction
and selection, which is both time-consuming and requires
specialized knowledge. Additionally, these methods lack robust
tuning mechanisms and suffer from lower computational
efficiency. Consequently, in certain applications, these drawbacks
have led to the gradual adoption of deep learning techniques as a
more effective alternative.
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2.2 Lightweight convolutional neural
network

Deep learning is a subfield of machine learning, with
convolutional neural networks (CNNs) being one of its prominent
models. CNNs are primarily employed for image processing and
computational vision tasks such as image classification and object
detection. Common object detection models include YOLO (Redmon
et al., 2016) and Faster R-CNN (Ren et al., 2017). (Abulizi et al., 2025)
propose DM-YOLO, an improved YOLOv9-based method for
tomato leaf disease detection, which integrates DySample for small
lesion feature extraction and MPDIoU for overlapping lesion
localization, achieving higher precision (92.5%) and mAP (86.4%)
compared to baseline models. (Li et al., 2025) propose YOLO v5s-
ours, an enhanced potato defect detection model integrating
Coordinate Attention (CA), Adaptive Spatial Feature Fusion
(ASFF), and Atrous Spatial Pyramid Pooling (ASPP), which
achieves 85.1% mAP (a 13.7% improvement over baseline) while
maintaining real-time performance (30.7 fps), enabling practical
automated sorting of defects like greening, rot, and mechanical
damage. (Huang et al, 2025) propose GDS-YOLO, an enhanced
YOLOv8n-based rice disease detection model incorporating GsConv
for efficiency, Dysample for feature preservation, SCAM for
background suppression, and WIoU v3 for precise localization,
achieving 4.1% higher mAP50 with 23% fewer parameters
compared to baseline, demonstrating effective feature extraction for
complex rice disease identification. (Feng et al., 2025) develop
LCDDN-YOLO, an efficient cotton pest detector combining
DSConv and BiFPN with CBAM attention, achieving 6.5% higher
mAP@50 than YOLOVS at reduced computational costs (12.9% fewer
parameters), enabling real-time disease monitoring in resource-
constrained field environments.

These studies collectively demonstrate that lightweight CNN
models have exhibited superior performance in rice disease
identification and object detection tasks, significantly enhancing
detection accuracy and processing efficiency.

2.3 Attention mechanism

(Zhu et al,, 2025) propose an improved YOLOv8-based model
for grape leaf disease detection, incorporating Spatial Pyramid
Dilated Convolution (SPD-Conv) and an Efficient Multi-Scale
Attention (EMA) Module, which achieves 96.17% AP (a 1.13%
improvement over YOLOV8) while maintaining a compact model
size (7.1 MB), significantly enhancing small-target recognition
accuracy for diseases like black rot. (Wang and Liu, 2025)
propose TomatoGuard-YOLO, an advanced lightweight
framework based on YOLOv10, which integrates Multi-Path
Inverted Residual Units (MPIRU) for enhanced multi-scale
feature extraction and a Dynamic Focusing Attention Framework
(DFAF) for adaptive region prioritization, achieving state-of-the-art
performance (94.23% mAP50 at 129.64 FPS) with an ultra-compact
model size (2.65 MB), offering a transformative solution for
intelligent tomato disease detection systems. (Wang et al., 2025)
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propose RGC-YOLO, an efficient multi-scale rice pest detection
model based on YOLOv8n, which integrates RepGhost for feature
reuse, GhostConv for computational efficiency, and CBAM for
enhanced feature extraction, achieving 93.2% mAP50 with 33.2%
fewer parameters and 21.3% faster inference on embedded devices
compared to baseline, enabling real-time monitoring in field
conditions. (Kumar et al., 2023) propose a Multi-scale YOLOvV5
network with DenseNet-201 backbone and Bidirectional Feature
Attention Pyramid Network (Bi-FAPN) for early-stage rice disease
detection, achieving 94.87% accuracy and 0.71 IoU while reducing
computational costs through principled pruning, demonstrating
superior performance on the RLD dataset compared to existing
methods. (Li et al., 2024) propose GhostNet_Triplet_YOLOVSs, an
enhanced YOLOv8s model incorporating GhostNet for lightweight
backbone architecture and Triplet Attention for precise disease
localization, achieving 91.40% mAP@0.5 with 50.2% model size
reduction and 43.1% lower FLOPs compared to baseline,
successfully deployed on a WeChat mini-program for real-time
maize disease detection.

