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Yuanxin Li1, Shi Wang1,2, Ting Shu1,2,
Mingrong Yang3 and Qiqing Cheng1,2*

1School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology,
Xianning, Hubei, China, 2Hubei Engineering Research Center of Traditional Chinese Medicine of South
Hubei Province, Xianning, Hubei, China, 3Faculty of Chinese Medicine and State Key Laboratory of
Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, Macao
SAR, China
Introduction: Hovenia dulcis Thunberg, a multifunctional medicinal plant native

to East and Southeast Asia, has been introduced worldwide. However, the

environmental factors that determine its habitat and its precise distribution in

China remain incompletely characterized.

Methods: Therefore, the Maximum Entropy (MaxEnt) model integrated with,

ArcGIS was employed to predict the potential distribution of H. dulcis in China,

using 479 initial occurrence records (which were spatially filtered to 191 points)

and 33 environmental variables (of which 15 were selected for the final analysis).

Model performance was assessed via AUC-ROC, with key variables identified

through permutation importance and response curves. Future projections were

made under SSP126 and SSP585 scenarios for the 2050s and 2090s.

Results: The model demonstrated high accuracy (AUC = 0.934). The distribution

of H. dulcis was primarily governed by annual precipitation (Bio12), the minimum

temperature of the coldest month (Bio06), elevation, and the mean diurnal

temperature range (Bio02). The optimal ranges for these variables were as

follows: annual precipitation of 708.5–2,956.8 mm, a minimum temperature of

the coldest month between -4.9 and 8.9 °C, elevation of 273.9–1,019.4 m, and a

mean diurnal temperature range of 6.81–10.18 °C. At present, suitable habitats

are concentrated in central and southwestern China. Future projections indicate

a northward shift and altitudinal increase in suitable areas, with expansions in

Beijing, Hebei, and Liaoning, but contractions in Guangxi and Shandong. Hunan,

Jiangxi, Sichuan, and Guizhou remain core suitable regions. This northward shift

is consistent with preference of H. dulcis for the warm temperatures and

adequate humidity, highlighting both its vulnerability and its adaptive potential

under global warming.
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Discussion: H. dulcis is highly sensitive to climatic variables, particularly

temperature and precipitation. Our findings provide a scientific basis for

developing well-targeted conservation strategies, promoting sustainable

utilization, and optimizing cultivation practices for H. dulcis under

climate change.
KEYWORDS

Maximum Entropy model, Hovenia dulcis, environmental variable, contribution rate,
confidence importance, potential distribution area
1 Introduction

Hovenia dulcis Thunberg, a member of the Rhamnaceae family, is

a multifunctional plant with significant medicinal and economic

value (De Godoi et al., 2021). It is native to East and Southeast

Asia and has been introduced and naturalized in North America,

Australia, and New Zealand (Sferrazza et al., 2021). It is worth noting

that the species has fragrant flowers and possesses large leaves, which

contributes to its considerable value in urban air regulation and make

it a suitable candidate for street greening. Its fruits and seeds, known

as “Zhijuzi” in traditional Chinese medicine, are well supported by

evidence to have hepatoprotective effects (Hyun et al., 2010). For

centuries, “Zhijuzi” has been used to treat health conditions such as

fever, excessive thirst, alcohol poisoning, and urinary disorders.

Pharmacological studies have confirmed its broad bioactive

properties, especially its ability to reduce blood alcohol levels and

enhance alcohol metabolism (Meng et al., 2020), while exhibiting

significant antioxidant activity that mitigates alcohol-induced

oxidative stress (Tomczyk et al., 2012). The phytochemical profile

of H. dulcis is remarkably diverse, comprising constituents such as

flavonoids, terpenoids, fatty acids, saponins, and polysaccharides,

which exhibit potential therapeutic effects against a range of liver

diseases, particularly those associated with alcohol consumption (Li

et al., 2021; He et al., 2024).

Global warming profoundly affects ecosystems worldwide and

threatens both the geographic distribution and long-term

persistence of medicinal plant species. As climatic change

increasingly accelerates in rate and magnitude, assessing its

impacts has become an urgent matter that needs to be prioritized

(Thomas et al., 2004). In China, changes in climatic conditions have

intensified the occurrence of extreme meteorological events. The

frequency and severity of such events are both on the rise, exerting a

profound impact on the ecological environment and threatening

the natural habitats of numerous plant species. Environmental

variables, especially temperature, precipitation, and elevation,

together with human activities, fundamentally shape the

distribution and quality of medicinal plants. The prediction

output of species distribution models under future climate

scenarios largely depends on method selection (e.g., algorithm

selection and predictor curation) and climatic uncertainties (e.g.,
02
divergent projection ranges and greenhouse gas trajectories)

(Porfirio et al., 2014). Forecasting the potential geographical

distribution of species under climate change conditions is

essential for biodiversity conservation and the sustainable

utilization of resources (Guisan and Thuiller, 2005).

Species distribution models (SDMs) offer critical insights into

the exploration and prediction of species distribution and play an

essential role in understanding and conserving global biodiversity

(Niiya et al., 2024). Various SDMs are commonly used to assess

potential species habitats, including Maximum Entropy (MaxEnt),

Boosted Regression Trees (BRT), Random Forests (RF),

Generalized Additive Model (GAMs), and Generalized Linear

Model (GLMs) (Melo-Merino et al., 2020). According to

statistical analyses, the MaxEnt model is the most widely used

(Khan et al., 2022). Since its introduction in 2006, it has become a

mainstream approach in species distribution modeling (Phillips

et al., 2006). By applying the principle of maximum entropy, it

effectively identifies the most influential environmental factors,

even under complex ecological conditions (Cao et al., 2021).

