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A precision grading method for
walnut leaf brown spot disease
integrating hierarchical feature
selection and dynamic multi-
scale convolution
Yuting Wei1,2†, Debin Zeng2† and Liangfang Zheng2*

1College of Information Engineering, Tarim University, Alaer, China, 2Key Laboratory of Tarim Oasis
Agriculture, Ministry of Education, Tarim University, Alaer, China
Walnut leaf brown spot disease, caused by Ophiognomonia leptostyla, is among

the most destructive fungal diseases in walnut cultivation. In the development of

smart agriculture, precision grading of plant diseases remains a core technical

challenge; specifically, this disease is plagued by blurred lesion edges and

inefficient extraction of complex features, which directly limits the accurate

grading of the disease. To address these issues, this study proposes a disease

grading method integrating hierarchical feature selection and adaptive multi-

scale dilated convolution, and develops the CogFuse-MobileViT model. This

model overcomes the limitations of the standard MobileViTv3 model in capturing

blurred edges of tiny lesions via three innovative modules: specifically, the

Hierarchical Feature Screening Module (HFSM) enables hierarchical screening

of disease-related features; the Edge Feature Focus Module (ECFM) works in

synergy with the HFSM to enhance the focus on lesion edge features; and the

Adaptive Multi-Scale Dilated Convolution Fusion Module (AMSDIDCM) achieves

dynamic multi-scale fusion of lesion textures and global structures. Experimental

results demonstrate that the proposed model achieves an accuracy of 86.61% on

the test set, representing an improvement of 7.8 percentage points compared

with the original MobileViTv3 model and significantly outperforming other

mainstream disease grading models. This study confirms that the CogFuse-

MobileViT model can effectively resolve the issues of blurred edges and

inefficient feature extraction in this disease, provides a reliable technical

solution for its precision grading, and holds practical application value for the

intelligent diagnosis of plant diseases in smart agriculture.
KEYWORDS

walnut, brown spot disease (Ophiognomonia leptostyla), hierarchical feature selection,
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1 Introduction

Walnut diseases pose a serious threat to walnut production in

Xinjiang. The spread of crop diseases significantly exacerbates the

security risks of the walnut industry if timely prevention and

control measures are not taken (Cooke, 2006; Khan et al., 2021).

As a core component of the disease prevention and control system,

early precise grading plays a critical role in agricultural production

management (Adaskaveg et al., 2009; Chiang et al., 2016;

Lamichhane, 2014). Walnut brown spot, caused primarily by the

fungus Ophiognomonia leptostyla, typically forms specific

symptoms on organs such as leaves, flowers, and fruits. Among

them, leaves, as the primary carrier of plant diseases, exhibit

characteristics such as lesion morphology and color changes on

their surfaces, which often serve as important bases for disease

grading (Ghaiwat and Arora, 2014; Weber, 1980; Zarei et al., 2019).

Traditional disease identification relies on manual experience

(Moragrega et al., 2011; Wang et al., 2020), a method that is not

only time- color system to reduce interference from light and leaf

veins, and lesion edge detection using the Sobel operator, ultimately

achieving fast and accurate grading based on the ratio of lesion area

to leaf area. Jadhav and Patil (2016) developed a leaf image

partitioning technique based on k-means clustering and squared

Euclidean distance, automatically quantifying damaged leaf area

through the pixel ratio of lesions to leaves for disease grading.

Arivazhagan et al. (2013) proposed a four-step processing system

involving color conversion, green pixel removal, segmentation, and

texture feature classification for leaf disease grading. However,

traditional methods for acquiring disease information suffer from

insufficient segmentation accuracy for plant leaf disease images with

complex textures and unclear lesion boundaries, thereby resulting

in poor disease severity grading performance.

With the continuous advancement of computational power,

deep learning has increasingly become a key technology for

addressing complex lesion segmentation, primarily due to its

superior capability in automatic feature extraction (Mao et al.,

2023). Chen et al. (2021) proposed the BLSNet method based on

the UNet semantic segmentation network, enhancing lesion

segmentation accuracy through the introduction of attention

mechanisms and multi-scale feature fusion. Experiments showed

that its segmentation and classification accuracy outperformed

benchmark models such as DeepLabv3+ and UNet, preliminarily

verifying the reliability of this method in automatic assessment of

BLS disease severity. Ngugi et al. (2020) developed the KijaniNet

segmentation network based on fully convolutional neural

networks, demonstrating excellent performance in tomato leaf

segmentation under complex backgrounds; Lin et al. (2019)