In summary, the addition of attention mechanisms can
significantly improve model performance, enabling it to focus
more effectively on important features and enhancing the
model’s interpretability.

2.4 Comparison of methods and existing
problems

The existing rice disease detection methods, as shown in
Table 1, can be classified into three technical routes: (1) Feature
engineering methods based on traditional machine learning (such
as SVM+GLCM) can achieve an accuracy of 96.7%, but rely on
manual feature design; (2) Lightweight CNN models (such as DM-
YOLO and GDS-YOLO) increase mAP to 92.5% through structural
optimization (DySample+MPDIoU), but have insufficient
sensitivity for small object detection; (3) Attention mechanism
enhanced models (such as EMA-YOLO, RGC-YOLO) combined
with CBAM/EMA modules can achieve mAP50 up to 96.17%, but
model complexity and lesion background similarity (>0.7) remain
the main bottlenecks. The current method achieves a good balance
between parameter size (2.65MB~7.1MB) and inference speed
(30~129 FPS), but still needs to break through the dynamic
feature decoupling of edge blur (IoU loss>15%) and small lesions
(<5px) unique to rice leaf lesions. These bottleneck problems
provide clear directions for model optimization.

3 Method
3.1YOLOvVS8

YOLOVS is the next major update version of YOLOV5, which
was open-sourced by Ultralytics on January 10, 2023. YOLOvS

inherits the achievements of the previous YOLO series and has been
widely applied in multiple fields such as image classification, object
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TABLE 1 Comparison of existing disease detection methods.

Method type Representative models

SVM + GLCM/ILMFD

Traditional ML

AFKMRG + Enhanced LSTM

(Sahu and Minz, 2023)

DM-YOLO
Lightweight CNN YOLO v5s-ours
GDS-YOLO

EMA-YOLOvV8

TomatoGuard-YOLO

Attention Mechanisms

RGC-YOLO

Bi-FAPN-YOLOv5
Multi-Scale Fusion

Adaptive region-growing segmentation with

10.3389/fpls.2025.1643096

Key improvements Feature

Combines GLCM and multi-fractal
dimension features

Manual feature engineering,
poor generalization

High tational lexit
FSJ-FOA optimization 1gh computationat complexity

DySample + MPDIoU Low sensitivity to small lesions

CA attention + ASFF + ASPP High real-time demand (30.7 fps)

GsConv + DySample + SCAM 23% fewer parameters

SPD-Conv + EMA Model size: 7.1MB

MPIRU + DFAF Ultra-lightweight (2.65MB)

RepGhost + CBAM Optimized for embedded devices

DenseNet-201 + Bidirectional Feature X i
. . Requires model pruning
Attention Pyramid

GhostNet_Triplet YOLOv8

detection, and instance segmentation. When YOLOVS was released,
five different-sized network models were introduced, marked as n
(nano), s (small), m (medium), 1 (large), and x (extra-large). The
number of parameters and computational cost of these models
increase successively, and their accuracy also improves accordingly.

Considering the resource constraints of mobile and embedded
devices and the demand for lightweight models, this study selected
the YOLOv8n model with the smallest number of parameters and
computational cost. As shown in Figure 1, the main structure of
YOLOV8 consists of three parts: the backbone network, the neck
network, and the head network. In the backbone network part,
YOLOV8 adopts the C2f structure with richer gradient flow, which
is mainly responsible for feature fusion. It can effectively fuse feature
maps of different levels, enabling the model to obtain more
abundant information, reduce information loss, and significantly
enhance the model’s ability to recognize image content. The design
of the C2f module enables YOLOV8 to more effectively capture and
utilize various details in the image, thereby improving the accuracy
of object detection. In the neck network part, YOLOv8 adopts the
C2f module and Path Aggregation Network (PANet) structure for
feature aggregation, layer by layer aggregating information from
shallow to deep, further enhancing the feature expression ability. In
the head network part, YOLOv8 adopts the mainstream decoupled
head structure, separating the classification and detection heads,
and introduces the Anchor-Free strategy. Through these
improvement strategies, YOLOvV8 has made significant progress in
loss calculation and network structure, enhancing the overall
performance of the model.

