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Introduction: Accurate 3D reconstruction is essential for plant phenotyping.

However, point clouds generated directly by binocular cameras using single-shot

mode often suffer from distortion, while self-occlusion among plant organs

complicates complete data acquisition.

Methods: To address these challenges, this study proposes and validates an

integrated, two-phase plant 3D reconstruction workflow. In the first phase, we

bypass the integrated depth estimation module on camera and instead apply

Structure from Motion (SfM) and Multi-View Stereo (MVS) techniques to the

captured high-resolution images. It produces high-fidelity, single-view point

clouds, effectively avoiding distortion and drift. In the second phase, to overcome

self-occlusion, we register point clouds from six viewpoints into a complete plant

model. This process involves a rapid coarse alignment using amarker-based Self-

Registration (SR) method, followed by fine alignment with the Iterative Closest

Point (ICP) algorithm.

Results: The workflow was validated on two Ilex species (Ilex verticillata and Ilex

salicina). The results demonstrate the high accuracy and reliability of the

workflow. Furthermore, key phenotypic parameters extracted from the models

show a strong correlation with manual measurements, with coefficients of

determination (R²) exceeding 0.92 for plant height and crown width, and

ranging from 0.72 to 0.89 for leaf parameters.

Discussion: These findings validate our workflow as an accurate, reliable, and

accessible tool for quantitative 3D plant phenotyping.
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1 Introduction

Plant phenotyping refers to the determination of quantitative or

qualitative values for morphological, physiological, biochemical, and

performance-related properties, which act as observable proxies

between gene(s) expression and environment and are important

determinants of growth, quality, and stress resistance characteristics

(Bian et al., 2022). Traditional phenotyping relies on visual observation

and manual measurements, which is labor-intensive and highly

experience-dependent. In recent years, imaging technology has

become an effective tool for studying plant phenotypes, including

visible-light, spectral (both multispectral and hyperspectral), thermal,

and fluorescence cameras (Zhang et al., 2023).

Among the various phenotypic traits, morphological and

structural characteristics directly reflect plant growth (Song et al.,

2023), which is why most current phenotypic studies focus on

assessing these traits. Traditional 2D image-based analysis methods

project the 3D spatial structure of the plant onto a 2D plane, which

results in the loss of depth information and fails to accurately

capture the plant’s morphological features. One noteworthy

development is the adoption of 3D plant phenotyping methods

(Vázquez-Arellano et al., 2016). In some cases, 3D sensing methods

that incorporate data from multiple viewing angles may provide

information and insights that are hard or impossible to get from a

2D model alone (Harandi et al., 2023). Current 3D imaging

techniques applied in phenotyping mainly include image-based

method, laser scanning-based method, and depth camera-based

method (Song et al., 2023).

Light detection and ranging (LiDAR) as a sophisticated active

remote sensing technology, acquires high-precision three-

dimensional point cloud data by emitting laser pulses and

measuring their return times with great accuracy (Lin, 2015; Jin

et al., 2021). This capability offers notable advantages in plant

phenotyping studies. For instance, research on cotton has

demonstrated that ground-based LiDAR can measure traits such

as main stem length and node count with accuracy comparable to

manual methods (Sun et al., 2021). However, two key challenges

still hinder its broader application: (1) capturing the complete 3D

structure of plants often requires multi-site scanning and

subsequent fusion of multi-view point cloud data; (Li et al.,2023;

Liu et al., 2025) and (2) the high cost of LiDAR equipment remains

a significant barrier to its widespread adoption.

Image-based reconstruction techniques primarily use the

structure from motion (SfM) algorithm, which reconstructs a 3D

point cloud by matching feature points across multiple 2D images

(Song et al., 2023). Wang et al. (2022) used 100 images around

tomato plants for 3D point cloud reconstruction; while Li et al.

(2022) used 50–60 images for the 3D reconstruction of maize

plants. The number of required images depends on plant height

and phenotyping needs—smaller plants may require about 60

images, while taller ones may need up to 80 (Hui et al., 2018).

