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Introduction: Hovenia dulcis Thunberg, a multifunctional medicinal plant native
to East and Southeast Asia, has been introduced worldwide. However, the
environmental factors that determine its habitat and its precise distribution in
China remain incompletely characterized.

Methods: Therefore, the Maximum Entropy (MaxEnt) model integrated with,
ArcGIS was employed to predict the potential distribution of H. dulcis in China,
using 479 initial occurrence records (which were spatially filtered to 191 points)
and 33 environmental variables (of which 15 were selected for the final analysis).
Model performance was assessed via AUC-ROC, with key variables identified
through permutation importance and response curves. Future projections were
made under SSP126 and SSP585 scenarios for the 2050s and 2090s.

Results: The model demonstrated high accuracy (AUC = 0.934). The distribution
of H. dulcis was primarily governed by annual precipitation (Bio12), the minimum
temperature of the coldest month (Bio06), elevation, and the mean diurnal
temperature range (Bio02). The optimal ranges for these variables were as
follows: annual precipitation of 708.5-2,956.8 mm, a minimum temperature of
the coldest month between -4.9 and 8.9 °C, elevation of 273.9-1,019.4 m, and a
mean diurnal temperature range of 6.81-10.18 °C. At present, suitable habitats
are concentrated in central and southwestern China. Future projections indicate
a northward shift and altitudinal increase in suitable areas, with expansions in
Beijing, Hebei, and Liaoning, but contractions in Guangxi and Shandong. Hunan,
Jiangxi, Sichuan, and Guizhou remain core suitable regions. This northward shift
is consistent with preference of H. dulcis for the warm temperatures and
adequate humidity, highlighting both its vulnerability and its adaptive potential
under global warming.
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Discussion: H. dulcis is highly sensitive to climatic variables, particularly
temperature and precipitation. Our findings provide a scientific basis for
developing well-targeted conservation strategies, promoting sustainable
utilization, and optimizing cultivation practices for H. dulcis under

climate change.

KEYWORDS

Maximum Entropy model, Hovenia dulcis, environmental variable, contribution rate,
confidence importance, potential distribution area

1 Introduction

Hovenia dulcis Thunberg, a member of the Rhamnaceae family, is
a multifunctional plant with significant medicinal and economic
value (De Godoi et al, 2021). It is native to East and Southeast
Asia and has been introduced and naturalized in North America,
Australia, and New Zealand (Sferrazza et al., 2021). It is worth noting
that the species has fragrant flowers and possesses large leaves, which
contributes to its considerable value in urban air regulation and make
it a suitable candidate for street greening. Its fruits and seeds, known
as “Zhijuzi” in traditional Chinese medicine, are well supported by
evidence to have hepatoprotective effects (Hyun et al, 2010). For
centuries, “Zhijuzi” has been used to treat health conditions such as
fever, excessive thirst, alcohol poisoning, and urinary disorders.
Pharmacological studies have confirmed its broad bioactive
properties, especially its ability to reduce blood alcohol levels and
enhance alcohol metabolism (Meng et al., 2020), while exhibiting
significant antioxidant activity that mitigates alcohol-induced
oxidative stress (Tomczyk et al., 2012). The phytochemical profile
of H. dulcis is remarkably diverse, comprising constituents such as
flavonoids, terpenoids, fatty acids, saponins, and polysaccharides,
which exhibit potential therapeutic effects against a range of liver
diseases, particularly those associated with alcohol consumption (Li
et al., 2021; He et al., 2024).

Global warming profoundly affects ecosystems worldwide and
threatens both the geographic distribution and long-term
persistence of medicinal plant species. As climatic change
increasingly accelerates in rate and magnitude, assessing its
impacts has become an urgent matter that needs to be prioritized
(Thomas et al., 2004). In China, changes in climatic conditions have
intensified the occurrence of extreme meteorological events. The
frequency and severity of such events are both on the rise, exerting a
profound impact on the ecological environment and threatening
the natural habitats of numerous plant species. Environmental
variables, especially temperature, precipitation, and elevation,
together with human activities, fundamentally shape the
distribution and quality of medicinal plants. The prediction
output of species distribution models under future climate
scenarios largely depends on method selection (e.g., algorithm
selection and predictor curation) and climatic uncertainties (e.g.,
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divergent projection ranges and greenhouse gas trajectories)
(Porfirio et al., 2014). Forecasting the potential geographical
distribution of species under climate change conditions is
essential for biodiversity conservation and the sustainable
utilization of resources (Guisan and Thuiller, 2005).

Species distribution models (SDMs) offer critical insights into
the exploration and prediction of species distribution and play an
essential role in understanding and conserving global biodiversity
(Niiya et al., 2024). Various SDMs are commonly used to assess
potential species habitats, including Maximum Entropy (MaxEnt),
Boosted Regression Trees (BRT), Random Forests (RF),
Generalized Additive Model (GAMs), and Generalized Linear
Model (GLMs) (Melo-Merino et al., 2020). According to
statistical analyses, the MaxEnt model is the most widely used
(Khan et al., 2022). Since its introduction in 2006, it has become a
mainstream approach in species distribution modeling (Phillips
et al, 2006). By applying the principle of maximum entropy, it
effectively identifies the most influential environmental factors,
even under complex ecological conditions (Cao et al, 2021).
There are three main reasons why the MaxEnt model stands out.
First of all, it is specifically designed for presence-only data, which is
particularly valuable for medicinal plants with insufficient sampling.
Secondly, it performs reliably with small sample sizes of as few as 25
records, while minimizing overfitting through built-in
regularization (Phillips and Dudik, 2008). Finally, its logistic
output generates continuous probability surfaces, facilitating the
interpretation of protection planning. Therefore, MaxEnt has been
widely applied in disciplines such as conservation biology and
ecology (Kumar et al., 2022; Shen et al., 2023).