developed a CNN semantic segmentation model that achieved

high-precision pixel-level segmentation of cucumber powdery

mildew on leaves. Additionally, some studies have fused

traditional features with deep learning: Tripathi (2021) proposed

a convolutional neural network method based on AlexNet,

achieving disease grading by fusing features extracted by the

model with external leaf segmentation features; Ma et al. (2017)

introduced Comprehensive Color Features (CCF) combining
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hyper-red index, HSV/H and Lab/b components, and achieved

lesion segmentation via interactive region growing, with

experiments confirming that this method enables accurate

grading of disease images such as cucumber downy mildew under

actual field conditions. However, although such methods have

improved grading accuracy to some extent, they still suffer from

insufficient feature capture of blurred disease edges, making it

difficult to achieve fine-grained differentiation of subtle differences

between disease grades (Rastogi et al., 2015).

In recent years, the application of deep learning in plant disease

classification has continued to expand. Parashar et al. (2024)

systematically validated the capability of complex feature

modeling for crop yield prediction, further substantiating the

critical role of adaptive feature extraction in agricultural

intelligent decision-making. Concurrently, Vishnoi et al. (2022)

enhanced small-target detection precision in apple disease

identification through a spatial attention mechanism-based CNN

architecture for leaf disease diagnosis. Ozturk et al. (2025)

constructed an ensemble learning classification model based on

ResNet50, Mobile Net, EfficientNetB0, and DenseNet121,

enhancing generalization performance through statistical cross-

validation and improving decision interpretability via Grad-CAM

visualization. Experimental results showed that the ensemble model

achieved stable high-precision classification performance across

multiple validation rounds. These studies provide robust and

interpretable solutions for intelligent plant disease recognition

through technical integration and architectural innovation. Hu et

al. (2021) integrated Retinex enhancement, Faster R-CNN

detection, and VGG16 classification to improve the grading and

detection accuracy of blurred diseased leaves. Picon et al. (2019)

proposed an adaptive deep residual neural network algorithm for

the classification of three European wheat diseases (Septoria leaf

blotch, brown spot, and rust) in real-world scenarios, which

effectively improved the classification accuracy of wheat diseases.

Kim and Ahn (2021) employed deep CNN architectures such as

ResNet, Xception, and DenseNet, combined with transfer learning

and fine-tuning, to classify 9 categories of pests, diseases, and

healthy states in tomatoes. Although DenseNet combined with

the RMSprop algorithm achieved an accuracy of 98.63%, single

CNN architectures have clear bottlenecks in handling complex

plant lesions and overlapping multiple diseases, including

insufficient specificity in feature extraction and limited ability to

distinguish subtle differences between lesions. Shi et al. (2023)

analyzed the application of CNNs in evaluating the severity of

plant diseases, pointing out that hybrid architectures such as

classical CNNs, improved CNNs, and segmentation networks

have limitations in handling complex plant lesions: classification

errors caused by concurrent multiple diseases, as well as constraints

on model generalization ability due to unbalanced datasets and

insufficient annotation accuracy. These issues significantly restrict

their precise application in practical agricultural scenarios.

Although significant advancements have been made in plant

lesion segmentation and disease classification using deep learning,

the grading task for walnut leaf brown spot disease—characterized

by blurred edge representation and complex small lesions—still
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faces notable challenges. Current MobileViT-based hybrid models

fall into two categories: general architectures (MobileViTv1/v2/v3)

focus on optimizing the CNN-Transformer balance for natural

images; domain-improved models (Mobile-Former/EdgeViT) are

oriented toward medical/industrial tasks, with their task focus on

localization rather than grading, which mismatches the pain points

and fails to address the blurriness of agricultural lesions, tissue

interference, and morphological variations. Thus, the present study

proposes a novel CogFuse-MobileViT model specifically designed

for disease grading, with its specific contributions as follows:
Fron
1. A diverse field-collected walnut leaf dataset was

constructed, with images divided into four distinct

severity levels based on qualitative assessment of disease

severity, ensuring the accuracy of disease severity grading.

2. The Hierarchical Feature Selection Module (HFSM)

enhances the fusion of local details (such as lesion texture

and color) with global context through local and global

attention mechanisms and task-driven feature selection,

while suppressing interference from healthy regions.

3. The Edge Convolution Fusion Module (ECFM) strengthens

edge details through Sobel convolution and residual

connections, achieving effective integration of edge-

specific features with general features, further enhancing

edge details and enabling more precise capture of lesion

contour details.

