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Introduction: Accurate 3D reconstruction is essential for plant phenotyping.
However, point clouds generated directly by binocular cameras using single-shot
mode often suffer from distortion, while self-occlusion among plant organs
complicates complete data acquisition.

Methods: To address these challenges, this study proposes and validates an
integrated, two-phase plant 3D reconstruction workflow. In the first phase, we
bypass the integrated depth estimation module on camera and instead apply
Structure from Motion (SfM) and Multi-View Stereo (MVS) techniques to the
captured high-resolution images. It produces high-fidelity, single-view point
clouds, effectively avoiding distortion and drift. In the second phase, to overcome
self-occlusion, we register point clouds from six viewpoints into a complete plant
model. This process involves a rapid coarse alignment using a marker-based Self-
Registration (SR) method, followed by fine alignment with the Iterative Closest
Point (ICP) algorithm.

Results: The workflow was validated on two Ilex species (llex verticillata and llex
salicina). The results demonstrate the high accuracy and reliability of the
workflow. Furthermore, key phenotypic parameters extracted from the models
show a strong correlation with manual measurements, with coefficients of
determination (R® exceeding 0.92 for plant height and crown width, and
ranging from 0.72 to 0.89 for leaf parameters.

Discussion: These findings validate our workflow as an accurate, reliable, and
accessible tool for quantitative 3D plant phenotyping.
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1 Introduction

Plant phenotyping refers to the determination of quantitative or
qualitative values for morphological, physiological, biochemical, and
performance-related properties, which act as observable proxies
between gene(s) expression and environment and are important
determinants of growth, quality, and stress resistance characteristics
(Bian et al,, 2022). Traditional phenotyping relies on visual observation
and manual measurements, which is labor-intensive and highly
experience-dependent. In recent years, imaging technology has
become an effective tool for studying plant phenotypes, including
visible-light, spectral (both multispectral and hyperspectral), thermal,
and fluorescence cameras (Zhang et al., 2023).

Among the various phenotypic traits, morphological and
structural characteristics directly reflect plant growth (Song et al,
2023), which is why most current phenotypic studies focus on
assessing these traits. Traditional 2D image-based analysis methods
project the 3D spatial structure of the plant onto a 2D plane, which
results in the loss of depth information and fails to accurately
capture the plant’s morphological features. One noteworthy
development is the adoption of 3D plant phenotyping methods
(Vazquez-Arellano et al., 2016). In some cases, 3D sensing methods
that incorporate data from multiple viewing angles may provide
information and insights that are hard or impossible to get from a
2D model alone (Harandi et al., 2023). Current 3D imaging
techniques applied in phenotyping mainly include image-based
method, laser scanning-based method, and depth camera-based
method (Song et al., 2023).

Light detection and ranging (LiDAR) as a sophisticated active
remote sensing technology, acquires high-precision three-
dimensional point cloud data by emitting laser pulses and
measuring their return times with great accuracy (Lin, 2015; Jin
et al, 2021). This capability offers notable advantages in plant
phenotyping studies. For instance, research on cotton has
demonstrated that ground-based LiDAR can measure traits such
as main stem length and node count with accuracy comparable to
manual methods (Sun et al, 2021). However, two key challenges
still hinder its broader application: (1) capturing the complete 3D
structure of plants often requires multi-site scanning and
subsequent fusion of multi-view point cloud data; (Li et al.,2023;
Liu et al,, 2025) and (2) the high cost of LIDAR equipment remains
a significant barrier to its widespread adoption.