To examine the current and future distribution patterns of H.
dulcis across China, this study integrates species occurrence records
with climatic, soil and topographic variables. Using MaxEnt model
in combination with ArcGIS spatial analysis, we reconstruct habitat
suitability during the Last Glacial Maximum (LGM) and Mid-
Holocene (MH) scenarios, evaluate current suitability from 1970
to 2000, and project future distributions for the 2050s and 2090s.
The study aims to achieve four key objectives: (1) to simulate the
current potential distribution and delineate suitable habitats of H.
dulcis; (2) to identify the dominant ecological variables that control
its geographical scope; (3) to forecast shifts in suitable habitats for
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the 2050s and 2090s through analyses of response curves and
permutation importance; and (4) to elucidate optimal growth
conditions, thereby providing a theoretical foundation for
conservation and sustainable utilization strategies.

Additionally, these findings will support the development of
strategies for the protection, cultivation, and sustainable utilization
of H. dulcis, thereby ensuring its long-term survival and ecological
contributions under global warming. By delineating optimal
habitats and identifying the dominant environmental variables,
the study elucidates both the most favorable growth conditions
and the potential impacts of climate change (Li and Park, 2020).
These insights will strengthen the conservation and management of
H. dulcis resources, ensuring their continuous availability for both
medicinal and economic applications.

2 Materials and methods

2.1 Acquisition and screening of H. dulcis
distribution data

To systematically investigate the distribution of H. dulcis,
occurrence data were retrieved from major online botanical
databases, including the Chinese Virtual Herbarium (CVH,
https://www.cvh.ac.cn/) and the China National Specimen
Information Infrastructure (NSII, http://www.nsii.org.cn/). A total
of 479 occurrence records across China were compiled
(Supplementary Table S1). To remove duplicate and ambiguous
entries, records lacking precise geographical coordinates were
georeferenced using the Baidu Coordinate Pickup System (http://
api.map.baidu.com/lIbsapi/getpoint/index.html) (Fan et al., 2014).
This process resulted in 254 accurately georeferenced occurrence
points (Supplementary Table S2). To reduce overfitting caused by
sampling bias, spatial filtering was performed in ArcGIS 10.4.1. A
10 km buffer was generated around each point, and within every 20
km diameter circle, a single presence record was randomly retained.
The filtering procedure was determined primarily by three
considerations: the ecological traits of H. dulcis, a deciduous tree
with animal-assisted seed dispersal, which justify the use of a 10 km
buffer to account for local clustering (Zhou et al., 2013); the spatial
resolution of environmental variables, such as bioclimatic, soil and
topographic variables exhibits spatial autocorrelation within 10 km,
making a 20 km zone appropriate for capturing environmental
variation (Pokharel et al., 2016); methodological consistency, as
similar filtering thresholds of 10-20 km have been widely applied to
medicinal plants such as Panax notoginseng, Piper kadsura, and
Magnolia biondii to balance ecological accuracy with bias control
(Guo et al, 2025; Li et al, 2025). This procedure yielded 191
validated occurrence points (Figure 1; Supplementary Table S3),
which were formatted into a CSV file containing the species name,
longitude, and latitude for subsequent modeling. According to the
NSII platform and Flora of China, these records were primarily
distributed across central, eastern and southwestern China. The
highest numbers of records were from Henan (66 points), Jiangxi
(64 points), Guizhou (40 points), Shandong (33 points), Shaanxi (28
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points), Hebei (23 points), Sichuan (22 points), Hunan (20 points),
Guangxi (19 points), Fujian and Zhejiang (17 points each), Anhui
(16 points), and Hubei (13 points).

2.2 Acquisition and screening of
environmental variables influencing
suitable habitats

Nineteen bioclimatic variables were obtained from the
WorldClim database (http://www.worldclim.org). The soil
variables utilized in our study were collected from the World Soil
Database hosted on the FAO Soils Portal (http://www.fao.org/soils-
portal/data-hub/en/), totaling 11 distinct parameters. The
topographic variables were sourced from the WorldClim website
(https://www.worldclim.org/), amounting to 3 variables (Ouyang
et al.,, 2022). Overall, these 33 independent environmental variables
form a comprehensive dataset that has been carefully selected and
prepared for the ecological analyses outlined in Table 1. We adopted
the 1970-2000 climate dataset as our baseline, supplemented with
historical climate data from LGM and MH scenarios, as well as
future climate projections for 2041-2060 and 2081-2100 under
different emission scenarios. For future climate projections, we used
the CMIP6-based Shared Socioeconomic Pathways (SSPs)
framework, which defines alternative socio-economic and climate
change scenarios. Among them, SSP126 represents a low-emission
scenario and SSP585 represents a high-emission scenario, both are
widely used to predict climate change impacts on species
distributions (Karuppaiah et al., 2023). These scenarios have been
employed in numerous ecological predictions, including the
research on medicinal plants such as Zingiber striolatum and
various pests and plants (Huang et al., 2024; Mao et al., 2024).
While intermediate scenarios aid in a more comprehensive
understanding of impacts across different emission trajectories,
many studies (including ours) have chosen extreme scenarios to
simplify analysis and conserve computational resources (Zheng
et al,, 2022).