There are three main reasons why the MaxEnt model stands out.

First of all, it is specifically designed for presence-only data, which is

particularly valuable for medicinal plants with insufficient sampling.

Secondly, it performs reliably with small sample sizes of as few as 25

records, while minimizing overfitting through built-in

regularization (Phillips and Dudıḱ, 2008). Finally, its logistic

output generates continuous probability surfaces, facilitating the

interpretation of protection planning. Therefore, MaxEnt has been

widely applied in disciplines such as conservation biology and

ecology (Kumar et al., 2022; Shen et al., 2023).

To examine the current and future distribution patterns of H.

dulcis across China, this study integrates species occurrence records

with climatic, soil and topographic variables. Using MaxEnt model

in combination with ArcGIS spatial analysis, we reconstruct habitat

suitability during the Last Glacial Maximum (LGM) and Mid-

Holocene (MH) scenarios, evaluate current suitability from 1970

to 2000, and project future distributions for the 2050s and 2090s.

The study aims to achieve four key objectives: (1) to simulate the

current potential distribution and delineate suitable habitats of H.

dulcis; (2) to identify the dominant ecological variables that control

its geographical scope; (3) to forecast shifts in suitable habitats for
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the 2050s and 2090s through analyses of response curves and

permutation importance; and (4) to elucidate optimal growth

conditions, thereby providing a theoretical foundation for

conservation and sustainable utilization strategies.

Additionally, these findings will support the development of

strategies for the protection, cultivation, and sustainable utilization

of H. dulcis, thereby ensuring its long-term survival and ecological

contributions under global warming. By delineating optimal

habitats and identifying the dominant environmental variables,

the study elucidates both the most favorable growth conditions

and the potential impacts of climate change (Li and Park, 2020).

These insights will strengthen the conservation and management of

H. dulcis resources, ensuring their continuous availability for both

medicinal and economic applications.
2 Materials and methods

2.1 Acquisition and screening of H. dulcis
distribution data

To systematically investigate the distribution of H. dulcis,

occurrence data were retrieved from major online botanical

databases, including the Chinese Virtual Herbarium (CVH,

https://www.cvh.ac.cn/) and the China National Specimen

Information Infrastructure (NSII, http://www.nsii.org.cn/). A total

of 479 occurrence records across China were compiled

(Supplementary Table S1). To remove duplicate and ambiguous

entries, records lacking precise geographical coordinates were

georeferenced using the Baidu Coordinate Pickup System (http://

api.map.baidu.com/lbsapi/getpoint/index.html) (Fan et al., 2014).

This process resulted in 254 accurately georeferenced occurrence

points (Supplementary Table S2). To reduce overfitting caused by

sampling bias, spatial filtering was performed in ArcGIS 10.4.1. A

10 km buffer was generated around each point, and within every 20

km diameter circle, a single presence record was randomly retained.

The filtering procedure was determined primarily by three

considerations: the ecological traits of H. dulcis, a deciduous tree

with animal-assisted seed dispersal, which justify the use of a 10 km

buffer to account for local clustering (Zhou et al., 2013); the spatial

resolution of environmental variables, such as bioclimatic, soil and

topographic variables exhibits spatial autocorrelation within 10 km,

making a 20 km zone appropriate for capturing environmental

variation (Pokharel et al., 2016); methodological consistency, as

similar filtering thresholds of 10–20 km have been widely applied to

medicinal plants such as Panax notoginseng, Piper kadsura, and

Magnolia biondii to balance ecological accuracy with bias control

(Guo et al., 2025; Li et al., 2025). This procedure yielded 191

validated occurrence points (Figure 1; Supplementary Table S3),

which were formatted into a CSV file containing the species name,

longitude, and latitude for subsequent modeling. According to the

NSII platform and Flora of China, these records were primarily

distributed across central, eastern and southwestern China. The

highest numbers of records were from Henan (66 points), Jiangxi

(64 points), Guizhou (40 points), Shandong (33 points), Shaanxi (28
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points), Hebei (23 points), Sichuan (22 points), Hunan (20 points),

Guangxi (19 points), Fujian and Zhejiang (17 points each), Anhui

(16 points), and Hubei (13 points).
2.2 Acquisition and screening of
environmental variables influencing
suitable habitats

Nineteen bioclimatic variables were obtained from the

WorldClim database (http://www.worldclim.org). The soil

variables utilized in our study were collected from the World Soil

Database hosted on the FAO Soils Portal (http://www.fao.org/soils-

portal/data-hub/en/), totaling 11 distinct parameters. The

topographic variables were sourced from the WorldClim website

(https://www.worldclim.org/), amounting to 3 variables (Ouyang

et al., 2022). Overall, these 33 independent environmental variables

form a comprehensive dataset that has been carefully selected and

prepared for the ecological analyses outlined in Table 1. We adopted

the 1970–2000 climate dataset as our baseline, supplemented with

historical climate data from LGM and MH scenarios, as well as

future climate projections for 2041–2060 and 2081–2100 under

different emission scenarios. For future climate projections, we used

the CMIP6-based Shared Socioeconomic Pathways (SSPs)

framework, which defines alternative socio-economic and climate

change scenarios. Among them, SSP126 represents a low-emission

scenario and SSP585 represents a high-emission scenario, both are

widely used to predict climate change impacts on species

distributions (Karuppaiah et al., 2023). These scenarios have been

employed in numerous ecological predictions, including the

research on medicinal plants such as Zingiber striolatum and

various pests and plants (Huang et al., 2024; Mao et al., 2024).