Image-based reconstruction techniques primarily use the
structure from motion (SfM) algorithm, which reconstructs a 3D
point cloud by matching feature points across multiple 2D images
(Song et al, 2023). Wang et al. (2022) used 100 images around
tomato plants for 3D point cloud reconstruction; while Li et al.
(2022) used 50-60 images for the 3D reconstruction of maize
plants. The number of required images depends on plant height
and phenotyping needs—smaller plants may require about 60
images, while taller ones may need up to 80 (Hui et al., 2018).
Although image-based methods can produce detailed point clouds
with low-cost equipment, they are time-consuming and
computationally intensive, limiting their application in high-
throughput phenotyping.
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Depth camera-based techniques offer an alternative for acquiring
point clouds. Unlike image-based methods, depth cameras directly
capture depth images (point clouds) without the need for metric
conversion (Yang et al,, 2022). Depth cameras are typically classified
into two categories based on their operating principles: time of flight
(ToF)-based and binocular stereo vision-based. ToF cameras use light
emitted by a laser or LED source and measure the roundtrip time
between the emission of a light pulse and the reflection from thousands
of points to build up a 3D image (Kolhar and Jagtap, 2023). ToF
cameras are widely used in morphological phenotyping to measure
plant height (Jiang et al.,, 2016; Ma et al,, 2019), leaf area (Chene et al,,
2012; Song et al., 2023), etc. However, their relatively low resolution can
miss fine details, especially for smaller plants or delicate structures like
stalks and petioles (Paulus, 2019).

Binocular stereo vision cameras (stereo cameras) use two or more
lenses and separate image sensors to capture two slightly different
images, allowing 3D structure reconstruction by calculating the
distance from pixel disparities (Li et al., 2016). However, Due to the
inherent limitations of binocular camera hardware and the texture-
based matching principles of their imaging process, feature extraction
on low-texture or smooth surfaces (such as calibration spheres) is
significantly constrained. This often leads to point cloud distortions; for
example, a reconstructed calibration sphere may appear as a flat circle
rather than a three-dimensional hemisphere. Moreover, inherent
boundary effects in disparity calculations along the edges of complex,
non-rigid objects—such as plant leaves—combined with their curved
surface geometry and frequent local occlusions, further exacerbate
feature matching errors. These issues typically manifest as point cloud
drift, such as layered noise along leaf edges. Collectively, these factors
limit the accuracy of 3D reconstruction.

Due to mutual occlusions between plant organs, obtaining a
complete 3D point cloud of the plant from a single viewpoint scan is
challenging, regardless of whether LiDAR or other 3D imaging
technologies. To address this, a registration algorithm is essential to
align point clouds from different coordinate systems into a single
system, eliminating occlusion and ensuring a complete point cloud
(Teng et al, 2021). Fusing point clouds obtained from multiple
angles is a common method to establish accurate 3D models, and
researchers tend to reconstruct plant models through point clouds
data from three or more angles (Hu et al., 2018; Moreno et al,
2020). The premise of point cloud fusion is to realize the
registration of multiple point clouds, which accurately align the
point cloud data from different views into a complete 3D model of
the plant (Li and Tang, 2017). For example, Yang et al. (2022)
introduced a self-registration method for tree seedlings using
calibration objects on a precision turntable, demonstrating that
high-precision 3D models could be achieved with low-cost
equipment. Likewise, Li et al. (Xiuhua et al, 2021). and Chen
etal. (Haibo et al., 2022) utilized multi-view point cloud fusion and
registration techniques to reconstruct banana seedlings and other
plant models effectively. Despite the advancements in multi-view
point cloud fusion, these reconstructions still lag behind image-
based methods in terms of accuracy. Therefore, most studies focus
on morphological phenotyping at the plant scale, such as plant
height (Xiuhua et al., 2021; Haibo et al., 2022; Yang et al., 2022), and
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crown width (Li and Tang, 2017), with fine-scale phenotypic traits,
such as leaf length and leaf width, rarely being addressed.

This paper proposes and validates an automated workflow for
Binocular stereo vision-based three-dimensional fine-grained
reconstruction and phenotyping of plants. The core contributions are
as follows: (1) high-resolution RGB images captured by a stereo camera
are combined with SfM and MVS algorithms to reconstruct single-view
point clouds of the plant; (2) a self-registration (SR) algorithm based on
a calibration sphere is employed for the initial alignment of multi-view
point clouds, followed by fine registration using the Iterative Closest
Point (ICP) algorithm, resulting in a unified and complete 3D plant
model. Based on this model, four key phenotypic parameters—plant
height, crown width, leaf length, and leaf width—are automatically
extracted. Comparative analysis with manually measured data
demonstrates the high accuracy and reliability of the proposed method.