2.3 Correlation analysis and determination
of key environmental variables for
adaptation

To mitigate multicollinearity among environmental variables
and reduce the risk of overfitting, we calculated Spearman’s rank
correlations in SPSS 26.0. We excluded any variable that exhibited |
r| > 0.8 with another variable and whose permutation-based
variable importance score contributed < 5% to the ensemble
model. According to the describe screening procedure (Zhang
et al., 2020), 15 variables for the H. dulcis distribution model were
finally selected. It included 7 bioclimatic variables (Bio_2, Bio_3,
Bio_4, Bio_6, Bio_8, Bio_10, and Bio_12), 5 edaphic variables (top-
soil organic carbon, sub-soil organic carbon, calcium carbonate
content, sand, and clay fractions), and 3 topographic variables
(elevation, slope, and aspect).
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FIGURE 1
Distribution map of H. dulcis.

2.4 Construction of the MaxEnt model

Climate variables and species-occurrence records of H. dulcis
were inputted into MaxEnt, with the parameters set as: bootstrap
resampling, logistic output, and the default regularization multiplier
of 1. This follows common practices in similar studies when lacking
species-specific tuning data, and preliminary tests showed no
significant performance improvement with adjustments (Zhan
et al,, 2022). Although the logistic output was optional in MaxEnt,
it yielded an estimate of occurrence probability that is more readily
interpretable (Elith et al., 2011). And 75% of the occurrence records
were randomly selected as the training set, and the remaining 25%
were used as the test set to evaluate the model performance. Each
bootstrap replicate was run for 1000 iterations, which was consistent
with the default setting commonly used in species distribution
modeling studies (Pischl et al., 2020), and the ensemble average of
10 replicates was adopted as the final prediction (Syfert et al., 2013).

Raster outputs for H. dulcis were imported into ArcMap 10.4.1
and reclassified using the natural-breaks method (Bergamin et al.,
2022). Subsequently, the area under the receiver operating
characteristic curve (AUC-ROC) was used to evaluate the validity
of the model. As a threshold-independent metric, AUC-ROC has
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been emphasized in recent studies for evaluating the MaxEnt model
(Ahmadi et al, 2023). The predictive accuracy of model was
classified according to standard AUC thresholds, <0.6 indicated
failure, 0.6-0.7 represented poor, 0.7-0.8 showed moderate, 0.8-0.9
demonstrated good, and 0.9-1.0 means excellent predictive
performance (Otto and Vegvari, 2022).

2.5 Model evaluation and habitat
classification

The Jackknife method was used to evaluate the relative influence
of individual environmental variables on the distribution of H. dulcis
(Hong et al,, 2021). Response curves of the most influential variables
were generated to visualize the environmental preferences of species
(Yan et al., 20205 Son et al,, 2023). Ranking importance quantified
model sensitivity to each variable by randomly changing its values
across training and background data, with higher values indicating
greater influence (Ma et al., 2024).

In species distribution modeling and habitat classification, the
Maximum Test Sensitivity plus Specificity (MTSPS) threshold was
widely applied to distinguish suitable from unsuitable habitats

frontiersin.org
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TABLE 1 Description of environmental variables.

Variable Description Variable Description

Biol Annual average Biol8 Precipitation of
temperature (°C) warmest quarter (mm)

Bio2 Mean diurnal range Biol9 Precipitation of
(mean of monthly (max coldest quarter (mm)
temp - min temp)) (°C)

Bio3 Isothermality (bio2/ awc_class Soil available water
bio7) (x 100) content

Bio4 Temperature seasonality s_caco3 Topsoil calcium
(standard deviation x Carbonate (%wt)
100)

Bio5 Max temperature of s_clay Substrate-soil clay
warmest month (°C) content (%wt)

Bio6 Min temperature of s_oc Substrate-soil organic
coldest month (°C) carbon (%wt)

Bio7 Annual temperature s_ph_h2o Substrate-soil pH
span (bio5-bio6) (°C)

Bio8 Mean temperature of s_sand Sediment content in
wettest quarter (°C) the subsoil (%wt)

Bio9 Mean temperature of t_caco3 Topsoil carbonate or
driest quarter (°C) lime content (%wt)

Biol0 Mean temperature of t_clay Clay content in the
warmest quarter (°C) upper soil (%wt)

Bioll Mean temperature of t_oc Topsoil organic
coldest quarter (°C) carbon (%wt)

Biol2 Annual precipitation t_ph_h20 | Topsoil pH
(mm)

Biol3 Precipitation of wettest t_sand Sand content (%wt)
month (mm)

Biol4 Precipitation of driest aspect Aspect
month (mm)