3.2 Improve the backbone network
Squeeze-and-Excitation Network(SENet) (Hu et al., 2020) is a

channel-wise attention mechanism that enhances feature
representation by recalibrating channel-wise feature responses. In
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GhostNet + Triplet Attention 50.2% smaller model size

2023, Mahendran introduced Squeeze-and-Excitation Network
Version 2 (SENetV2), which integrates the squeeze-and-excitation
operations with the multi-branch architecture of ResNeXt, thereby
improving the granularity of feature expression and the integration
of global information. The C2f module in YOLOV8’s neck network
employs two convolutional layers, a Split operation, concatenation,
and Bottleneck blocks to facilitate feature extraction and fusion,
thereby enhancing the model’s feature representation capabilities.
To further exploit the potential of feature expression, we
incorporate SENetV2’s multi-branch structure and squeeze-and-
excitation mechanism into the feature fusion process.

As illustrated in Figure 2, the SENet module applies global
average pooling to compress the spatial dimensions of feature map
U from HxWxC to a 1xIxC channel descriptor. This descriptor
then undergoes two fully connected layers for nonlinear
transformation, resulting in a set of channel-wise weights. These
weights are subsequently multiplied element-wise with the original
feature map U, producing a recalibrated feature map X. By
increasing the sensitivity of each channel, SENet effectively
emphasizes important features while suppressing less relevant ones.

SENetV2 integrates the squeeze-and-excitation operations from
SENet with the multi-branch architecture of ResNeXt. It employs
multi-branch fully connected layers for the compression and
excitation steps, followed by feature scaling. This design slightly
increases the model’s parameter count but significantly enhances its
performance. Figure 3 illustrates a comparison between the
structures of SENetV2 and SENet. Both architectures can
selectively transmit key features, but SENetV2 introduces
increased cardinality between layers, aggregating feature
information from multiple branches. Consequently, SENetV2
achieves richer and more diverse feature learning, making it
better suited for representing complex features.

This study integrates the SENetV2 attention mechanism into
the neck network of YOLOV8, which enables the network to capture
diverse features from input data. This integration refines feature

frontiersin.org


https://doi.org/10.3389/fpls.2025.1643096
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Pan et al.

10.3389/fpls.2025.1643096

Backbone

The original image

FIGURE 1
YOLOV8 architecture diagram.

representation, enhances the model’s capability to extract disease
characteristics in complex backgrounds, and consequently
improves detection accuracy.

3.3 Introduce DySample

In the upsampling layer of YOLOvVS, the commonly used
method is nearest neighbor interpolation, which achieves
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upsampling by replicating the values of the nearest neighbor
pixels. However, this method ignores the smooth transition
characteristics between pixels, relies only on a few surrounding
pixels for prediction, and overly focuses on spatial information
while failing to fully consider the semantic information of the
feature map. Additionally, the traditional upsampling process
based on convolution kernels is usually accompanied by high
computational complexity and parameter overhead, which
contradicts the design goal of lightweight network architectures.
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SENet module.
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FIGURE 3
Comparison diagram of SENet and SENetV2 (a) SENet; (b) SENetV2.
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Therefore, the DySample upsampling module (Liu et al., 2023) is
introduced in the feature fusion step to replace the original
upsampling method.

DySample adopts a point sampling strategy, which can generate
content-aware upsampling results in a simple and efficient way
without the need for additional high-resolution feature maps as
input. This approach not only helps maintain the model’s high
performance but also significantly reduces model complexity and
computational costs. The upsampling process of DySample is
shown in Figure 4.

Given a feature map X of size CxHxW and a point sampling set
S of 2gxsHxsW, where 2g represents the x and y coordinates, the
grid_sample function re-samples X using the positions in the point
sampling set S, generating a feature map X’ of size CxsHxsW, as
shown in Equation I:

X' = Gridsample(X, S) (1)

The point sampling set S is generated in a manner of “linear +
pixel recombination”, and the offset range can be determined by
static and dynamic range factors, as depicted in Figure 5.