2 Materials and methods
2.1 Image acquisition system for seedlings

Figure 1 illustrates the self-developed seedling reconstruction
system, which mainly consists of a ‘U’-shaped rotating arm, a
synchronous belt wheel lifting plate, a ZED 2 and a ZED mini
binocular camera as the image acquisition device (marked as @ in
Figure 1). The ZED mini is mounted on the ZED 2, which can
simultaneously capture 4 images with a resolution of 2208x1242 in a
single shot. The synchronous belt wheel lifting plate enables vertical

@ Synchronous belt wheel
lifting plate

@ ZED 2 and ZED mini

binocular camera

FIGURE 1

10.3389/fpls.2025.1642388

movement of the camera system, allowing image capture from various
heights. In this study, images were acquired twice at the same viewing
angle, resulting in a total of 8 RGB images. The image acquisition
process from a single viewpoint is illustrated in Figure 2A.

The ‘U’-shaped rotating arm allows for 360° rotation of the platform
around the plant. After acquiring images from one viewpoint, the arm
rotates by 60° and pauses before the next round of image capture, as
shown in Figure 2B. This rotation strategy enables image capture from
six distinct angles: 0° (360°), 60°, 120° 180°, 240°, and 300°, yielding a
total of 48 images. The acquired images were then transmitted to the
image workstation via a Jetson Nano edge computing device (NVIDIA),
which is powered by an AMD Ryzen 9 5900X 12-core processor with
32GB of RAM running Windows 10, alongside an NVIDIA GeForce
RTX 3080Ti GPU with 12GB of video memory.

To effectively perform multi-view point cloud registration, six
passive spherical markers (calibration spheres, commercially
available) with a known diameter and matte, non-reflective surfaces
are positioned at equal distances around the plant, as shown in
Figure 1A. The different colors of the calibrators facilitate their
segmentation and subsequent point cloud alignment.

2.2 Single-view point cloud reconstruction
via SFM-MVS

Binocular stereo cameras are often used to directly obtain point
cloud from a single perspective of plants, e.g., sorghum (Bao et al., 2019;
Xiang et al,, 2021), maize (Xiang et al., 2023), etc. However, due to

3D reconstruction system for tree seedlings. (A) A working diagram of the 3D reconstruction system on site. (B) Solidworks drawing of 3D
reconstruction system. The red dotted box indicates the U-shaped rotating arm module, and the pink curved arrow shows the rotation direction of
the platform. The green dotted box highlights the camera acquisition module, which corresponds to the field acquisition diagram of the camera
module. The oval green line box indicates the ZED camera and the timing belt lifting mechanism, respectively
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FIGURE 2

Diagram of data acquisition method. (A) The image acquisition process from a single viewpoint. (B) Image acquisition process at 6 viewing angles.

limitations inherent in the imaging hardware and the depth map
generation mechanism, plant point clouds captured directly using the
official SDK often exhibit shape distortions and spatial drift. To
overcome these issues, our workflow processes the images from each
of the six viewpoints independently. For each viewpoint, the set of 8
captured RGB images was input into Agisoft Metashape to execute a
complete SM-MV'S reconstruction, yielding a high-fidelity single-view
point cloud (as illustrated in Figures 3A-C). This process was repeated
for all six viewpoints, resulting in six separate point clouds ready for
registration. In contrast to the official SDK, which performs real-time
depth estimation based on a single image pair, our offline approach
incorporates global optimization and cross-view consistency checks.
This method yields a point cloud with substantially improved
geometric accuracy and reduced noise, offering a more robust and
reliable foundation for downstream phenotyping analysis.

2.3 Point cloud pre-processing

The reconstructed point clouds typically contain significant
noise, particularly black noise in the edge areas of plant leaves.
This noise is visually distinct from the plant and calibration sphere,
making it possible to filter out using a color-based filtering
algorithm. In this paper, we employ the R (Red), G (Green), and
B (Blue) color space, setting threshold values for each channel at 50
to filter out black or dark gray noise. Following this, further noise,
including outliers, is removed by cropping and denoising, resulting
in a cleaner point cloud, as shown in Figure 3D.

2.4 Scale calibration for single-view point
clouds

The reconstruction process described in Section 2.3 yields six
high-fidelity point clouds, each representing a different viewpoint of
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the plant. However, a fundamental characteristic of the SfM
pipeline is that each reconstruction using SEM-MVS algorithms
or software are scaled (Rose et al., 2015), therefore it is essential to
standardize the scale of point clouds from various perspectives
before alignment.