While intermediate scenarios aid in a more comprehensive

understanding of impacts across different emission trajectories,

many studies (including ours) have chosen extreme scenarios to

simplify analysis and conserve computational resources (Zheng

et al., 2022).
2.3 Correlation analysis and determination
of key environmental variables for
adaptation

To mitigate multicollinearity among environmental variables

and reduce the risk of overfitting, we calculated Spearman’s rank

correlations in SPSS 26.0. We excluded any variable that exhibited |

r| > 0.8 with another variable and whose permutation-based

variable importance score contributed < 5% to the ensemble

model. According to the describe screening procedure (Zhang

et al., 2020), 15 variables for the H. dulcis distribution model were

finally selected. It included 7 bioclimatic variables (Bio_2, Bio_3,

Bio_4, Bio_6, Bio_8, Bio_10, and Bio_12), 5 edaphic variables (top-

soil organic carbon, sub-soil organic carbon, calcium carbonate

content, sand, and clay fractions), and 3 topographic variables

(elevation, slope, and aspect).
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2.4 Construction of the MaxEnt model

Climate variables and species-occurrence records of H. dulcis

were inputted into MaxEnt, with the parameters set as: bootstrap

resampling, logistic output, and the default regularization multiplier

of 1. This follows common practices in similar studies when lacking

species-specific tuning data, and preliminary tests showed no

significant performance improvement with adjustments (Zhan

et al., 2022). Although the logistic output was optional in MaxEnt,

it yielded an estimate of occurrence probability that is more readily

interpretable (Elith et al., 2011). And 75% of the occurrence records

were randomly selected as the training set, and the remaining 25%

were used as the test set to evaluate the model performance. Each

bootstrap replicate was run for 1000 iterations, which was consistent

with the default setting commonly used in species distribution

modeling studies (Pischl et al., 2020), and the ensemble average of

10 replicates was adopted as the final prediction (Syfert et al., 2013).

Raster outputs for H. dulcis were imported into ArcMap 10.4.1

and reclassified using the natural-breaks method (Bergamin et al.,

2022). Subsequently, the area under the receiver operating

characteristic curve (AUC-ROC) was used to evaluate the validity

of the model. As a threshold-independent metric, AUC-ROC has
Frontiers in Plant Science 04
been emphasized in recent studies for evaluating the MaxEnt model

(Ahmadi et al., 2023). The predictive accuracy of model was

classified according to standard AUC thresholds, <0.6 indicated

failure, 0.6–0.7 represented poor, 0.7–0.8 showed moderate, 0.8–0.9

demonstrated good, and 0.9–1.0 means excellent predictive

performance (Ottó and Végvári, 2022).
2.5 Model evaluation and habitat
classification

The Jackknife method was used to evaluate the relative influence

of individual environmental variables on the distribution of H. dulcis

(Hong et al., 2021). Response curves of the most influential variables

were generated to visualize the environmental preferences of species

(Yan et al., 2020; Son et al., 2023). Ranking importance quantified

model sensitivity to each variable by randomly changing its values

across training and background data, with higher values indicating

greater influence (Ma et al., 2024).

In species distribution modeling and habitat classification, the

Maximum Test Sensitivity plus Specificity (MTSPS) threshold was

widely applied to distinguish suitable from unsuitable habitats
FIGURE 1

Distribution map of H. dulcis.
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because of its practicality and effectiveness. The mean of the ten

MTSPS values was then adopted as the determination threshold,

and habitat suitability was classified into four categories: unsuitable

(0–MTSPS), low suitability (MTSPS–0.3), medium suitability (0.3–

0.5), and high suitability (0.5–1) (Aligaz et al., 2024). This procedure

ensured that the threshold is derived exclusively from data not used

in training, minimizing overfitting and ensuring the objectivity and

generalizability of the classification criterion, in line with best-

practice recommendations in species-distribution modeling. The

occurrence probability ofH. dulcis was projected throughout China.

Furthermore, the suitability models were applied to seven different

scenarios to generate corresponding distribution maps, including

the Last Glacial Maximum (LGM), Mid-Holocene (MH), current,

and future projections for the 2050s and 2090s under both SSP126
Frontiers in Plant Science 05
and SSP585. Based on the MTSPS classification standard, the areas

of medium- and high-suitability habitats were calculated, and their

sum was determined as the total suitable habitat area (Zhang et al.,

2023; Yang et al., 2024).
2.6 Analysis of the area changes of the
suitable habitat of different provinces in
China

The provincial boundary shapefile of China (Review Map No.:

GS(2019)1822) was imported into ArcMap 10.4.1. Habitat

suitability rasters (.asc) for each period were converted to

GeoTIFF (.tif) format with FLOAT data type. After assigning the

WGS_1984 geographical coordinate system, the data were projected

to WGS_1984_Albers for accurate area measurement. Provincial

attribute tables were updated with the corresponding province

names. Then, the continuous suitability data were reclassified into

four categories: unsuitable, low suitability, medium suitability, and

high suitability. The regional geometry tool calculated categorical

areas within each province. The results were exported as dBASE

files for quantitative analysis in Excel. Under different scenarios, the

growth rate of suitable habitat area for each province was calculated

as the percentage increase relative to the current suitable habitat

area. Venn diagrams were generated using Microbioinformatics

(http://www.bioinformatics.com.cn/) to visualize provincial habitat

distribution patterns (Tang et al., 2023).
2.7 Statistical correlation with climatic
variables

To explore the potential drivers of observed habitat changes,

provincial-level meteorological data for 2021, 2022, and 2024 (2023

data were unavailable) were obtained from the National

Meteorological Science Data Center (https://data.cma.cn/;

Supplementary Table S6). Spearman’s rank correlation analysis

was performed in Origin to quantify the relationships between

provincial rates of habitat expansion or contraction and key climatic

variables. The statistical significance of the correlations was

evaluated using a p-value threshold of 0.05. The results were

visualized as correlation heatmaps.
3 Results

3.1 Model accuracy analysis

The potential distribution of H. dulcis was predicted using the

MaxEnt model. The model was run for 10 replicates, and the results

were combined into an ensemble average. Model performance was

assessed using the area under the receiver operating characteristic

curve (AUC). To address potential overfitting issue that may caused

by multicollinearity, we performed a Spearman’s rank correlation

analysis on all 33 environmental variables.
TABLE 1 Description of environmental variables.