Although image-based methods can produce detailed point clouds

with low-cost equipment, they are time-consuming and

computationally intensive, limiting their application in high-

throughput phenotyping.
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Depth camera-based techniques offer an alternative for acquiring

point clouds. Unlike image-based methods, depth cameras directly

capture depth images (point clouds) without the need for metric

conversion (Yang et al., 2022). Depth cameras are typically classified

into two categories based on their operating principles: time of flight

(ToF)-based and binocular stereo vision-based. ToF cameras use light

emitted by a laser or LED source and measure the roundtrip time

between the emission of a light pulse and the reflection from thousands

of points to build up a 3D image (Kolhar and Jagtap, 2023). ToF

cameras are widely used in morphological phenotyping to measure

plant height (Jiang et al., 2016; Ma et al., 2019), leaf area (Chéné et al.,

2012; Song et al., 2023), etc. However, their relatively low resolution can

miss fine details, especially for smaller plants or delicate structures like

stalks and petioles (Paulus, 2019).

Binocular stereo vision cameras (stereo cameras) use two or more

lenses and separate image sensors to capture two slightly different

images, allowing 3D structure reconstruction by calculating the

distance from pixel disparities (Li et al., 2016). However, Due to the

inherent limitations of binocular camera hardware and the texture-

based matching principles of their imaging process, feature extraction

on low-texture or smooth surfaces (such as calibration spheres) is

significantly constrained. This often leads to point cloud distortions; for

example, a reconstructed calibration sphere may appear as a flat circle

rather than a three-dimensional hemisphere. Moreover, inherent

boundary effects in disparity calculations along the edges of complex,

non-rigid objects—such as plant leaves—combined with their curved

surface geometry and frequent local occlusions, further exacerbate

feature matching errors. These issues typically manifest as point cloud

drift, such as layered noise along leaf edges. Collectively, these factors

limit the accuracy of 3D reconstruction.

Due to mutual occlusions between plant organs, obtaining a

complete 3D point cloud of the plant from a single viewpoint scan is

challenging, regardless of whether LiDAR or other 3D imaging

technologies. To address this, a registration algorithm is essential to

align point clouds from different coordinate systems into a single

system, eliminating occlusion and ensuring a complete point cloud

(Teng et al., 2021). Fusing point clouds obtained from multiple

angles is a common method to establish accurate 3D models, and

researchers tend to reconstruct plant models through point clouds

data from three or more angles (Hu et al., 2018; Moreno et al.,

2020). The premise of point cloud fusion is to realize the

registration of multiple point clouds, which accurately align the

point cloud data from different views into a complete 3D model of

the plant (Li and Tang, 2017). For example, Yang et al. (2022)

introduced a self-registration method for tree seedlings using

calibration objects on a precision turntable, demonstrating that

high-precision 3D models could be achieved with low-cost

equipment. Likewise, Li et al. (Xiuhua et al., 2021). and Chen

et al. (Haibo et al., 2022) utilized multi-view point cloud fusion and

registration techniques to reconstruct banana seedlings and other

plant models effectively. Despite the advancements in multi-view

point cloud fusion, these reconstructions still lag behind image-

based methods in terms of accuracy. Therefore, most studies focus

on morphological phenotyping at the plant scale, such as plant

height (Xiuhua et al., 2021; Haibo et al., 2022; Yang et al., 2022), and
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crown width (Li and Tang, 2017), with fine-scale phenotypic traits,

such as leaf length and leaf width, rarely being addressed.

This paper proposes and validates an automated workflow for

Binocular stereo vision-based three-dimensional fine-grained

reconstruction and phenotyping of plants. The core contributions are

as follows: (1) high-resolution RGB images captured by a stereo camera

are combined with SfM andMVS algorithms to reconstruct single-view

point clouds of the plant; (2) a self-registration (SR) algorithm based on

a calibration sphere is employed for the initial alignment of multi-view

point clouds, followed by fine registration using the Iterative Closest

Point (ICP) algorithm, resulting in a unified and complete 3D plant

model. Based on this model, four key phenotypic parameters—plant

height, crown width, leaf length, and leaf width—are automatically

extracted. Comparative analysis with manually measured data

demonstrates the high accuracy and reliability of the proposed method.
2 Materials and methods

2.1 Image acquisition system for seedlings

Figure 1 illustrates the self-developed seedling reconstruction

system, which mainly consists of a ‘U’-shaped rotating arm, a

synchronous belt wheel lifting plate, a ZED 2 and a ZED mini

binocular camera as the image acquisition device (marked as ① in

Figure 1). The ZED mini is mounted on the ZED 2, which can

simultaneously capture 4 images with a resolution of 2208×1242 in a

single shot. The synchronous belt wheel lifting plate enables vertical
Frontiers in Plant Science 03
movement of the camera system, allowing image capture from various

heights. In this study, images were acquired twice at the same viewing

angle, resulting in a total of 8 RGB images. The image acquisition

process from a single viewpoint is illustrated in Figure 2A.