To maximize geometric accuracy, we employed an offline SfM-
MVS pipeline instead of the camera’s real-time depth estimation.
Since this method produces point clouds without a metric scale, we
established the correct scale for each view using the known diameter
of the plant pot. As shown in Figure 3E, the top of pot is cropped,
and a set of circular ring point clouds is derived using point cloud
slicing algorithm. Then, the radius of the pot is determined by
fitting a circle to the segmented point cloud. Assuming that the
estimated pot diameters in the six viewpoints are Y0, Y1, V2, V3, ¥4,
and 75, respectively, with Y2 as the reference, we calculate the scaling
ratios for each fitted circle relative to y2 as: p0=y0/y2, ul=y1/y2,
W3=y3/v2, u4=y4/y2, u5=y5/y2. Then the scale factors n0 ~u5 are
applied to the corresponding plant point cloud for scaling, thus
completing the scale calibration of the multi-view point cloud.

2.5 Calculation of calibration sphere centre
coordinates

The precise estimation of the spherical center coordinates plays
a crucial role in determining the point cloud’s positional attitude
and computing the transformation matrix. To achieve this, we
employ an improved Random Sample Consensus (RANSAC) ball
fitting algorithm to evaluate the sphere center coordinates of the
calibrated ball.

The original RANSAC algorithm is vulnerable to the influence
of outlier points during ball center estimation, which results in
decreased accuracy. To mitigate the adverse effects of outliers, we
optimize the original RANSAC algorithm by introducing dynamic
interior thresholding, multi-stage optimization, and geometric
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Compute the rigid transformation matrix.

constraints. The dynamic interior point threshold mechanism
adjusts the criteria for determining interior points according to
the actual data distribution, thus avoiding errors caused by fixed
thresholds that cannot accommodate complex data patterns. Multi-
stage optimization enhances the accuracy of sphere coordinate
calculation by progressively refining the fitting results. Geometric
constraints integrate the sphere’s geometric properties to further
limit the possible solution space, thereby improving the accuracy of
the sphere center calculation.
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The specific calculation flow of this enhanced algorithm is
illustrated as follows (Algorithm 1). This provides a more reliable
approach for the precise estimation of sphere center coordinates.

Input: Calibration sphere point cloud P, maximum number
of iterations N, baseline threshold tpase-

Output: Sphere center coordinates C (x, y, z) and
radius r.
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Complete plant point
cloud

FIGURE 4

Compute the transformation matrix between two homonymous point sets. (A) Point clouds generated directly by the binocular camera’s official

SDK. (B) Point clouds generated by off-line SfM-MVS pipeline.

T.Initialize best model parameters: Cpesr = NONe, rpest=
0, SCOrepest= 0

2.Fori=1toN:

3. Randomly sample 4 non-coplanar points to generate
candidate sphere Ceapdidate, Icandidate

4. Compute local density, dynamically adjust threshold
t =1f (thase, density)
5.Count

= {p € P|| distance(p, Ccandidate) — rcandidate|s t}

inliers: inliers

6. Compute the average distance pand standard deviation
o of the inliers

7. Compute model weight : w =100 /(1 + 6)

8. if w> scorepest, update Cpest, pest, SCOM€pest

9.Apply geometric constraints (such as sphere center
range filtering) to the top-K candidate models

10.Use Levenberg-Marquardt (LM) algorithm to optimize
Cpest, Ipest fOr the final model’s inliers

11.Return Cpest, INbest

Algorithm 1. Enhanced RANSAC algorithm.

2.6 Calculation of the transformation
matrix by means of the SR

1. Determine the set of homonymous points. For the two
adjacent point clouds, at least three calibration sphere
centers should overlap, which define the set of
homonymous points. In this paper, the set of coordinates
of the centre of the calibration sphere in the 0° viewing
angle is denoted by PC,, and 60° ~ 300° are represented as
PC,~PC;s respectively.