Variable Description Variable Description

Bio1 Annual average
temperature (°C)

Bio18 Precipitation of
warmest quarter (mm)

Bio2 Mean diurnal range
(mean of monthly (max
temp - min temp)) (°C)

Bio19 Precipitation of
coldest quarter (mm)

Bio3 Isothermality (bio2/
bio7) (× 100)

awc_class Soil available water
content

Bio4 Temperature seasonality
(standard deviation ×
100)

s_caco3 Topsoil calcium
Carbonate (%wt)

Bio5 Max temperature of
warmest month (°C)

s_clay Substrate-soil clay
content (%wt)

Bio6 Min temperature of
coldest month (°C)

s_oc Substrate-soil organic
carbon (%wt)

Bio7 Annual temperature
span (bio5-bio6) (°C)

s_ph_h2o Substrate-soil pH

Bio8 Mean temperature of
wettest quarter (°C)

s_sand Sediment content in
the subsoil (%wt)

Bio9 Mean temperature of
driest quarter (°C)

t_caco3 Topsoil carbonate or
lime content (%wt)

Bio10 Mean temperature of
warmest quarter (°C)

t_clay Clay content in the
upper soil (%wt)

Bio11 Mean temperature of
coldest quarter (°C)

t_oc Topsoil organic
carbon (%wt)

Bio12 Annual precipitation
(mm)

t_ph_h2o Topsoil pH

Bio13 Precipitation of wettest
month (mm)

t_sand Sand content (%wt)

Bio14 Precipitation of driest
month (mm)

aspect Aspect

Bio15 Precipitation variability
(coefficient of variation)

elev Elevation (m)

Bio16 Rainfall of wettest
quarter (mm)

slope Slope (°)

Bio17 Precipitation of driest
quarter (mm)
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In this study, the average training AUC for H. dulcis was 0.934

(Figure 2b), while the test AUC based on an independent subset of

25% of occurrence records was 0.921. Both values exceeded 0.9,

indicating excellent predictive performance and strong model

reliability. The approach applied in this study effectively identified

key environmental variables shaping species distribution, which was

in line with established methods of ecological modeling.
3.2 Identification of key environmental
variables

Using the MaxEnt algorithm, the relative contributions of 15

environmental variables to the species distribution model were

evaluated based on percentage contribution and permutation

importance. In Table 2, Annual precipitation (Bio12) was the

most influential factor (39.5%), followed by the minimum

temperature of the coldest month (Bio06, 31.1%). Additional

variables with measurable effects included slope (9.4%) and

isothermality (Bio03, 5.8%), while the contributions of all

remaining variables were minor (≤2.8%). Through the assessment

of permutation importance, reflecting the sensitivity of the model,

the primary influence of Bio06 (31.2%), elevation (16.9%), and

Bio12 (16.6%) were confirmed, highlighting their critical roles in

shaping the distribution of H. dulcis.

The Jackknife test further underscored the critical importance

of these variables for mapping suitable habitats for H. dulcis across

China. Specifically, Bio06 (Minimum Temperature of the Coldest

Month), Bio02 (Mean Diurnal Range), and Bio12 (Annual

Precipitation) emerged as the most influential variables governing

its distribution (Figure 3a). Therefore, the distribution of the species

was mainly driven by extreme temperatures, diurnal temperature

variation, annual precipitation, and topography (elevation).

Response curve analysis (Figure 3b) identified the optimal

ranges and threshold values of the key environmental variables

that restrict the distribution of H. dulcis. The appropriate ranges

and corresponding optimum values were: annual precipitation of
Frontiers in Plant Science 06
708.45–2956.80 mm (Bio12; optimum: 1985.02 mm), minimum

temperature of the coldest month from –4.93 to 8.92°C (Bio06;

optimum: 4.20°C), elevation between 273.85 and 1019.40 m

(optimum: 681.21 m), and mean diurnal temperature range of

6.81–10.18 °C (Bio02; optimum: 8.13°C). Within these intervals,

the probability of species occurrence increased toward the optimum

value, whereas values beyond these thresholds resulted in a reduced

probability of occurrence. Overall, temperature-related variables,

precipitation, and elevation were the primary environmental

driving factors affecting the distribution of H. dulcis.
3.3 Distribution prediction of H. dulcis under
current climate conditions

The predicted distribution of suitable habitats for H. dulcis

under current climate conditions was visually summarized in

Figure 4. Habitat suitability was classified into four categories:

unsuitable (gray), low-suitable (green), medium-suitable (yellow),

and high-suitable (red). It is primarily distributed between 30°N–

37°N latitude and 101°E–123°E longitude, delineating its overall

suitable habitat range. The total suitable area was estimated at

147.70 × 104 km², accounting for 15.39% of China’s land area,

among which high-suitable habitats accounted for 35.23%. The total

suitable habitat area of H. dulcis was relatively concentrated,

primarily located at the intersection of central, southwestern, and

northwestern China, as well as coastal regions of eastern and

southern China. No suitable habitats were predicted in the

northernmost parts of the country. Occurrence records further

indicate that H. dulcis predominantly occupies low- to mid-

elevation hilly terrain, particularly around the Sichuan Basin. This

predicted distribution was consistent with the range of the species’

native habitats recorded in the Flora of China, and also closely

corresponded to the specimen records of the herbarium from 1950

to 2020. By contrast, unsuitable habitats were mostly located in

northeastern, northern, and northwestern China, which might be

due to the limitations of climatic factors.
FIGURE 2

Prediction of the suitable habitat of H. dulcis based on the MaxEnt model and analysis of environmental variables. (a) Correlation heatmap related to
environmental variables of H. dulcis; (b) ROC curve of the MaxEnt model.
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3.4 Distribution prediction under past and
future climates