The ‘U’-shaped rotating arm allows for 360° rotation of the platform

around the plant. After acquiring images from one viewpoint, the arm

rotates by 60° and pauses before the next round of image capture, as

shown in Figure 2B. This rotation strategy enables image capture from

six distinct angles: 0° (360°), 60°, 120°, 180°, 240°, and 300°, yielding a

total of 48 images. The acquired images were then transmitted to the

image workstation via a JetsonNano edge computing device (NVIDIA),

which is powered by an AMD Ryzen 9 5900X 12-core processor with

32GB of RAM running Windows 10, alongside an NVIDIA GeForce

RTX 3080Ti GPU with 12GB of video memory.

To effectively perform multi-view point cloud registration, six

passive spherical markers (calibration spheres, commercially

available) with a known diameter and matte, non-reflective surfaces

are positioned at equal distances around the plant, as shown in

Figure 1A. The different colors of the calibrators facilitate their

segmentation and subsequent point cloud alignment.
2.2 Single-view point cloud reconstruction
via SFM-MVS

Binocular stereo cameras are often used to directly obtain point

cloud from a single perspective of plants, e.g., sorghum (Bao et al., 2019;

Xiang et al., 2021), maize (Xiang et al., 2023), etc. However, due to
FIGURE 1

3D reconstruction system for tree seedlings. (A) A working diagram of the 3D reconstruction system on site. (B) Solidworks drawing of 3D
reconstruction system. The red dotted box indicates the U-shaped rotating arm module, and the pink curved arrow shows the rotation direction of
the platform. The green dotted box highlights the camera acquisition module, which corresponds to the field acquisition diagram of the camera
module. The oval green line box indicates the ZED camera and the timing belt lifting mechanism, respectively.
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limitations inherent in the imaging hardware and the depth map

generation mechanism, plant point clouds captured directly using the

official SDK often exhibit shape distortions and spatial drift. To

overcome these issues, our workflow processes the images from each

of the six viewpoints independently. For each viewpoint, the set of 8

captured RGB images was input into Agisoft Metashape to execute a

complete SfM-MVS reconstruction, yielding a high-fidelity single-view

point cloud (as illustrated in Figures 3A–C). This process was repeated

for all six viewpoints, resulting in six separate point clouds ready for

registration. In contrast to the official SDK, which performs real-time

depth estimation based on a single image pair, our offline approach

incorporates global optimization and cross-view consistency checks.

This method yields a point cloud with substantially improved

geometric accuracy and reduced noise, offering a more robust and

reliable foundation for downstream phenotyping analysis.
2.3 Point cloud pre-processing

The reconstructed point clouds typically contain significant

noise, particularly black noise in the edge areas of plant leaves.

This noise is visually distinct from the plant and calibration sphere,

making it possible to filter out using a color-based filtering

algorithm. In this paper, we employ the R (Red), G (Green), and

B (Blue) color space, setting threshold values for each channel at 50

to filter out black or dark gray noise. Following this, further noise,

including outliers, is removed by cropping and denoising, resulting

in a cleaner point cloud, as shown in Figure 3D.
2.4 Scale calibration for single-view point
clouds

The reconstruction process described in Section 2.3 yields six

high-fidelity point clouds, each representing a different viewpoint of
Frontiers in Plant Science 04
the plant. However, a fundamental characteristic of the SfM

pipeline is that each reconstruction using SFM-MVS algorithms

or software are scaled (Rose et al., 2015), therefore it is essential to

standardize the scale of point clouds from various perspectives

before alignment.

To maximize geometric accuracy, we employed an offline SfM-

MVS pipeline instead of the camera’s real-time depth estimation.

Since this method produces point clouds without a metric scale, we

established the correct scale for each view using the known diameter

of the plant pot. As shown in Figure 3E, the top of pot is cropped,

and a set of circular ring point clouds is derived using point cloud

slicing algorithm. Then, the radius of the pot is determined by

fitting a circle to the segmented point cloud. Assuming that the

estimated pot diameters in the six viewpoints are g0, g1, g2, g3, g4,
and g5, respectively, with g2 as the reference, we calculate the scaling
ratios for each fitted circle relative to g2 as: m0=g0/g2, m1=g1/g2,
m3=g3/g2, m4=g4/g2, m5=g5/g2. Then the scale factors m0 ~m5 are

applied to the corresponding plant point cloud for scaling, thus

completing the scale calibration of the multi-view point cloud.
2.5 Calculation of calibration sphere centre
coordinates

The precise estimation of the spherical center coordinates plays

a crucial role in determining the point cloud’s positional attitude

and computing the transformation matrix. To achieve this, we

employ an improved Random Sample Consensus (RANSAC) ball

fitting algorithm to evaluate the sphere center coordinates of the

calibrated ball.