Taking the sampling method based on the static range factor as
an example, given a feature map X of size CxHxW and an
upsampling factor s. X first passes through a linear layer with
input and output channels of C and 2gs? and then uses the pixel
recombination method to reshape it into an offset O of 2gxsHxsW,
while the sampling set S is the sum of the offset O and the original
sampling grid G. The specific calculation definitions are as follows
(as shown in Equations 2, 3):

O = Linear(X) (2)

§=G+0 (3)

This method dynamically adjusts each point of upsampling by
learning offsets, thereby more accurately restoring the detailed features

sampling set

w

grid sample

FIGURE 4
Upsampling process of Dysample.
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FIGURE 5
Process of point sampling data collection and generation.
of rice diseases, enhancing the model’s perception of details, and distance™ ™ = b x (x, = 82 y O - ¥4 ©
enabling more precise localization and identification of rice diseases. istance T e 2 + Wy 2

3.4 Optimization of the loss function

YOLOV8 uses CIoU Loss to calculate the regression loss of
bounding boxes. This loss function comprehensively considers the
overlap area between the detection box and the target box, the loss
being 0 when the bounding boxes do not intersect, the distance
between the center points of the bounding boxes, and scale
information such as the aspect ratio, thereby further improving
the detection accuracy. However, CloU Loss fails to fully consider
the impact of the shape and size of the bounding box itself on the
regression results. Based on this, we choose ShapeloU (Zhang and
Zhang, 2023) as the loss function for bounding box regression to
focus on the shape and size characteristics of the bounding box.
ShapeloU can be derived from Figure 6, and the definition is as
follows (as shown in Equations 4-7):

Lgpape-1ov =1 = Liou + distance™* + 0.5 x Qe (4)
|B N By|
ot
701V e —— (5)
7 |BUB|
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3.5 SSD-YOLO

This study has implemented three improvements on the
original YOLOvV8 model, proposing an enhanced model named
SSD-YOLO. The modified network structure is depicted in Figure 7.
The specific improvements include:

1. The loss function CIoU in the original YOLOVS is
substituted with ShapeloU. The updated loss function can
generate higher-quality bounding boxes and significantly
mitigate potential biases in the evaluation results.

. SENet is incorporated into the enhanced feature fusion
module C2F to strengthen the feature selection and the
fusion capability of features from different channels,
thereby achieving efficient computation and enhancing the
model’s recognition ability of diseases in complex scenarios.

. The DySample lightweight dynamic upsampling module is
introduced, conducting upsampling from the perspective of
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. Prediction

FIGURE 6
Illustration of Shape-loU parameters.

Bl GT

point sampling. This approach effectively enhances the
model’s anti-interference ability and, in contrast to the
kernel-based dynamic upsampling module, demands fewer
parameters, thereby conserving computing resources and
being more applicable for real-time detection applications.

4 Analysis of experimental results
4.1 Rice leaf disease dataset

To acquire a large-scale dataset of rice leaf disease images, this
study developed an automated web crawler system utilizing the
Selenium library. This system systematically collected and
downloaded batches of images related to rice leaf diseases from
the Internet. By employing specific keywords such as “rice leaf
diseases” in major search engines including Baidu, Bing, and
Google, we gathered a comprehensive dataset comprising 3,000
images. These images cover three primary types of rice leaf diseases:
brown spot, blast, and bacterial blight. Figure 8 illustrates the
characteristic features of different rice leaf diseases.

The feature variations in rice leaf disease images are influenced
by multiple factors, including shape, variety, and environmental
conditions, leading to inconsistencies in resolution and contrast. To
address these variations and ensure data consistency, we conducted
preprocessing on the rice leaf disease dataset. First, we applied size
normalization to standardize the spatial dimensions, enabling
consistent comparisons across images. Second, we utilized image
enhancement techniques such as histogram equalization and

Frontiers in Plant Science

contrast stretching to adjust pixel value distributions, thereby
enhancing the visibility of image details and edges. Finally, we
simulated various weather conditions and time periods through
digital processing to more accurately reflect real-world scenarios.
These preprocessing steps enhanced the representativeness of the
dataset and improved the model’s robustness and generalization
capability in practical applications.