Biol5 Precipitation variability elev Elevation (m)
(coefficient of variation)

Biol6 Rainfall of wettest slope Slope (°)
quarter (mm)

Biol7 Precipitation of driest
quarter (mm)

because of its practicality and effectiveness. The mean of the ten
MTSPS values was then adopted as the determination threshold,
and habitat suitability was classified into four categories: unsuitable
(0-MTSPS), low suitability (MTSPS-0.3), medium suitability (0.3-
0.5), and high suitability (0.5-1) (Aligaz et al., 2024). This procedure
ensured that the threshold is derived exclusively from data not used
in training, minimizing overfitting and ensuring the objectivity and
generalizability of the classification criterion, in line with best-
practice recommendations in species-distribution modeling. The
occurrence probability of H. dulcis was projected throughout China.
Furthermore, the suitability models were applied to seven different
scenarios to generate corresponding distribution maps, including
the Last Glacial Maximum (LGM), Mid-Holocene (MH), current,
and future projections for the 2050s and 2090s under both SSP126
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and SSP585. Based on the MTSPS classification standard, the areas
of medium- and high-suitability habitats were calculated, and their
sum was determined as the total suitable habitat area (Zhang et al.,
2023; Yang et al., 2024).

2.6 Analysis of the area changes of the
suitable habitat of different provinces in
China

The provincial boundary shapefile of China (Review Map No.:
GS(2019)1822) was imported into ArcMap 10.4.1. Habitat
suitability rasters (.asc) for each period were converted to
GeoTIFF (.tif) format with FLOAT data type. After assigning the
WGS_1984 geographical coordinate system, the data were projected
to WGS_1984_Albers for accurate area measurement. Provincial
attribute tables were updated with the corresponding province
names. Then, the continuous suitability data were reclassified into
four categories: unsuitable, low suitability, medium suitability, and
high suitability. The regional geometry tool calculated categorical
areas within each province. The results were exported as dBASE
files for quantitative analysis in Excel. Under different scenarios, the
growth rate of suitable habitat area for each province was calculated
as the percentage increase relative to the current suitable habitat
area. Venn diagrams were generated using Microbioinformatics
(http://www.bioinformatics.com.cn/) to visualize provincial habitat
distribution patterns (Tang et al., 2023).

2.7 Statistical correlation with climatic
variables

To explore the potential drivers of observed habitat changes,
provincial-level meteorological data for 2021, 2022, and 2024 (2023
data were unavailable) were obtained from the National
Meteorological Science Data Center (https://data.cma.cn/;
Supplementary Table S6). Spearman’s rank correlation analysis
was performed in Origin to quantify the relationships between
provincial rates of habitat expansion or contraction and key climatic
variables. The statistical significance of the correlations was
evaluated using a p-value threshold of 0.05. The results were
visualized as correlation heatmaps.

3 Results
3.1 Model accuracy analysis

The potential distribution of H. dulcis was predicted using the
MaxEnt model. The model was run for 10 replicates, and the results
were combined into an ensemble average. Model performance was
assessed using the area under the receiver operating characteristic
curve (AUC). To address potential overfitting issue that may caused
by multicollinearity, we performed a Spearman’s rank correlation
analysis on all 33 environmental variables.
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Prediction of the suitable habitat of H. dulcis based on the MaxEnt model and analysis of environmental variables. (a) Correlation heatmap related to

environmental variables of H. dulcis; (b) ROC curve of the MaxEnt model.

In this study, the average training AUC for H. dulcis was 0.934
(Figure 2b), while the test AUC based on an independent subset of
25% of occurrence records was 0.921. Both values exceeded 0.9,
indicating excellent predictive performance and strong model
reliability. The approach applied in this study effectively identified
key environmental variables shaping species distribution, which was
in line with established methods of ecological modeling.

3.2 Identification of key environmental
variables

Using the MaxEnt algorithm, the relative contributions of 15
environmental variables to the species distribution model were
evaluated based on percentage contribution and permutation
importance. In Table 2, Annual precipitation (Biol2) was the
most influential factor (39.5%), followed by the minimum
temperature of the coldest month (Bio06, 31.1%). Additional
variables with measurable effects included slope (9.4%) and
isothermality (Bio03, 5.8%), while the contributions of all
remaining variables were minor (<2.8%). Through the assessment
of permutation importance, reflecting the sensitivity of the model,
the primary influence of Bio06 (31.2%), elevation (16.9%), and
Biol2 (16.6%) were confirmed, highlighting their critical roles in
shaping the distribution of H. dulcis.

The Jackknife test further underscored the critical importance
of these variables for mapping suitable habitats for H. dulcis across
China. Specifically, Bio06 (Minimum Temperature of the Coldest
Month), Bio02 (Mean Diurnal Range), and Biol2 (Annual
Precipitation) emerged as the most influential variables governing
its distribution (Figure 3a). Therefore, the distribution of the species
was mainly driven by extreme temperatures, diurnal temperature
variation, annual precipitation, and topography (elevation).