The original RANSAC algorithm is vulnerable to the influence

of outlier points during ball center estimation, which results in

decreased accuracy. To mitigate the adverse effects of outliers, we

optimize the original RANSAC algorithm by introducing dynamic

interior thresholding, multi-stage optimization, and geometric
FIGURE 2

Diagram of data acquisition method. (A) The image acquisition process from a single viewpoint. (B) Image acquisition process at 6 viewing angles.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1642388
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Wang et al. 10.3389/fpls.2025.1642388
constraints. The dynamic interior point threshold mechanism

adjusts the criteria for determining interior points according to

the actual data distribution, thus avoiding errors caused by fixed

thresholds that cannot accommodate complex data patterns. Multi-

stage optimization enhances the accuracy of sphere coordinate

calculation by progressively refining the fitting results. Geometric

constraints integrate the sphere’s geometric properties to further

limit the possible solution space, thereby improving the accuracy of

the sphere center calculation.
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The specific calculation flow of this enhanced algorithm is

illustrated as follows (Algorithm 1). This provides a more reliable

approach for the precise estimation of sphere center coordinates.
Input: Calibration sphere point cloud P, maximum number

of iterations N, baseline threshold tbase.

Output: Sphere center coordinates C (x, y, z) and

radius r.
FIGURE 3

Calculation process of rigid transformation matrix for adjacent point clouds. (A) Original image data acquired by the binocular camera. (B) Single
view point cloud reconstruction process. (C) Reconstructed original point cloud. (D) Point cloud after cropping, denoising and filtering. (E) Point
cloud scale correction process. (F) Scale-calibrated point cloud. (G) Calibration sphere point cloud extraction and sphere fitting. (H) Plant point
cloud after spherical fitting. (I) Extraction of the coordinates of the centre of the calibration sphere. (J) Homonymous pointpairs selection. (K)
Compute the rigid transformation matrix.
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Fron
1.Initialize best model parameters: Cbest = None, rbest=

0, scorebest= 0

2.For i = 1 to N:

3. Randomly sample 4 non-coplanar points to generate

candidate sphere Ccandidate, rcandidate

4. Compute local density, dynamically adjust threshold

t = f (tbase, density)

5 . C o u n t i n l i e r s : i n l i e r s

= p ∈ P ‖ distance(p,Ccandidate)�rcandidate ≤ tj gf
6. Compute the average distance m and standard deviation

s of the inliers

7. Compute model weight: w = len(inliers)
len(P) =(m + s )

8. if w> scorebest, update Cbest, rbest, scorebest

9.Apply geometric constraints (such as sphere center

range filtering) to the top-K candidate models

10.Use Levenberg-Marquardt (LM) algorithm to optimize

Cbest, rbest for the final model’s inliers

11.Return Cbest, rbest
Algorithm 1. Enhanced RANSAC algorithm.
2.6 Calculation of the transformation
matrix by means of the SR
1. Determine the set of homonymous points. For the two

adjacent point clouds, at least three calibration sphere

centers should overlap, which define the set of

homonymous points. In this paper, the set of coordinates

of the centre of the calibration sphere in the 0° viewing

angle is denoted by PC0, and 60° ~ 300° are represented as

PC1~PC5 respectively.

2. Transformation Matrix Calculation. To align the point

clouds from different viewpoints, the transformation

matrix between each homonymous point set must be
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calculated. Set PC0 as the reference point set, and

PC1~PC5 as aligned point set. The transformation matrix

between PC1 and PC0 can be calculated by Singular Value

Decomposit ion (SVD). By the same token, the

transformation matrices between the corresponding point

set PC2 and PC1, PC5 and PC4, PC3 and PC2 can also be

acquired. The transformation matrix between the

corresponding homonymous point sets is denoted by R0,

R1, R2, R4, and R5, is illustrated in Figure 4.
3 Results and analysis

3.1 Comparison and analysis of point cloud
reconstruction results

As discussed, point clouds generated directly by the binocular

camera’s official SDK often suffer from significant quality issues.