4. The Adaptive Multi-Scale Dilated Dense Inception

Convo lu t i on Modu l e (AMSDDICM) ex t r a c t s

differentiated features using multi-shaped convolution

kernels and adaptively fuses multi-scale information via a

dynamic weight mechanism, captur ing les ion

morphologies at different pathogenesis stages.
2 Materials and methods

2.1 Characteristics of walnut leaf brown
spot and classification of disease severity
levels

In the local standard Technical Regulations for Prevention and

Control of Walnut Brown Spot (McGranahan and Leslie, 1991),

walnut brown spot is divided into four severity levels. The severity

of plant leaf diseases is generally determined using the spot coverage

method. In this study, walnut leaves with different disease severities

were processed to separate disease-infected spots from healthy leaf

areas, and the percentage of lesion area to total leaf area was

calculated. With reference to the local standard, the disease

grades specified in the standard were re-determined through

calculations in this study, as shown in Table 1. Classification of

different severity levels of walnut leaf brown spot was conducted in

accordance with Technical Regulations for Prevention and Control

of Walnut Brown Spot (Wang et al., 2022; Yang et al., 2021).
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Walnut leaf brown spot is caused by infection with the fungus

Ophiognomonia leptostyla (Mircetich et al., 1980). In the early

infection stage, near-circular or irregular small spots appear on

the leaves, with a gray-brown center and dark yellow-green to

purplish-brown edges, and diseased leaves tend to fall off

prematurely. In the middle stage, elongated elliptical or irregular

slightly sunken dark brown lesions form, with larger spot size and

light brown edges; longitudinal cracks are often present in the

center of the lesions. In the late stage, lesions often coalesce to form

large scorched necrotic areas, surrounded by yellow to golden-

yellow zones, and small black granules (conidiomata and conidia of

the pathogen) are scattered on the surface of the diseased tissue

(Mircetich et al., 1980). According to the degree of color and texture

feature changes in infected leaves, walnut leaf disease is divided into

four stages: healthy, early, middle, and late stages, corresponding to

disease severity levels: healthy (Level 0), mild (Level 1), moderate

(Level 2), and severe (Level 3). The different severity levels of walnut

leaf brown spot are shown in Figure 1.

Table 1 shows the ratio of walnut leaf brown spot lesion area to

total leaf area. Level 0 (Healthy): Healthy leaves without symptoms.

Level 1 (Mild): Near-circular or irregular small white spots appear on

leaves, accounting for less than 5% of the leaf area. Level 2 (Moderate):

Lesions expand into irregular dark brown spots, covering 5% to 30% of

the leaf area. Level 3 (Severe): Abundant lesion coalesce to form large

scorched necrotic areas, exceeding 30% of the leaf area.
2.2 Calculation algorithm for walnut leaf
brown spot disease severity levels

After capturing walnut leaf brown spot samples using a camera,

to minimize subjective bias, this study strictly adhered to the

objective quantitative criteria defined in the Technical Regulations

for the Control of Walnut Brown Leaf Spot (Table 1), utilizing the

lesion area percentage (K) as the primary grading indicator. we re-

determined the severity levels through computational analysis, with

the specific determination process shown in Figure 2.

First, a Python-based color segmentation algorithm was

employed to convert images from the BGR color space to the HSV
TABLE 1 Walnut leaf brown spot disease severity grading criteria.

Disease
grade

Symptom
Area ratio
of S1 to S2

(K)

0 Absence of symptoms 0

1
Near-round or irregular-shaped small white

spots
0<K<5%

2
Leaf disease spots become large, irregular

black and brown
5%<K<30%

3
There are a large number of spots on the

leaves, the spots fusion, forming a large area
of coke

>30%
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color space for processing. The HSV color space offers inherent

advantages in color segmentation tasks. By analyzing the hue,

saturation, and value characteristics of diseased regions, the color

threshold range in the HSV space was determined (Chaudhary et al.,

2012). After generating an initial disease region mask based on this

threshold range, morphological operations such as closing and

opening were applied to optimize mask quality, effectively

eliminating noise while preserving the integrity of lesion contours.