Response curve analysis (Figure 3b) identified the optimal
ranges and threshold values of the key environmental variables
that restrict the distribution of H. dulcis. The appropriate ranges
and corresponding optimum values were: annual precipitation of
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708.45-2956.80 mm (Biol2; optimum: 1985.02 mm), minimum
temperature of the coldest month from -4.93 to 8.92°C (Bio06;
optimum: 4.20°C), elevation between 273.85 and 1019.40 m
(optimum: 681.21 m), and mean diurnal temperature range of
6.81-10.18 °C (Bio02; optimum: 8.13°C). Within these intervals,
the probability of species occurrence increased toward the optimum
value, whereas values beyond these thresholds resulted in a reduced
probability of occurrence. Overall, temperature-related variables,
precipitation, and elevation were the primary environmental
driving factors affecting the distribution of H. dulcis.

3.3 Distribution prediction of H. dulcis under
current climate conditions

The predicted distribution of suitable habitats for H. dulcis
under current climate conditions was visually summarized in
Figure 4. Habitat suitability was classified into four categories:
unsuitable (gray), low-suitable (green), medium-suitable (yellow),
and high-suitable (red). It is primarily distributed between 30°N-
37°N latitude and 101°E-123°E longitude, delineating its overall
suitable habitat range. The total suitable area was estimated at
147.70 x 10* km? accounting for 15.39% of China’s land area,
among which high-suitable habitats accounted for 35.23%. The total
suitable habitat area of H. dulcis was relatively concentrated,
primarily located at the intersection of central, southwestern, and
northwestern China, as well as coastal regions of eastern and
southern China. No suitable habitats were predicted in the
northernmost parts of the country. Occurrence records further
indicate that H. dulcis predominantly occupies low- to mid-
elevation hilly terrain, particularly around the Sichuan Basin. This
predicted distribution was consistent with the range of the species’
native habitats recorded in the Flora of China, and also closely
corresponded to the specimen records of the herbarium from 1950
to 2020. By contrast, unsuitable habitats were mostly located in
northeastern, northern, and northwestern China, which might be
due to the limitations of climatic factors.
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TABLE 2 Percent contribution and permutation importance of the dominant environmental variables in the MaxEnt model.

Variable Description Percent contribution (%) Permutation importance (%)
biol2 Annual precipitation 39.5 16.6
bio06 Min temperature of coldest month 31.1 31.2
slope Slope 94 10.3
bio03 Isothermality ((Bio02/Bio07) * 100) 5.8 35
elev Elevation 2.8 16.9
aspect Aspect 2.5 22
bio02 Mean diurnal ra-mge (mean of monthly 20 30
(max temp - min temp))
bio04 Temperature seasonality 1.5 4.5
s_clay Substrate-soil clay content 1.5 2
s_caco3 Topsoil calcium Carbonate 1.3 2.7
bio08 Mean temperature of wettest quarter 1.1 14
s_sand Sediment content in the subsoil 0.8 3.7
s_oc Substrate-soil organic carbon 0.5 0.5
t_oc Topsoil organic carbon 0.3 0.4
biol0 Mean temperature of warmest quarter 0.2 0.8

3.4 Distribution prediction under past and
future climates

The past and future predicted distribution patterns of H. dulcis
were summarized in Table 3 and Figures 5, 6. Under the LGM and
MH scenarios, the total area of suitable habitat was markedly
restricted, with most habitats classified as low suitability
(Figures 6a, b). Although the MH scenario showed a wider range
of suitable environments than the LGM scenario, no high-suitable
habitats were detected, and medium-suitable habitats remained

limited. This pattern was consistent with the key climatic
variables identified to affect the distribution of H. dulcis,
especially the minimum temperature of the coldest month and
annual precipitation.

At present, the suitable habitat area of H. dulcis has expanded
considerably. High-, medium-, and low-suitable habitats covered
52.04 x 10* km?, 95.66 x 10* km? and 62.64 x 10* km? respectively
(Figure 5). These findings indicated that contemporary climatic
conditions are favorable for its survival. The core distribution area
was in subtropical monsoon zones, with hot and humid summers
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and mild and moist winters. Such climatic conditions were
consistent with the key environmental variables identified in the
response analysis.

Future projections indicated a general contraction of suitable
habitats (Figures 6¢-f). Under the SSP126 scenario, it was expected
that the appropriate area will initially decrease and then rebound
slightly, but it would still be lower than the current levels. Between
2041 and 2060, the total suitable area was expected to decline by
3.91% to 141.92 x 10* km? Medium-suitable habitats were
projected to decrease by 8.69%, whereas low- and high-suitable
habitats were expected to increase by 11.40% and
4.86% respectively.

From 2081 to 2100, the estimated total suitable area was 143.17
x 10* km?, a decrease of 3.07% compared to current conditions.
During this period, low- and high-suitable habitats were expected to
increase by 13.68% and 2.00% respectively, whereas medium-
suitable habitats were projected to decline by 5.82%. However,
under the SSP585 scenario, the loss of suitable habitat was predicted
to be more pronounced. Between 2041 and 2060, the total suitable
area was projected to decline by 4.91% to 140.45 x 10* km”. Low-
suitable habitats were expected to increase by 20.18%, while
medium- and high-suitable habitats decreased by 5.93% and
3.04% respectively. It was estimated that from 2081 to 2100, the
total suitable area will decline sharply by 19.35% to 119.12 x 10*
km®. Among them, the low-suitable habitats increased by 44.46%,
medium-suitable habitats decreased by 10.18%, and high-suitable
habitats declined by 36.18%. Collectively, these projections

Frontiers in Plant Science

indicated that global warming will substantially reduce the
environmental suitability for H. dulcis survival.