This is starkly illustrated in Figure 5A. The point cloud, derived

from the camera’s real-time stereo matching and triangulation,

exhibits severe geometric distortion. For example, the spherical

calibrator is incorrectly reconstructed as a flattened, disk-like shape,

and the plant leaves are plagued by layered noise and spatial drift at

their edges. These artifacts are characteristic limitations of real-

time, two-view stereo algorithms when dealing with texture-poor

surfaces and complex object boundaries.

In sharp contrast, our proposed workflow, which processes the

same raw RGB images using an offline SfM-MVS pipeline, yields

substantially superior results, as shown in Figure 5B. The

reconstructed point cloud is geometrically accurate and clean.

The plant contours are well-defined with minimal artifacts, and

crucially, the calibration sphere is reconstructed with its correct

three-dimensional hemispherical shape, showing minimal

distortion. This qualitative comparison highlights a key
FIGURE 4

Compute the transformation matrix between two homonymous point sets. (A) Point clouds generated directly by the binocular camera’s official
SDK. (B) Point clouds generated by off-line SfM-MVS pipeline.
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contribution of our work: by replacing the camera’s native, real-

time depth estimation with a more robust, globally optimized SfM-

MVS approach, we effectively mitigate the issues of distortion and

drift, producing a high-fidelity point cloud that serves as a reliable

basis for subsequent registration and analysis.
3.2 Point cloud preprocessing results

As described in Section 2.3, the point cloud preprocessing

results are shown in Figure 3D. The preprocessing steps,

including noise removal and filtering. The preprocessing

improves the overall quality of the point cloud, ensuring that it is

ready for further processing steps such as calibration

and registration.
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3.3 Point cloud calibration

Before point cloud calibration, the plant point clouds obtained from

different perspectives were inconsistent in scale. After calibration, the

sizes of point clouds in each group are consistent, ensuring a uniform

scale. Figure 6 shows the point cloud before and after calibration in two

adjacent viewpoints. The reference point cloud is the point cloud used as

a reference and its scale is set to 1, and the scaled point cloud is the one

that is scaled relative to the reference point cloud.
3.4 Calculation of calibration sphere center

The center of the calibration sphere was determined using the

enhanced RANSAC algorithm, as described in Section 2.5. Through
FIGURE 5

Comparison of point cloud reconstruction results. (A) Point clouds generated directly by the binocular camera’s official SDK. (B) Point clouds
generated by off-line SfM-MVS pipeline.
FIGURE 6

The process point cloud calibration. (A) Original point cloud and reference point cloud before point cloud calibration. (B) Original point cloud and
reference point cloud after point cloud calibration.
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iterative looping, the coordinates of the calibration sphere’s center

were calculated, as shown in Figure 7.
3.5 Point cloud registration results

The plant point cloud collected from a 0° perspective is taken as

the reference point cloud. The point clouds from other perspectives

are transformed to the spatial coordinate system of 0° perspective

through the rigid transformation matrix calculated by the

calibration spheres. The specific process is as follows: Rotate and

translate the point cloud from 60° perspective to the 0° point cloud

coordinate system through the transformation matrix R0. Afterward

ICP algorithm is used for fine registration, ensuring precise

alignment between the point clouds from both perspectives. We

set the maximum number of iterations to 100, with an RMSE (Root

Mean Square Error) threshold of 1e-8. The final overlap achieved

was 50%, resulting in a good configuration. Similarly, the point

cloud from 120°can be transform to 0°coordinate system by

transformation matrix R0×R1, followed by fine alignment with the
Frontiers in Plant Science 08
ICP algorithm. The same process was applied to the other

viewpoints, with the final alignment results displayed in Figure 8.

Compared to a single-perspective point cloud acquisition, the

multi-view point cloud registration approach fills in the holes and

gaps in the original point cloud, significantly enhancing the

accuracy and completeness of the reconstructed 3D model. This

method ensures that all surfaces of the plant are captured and

represented in the final point cloud.
4 Discussion

4.1 The underlying mechanisms of
distortion and drift elimination

The significant improvement in point cloud quality achieved by

our method (as illustrated in Figure 5) stems from a fundamental

paradigm shift: replacing the camera’s built-in, real-time, local

matching algorithm with an offline, globally optimized 3D

reconstruction workflow.
FIGURE 7

Calculation results for the center of the calibration sphere in multi-view point cloud.
FIGURE 8

The SR-ICP registration method described in this article.
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To ensure real-time performance, the stereo matching

algorithm used by the camera SDK estimates depth from

individual image pairs. However, this approach is highly prone to

matching ambiguities in low-texture surfaces (e.g., calibration

spheres) and complex boundaries (e.g., plant leaf edges), often

resulting in geometric distortions and edge drift. Because the

computation is local and pairwise, such errors are difficult

to correct.