The past and future predicted distribution patterns of H. dulcis

were summarized in Table 3 and Figures 5, 6. Under the LGM and

MH scenarios, the total area of suitable habitat was markedly

restricted, with most habitats classified as low suitability

(Figures 6a, b). Although the MH scenario showed a wider range

of suitable environments than the LGM scenario, no high-suitable

habitats were detected, and medium-suitable habitats remained
Frontiers in Plant Science 07
limited. This pattern was consistent with the key climatic

variables identified to affect the distribution of H. dulcis,

especially the minimum temperature of the coldest month and

annual precipitation.

At present, the suitable habitat area of H. dulcis has expanded

considerably. High-, medium-, and low-suitable habitats covered

52.04 × 104 km², 95.66 × 104 km², and 62.64 × 104 km² respectively

(Figure 5). These findings indicated that contemporary climatic

conditions are favorable for its survival. The core distribution area

was in subtropical monsoon zones, with hot and humid summers
TABLE 2 Percent contribution and permutation importance of the dominant environmental variables in the MaxEnt model.

Variable Description Percent contribution (%) Permutation importance (%)

bio12 Annual precipitation 39.5 16.6

bio06 Min temperature of coldest month 31.1 31.2

slope Slope 9.4 10.3

bio03 Isothermality ((Bio02/Bio07) * 100) 5.8 3.5

elev Elevation 2.8 16.9

aspect Aspect 2.5 2.2

bio02
Mean diurnal range (mean of monthly
(max temp - min temp))

2.0 3.0

bio04 Temperature seasonality 1.5 4.5

s_clay Substrate-soil clay content 1.5 2

s_caco3 Topsoil calcium Carbonate 1.3 2.7

bio08 Mean temperature of wettest quarter 1.1 1.4

s_sand Sediment content in the subsoil 0.8 3.7

s_oc Substrate-soil organic carbon 0.5 0.5

t_oc Topsoil organic carbon 0.3 0.4

bio10 Mean temperature of warmest quarter 0.2 0.8
FIGURE 3

Prediction of the suitable habitat of H. dulcis based on the MaxEnt model. (a) Jackknife test of environmental variables; (b) Response curve of key
influential variables.
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and mild and moist winters. Such climatic conditions were

consistent with the key environmental variables identified in the

response analysis.

Future projections indicated a general contraction of suitable

habitats (Figures 6c-f). Under the SSP126 scenario, it was expected

that the appropriate area will initially decrease and then rebound

slightly, but it would still be lower than the current levels. Between

2041 and 2060, the total suitable area was expected to decline by

3.91% to 141.92 × 104 km2. Medium-suitable habitats were

projected to decrease by 8.69%, whereas low- and high-suitable

hab i ta t s were expec t ed to increase by 11 .40% and

4.86% respectively.

From 2081 to 2100, the estimated total suitable area was 143.17

× 104 km2, a decrease of 3.07% compared to current conditions.

During this period, low- and high-suitable habitats were expected to

increase by 13.68% and 2.00% respectively, whereas medium-

suitable habitats were projected to decline by 5.82%. However,

under the SSP585 scenario, the loss of suitable habitat was predicted

to be more pronounced. Between 2041 and 2060, the total suitable

area was projected to decline by 4.91% to 140.45 × 104 km2. Low-

suitable habitats were expected to increase by 20.18%, while

medium- and high-suitable habitats decreased by 5.93% and

3.04% respectively. It was estimated that from 2081 to 2100, the

total suitable area will decline sharply by 19.35% to 119.12 × 104

km2. Among them, the low-suitable habitats increased by 44.46%,

medium-suitable habitats decreased by 10.18%, and high-suitable

habitats declined by 36.18%. Collectively, these projections
Frontiers in Plant Science 08
indicated that global warming will substantially reduce the

environmental suitability for H. dulcis survival.
3.5 Provincial distribution of suitable
habitats for H. dulcis under current climate
condition

Under current climatic conditions, the distribution of suitable

habitats for H. dulcis varied considerably across Chinese provinces

and was broadly spread across many regions (Supplementary Table

S4). No suitable habitats were found in Heilongjiang, Shanghai,

Xinjiang, or Macau SAR, while other provinces had suitable habitats

to varying degrees. Medium-suitable habitats were concentrated in

central and western China, while high-suitable habitats were

distributed across western, central, and eastern regions. As shown

in Table 1, Yunnan Province had the largest area of low-suitable

habitat, covering 199,295.91 km2. The Guangxi Zhuang

Autonomous Region contained the largest extent of medium-

suitable habitat (95,434.07 km2), followed by Hunan (95,047.70

km2), Sichuan (82,345.70 km2), Guizhou (79,979.16 km2), and

Jiangxi (73,048.60 km2). All other provinces contained less than

60,000 km² of medium-suitable habitat.