3.5 Provincial distribution of suitable
habitats for H. dulcis under current climate
condition

Under current climatic conditions, the distribution of suitable
habitats for H. dulcis varied considerably across Chinese provinces
and was broadly spread across many regions (Supplementary Table
S4). No suitable habitats were found in Heilongjiang, Shanghai,
Xinjiang, or Macau SAR, while other provinces had suitable habitats
to varying degrees. Medium-suitable habitats were concentrated in
central and western China, while high-suitable habitats were
distributed across western, central, and eastern regions. As shown
in Table 1, Yunnan Province had the largest area of low-suitable
habitat, covering 199,295.91 km?®. The Guangxi Zhuang
Autonomous Region contained the largest extent of medium-
suitable habitat (95,434.07 kmz), followed by Hunan (95,047.70
km?), Sichuan (82,345.70 km?), Guizhou (79,979.16 km?), and
Jiangxi (73,048.60 km?). All other provinces contained less than
60,000 km* of medium-suitable habitat.

Hunan Province contained the largest area of high-suitable
habitat, covering 85,364.23 km?, followed by Guizhou (79,544.49
km?), Sichuan (75,656.62 km?®), Hubei (74,714.83 km?), Jiangxi
(70,778.66 km?), Shaanxi (65,079.66 km?), and Fujian (62,495.80
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TABLE 3 Statistics on the area of the suitable habitat of H. dulcis in different periods.
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km?). Each of the remaining provinces has less than 60,000 km? of
high-suitable habitat. Under the current climatic conditions, the
combination of medium- and high-suitable habitats indicated that
Hunan, Guizhou, Sichuan, and Jiangxi are the most suitable regions
for the growth of H. dulcis.

3.6 Changes in the suitable habitat of H.
dulcis under SSP126 and SSP585 scenarios

Further analysis of Figure 6 and Supplementary Table S5
illustrated changes in suitable habitats of H. dulcis under two future
climate scenarios. Under the SSP126 scenario, suitable habitats across
China were projected to expand in both the 2050s and the 2090s.
Hebei, Liaoning, Ningxia, and Beijing exhibited continuous and
significant expansion during both periods, with Hebei showing the
greatest increase (216.93%) by the 2090s. In the 2050s, Shanxi and
Gansu displayed the highest growth rates (70.03% and 33.67%,
respectively), whereas Guangxi and Guangdong experienced
declines of 23.40% and 17.70%. Among provinces with suitable
habitat areas exceeding 15,000 km? more exhibited habitat loss
than expansion, while those below this threshold showed more
variable patterns. By the 2090s, the reductions in Guangxi and
Guangdong intensified to 30.53% and 21.18% respectively.
Chongqing shifted from habitat reduction in the 2050s to
expansion in the 2090s, while Yunnan followed the opposite trend.
Overall, the number of provinces experiencing habitat loss exceeded
those with gains, and the spatial pattern of habitat expansion and
contraction remained largely consistent throughout the two periods.

Under the SSP585 scenario, Liaoning Province exhibited an
exceptionally high growth rate of 1,936.36% by the 2090s, mainly
due to the small baseline habitat area under current conditions.
Therefore, even a moderate absolute increase resulted in a
disproportionately high relative growth rate. Hebei, Shanxi, and
Gansu also witnessed substantial increases, reaching 284.98%,
147.01%, and 121.36%, respectively, whereas Shandong and
Guangxi saw an accelerated declines of 58.79% and 51.13%.
Guizhou and Yunnan displayed more dynamic trends, with initial
increases in the 2050s followed by declines in the 2090s. Among
provinces with suitable areas exceeding 15,000 km?, the numbers of
those gaining and losing habitats were roughly comparable, yet a
net contraction was observed at the national scale. Both scenarios
consistently revealed obvious north-south differences, with an
increase in suitability in northern China and a decrease in
suitability in southern regions.

According to statistical analysis, in both current and future
scenarios, the suitable habitat in 17 provinces exceeded 15,000 km?
(Figure 7a). Among them, it was expected under future climate
conditions, the temperatures in six provinces including Hebei,
Shanxi, Jiangxi, Hunan, Shaanxi, and Gansu will continue to
exceed current habitat levels (Figures 7b, 8a). In contrast,
Zhejiang, Anhui, Fujian, Shandong, Henan, Hubei, Guangdong,
Guangxi, and Sichuan were expected to experience reductions in
habitat suitability relative to current levels (Figure 8b).
Guizhou, Yunnan, Chongging, and Tibet maintained relatively
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Suitable habitat area of H. dulcis under future climate conditions and the change in area compared to the current climate.

stable suitable habitat areas, with only minor fluctuations under
both present and future conditions (Figure 8c). It was worth noting
that Beijing, Hebei, Liaoning, and Ningxia are expected to see a
significant increase, while Jilin, Heilongjiang, and Qinghai are
expected to see new suitable habitats, indicating a northward and
mid-latitude shift in the potential distribution of H. dulcis
(Figure 8d). In all scenarios, Hunan remained the most suitable
province, while Jiangxi also sustained a large and continuously
expanding area of suitable habitats. Although Guizhou and Sichuan
were projected to lose some suitable area, they still maintained a
relatively high degree of suitability.