4.2 Evaluation metrics

This section delineates the comprehensive evaluation metrics
utilized to rigorously assess the performance of the rice leaf diseases
detection model. The key performance indicators encompass
precision (P), recall (R), mean average precision (mAP), model
size, and inference speed, which collectively provide a robust
framework for model assessment.

p._TP ®)
" TP+ FP
TP
R= TP + FN ©)
1
AP = / PrdR (10)
0
N
/ AP(q)
mAP =7 (11)
N
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Backbone

FIGURE 7
SSD-YOLO architecture diagram.

In Equations 8, 9, the calculation of precision (P) and recall (R)
relies on three key indicators: true positives (TP), false positives
(FP), and false negatives (FN). When the model successfully
identifies rice leaf diseases, it is classified as TP; conversely, FP
represents the number of incorrect detections of non-existent
targets, while FN denotes the instances where actual targets are
missed. Precision (P) assesses the model’s ability to accurately
identify rice leaf diseases among all predicted targets, whereas
recall (R) evaluates the proportion of successful identifications of
actual targets by the model.

To evaluate detection performance for rice leaf diseases across
different categories, a precision-recall (P-R) curve can be
constructed. In Equations 10, 11, the average precision (AP) is
defined as the area under this curve; thus, a higher AP value—closer
to 1—indicates superior detection performance for that specific
category. Mean Average Precision (MAP) refers to the weighted
average of AP values across all categories and serves as a widely
accepted metric for performance evaluation in object detection
tasks. This metric offers both visualization and a comprehensive
representation of overall model performance, with N in the
equation denoting the total number of target categories.

Additionally, object detection speed is quantified in frames per
second (FPS), where higher FPS values signify enhanced real-time
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processing capabilities. A thorough evaluation encompassing these
indicators provides an exhaustive assessment of model performance,
facilitating multidimensional comparisons and optimizations.

4.3 Experimental equipment

The experiment was conducted on a high-performance deep
learning server equipped with two Nvidia RTX 3090 graphics cards,
each with 24GB of VRAM. The operating system was Windows 11.
The implementation of this method was based on Pytorch 1.9. The
details of the experimental setup are shown in Table 2.

To optimize the network parameters, we utilized the Adam
optimizer during the training of the SSD-YOLO model. To enhance
convergence speed and ensure stable training, we set the initial learning
rate (Ir0) to 0.001 and gradually decayed it to a final learning rate (Irf)
of 0.001. The loss function employed was ShapeloU, with a
momentum parameter of 0.937 and a weight decay of 0.0056. A
warm-up strategy was implemented, where the learning rate started at
a lower value for the first 5 epochs before gradually increasing to adapt
to the data’s feature changes. Additionally, an early stopping
mechanism was introduced to prevent overfitting and unnecessary
training. Specifically, if the model’s performance did not improve
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FIGURE 8
Common three types of rice diseases, (D-1) Rice Brown Spot, (D-2) Rice Blast, (D-3) Bacterial Leaf Blight.

TABLE 2 High-performance server configuration table. significantly over 300 consecutive epochs, training would be halted.
— This approach ensures timely detection and intervention in case of
Ll SRl e suboptimal convergence, thereby maintaining the model’s
CPU Intel® Core 19-10920X optimal state.
GPU Nvidia RTX 3090 24GB
Memory 128GB 4.4 Accuracy comparison of different
Hard disk drive 21B attention mechanisms

storage space

The attention mechanism significantly enhances the model’s ability

Operating system Windows11(64-bit) . L. . .

to capture key information in the input data by enabling the model to
Programming Python 3.8.8, Cuda 11.7, torch 1.9.1, torchaudio 09.1, adaptively weight the importance of different positions or features in
environment torchvision 0.10.1