Hunan Province contained the largest area of high-suitable

habitat, covering 85,364.23 km2, followed by Guizhou (79,544.49

km2), Sichuan (75,656.62 km2), Hubei (74,714.83 km2), Jiangxi

(70,778.66 km2), Shaanxi (65,079.66 km2), and Fujian (62,495.80
FIGURE 4

Distribution of suitable habitats for H. dulcis in the current scenario.
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km2). Each of the remaining provinces has less than 60,000 km2 of

high-suitable habitat. Under the current climatic conditions, the

combination of medium- and high-suitable habitats indicated that

Hunan, Guizhou, Sichuan, and Jiangxi are the most suitable regions

for the growth of H. dulcis.
3.6 Changes in the suitable habitat of H.
dulcis under SSP126 and SSP585 scenarios

Further analysis of Figure 6 and Supplementary Table S5

illustrated changes in suitable habitats of H. dulcis under two future

climate scenarios. Under the SSP126 scenario, suitable habitats across

China were projected to expand in both the 2050s and the 2090s.

Hebei, Liaoning, Ningxia, and Beijing exhibited continuous and

significant expansion during both periods, with Hebei showing the

greatest increase (216.93%) by the 2090s. In the 2050s, Shanxi and

Gansu displayed the highest growth rates (70.03% and 33.67%,

respectively), whereas Guangxi and Guangdong experienced

declines of 23.40% and 17.70%. Among provinces with suitable

habitat areas exceeding 15,000 km2, more exhibited habitat loss

than expansion, while those below this threshold showed more

variable patterns. By the 2090s, the reductions in Guangxi and

Guangdong intensified to 30.53% and 21.18% respectively.

Chongqing shifted from habitat reduction in the 2050s to

expansion in the 2090s, while Yunnan followed the opposite trend.

Overall, the number of provinces experiencing habitat loss exceeded

those with gains, and the spatial pattern of habitat expansion and

contraction remained largely consistent throughout the two periods.

Under the SSP585 scenario, Liaoning Province exhibited an

exceptionally high growth rate of 1,936.36% by the 2090s, mainly

due to the small baseline habitat area under current conditions.

Therefore, even a moderate absolute increase resulted in a

disproportionately high relative growth rate. Hebei, Shanxi, and

Gansu also witnessed substantial increases, reaching 284.98%,

147.01%, and 121.36%, respectively, whereas Shandong and

Guangxi saw an accelerated declines of 58.79% and 51.13%.

Guizhou and Yunnan displayed more dynamic trends, with initial

increases in the 2050s followed by declines in the 2090s. Among

provinces with suitable areas exceeding 15,000 km2, the numbers of

those gaining and losing habitats were roughly comparable, yet a

net contraction was observed at the national scale. Both scenarios

consistently revealed obvious north-south differences, with an

increase in suitability in northern China and a decrease in

suitability in southern regions.

According to statistical analysis, in both current and future

scenarios, the suitable habitat in 17 provinces exceeded 15,000 km2

(Figure 7a). Among them, it was expected under future climate

conditions, the temperatures in six provinces including Hebei,

Shanxi, Jiangxi, Hunan, Shaanxi, and Gansu will continue to

exceed current habitat levels (Figures 7b, 8a). In contrast,

Zhejiang, Anhui, Fujian, Shandong, Henan, Hubei, Guangdong,

Guangxi, and Sichuan were expected to experience reductions in

habitat suitability relative to current levels (Figure 8b).

Guizhou, Yunnan, Chongqing, and Tibet maintained relatively
T
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stable suitable habitat areas, with only minor fluctuations under

both present and future conditions (Figure 8c). It was worth noting

that Beijing, Hebei, Liaoning, and Ningxia are expected to see a

significant increase, while Jilin, Heilongjiang, and Qinghai are

expected to see new suitable habitats, indicating a northward and

mid-latitude shift in the potential distribution of H. dulcis

(Figure 8d). In all scenarios, Hunan remained the most suitable

province, while Jiangxi also sustained a large and continuously

expanding area of suitable habitats. Although Guizhou and Sichuan

were projected to lose some suitable area, they still maintained a

relatively high degree of suitability.
3.7 Relationship between provincial habitat
change and climatic variables

Analysis of meteorological conditions across provinces revealed

that the projected change (future/current) in suitable habitat area forH.

dulcis correlated positively with temperature, which was consistent with

the thermophilic nature of this species (Figure 9). In contrast, the

change rate showed significant and negative correlations with both

precipitation and air humidity. This suggested that excessive moisture

inhibits its growth, which might explain its absence in coastal regions.

A weak positive correlation with wind speed implied that moderate
Frontiers in Plant Science 10
winds may enhance gas exchange and stimulate physiological activity.

Elevation exerted an indirect influence on distribution by interacting

with topography and wind speed. Terrain features such as slopes and

valleys altered local wind patterns, thereby modifying microclimatic

conditions (such as temperature and moisture retention), which are

crucial forH. dulcis survival. These findings aligned with prior analysis

of key environmental variables, reaffirming the critical roles of

temperature, precipitation, and elevation in determining habitat

suitability. Consequently, our results supported the prediction of an

overall range contraction for H. dulcis under future climate

warming scenarios.

In summary, the priority provinces for future cultivation of H.

dulcis included Hunan, Jiangxi, Hebei, Liaoning and Beijing, where

the suitable habitat areas continued to expand. Meanwhile, attention

should be paid to provinces such as Guizhou and Sichuan, where the

suitable area was decreasing but still maintained high suitability.
4 Discussion

4.1 Reliability of MaxEnt model prediction

Species distribution models serve as the significant tool for

assessing the impacts of climatic and environmental changes on
FIGURE 5

Suitable habitat area of H. dulcis under future climate conditions and the change in area compared to the current climate.
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habitat suitability (Wiens et al., 2009). Among them, MaxEnt model

is regarded as one of the most frequently used ecological niche

models in current studies, especially for presence-only data (Phillips

and Dudıḱ, 2008). This makes H. dulcis highly suitable for study, as

a medicinal plant that has not received sufficient attention in

biodiversity surveys. Our dataset contains 191 verified occurrence
Frontiers in Plant Science 11
records. Although these records are spatially sparse, the robustness

of the MaxEnt model effectively mitigates this limitation.