3.7 Relationship between provincial habitat
change and climatic variables

Analysis of meteorological conditions across provinces revealed
that the projected change (future/current) in suitable habitat area for H.
dulcis correlated positively with temperature, which was consistent with
the thermophilic nature of this species (Figure 9). In contrast, the
change rate showed significant and negative correlations with both
precipitation and air humidity. This suggested that excessive moisture
inhibits its growth, which might explain its absence in coastal regions.
A weak positive correlation with wind speed implied that moderate
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winds may enhance gas exchange and stimulate physiological activity.
Elevation exerted an indirect influence on distribution by interacting
with topography and wind speed. Terrain features such as slopes and
valleys altered local wind patterns, thereby modifying microclimatic
conditions (such as temperature and moisture retention), which are
crucial for H. dulcis survival. These findings aligned with prior analysis
of key environmental variables, reaffirming the critical roles of
temperature, precipitation, and elevation in determining habitat
suitability. Consequently, our results supported the prediction of an
overall range contraction for H. dulcis under future climate
warming scenarios.

In summary, the priority provinces for future cultivation of H.
dulcis included Hunan, Jiangxi, Hebei, Liaoning and Beijing, where
the suitable habitat areas continued to expand. Meanwhile, attention
should be paid to provinces such as Guizhou and Sichuan, where the
suitable area was decreasing but still maintained high suitability.

4 Discussion
4.1 Reliability of MaxEnt model prediction

Species distribution models serve as the significant tool for
assessing the impacts of climatic and environmental changes on
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Distribution of suitable habitats for H. dulcis under different climate scenarios. (a) Last Glacial Maximum (LGM); (b) Mid-Holocene (MH); (c) 2041-2060
(2050s) average, SSP126; (d) 2041-2060 (2050s) average, SSP585; (e) 2081-2100 (2090s) average, SSP126; (f) 2081-2100 (2090s) average, SSP585.

habitat suitability (Wiens et al., 2009). Among them, MaxEnt model
is regarded as one of the most frequently used ecological niche
models in current studies, especially for presence-only data (Phillips
and Dudik, 2008). This makes H. dulcis highly suitable for study, as
a medicinal plant that has not received sufficient attention in
biodiversity surveys. Our dataset contains 191 verified occurrence
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records. Although these records are spatially sparse, the robustness
of the MaxEnt model effectively mitigates this limitation.

This study takes climatic conditions, edaphic properties, and
topographical features as the main environmental variables and
uses spatial modeling methods to predict the optimal habitat range
of H. dulcis. However, the accuracy of the model predictions is
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influenced by the degree of spatial aggregation of occurrence
records. When these records display a high level of spatial
correlation, the model is prone to overfitting, potentially
introducing geographical biases. To reduce overfitting, variables
with correlation coefficients exceeding an absolute value of 0.8 are
excluded. A 10 km spatial thinning threshold is applied to improve
the accuracy and reliability of the AUC output. Model performance
is evaluated using the receiver operating characteristic (ROC) curve,
and the MaxEnt model achieves an AUC value of 0.934 (Figure 2b).
An AUC value approaching 1 indicates excellent model
2025), demonstrating that the
model is both accurate and effective. Its strong predictive

performance (Mahmoud et al.,
capability provides a valuable reference for developing
conservation strategies and sustainable utilization plans for
H. dulcis.

4.2 Environmental variables influencing the
distribution of H. dulcis and corresponding
planting strategies

The distribution of H. dulcis is highly sensitive to climate and
constrained by multiple environmental factors. Studies indicate that
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its potential distribution is primarily driven by four key variables:
annual precipitation, minimum temperature of the coldest month,
elevation, and mean diurnal temperature range. The species thrives
under conditions of annual precipitation ranging from 708.45 to
2956.80 mm, minimum coldest-month temperatures between -4.93
°C and 8.92 °C, mean diurnal temperature ranges of 6.81-10.18 °C,
and elevations from 273.85 to 1019.40 m. Optimal growth occurs at
a minimum coldest-month temperature of 4.20 °C and a mean
diurnal range of 8.13 °C, suggesting that H. dulcis prefers
environments with relatively limited temperature fluctuations.
The probability of occurrence shows a unimodal response to
annual mean temperature (Biol), with peaks ranging from 5.80 to
11.33 °C (Rong et al., 2024). Elevation strongly modulates regional
climate and hence shapes plant distributions (Zhang et al., 2024).
In Northeast and North China, seasonal temperature variations
are significant and no suitable habitats have been found, confirming
that extreme temperature fluctuations limit survival. H. dulcis
prefers warm and humid climates, with optimal growth occurring
at an annual precipitation of 1985.02 mm, consistent with humid
regions where precipitation typically exceeds 800 mm. Its
distribution is concentrated in subtropical monsoon climate
zones, primarily at the junction of Central, Southwest, and
Northwest China, as well as in the coastal areas of East and South
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China. These regions are characterized by warm, moderately moist
conditions and abundant rainfall, aligning closely with the model
predictions and underscoring the dominant role of temperature and
precipitation in shaping its distribution. Additionally, H. dulcis
exhibits a strong preference for low- to mid-elevation hills ranging
from 273.85 to 1019.40 m (Duan et al., 2025), consistent with its
observed distribution (Figure 1). Therefore, conservation and
cultivation efforts should give priority to warm, humid climates
and mid-elevation areas to promote sustainable utilization.