In contrast, our SfM-MVS workflow processes all images from a

single viewpoint as a unified dataset. At the core of SfM is bundle

adjustment, a global optimization process that enforces geometric

consistency across the entire image set, thereby fundamentally

correcting errors introduced by local mismatches. Subsequently,

in the MVS stage, redundant information from multiple viewpoints

is exploited to robustly reconstruct challenging regions, including

smooth surfaces and leaf edges. The result is a point cloud that

offers both high geometric fidelity and structural completeness.

Thus, the shift from error-prone local real-time processing to robust
Frontiers in Plant Science 09
global optimization is the key to achieving high-accuracy

reconstruction in our proposed method.
4.2 Evaluation of point cloud
reconstruction accuracy and efficiency

MVS three-dimensional (3D) reconstruction is considered to be

the optimal solution to build a high-throughput and low-cost

phenotyping platform for individual plants (Wu et al., 2022). The

previous studies have shown that the phenotypes retrieved from

MVS reconstruction can match the accuracy of LiDAR and

reconstruct a high-quality 3D point cloud with vertex colors

(Wang et al., 2021). Therefore, in this paper, we compare the

proposed method with MVS-based point cloud reconstruction in

terms of both accuracy and efficiency.

Image-based point cloud reconstruction typically requires a

high degree of overlap between adjacent images, meaning that a
FIGURE 9

Comparative analysis of point cloud reconstruction accuracy. The point clouds reconstructed in the first row are of the Ilex verticillata variety, and
those in the second row are of the Ilex salicina variety. (A) The complete plant point cloud was obtained after registration using the SR-ICP algorithm
proposed in this study. (b) Point cloud obtained via MVS. (C) Distance heatmap between point clouds obtained via SR-ICP algorithm and MVS
algorithm (D) Point cloud distance heatmap colbar.
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series of multi-view images—usually between 25 and 30 must be

collected; this continuous image acquisition is time-consuming and

significantly reduces the efficiency of point cloud reconstruction. In

comparison, the method proposed in this study enhances both the

efficiency of image acquisition and point cloud reconstruction,

allowing for faster processing and high-throughput phenotyping.

The image acquisition and plant point cloud generation algorithms

in this article take about 6 and 7 seconds respectively in a single

perspective. Therefore, the total time for point cloud reconstruction

from a single viewpoint is under 15 seconds. In the process of point

cloud registration, the program automatically estimates the centers

of the calibration spheres and the rotation matrix. Through

program iteration, the rotation and translation matrices for six

angles can be computed in approximately 5 seconds. Consequently,

the total time consumption of the reconstruction method proposed

is approximately 100s, with a maximum of 2 minutes. While the

multi-view image reconstruction method requires the acquisition of

plant images from multiple viewpoints, thus, the camera must

execute a sequence of “hold-capture-rotate” operations during

image collection. Furthermore, the camera must be stabilized to

avoid image blurring caused by camera vibration, introducing a

designated dwell time before capturing each image. After testing,

the collection of 25 multi-view images can yield a relatively

complete plant point cloud, taking approximately 2 minutes and

30 seconds, which is about 30 seconds longer than the method
Frontiers in Plant Science 10
proposed in this paper. In conclusion, the method proposed here

can enhance the efficiency of point cloud reconstruction by

over 25%.

We evaluated geometric accuracy by computing the cloud-to-

cloud distance against a reference model. To isolate the analysis to

the plant’s structure, non-plant objects (e.g., the pot and spheres)

were removed from both clouds before comparison.

In terms of reconstruction accuracy, the proposed SR-ICP

workflow demonstrates a performance on par with established

image-based reconstruction techniques. As illustrated in Figure 9, the

multi-view registration strategy effectively compensates for point cloud

incompleteness caused by self-occlusion in single-view acquisitions.

While this superposition introduces minor misalignments at complex

boundaries like leaf edges—which constitute the primary source of

error—the overall geometric fidelity remains high.