the sequence data. To systematically evaluate the impact of the
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SENetv2 attention mechanism on the performance of rice leaf disease
recognition in the SSD-YOLO model, this study designed a
comparative experiment to compare the performance of multiple
mainstream attention mechanisms with the SSD-YOLO baseline
model. Specifically, we selected four representative attention
mechanisms for comparative analysis: (A) Context-aware attention
mechanism, which dynamically adjusts feature weights based on global
context relationships; (B) Multi-scale pyramid attention network,
which captures cross-scale feature dependencies by constructing a
hierarchical feature pyramid; (C) Residual attention bottleneck
module, which innovatively combines residual connection with
channel attention mechanism to achieve more refined feature
optimization; (D) The improved SENetv2 attention mechanism
proposed in this study. By comparing the experimental performance
of these mechanisms, the effectiveness of different attention paradigms
in disease identification tasks can be comprehensively evaluated.
Table 3 shows the performance comparison results of different
attention mechanisms on the yolov8 model. The experimental data
show that after the introduction of attention mechanism, the model
has achieved significant improvement in the two key indicators of
map50 and map50-90. It is particularly noteworthy that the model
using lightweight senetv2 attention mechanism has the most
outstanding performance, with 94.3% and 77.1% excellent
performance respectively. This result fully confirms the effectiveness

TABLE 3 Experimental results of different attention mechanisms.

10.3389/fpls.2025.1643096

of senetv2 attention mechanism in ssd-yolo architecture. Through the
innovative lightweight design, the mechanism not only ensures the
detection accuracy, but also significantly improves the computational
efficiency and reduces the complexity of the model. This advantage of
balancing performance and efficiency makes it particularly suitable for
deployment in embedded devices or mobile terminals with limited
computing resources.

4.5 Heat map visualization

This study employed Grad-CAM (Selvaraju et al., 2020)
technology to construct a visualization heatmap for the detection of
rice leaf diseases, providing an intuitive display of the target detection
effect of rice leaf diseases and fully comparing the performance
differences before and after the improvement of the YOLOv8n
model. As shown in Figure 9, five groups of heatmap comparison
results were generated. It can be clearly observed from the figure that
the red high-confidence regions of the SSD-YOLO algorithm are more
concentrated and highly consistent with the true center of the target,
indicating that its positioning accuracy is significantly better than that
of the original model and other comparison algorithms. This
improvement mainly benefits from the following three technological
innovations: Firstly, by introducing the SENet attention mechanism,

Model Class P (%) R (%) mAP50 (50%)  mAP50-90 (%) Size (M) FPS (frame/s)

All 91.0 84.4 89.7 64.8
Brown spot 89.2 67.0 76.4 49.3

YOLOv8n 5.99 46
Rice blast 93.8 97.1 97.7 74.1
Bacterial Blight 90.1 89.1 95.2 71.1
All 92.7 86.8 91.9 73.8
Brown spot 88.6 71.7 81.3 54.1

YOLOV8n+A 15.53 20
Rice blast 94.9 97.6 98.1 83.2
Bacterial Blight 94.7 90.9 96.2 84.1
All 95.8 87.9 93.1 76.5
Brown spot 92.9 72.5 83.3 58.7

YOLOv8n+B 6.02 38
Rice blast 98.6 98.4 98.9 85.7
Bacterial Blight 95.9 92.7 97.1 85.1
All 92.7 89.3 93.2 75.9
Brown spot 85.8 75.3 83.6 58.0

YOLOv8n+C 8.24 29
Rice blast 96.1 98.8 98.5 84.3
Bacterial Blight 96.1 93.9 97.5 85.3
All 94.7 90.3 94.3 77.1
Brown spot 89.0 77.8 85.0 58.9

YOLOv8n+D 6.05 40
Rice blast 98.1 98.4 99.3 86.1
Bacterial Blight 96.9 94.7 98.6 86.4
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YOLOv8n

YOLOv8n
+SEv2

YOLOv8n
+Dysample

YOLOvV8n
+ShapeloU

SSD-YOLO

FIGURE 9
Heatmap experiment comparison.

the Bottleneck structure of YOLOv8 was optimized, significantly
enhancing the model’s feature extraction capability. Secondly, the
DySample lightweight dynamic upsampling module was adopted,
specifically addressing the issue of high similarity between rice
diseases and the background, further improving the model’s
discrimination ability. Additionally, the ShapeloU Loss was used to
replace the traditional CIoU loss function, effectively enhancing the
model’s detection performance in complex environments.