4.3 Historical and future distribution
evolution of the suitable habitat for H.
dulcis under climate change

With global warming intensifying, the global surface
temperature rose by 1.1°C during 2011-2020 compared with the
baseline from 1850 to 1900, triggering significant redistributions
and altered phenological timings that cascade into ecosystem-level
reorganizations (Riahi et al., 2017). The frigid and arid conditions of
the Last Glacial Maximum (LGM) are likely to have made the
environment unsuitable for H. dulcis to survive. In contrast, the
comparatively milder and wetter climate of the Mid-Holocene
(MH) provided more favorable conditions for H. dulcis. (Berman
et al,, 2018). As a thermophilic and hydrophilic pioneer species, H.
dulcis may have limited suitable habitats during both the LGM and
MH scenarios, primarily constrained by extreme cold and
unstable climate.

Under current climatic conditions, its potential distribution has
expanded markedly, particularly across central, southwestern, and
northwestern China, as well as in the eastern and southern coastal
regions, consistent with its affinity for temperate and humid
monsoon climates (Tiansawat et al, 2022). However, future
projections under high-emission scenarios (e.g., SSP585) suggest
substantial habitat loss, likely driven by temperatures exceeding the
physiological tolerance of species, coupled with terrain and
anthropogenic constraints (Gao et al., 2024). By the 2050s and
2090s, regions such as Guangxi and Shandong are projected to lose
more than 50% of their suitable habitat, with the remaining areas
shifting to higher elevations. On the contrary, climate warming may
facilitate range expansion into new regions, including Beijing,
Hebei, Liaoning, Ningxia, and Heilongjiang, indicating a
pronounced northward shift in distribution. Hunan Province is
expected to retain the largest and most climatically suitable habitats,
owing to its stable hydrothermal conditions.

4.4 Conservation strategies and research
implications for H. dulcis

To mitigate the adverse impacts of climate warming on the
distribution of H. dulcis, it is necessary to formulate an integrated
conservation strategy that combines habitat protection, climate
adaptation, and public participation. In regions with extensive
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suitable habitats, such as Hunan Province, establishing nature
reserves or ecological corridors is crucial to protect existing
populations and habitats. At the same time, strengthening the
monitoring and management of hydrological and thermal systems is
essential to ensure environmental stability. In areas experiencing
substantial habitat reduction, including Guangxi Zhuang
Autonomous Region and Shandong Province, local intervention
measures such as artificial irrigation and shading should be
implemented to alleviate heat and drought stress by optimizing
microclimates. Meanwhile, proactive efforts should aim to expand
the species’ range by establishing populations in newly identified
suitable habitats in Beijing, Hebei, Liaoning, Ningxia, and
Heilongjiang through artificial propagation and ex situ conservation.
By taking advantage of the phenotypic plasticity of species at different
environmental gradients and their inherent adaptability to diverse
climatic zones, climate-adaptive breeding programs can focus on
enhancing heat and drought tolerance to improve resilience in
vulnerable regions (Nicotra et al,, 2010). Furthermore, future studies
should incorporate non-climatic factors, such as human interference
and land use change, to improve the predictive models and develop
effective and scientific management strategies, so as to preserve H.
dulcis for a long time under changing environmental conditions.

5 Conclusion

This study employed a species distribution model to evaluate
the impacts of climate change on the habitat suitability of Hovenia
dulcis across China. The MaxEnt model demonstrated a high
predictive accuracy (AUC = 0.934), and the species distribution is
primarily affected by annual precipitation (Biol2), minimum
temperature of the coldest month (Bio06), elevation, and mean
diurnal temperature range (Bio02). Among them, annual
precipitation (Biol2) and minimum temperature of the coldest
month (Bio06) were the most influential, each contributing over
30% by percentage contribution and exceeding 16% by permutation
importance, followed by elevation and diurnal temperature range.
The results indicate that H. dulcis favors warm, humid subtropical
monsoon climates, with optimal suitability occurring in mid-
elevation hills of central, eastern, and southwestern China. Under
future climate scenarios, its suitable range is expected to shift
northward and upward in elevation. While regions such as
Hunan, Jiangxi, Sichuan and Guizhou remain core suitable areas,
northern provinces including Hebei, Liaoning, and Beijing are
expected to become increasingly suitable. In contrast, habitats in
Guangxi and Shandong may shrink significantly. These predicted
shifts reflect the species’ dependence on warm temperatures and
adequate moisture, highlighting its vulnerability and adaptive
potential under global warming. These findings provide a
scientific foundation for targeted conservation and sustainable
utilization of H. dulcis. Priority measures should include in situ
protection of core habitats, assisted migration into new suitable
regions, and ex situ conservation combined with breeding programs
focused on climate-adaptive traits.
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