2. Transformation Matrix Calculation. To align the point
clouds from different viewpoints, the transformation
matrix between each homonymous point set must be
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calculated. Set PC, as the reference point set, and
PC,~PC;s as aligned point set. The transformation matrix
between PC; and PCy can be calculated by Singular Value
Decomposition (SVD). By the same token, the
transformation matrices between the corresponding point
set PC, and PC;, PC5 and PC,, PC; and PC, can also be
acquired. The transformation matrix between the
corresponding homonymous point sets is denoted by R,
R;, Ry, Ry, and R, is illustrated in Figure 4.

3 Results and analysis

3.1 Comparison and analysis of point cloud
reconstruction results

As discussed, point clouds generated directly by the binocular
camera’s official SDK often suffer from significant quality issues.
This is starkly illustrated in Figure 5A. The point cloud, derived
from the camera’s real-time stereo matching and triangulation,
exhibits severe geometric distortion. For example, the spherical
calibrator is incorrectly reconstructed as a flattened, disk-like shape,
and the plant leaves are plagued by layered noise and spatial drift at
their edges. These artifacts are characteristic limitations of real-
time, two-view stereo algorithms when dealing with texture-poor
surfaces and complex object boundaries.

In sharp contrast, our proposed workflow, which processes the
same raw RGB images using an offline SfM-MVS pipeline, yields
substantially superior results, as shown in Figure 5B. The
reconstructed point cloud is geometrically accurate and clean.
The plant contours are well-defined with minimal artifacts, and
crucially, the calibration sphere is reconstructed with its correct
three-dimensional hemispherical shape, showing minimal
distortion. This qualitative comparison highlights a key
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Comparison of point cloud reconstruction results. (A) Point clouds generated directly by the binocular camera’s official SDK. (B) Point clouds

generated by off-line STM-MVS pipeline.
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The process point cloud calibration. (A) Original point cloud and reference point cloud before point cloud calibration. (B) Original point cloud and

reference point cloud after point cloud calibration.

contribution of our work: by replacing the camera’s native, real-
time depth estimation with a more robust, globally optimized SfM-
MVS approach, we effectively mitigate the issues of distortion and
drift, producing a high-fidelity point cloud that serves as a reliable
basis for subsequent registration and analysis.

3.2 Point cloud preprocessing results

As described in Section 2.3, the point cloud preprocessing
results are shown in Figure 3D. The preprocessing steps,
including noise removal and filtering. The preprocessing
improves the overall quality of the point cloud, ensuring that it is
ready for further processing steps such as calibration
and registration.

Frontiers in Plant Science

3.3 Point cloud calibration

Before point cloud calibration, the plant point clouds obtained from
different perspectives were inconsistent in scale. After calibration, the
sizes of point clouds in each group are consistent, ensuring a uniform
scale. Figure 6 shows the point cloud before and after calibration in two
adjacent viewpoints. The reference point cloud is the point cloud used as
a reference and its scale is set to 1, and the scaled point cloud is the one
that is scaled relative to the reference point cloud.

3.4 Calculation of calibration sphere center

The center of the calibration sphere was determined using the
enhanced RANSAC algorithm, as described in Section 2.5. Through
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The SR-ICP registration method described in this article.

iterative looping, the coordinates of the calibration sphere’s center
were calculated, as shown in Figure 7.

3.5 Point cloud registration results

The plant point cloud collected from a 0° perspective is taken as
the reference point cloud. The point clouds from other perspectives
are transformed to the spatial coordinate system of 0° perspective
through the rigid transformation matrix calculated by the
calibration spheres. The specific process is as follows: Rotate and
translate the point cloud from 60° perspective to the 0° point cloud
coordinate system through the transformation matrix R,. Afterward
ICP algorithm is used for fine registration, ensuring precise
alignment between the point clouds from both perspectives. We
set the maximum number of iterations to 100, with an RMSE (Root
Mean Square Error) threshold of 1le-8. The final overlap achieved
was 50%, resulting in a good configuration. Similarly, the point
cloud from 120°can be transform to 0°coordinate system by
transformation matrix RoxR;, followed by fine alignment with the

Frontiers in Plant Science

180° point cloud alignment
to 0° point cloud

240° point cloud alignment 300° point cloud alignment

to 0° point cloud to 0° point cloud

ICP algorithm. The same process was applied to the other
viewpoints, with the final alignment results displayed in Figure 8.