The visualization results fully confirm that the improved
algorithm can achieve a dual advantage of detection accuracy and
anti-interference ability in complex scenarios. The heatmap
visualization experiment further verified that the model proposed
in this study has higher accuracy and stronger feature extraction
ability in feature extraction compared to the original model.
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4.6 Analysis of detection results

The rice disease leaf detection model proposed in this study has
been systematically verified under various environmental conditions
and multi-object scenarios. The experimental results show that the
model can not only accurately identify the leaves of rice with a single
disease type and their background, but also maintain excellent
detection performance in complex situations where multiple diseased
leaves overlap and the disease feature areas have significant differences.

To comprehensively evaluate the performance advantages of the
proposed SSD-YOLO model in the identification of rice leaf lesions,
this study designed and implemented a multi-model comparison
experiment. Specifically, SSD-YOLO, the original YOLOvV8n, an
improved version using the ShapeloU loss function, an optimized

frontiersin.org


https://doi.org/10.3389/fpls.2025.1643096
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Pan et al.

10.3389/fpls.2025.1643096
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YOLOvV8n
+Dysample

YOLOvV8n
+ShapeloU

SSD-YOLO

FIGURE 10
Detection result comparison.

model incorporating the SE attention mechanism, and a variant model
integrating the Dysample upsampling module were respectively
applied to the test set images, and their detection results were
thoroughly compared and analyzed. The relevant experimental
results are shown in Figure 10, which fully verify the significant
advantages of the SSD-YOLO model in the disease recognition task.

4.7 Comparison of the accuracy of
different models

To objectively highlight the advantages of the SSD-YOLO
model, this study conducted a systematic comparison with a two-
stage object detection model (Faster R-CNN) and several one-stage
object detection algorithms, including RT-DETR, YOLOV5 through
YOLOv11,YOLOVS-DiDL (Guo et al.,, 2025), YOLOv8n-SMAFM
(Jin et al.,, 2025), S-ZFFTNet (Muthusamy et al., 2025). The detailed
results are presented in Table 4. This comparative analysis seeks to

Frontiers in Plant Science

2 Bccter\clB

2 Bactemols

13

=

|/
i

ht 0.59

| /
|

ht 0.93

-/l

|/
|\

ht 0.92

/M

thoroughly evaluate the performance of different models in rice
disease detection.

According to the data presented in Table 4, the SSD-YOLO model
proposed for rice disease detection demonstrates superior performance
in identifying diseases from images. The mAP and accuracy of SSD-
YOLO reached 95.32% and 95.19%, respectively, representing
improvements of 5.51% and 3.74% over the baseline model YOLOVS.
Compared with other state-of-the-art algorithms, SSD-YOLO achieved
higher mAP values than RT-DETR, YOLOv5, YOLOv6, YOLOV9,
YOLOv10, YOLOv11, YOLOv8-DiDL, YOLOv8n-SMAFM and S-
ZFFTNet by 15.2%, 24.76%, 7.34%, 9.42%, 2.87%,
6.04%,4.52%,11.62% and 4.46%, respectively. In addition to evaluating
average accuracy, frames per second (FPS) is a critical performance
metric that reflects the number of target detection frames processed per
second. SSD-YOLO exhibits a notable detection speed, making it
suitable for most real-time applications. Moreover, SSD-YOLO not
only boasts a smaller model size but also maintains an efficient detection
speed, enhancing its practicality in resource-constrained. environments.
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TABLE 4 Experimental results of different models.

FPS

(frame/s)