A quantitative analysis of the plant-only portions of the point

clouds confirms this high accuracy. For the Ilex verticillata sample,

the mean and standard deviation of the distance error were 0.07 cm

and 0.11 cm, respectively. For the Ilex salicina, the mean and

standard deviation were 0.12 cm and 0.10 cm. These low error

values demonstrate that our method achieves strong consistency

with the image-based approach, validating its capacity for

producing accurate and comparable 3D plant models.

A key limitation and trade-off in our proposed workflow must

be acknowledged. While the image acquisition and reconstruction
FIGURE 10

Phenotypic parameters extracted in this paper.
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process are efficient, the multi-view registration step depends on the

manual placement of physical calibration spheres. This marker-

based registration introduces an additional setup step during data

collection, which is not required in fully automated, marker-less

MVS pipelines. This reflects a trade-off between automation and

registration accuracy. For objects with complex geometry and

severe occlusion—such as plants—marker-less registration

methods often struggle, leading to alignment failures or
Frontiers in Plant Science 11
significant cumulative drift in the absence of ground control

points. We opted for the marker-based approach because it offers

robust and highly accurate initial alignment, which is essential for

the success of the subsequent ICP-based fine registration and the

high-precision phenotyping demonstrated in this study. Future

research could explore semi-automated or robust marker-less

registration techniques tailored to plant structures to improve

overall throughput without compromising accuracy.
FIGURE 11

Comparative analysis of measured versus estimated values of height, leaf length, and leaf width of two Ilex varieties. (A) Scatter plot of measured
versus estimated values for plant height and crown width of Ilex verticillata. (B) Scatter plot of measured versus estimated values for plant height and
crown width of Ilex salicina. (C) Scatter plot of measured versus estimated values for upper and lower leaf length of Ilex verticillata. (D) Scatter plot
of measured versus estimated values for upper and lower leaf length of Ilex salicina. (E) Scatter plot of measured versus estimated values for upper
and lower leaf width of Ilex verticillata. (F) Scatter plot of measured versus estimated values for upper and lower leaf width of Ilex salicina.
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4.3 Assessment of plant 3D phenotypic
parameters based on multi-view point
cloud alignment

This study assessed phenotypic parameters at both the

individual plant and leaf scales. The extracted phenotypic

parameters include plant height, crown width, leaf length, and

leaf width, as illustrated in Figure 10. When extracting leaf

phenotypic parameters (leaf length and leaf width), one leaf was

chosen from the upper and one from the lower part of the plant,

aiming to assess the effectiveness of the method proposed.

The experiment was conducted on two varieties of Ilex: Ilex

verticillata and Ilex salicina, with 16 samples taken from each variety.

The coefficient of determination (R2) and root mean square error

(RMSE) were employed to assess the fitting accuracy between the

measured and estimated values. Figure 11 shows the relationship

between estimated and measured (real) values of phenotypic

parameters for both varieties. The results indicate that: both varieties

exhibit high fitting accuracy in terms of plant height and crown width,

with R2 exceeding 0.9, and a correspondingly low RMSE of less than

0.40 cm, signifying a strong model performance. For leaf morphology

(leaf length and leaf width), the R2 values for the upper and lower leaves

of Ilex salicina are 0.883 and 0.893 respectively, with an average RMSE

of approximately 0.15 cm. This significantly surpassing the 0.721 and

0.745 R² values for Ilex verticillata, which had a much higher RMSE of

around 0.50 cm, indicating greater prediction error. This significant

disparity is attributed to the distinct leaf shapes of the two varieties,

while ilex verticillata leaves often have a curved appearance, ilex salicina

leaves are generally flatter. Consequently, relying on the linear distance

between two points for estimating leaf length and width for ilex

verticillata can lead to significant error, as reflected in its higher

RMSE. In the leaf phenotyping of ilex verticillata, the leaf length and

leaf width R2 of the lower leaves were higher than those of the upper

leaves because the lower leaves appeared to be relatively flat compared

to the upper leaves, and thus the fitting accuracy was slightly higher

than that of the upper leaves. For ilex salicina, the fitting accuracies of

the upper and lower leaves were comparable, and the overall

performance was consistent.

In terms of the morphological distribution of upper and lower

leaves, it was observed that the statistical values for the upper leaves

—both in terms of leaf length and width—tend to be located in the

upper-right corner of the coordinate system. In contrast, the lower

leaves show values in the lower-left corner, indicating that the upper

leaves generally have a superior growth state. This is likely due to

their more favorable exposure to light, allowing for better

photosynthesis and consequently larger leaf sizes.