Compared to a single-perspective point cloud acquisition, the
multi-view point cloud registration approach fills in the holes and
gaps in the original point cloud, significantly enhancing the
accuracy and completeness of the reconstructed 3D model. This
method ensures that all surfaces of the plant are captured and
represented in the final point cloud.

4 Discussion

4.1 The underlying mechanisms of
distortion and drift elimination

The significant improvement in point cloud quality achieved by
our method (as illustrated in Figure 5) stems from a fundamental
paradigm shift: replacing the camera’s built-in, real-time, local
matching algorithm with an offline, globally optimized 3D
reconstruction workflow.

frontiersin.org


https://doi.org/10.3389/fpls.2025.1642388
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Wang et al.

To ensure real-time performance, the stereo matching
algorithm used by the camera SDK estimates depth from
individual image pairs. However, this approach is highly prone to
matching ambiguities in low-texture surfaces (e.g., calibration
spheres) and complex boundaries (e.g., plant leaf edges), often
resulting in geometric distortions and edge drift. Because the
computation is local and pairwise, such errors are difficult
to correct.

In contrast, our SEIM-MVS workflow processes all images from a
single viewpoint as a unified dataset. At the core of SfM is bundle
adjustment, a global optimization process that enforces geometric
consistency across the entire image set, thereby fundamentally
correcting errors introduced by local mismatches. Subsequently,
in the MVS stage, redundant information from multiple viewpoints
is exploited to robustly reconstruct challenging regions, including
smooth surfaces and leaf edges. The result is a point cloud that
offers both high geometric fidelity and structural completeness.
Thus, the shift from error-prone local real-time processing to robust

FIGURE 9

10.3389/fpls.2025.1642388

global optimization is the key to achieving high-accuracy
reconstruction in our proposed method.

4.2 Evaluation of point cloud
reconstruction accuracy and efficiency

MVS three-dimensional (3D) reconstruction is considered to be
the optimal solution to build a high-throughput and low-cost
phenotyping platform for individual plants (Wu et al., 2022). The
previous studies have shown that the phenotypes retrieved from
MVS reconstruction can match the accuracy of LiDAR and
reconstruct a high-quality 3D point cloud with vertex colors
(Wang et al, 2021). Therefore, in this paper, we compare the
proposed method with MVS-based point cloud reconstruction in
terms of both accuracy and efficiency.

Image-based point cloud reconstruction typically requires a
high degree of overlap between adjacent images, meaning that a
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Comparative analysis of point cloud reconstruction accuracy. The point clouds reconstructed in the first row are of the llex verticillata variety, and
those in the second row are of the Ilex salicina variety. (A) The complete plant point cloud was obtained after registration using the SR-ICP algorithm
proposed in this study. (b) Point cloud obtained via MVS. (C) Distance heatmap between point clouds obtained via SR-ICP algorithm and MVS

algorithm (D) Point cloud distance heatmap colbar.
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series of multi-view images—usually between 25 and 30 must be
collected; this continuous image acquisition is time-consuming and
significantly reduces the efficiency of point cloud reconstruction. In
comparison, the method proposed in this study enhances both the
efficiency of image acquisition and point cloud reconstruction,
allowing for faster processing and high-throughput phenotyping.
The image acquisition and plant point cloud generation algorithms
in this article take about 6 and 7 seconds respectively in a single
perspective. Therefore, the total time for point cloud reconstruction
from a single viewpoint is under 15 seconds. In the process of point
cloud registration, the program automatically estimates the centers
of the calibration spheres and the rotation matrix. Through
program iteration, the rotation and translation matrices for six
angles can be computed in approximately 5 seconds. Consequently,
the total time consumption of the reconstruction method proposed
is approximately 100s, with a maximum of 2 minutes. While the
multi-view image reconstruction method requires the acquisition of
plant images from multiple viewpoints, thus, the camera must
execute a sequence of “hold-capture-rotate” operations during
image collection. Furthermore, the camera must be stabilized to
avoid image blurring caused by camera vibration, introducing a
designated dwell time before capturing each image. After testing,
the collection of 25 multi-view images can yield a relatively
complete plant point cloud, taking approximately 2 minutes and
30 seconds, which is about 30 seconds longer than the method

Crown width

e o . . . e o e

Plant height

FIGURE 10
Phenotypic parameters extracted in this paper.