10.3389/fpls.2025.1643096

4.8 Ablation study

To validate the individual contribution of each new module

Faste-RCNN | 56.12 80.12 1135 20 in SSD-YOLO to the overall performance, we conducted a
systematic ablation analysis on the rice disease dataset. The results
RT-DETR 75.67 70.56 63.1 24 ) ) o ) o
of all ablation experiments are detailed in Table 5. Specifically, “A
YOLO v5 87.61 87.98 505 45 denotes the addition of SENetv2 attention, “B” represents the adoption
YOLO v6 88.62 85.9 831 41 of the DySample sampling module, and “C” signifies the use of
ShapeloU as the loss function. The final model incorporates all
YOLO v8 91.45 89.7 5.99 46
these enhancements.
YOLO v9 90.22 9245 14.5 26 Based on the analysis of the experimental results, it can be
YOLO v10 85.87 88.1 551 33 concluded that in the task of identifying rice leaf diseases, the
combination of SENetv2, ShapeloU bounding box regression loss
YOLO v11 91.32 89.28 525 43 ) o
function, and DySample module significantly enhances the overall
YOLOv8-DiDL | 914 9208 48 55 performance of the model. Compared with YOLOVS, the SSD-
YOLOvSn- 61 . . s YOLOVS algorithm achieves improvements of 3.74% in accuracy,
SMAF ' ) ‘ 7.0% in recall rate, and 5.51% in mAP. The integrated application of
S-ZFFTNet 92.65 90.86 0.5 43 these strategies not only boosts the precision of rice disease
detection but also enhances target localization, thereby providing
$SD-YOLO 95.19 95.32 6.08 50 . .
more robust support for practical applications.
TABLE 5 Ablation study results.
Model Class P (%) R (%) mAP50 (50%) mAP50-90 (%) Size (M) FPS (frame/s)
All 91.0 84.4 89.7 64.8
Brown spot 89.2 67.0 76.4 49.3
YOLOv8n 5.99 46
Rice blast 93.8 97.1 97.7 74.1
Bacterial Blight 90.0 89.1 95.2 71.1
All 94.7 90.3 94.3 77.1
Brown spot 89.0 77.8 85.0 58.9
YOLOV8n+A 6.05 40
Rice blast 98.1 98.4 99.3 86.1
Bacterial Blight 96.9 94.7 98.6 86.4
All 96.1 88.8 94.1 79.9
Brown spot 91.9 74.9 85.0 62.0
YOLOvSn+B 6.01 43
Rice blast 98.9 98.8 99.0 87.6
Bacterial Blight 97.5 927 98.5 90.1
All 96.1 89.6 942 80.1
Brown spot 91.7 76.7 85.2 61.8
YOLOv8n+C 631 45
Rice blast 98.6 98.8 98.8 88.3
Bacterial Blight 98.1 93.3 98.6 90.1
All 94.6 90.8 93.7 77.8
Brown spot 88.7 79.2 85.5 60.1
YOLOVSn+A+B 6.08 41
Rice blast 96.9 98.8 98.5 87.1
Bacterial Blight 98.1 94.3 97.1 86.1
All 93.2 91.1 93.7 78.2
YOLOV8n+A+C Brown spot 86.3 80.2 85.9 60.1 6.08 39
Rice blast 98.0 98.7 98.4 87.2
(Continued)
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TABLE 5 Continued

10.3389/fpls.2025.1643096

Model Class P (%) V) mAPS50 (50%) mAP50-90 (%) Size (M) FPS (frame/s)

Bacterial Blight 95.1 94.6 96.8 87.2
All 93.3 89.8 93.3 75.1
Brown spot 88.8 77.0 83.7 59.7

YOLOv8n+B+C 6.02 38
Rice blast 96.9 98.6 98.9 82.3
Bacterial Blight 94.2 93.9 97.2 83.2
All 95.1 90.7 95.3 78.7
Brown spot 89.9 78.8 87.5 61.7

SSD-YOLO 6.08 50
Rice blast 97.3 98.8 99.4 87.0
Bacterial Blight 98.1 94.5 98.9 87.5

5 Conclusion

This study introduces SSD-YOLO, an enhanced model based on
YOLOVS8 for the detection of rice leaf diseases. The model integrates
SENetV2 to optimize feature extraction, employs DySample for
lightweight upsampling, and utilizes ShapeloU for precise
localization. Experimental results indicate significant improvements
in performance, achieving detection accuracies of 87.52%, 99.48%,
and 98.99% for brown spot, blast, and bacterial blight respectively,
while maintaining a compact model size of just 6MB.

Despite these advancements, SSD-YOLO exhibits notable
limitations: (1) Generalization to highly variable field conditions—
such as variations in lighting and occlusions—remains a challenge; (2)
The model’s dependence on high-quality training data may limit its
applicability in resource-constrained regions where datasets are sparse.

Future work will focus on deploying SSD-YOLO in large-scale
rice farms through partnerships with agricultural technology
companies. By integrating the model with autonomous drones and
soil sensors, we aim to build a closed-loop digital agriculture system
that not only detects diseases but also recommends optimal treatment
strategies based on historical data and environmental factors.
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