This study takes climatic conditions, edaphic properties, and

topographical features as the main environmental variables and

uses spatial modeling methods to predict the optimal habitat range

of H. dulcis. However, the accuracy of the model predictions is
FIGURE 6

Distribution of suitable habitats for H. dulcis under different climate scenarios. (a) Last Glacial Maximum (LGM); (b) Mid-Holocene (MH); (c) 2041–2060
(2050s) average, SSP126; (d) 2041–2060 (2050s) average, SSP585; (e) 2081–2100 (2090s) average, SSP126; (f) 2081–2100 (2090s) average, SSP585.
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FIGURE 7

Provincial suitable habitat situation of H. dulcis under climate change scenarios. (a) Provinces where the area of suitable habitat remains above
15,000 km² throughout all periods and those expected to surpass 15,000 km2 in future periods; (b) Provinces where suitable habitat area
consistently surpasses current climatic suitable habitat area. (HuN, Hunan Province; GZ, Guizhou Province; SC, Sichuan Province; JX, Jiangxi
Province; GX, Guangxi Zhuang Autonomous Region; HuB, Hubei Province; SaX, Shaanxi Province; FJ, Fujian Province; SX, Shanxi Province; GD,
Guangdong Province; ZJ, Zhejiang Province; HeN, Henan Province; CQ, Chongqing; AH, Anhui Province; YN, Yunnan Province; SD, Shandong
Province; GS, Gansu Province; HeB, Hebei Province; TB, Tibet Autonomous Region; LN, Liaoning Province).
FIGURE 8

Area of suitable habitat in different provinces at different future climate scenarios. (a) The provinces with consistently larger suitable habitat areas
than those under current climatic conditions; (b) Provinces with consistently smaller suitable habitat areas than under current climatic conditions;
(c) Provinces where suitable habitat areas transiently exceed but ultimately remain smaller than current levels under future climate scenarios;
(d) Provinces currently unsuitable but projected to become climatically suitable for H. dulcis under future climate scenarios.
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influenced by the degree of spatial aggregation of occurrence

records. When these records display a high level of spatial

correlation, the model is prone to overfitting, potentially

introducing geographical biases. To reduce overfitting, variables

with correlation coefficients exceeding an absolute value of 0.8 are

excluded. A 10 km spatial thinning threshold is applied to improve

the accuracy and reliability of the AUC output. Model performance

is evaluated using the receiver operating characteristic (ROC) curve,

and the MaxEnt model achieves an AUC value of 0.934 (Figure 2b).

An AUC value approaching 1 indicates excellent model

performance (Mahmoud et al., 2025), demonstrating that the

model is both accurate and effective. Its strong predictive

capability provides a valuable reference for developing

conservation strategies and sustainable utilization plans for

H. dulcis.
4.2 Environmental variables influencing the
distribution of H. dulcis and corresponding
planting strategies

The distribution of H. dulcis is highly sensitive to climate and

constrained by multiple environmental factors. Studies indicate that
Frontiers in Plant Science 13
its potential distribution is primarily driven by four key variables:

annual precipitation, minimum temperature of the coldest month,

elevation, and mean diurnal temperature range. The species thrives

under conditions of annual precipitation ranging from 708.45 to

2956.80 mm, minimum coldest-month temperatures between -4.93

°C and 8.92 °C, mean diurnal temperature ranges of 6.81–10.18 °C,

and elevations from 273.85 to 1019.40 m. Optimal growth occurs at

a minimum coldest-month temperature of 4.20 °C and a mean

diurnal range of 8.13 °C, suggesting that H. dulcis prefers

environments with relatively limited temperature fluctuations.

The probability of occurrence shows a unimodal response to

annual mean temperature (Bio1), with peaks ranging from 5.80 to

11.33 °C (Rong et al., 2024). Elevation strongly modulates regional

climate and hence shapes plant distributions (Zhang et al., 2024).

In Northeast and North China, seasonal temperature variations

are significant and no suitable habitats have been found, confirming

that extreme temperature fluctuations limit survival. H. dulcis

prefers warm and humid climates, with optimal growth occurring

at an annual precipitation of 1985.02 mm, consistent with humid

regions where precipitation typically exceeds 800 mm. Its

distribution is concentrated in subtropical monsoon climate

zones, primarily at the junction of Central, Southwest, and

Northwest China, as well as in the coastal areas of East and South
FIGURE 9

The correlation heatmap between the change rate of suitable habitat area in each province and climatic factors. (Hunan, Jiangxi, Shaanxi, Gansu, Shanxi,
Hebei, Sichuan, Guangxi Zhuang Autonomous Region, Hubei, Fujian, Guangdong, Zhejiang, Henan, Anhui, Shandong)[△R1:△12650S/current;
△R2:△12690S/current; △R3:△58550S/current; △R4:△58590S/current; (A) Atmospheric pressure (hPa); (B) Atmospheric pressure at sea level (hPa); (C)
Maximum Pressure(hPa); (D) Minimum Pressure (hPa); (E) Temperature (°C); (F) Mean maximum temperature (°C); (G) Mean minimum temperature (°C); (H)
Relative humidity (%); (I) Minimum Relative Humidity (%); (J) 2-Minute Mean Wind Speed (m/s); (K) Maximum Wind Speed (m/s); (L) Wind Direction (Angle) of
Maximum Wind Speed (°); (M) Extreme Wind Speed (m/s); (N) Wind Direction of Extreme Wind Speed (°); (O) Annual 24-hour Precipitation (20:00-20:00
local time) (mm); (P) 24-hour Precipitation (08-08h) (mm)].
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China. These regions are characterized by warm, moderately moist