In summary, through the point cloud collection and registration

algorithm proposed in this article, high phenotypic estimation

accuracy can be achieved at individual scales (such as plant

height and crown width); at the organ scale, for traits like leaf

length and width. The lowest R2 of the estimation ranged from

0.721 to 0.99. The overall estimation accuracy for morphological

phenotype parameters is satisfactory.
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While the proposed workflow is effective, its applicability is

limited by plant structure, scale, and environmental conditions. For

plants with extremely dense and complex canopies, the six

viewpoints may not fully resolve severe self-occlusion, potentially

leaving significant gaps in the final model. This issue is

compounded by lighting conditions; lower leaves shaded by the

upper canopy can result in dark, feature-poor areas during imaging,

which in turn create voids in the reconstructed point cloud and

degrade accuracy. Furthermore, the registration strategy, which

relies on manually placed calibration spheres, is impractical for

large-scale plants like mature shrubs or trees. The method is also

highly sensitive to wind, as any movement of the plant during image

acquisition can cause motion blur and feature mismatching, often

leading to complete reconstruction failure. Consequently, the

method is optimally suited for single, small- to medium-sized

plants in controlled environments.
5 Conclusion

This study developed and validated an integrated workflow for

three-dimensional reconstruction and phenotyping of plants using

stereoscopic imaging technology. First, we employed a stereo

photogrammetry pipeline (SfM-MVS) to process image data

captured by a stereo camera, effectively addressing the distortion

issues inherent in the camera’s native depth SDK. Building on this

foundation, we proposed a robust multi-view registration strategy

that combines spherical markers with the iterative closest point

(ICP) algorithm (SR-ICP), enabling high-precision reconstruction

of complete plant point cloud models. To systematically evaluate

the performance of the method, we conducted comprehensive

comparative experiments. First, in terms of geometric accuracy,

compared with standard MVS reconstruction, our method’s point

cloud performed well in terms of average distance error (0.07 cm

and 0.12 cm) and distance standard deviation (0.10 cm and 0.11

cm). Second, in terms of phenotypic parameter extraction, the

results showed high correlation with manual measurements, with

extremely high correlation for plant-level traits (R² > 0.92) and R² >

0.72 for organ-level traits.

Two Ilex species were selected as test subjects, with 16 plants per

variety. A total of 192 measurements were conducted across four

phenotypic parameters at both the individual and organ levels,

providing sufficient empirical support for the method’s accuracy

and reliability. While the use of spherical markers introduces some

manual setup, this approach offers notable robustness in handling

the complex morphology and occlusion commonly observed in

plant structures. That said, the limited sample size remains a

constraint, and future work should aim to expand the dataset to

improve generalizability. In summary, this study presents a

rigorously validated and user-friendly framework for high-fidelity

3D plant data acquisition, offering reliable technical support for

plant phenotyping research and demonstrating broad

application potential.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1642388
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Wang et al. 10.3389/fpls.2025.1642388
Data availability statement

The raw data supporting the conclusions of this article will be

made available by the authors, without undue reservation.
Author contributions

ZW: Writing – original draft, Visualization, Methodology. HZ:

Funding acquisition, Writing – review & editing. LB:

Conceptualization, Writing – review & editing. LZ: Data curation,

Methodology, Writing – review & editing. YG: Conceptualization,

Writing – review & editing.
Funding

The author(s) declare that financial support was received for the

research and/or publication of this article. This work is supported by

National Key Research and Development Program of China

(2023YFE0123600), National Natural Science Foundation of China

(NSFC 32171790, 32171818) and Jiangsu Province agricultural

science and technology independent innovation fund project (CX

(23)3126) and Project 333 of Jiangsu Province.
Frontiers in Plant Science 13
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

constructed as a potential conflict of interest.
Generative AI statement

The author(s) declare that no Generative AI was used in the

creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this

article has been generated by Frontiers with the support of artificial

intelligence and reasonable efforts have been made to ensure

accuracy, including review by the authors wherever possible. If

you identify any issues, please contact us.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
References
Bao, Y., Tang, L., Breitzman, M. W., Salas Fernandez, M. G., and Schnable, P. S.
(2019). Field-based robotic phenotyping of sorghum plant architecture using stereo
vision. J. Field Robotics 36, 397–415. doi: 10.1002/rob.21830
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