10.3389/fpls.2025.1642388

proposed in this paper. In conclusion, the method proposed here
can enhance the efficiency of point cloud reconstruction by
over 25%.

We evaluated geometric accuracy by computing the cloud-to-
cloud distance against a reference model. To isolate the analysis to
the plant’s structure, non-plant objects (e.g., the pot and spheres)
were removed from both clouds before comparison.

In terms of reconstruction accuracy, the proposed SR-ICP
workflow demonstrates a performance on par with established
image-based reconstruction techniques. As illustrated in Figure 9, the
multi-view registration strategy effectively compensates for point cloud
incompleteness caused by self-occlusion in single-view acquisitions.
While this superposition introduces minor misalignments at complex
boundaries like leaf edges—which constitute the primary source of
error—the overall geometric fidelity remains high.

A quantitative analysis of the plant-only portions of the point
clouds confirms this high accuracy. For the Ilex verticillata sample,
the mean and standard deviation of the distance error were 0.07 cm
and 0.11 cm, respectively. For the Ilex salicina, the mean and
standard deviation were 0.12 cm and 0.10 cm. These low error
values demonstrate that our method achieves strong consistency
with the image-based approach, validating its capacity for
producing accurate and comparable 3D plant models.

A key limitation and trade-off in our proposed workflow must
be acknowledged. While the image acquisition and reconstruction
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FIGURE 11

Comparative analysis of measured versus estimated values of height, leaf length, and leaf width of two llex varieties. (A) Scatter plot of measured
versus estimated values for plant height and crown width of llex verticillata. (B) Scatter plot of measured versus estimated values for plant height and
crown width of Ilex salicina. (C) Scatter plot of measured versus estimated values for upper and lower leaf length of Ilex verticillata. (D) Scatter plot
of measured versus estimated values for upper and lower leaf length of Ilex salicina. (E) Scatter plot of measured versus estimated values for upper
and lower leaf width of Ilex verticillata. (F) Scatter plot of measured versus estimated values for upper and lower leaf width of Ilex salicina.

process are efficient, the multi-view registration step depends on the
manual placement of physical calibration spheres. This marker-
based registration introduces an additional setup step during data
collection, which is not required in fully automated, marker-less
MVS pipelines. This reflects a trade-off between automation and
registration accuracy. For objects with complex geometry and
severe occlusion—such as plants—marker-less registration
methods often struggle, leading to alignment failures or
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significant cumulative drift in the absence of ground control
points. We opted for the marker-based approach because it offers
robust and highly accurate initial alignment, which is essential for
the success of the subsequent ICP-based fine registration and the
high-precision phenotyping demonstrated in this study. Future
research could explore semi-automated or robust marker-less
registration techniques tailored to plant structures to improve
overall throughput without compromising accuracy.
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4.3 Assessment of plant 3D phenotypic
parameters based on multi-view point
cloud alignment

This study assessed phenotypic parameters at both the
individual plant and leaf scales. The extracted phenotypic
parameters include plant height, crown width, leaf length, and
leaf width, as illustrated in Figure 10. When extracting leaf
phenotypic parameters (leaf length and leaf width), one leaf was
chosen from the upper and one from the lower part of the plant,
aiming to assess the effectiveness of the method proposed.