conditions and abundant rainfall, aligning closely with the model

predictions and underscoring the dominant role of temperature and

precipitation in shaping its distribution. Additionally, H. dulcis

exhibits a strong preference for low- to mid-elevation hills ranging

from 273.85 to 1019.40 m (Duan et al., 2025), consistent with its

observed distribution (Figure 1). Therefore, conservation and

cultivation efforts should give priority to warm, humid climates

and mid-elevation areas to promote sustainable utilization.
4.3 Historical and future distribution
evolution of the suitable habitat for H.
dulcis under climate change

With global warming intensifying, the global surface

temperature rose by 1.1°C during 2011–2020 compared with the

baseline from 1850 to 1900, triggering significant redistributions

and altered phenological timings that cascade into ecosystem-level

reorganizations (Riahi et al., 2017). The frigid and arid conditions of

the Last Glacial Maximum (LGM) are likely to have made the

environment unsuitable for H. dulcis to survive. In contrast, the

comparatively milder and wetter climate of the Mid-Holocene

(MH) provided more favorable conditions for H. dulcis. (Berman

et al., 2018). As a thermophilic and hydrophilic pioneer species, H.

dulcis may have limited suitable habitats during both the LGM and

MH scenarios, primarily constrained by extreme cold and

unstable climate.

Under current climatic conditions, its potential distribution has

expanded markedly, particularly across central, southwestern, and

northwestern China, as well as in the eastern and southern coastal

regions, consistent with its affinity for temperate and humid

monsoon climates (Tiansawat et al., 2022). However, future

projections under high-emission scenarios (e.g., SSP585) suggest

substantial habitat loss, likely driven by temperatures exceeding the

physiological tolerance of species, coupled with terrain and

anthropogenic constraints (Gao et al., 2024). By the 2050s and

2090s, regions such as Guangxi and Shandong are projected to lose

more than 50% of their suitable habitat, with the remaining areas

shifting to higher elevations. On the contrary, climate warming may

facilitate range expansion into new regions, including Beijing,

Hebei, Liaoning, Ningxia, and Heilongjiang, indicating a

pronounced northward shift in distribution. Hunan Province is

expected to retain the largest and most climatically suitable habitats,

owing to its stable hydrothermal conditions.
4.4 Conservation strategies and research
implications for H. dulcis

To mitigate the adverse impacts of climate warming on the

distribution of H. dulcis, it is necessary to formulate an integrated

conservation strategy that combines habitat protection, climate

adaptation, and public participation. In regions with extensive
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suitable habitats, such as Hunan Province, establishing nature

reserves or ecological corridors is crucial to protect existing

populations and habitats. At the same time, strengthening the

monitoring and management of hydrological and thermal systems is

essential to ensure environmental stability. In areas experiencing

substantial habitat reduction, including Guangxi Zhuang

Autonomous Region and Shandong Province, local intervention

measures such as artificial irrigation and shading should be

implemented to alleviate heat and drought stress by optimizing

microclimates. Meanwhile, proactive efforts should aim to expand

the species’ range by establishing populations in newly identified

suitable habitats in Beijing, Hebei, Liaoning, Ningxia, and

Heilongjiang through artificial propagation and ex situ conservation.

By taking advantage of the phenotypic plasticity of species at different

environmental gradients and their inherent adaptability to diverse

climatic zones, climate-adaptive breeding programs can focus on

enhancing heat and drought tolerance to improve resilience in

vulnerable regions (Nicotra et al., 2010). Furthermore, future studies

should incorporate non-climatic factors, such as human interference

and land use change, to improve the predictive models and develop

effective and scientific management strategies, so as to preserve H.

dulcis for a long time under changing environmental conditions.
5 Conclusion

This study employed a species distribution model to evaluate

the impacts of climate change on the habitat suitability of Hovenia

dulcis across China. The MaxEnt model demonstrated a high

predictive accuracy (AUC = 0.934), and the species distribution is

primarily affected by annual precipitation (Bio12), minimum

temperature of the coldest month (Bio06), elevation, and mean

diurnal temperature range (Bio02). Among them, annual

precipitation (Bio12) and minimum temperature of the coldest

month (Bio06) were the most influential, each contributing over

30% by percentage contribution and exceeding 16% by permutation

importance, followed by elevation and diurnal temperature range.

The results indicate that H. dulcis favors warm, humid subtropical

monsoon climates, with optimal suitability occurring in mid-

elevation hills of central, eastern, and southwestern China. Under

future climate scenarios, its suitable range is expected to shift

northward and upward in elevation. While regions such as

Hunan, Jiangxi, Sichuan and Guizhou remain core suitable areas,

northern provinces including Hebei, Liaoning, and Beijing are

expected to become increasingly suitable. In contrast, habitats in

Guangxi and Shandong may shrink significantly. These predicted

shifts reflect the species’ dependence on warm temperatures and

adequate moisture, highlighting its vulnerability and adaptive

potential under global warming. These findings provide a

scientific foundation for targeted conservation and sustainable

utilization of H. dulcis. Priority measures should include in situ

protection of core habitats, assisted migration into new suitable

regions, and ex situ conservation combined with breeding programs

focused on climate-adaptive traits.
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