The experiment was conducted on two varieties of Ilex: Ilex
verticillata and Ilex salicina, with 16 samples taken from each variety.
The coefficient of determination (R?) and root mean square error
(RMSE) were employed to assess the fitting accuracy between the
measured and estimated values. Figure 11 shows the relationship
between estimated and measured (real) values of phenotypic
parameters for both varieties. The results indicate that: both varieties
exhibit high fitting accuracy in terms of plant height and crown width,
with R? exceeding 0.9, and a correspondingly low RMSE of less than
0.40 cm, signifying a strong model performance. For leaf morphology
(leaf length and leaf width), the R? values for the upper and lower leaves
of Tlex salicina are 0.883 and 0.893 respectively, with an average RMSE
of approximately 0.15 cm. This significantly surpassing the 0.721 and
0.745 R? values for Ilex verticillata, which had a much higher RMSE of
around 0.50 cm, indicating greater prediction error. This significant
disparity is attributed to the distinct leaf shapes of the two varieties,
while ilex verticillata leaves often have a curved appearance, ilex salicina
leaves are generally flatter. Consequently, relying on the linear distance
between two points for estimating leaf length and width for ilex
verticillata can lead to significant error, as reflected in its higher
RMSE. In the leaf phenotyping of ilex verticillata, the leaf length and
leaf width R? of the lower leaves were higher than those of the upper
leaves because the lower leaves appeared to be relatively flat compared
to the upper leaves, and thus the fitting accuracy was slightly higher
than that of the upper leaves. For ilex salicina, the fitting accuracies of
the upper and lower leaves were comparable, and the overall
performance was consistent.

In terms of the morphological distribution of upper and lower
leaves, it was observed that the statistical values for the upper leaves
—both in terms of leaf length and width—tend to be located in the
upper-right corner of the coordinate system. In contrast, the lower
leaves show values in the lower-left corner, indicating that the upper
leaves generally have a superior growth state. This is likely due to
their more favorable exposure to light, allowing for better
photosynthesis and consequently larger leaf sizes.

In summary, through the point cloud collection and registration
algorithm proposed in this article, high phenotypic estimation
accuracy can be achieved at individual scales (such as plant
height and crown width); at the organ scale, for traits like leaf
length and width. The lowest R” of the estimation ranged from
0.721 to 0.99. The overall estimation accuracy for morphological
phenotype parameters is satisfactory.
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While the proposed workflow is effective, its applicability is
limited by plant structure, scale, and environmental conditions. For
plants with extremely dense and complex canopies, the six
viewpoints may not fully resolve severe self-occlusion, potentially
leaving significant gaps in the final model. This issue is
compounded by lighting conditions; lower leaves shaded by the
upper canopy can result in dark, feature-poor areas during imaging,
which in turn create voids in the reconstructed point cloud and
degrade accuracy. Furthermore, the registration strategy, which
relies on manually placed calibration spheres, is impractical for
large-scale plants like mature shrubs or trees. The method is also
highly sensitive to wind, as any movement of the plant during image
acquisition can cause motion blur and feature mismatching, often
leading to complete reconstruction failure. Consequently, the
method is optimally suited for single, small- to medium-sized
plants in controlled environments.

5 Conclusion

This study developed and validated an integrated workflow for
three-dimensional reconstruction and phenotyping of plants using
stereoscopic imaging technology. First, we employed a stereo
photogrammetry pipeline (SfM-MVS) to process image data
captured by a stereo camera, effectively addressing the distortion
issues inherent in the camera’s native depth SDK. Building on this
foundation, we proposed a robust multi-view registration strategy
that combines spherical markers with the iterative closest point
(ICP) algorithm (SR-ICP), enabling high-precision reconstruction
of complete plant point cloud models. To systematically evaluate
the performance of the method, we conducted comprehensive
comparative experiments. First, in terms of geometric accuracy,
compared with standard MVS reconstruction, our method’s point
cloud performed well in terms of average distance error (0.07 cm
and 0.12 ¢cm) and distance standard deviation (0.10 cm and 0.11
cm). Second, in terms of phenotypic parameter extraction, the
results showed high correlation with manual measurements, with
extremely high correlation for plant-level traits (R* > 0.92) and R* >
0.72 for organ-level traits.

Two Ilex species were selected as test subjects, with 16 plants per
variety. A total of 192 measurements were conducted across four
phenotypic parameters at both the individual and organ levels,
providing sufficient empirical support for the method’s accuracy
and reliability. While the use of spherical markers introduces some
manual setup, this approach offers notable robustness in handling
the complex morphology and occlusion commonly observed in
plant structures. That said, the limited sample size remains a
constraint, and future work should aim to expand the dataset to
improve generalizability. In summary, this study presents a
rigorously validated and user-friendly framework for high-fidelity
3D plant data acquisition, offering reliable technical support for
plant phenotyping research and demonstrating broad
application potential.
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