Subsequently, the original image was converted to grayscale mode,

and the leaf region was extracted using an adaptive threshold

binarization algorithm. Leaf boundaries were localized via contour

detection technology, and a complete leaf mask was generated

through contour filling. Pixel statistical analysis was performed on

both the leaf mask and disease mask to calculate the total leaf area and

diseased region area, respectively. When a valid leaf area (>0) was

detected, the disease severity index was calculated using the following

formula: Disease Severity Index (% ) = S1
S2
� 100%    S1: Total Area of

Diseased Regions S2: Total Area of the Complete Leaf.
2.3 Dataset construction

Data were collected from the Walnut Plantation Base of Tarim

University (Alar, Xinjiang) between May and October 2024. Leaves
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from three locally dominant early-fruiting cultivars (‘Wen 185’,

‘Xinxin 2’, ‘Zha 343’)widely cultivated in southern Xinjiang were

vertically photographed using an iPhone 13. This genotypic

diversity ensures model generalizability by encompassing varied

disease phenotypes. The orchard follows standardized cultivation

with 4m plant spacing, 5m row spacing (≈50 plants/mu), and

conventional management practices. Sampled trees were in full

fruiting stage. To capture disease traits across microenvironments,

samples were collected from safely accessible crown layers. The

dataset includes healthy and brown spot-infected leaves three

severity levels, spanning varied time periods, light conditions, and

angles. After removing duplicates and invalid images,5,120 high-

quality JPGs were retained for analysis.

2.3.1 Development of the walnut leaf brown spot
dataset

Disease severity grading was established through quantitative

lesion area analysis (Figure 2). A representative subset of 512 images

(10% of the full 5,120-image dataset) was selected via stratified

random sampling, accurately preserving the original severity

distribution. To ensure labeling rigor, two plant protection

specialists (>5 years’ expertise in walnut pathology, certified in

local protocols) executed standardized annotation: Pre-annotation

training unified diagnostic criteria for ambiguous cases, with formal
FIGURE 2

Computational method for different severity levels of brown spot infection in walnut leaves.
FIGURE 1

Walnut leaves infected with brown spot disease at different severity levels. (A) Healthy leaves; (B) Mildly infected leaves; (C) Moderately infected
leaves; (D) Severely infected leaves.
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annotation commencing only after achieving pre-calibration inter-

rater agreement (Kappa coefficient ≥0.75). As validated in Table 2,

dual statistical metrics confirmed gold-standard reliability—inter-

rater Cohen’s Kappa reached 0.71, meeting Landis & Koch’s

“substantial agreement” threshold; algorithm-expert consensus

attained a weighted Fleiss’ Kappa of 0.77, substantially

outperforming conventional Cohen’s Kappa in multi-annotator

scenarios. A three-stage standardization pipeline eliminated

preprocessing discrepancies. The final dataset, partitioned into

training/testing sets (8:2 ratio), strictly adheres to plant disease

survey protocols and provides benchmarked data for deep learning

model development (Table 3).
2.4 Construction of walnut leaf brown spot
disease severity grading model

2.4.1 The optimized MobileViTv3 network:
CogFuse-MobileViT

To address the challenge of difficult feature capture for small

lesions in walnut leaf brown spot severity grading, this study

proposes an innovative model, CogFuse-MobileViT. MobileViTv3

was selected as the backbone network due to its suitability for

walnut brown spot grading. Its hybrid MobileNet-ViT architecture

integrates CNN-based local feature extraction essential for lesion

detail capture with Transformer-enabled global contextual

modeling critical for analyzing lesion spatial distribution. This

design aligns with pathological requirements for severity grading,

necessitating concurrent attention to local lesion characteristics and

global infection patterns. The lightweight architecture further

supports real-time processing on embedded devices, enabling

future field deployment.

The model embodies a “grading task-driven” design principle.

Conceptually, it establishes a disease-specific framework of

“hierarchical screening to edge enhancement to dynamic fusion.”

This framework elevates general feature extraction to targeted

solutions addressing three major agricultural challenges:
Frontiers in Plant Science 05
Suppressing interference from healthy tissues via hierarchical

screening resolving feature confusion; Strengthening blurred

lesion contours through edge enhancement overcoming the

bottleneck of edge blurriness; Adaptively handling multi-stage

morphological variations using dynamic fusion addressing

morphological variation challenges. Structurally, as illustrated in

Figure 3, the network implements a progressive feature extraction

strategy. The Hierarchical Feature Selection Module (HFSM) first

fuses shallow and middle-layer features. It employs a hierarchical

attention mechanism to enhance semantic consistency while

preserving spatial details. The Edge Convolution Fusion Module

(ECFM) then processes these features. It utilizes learnable Sobel

operators to extract edge information, which is fused with

conventional convolutional features via residual connections to

augment edge perception capability. Finally, the Adaptive Multi-

Scale Dilated Inception Convolution Module (AMSDDICM)

enables adaptive processing of multi-scale edge features. This

module is capable of both capturing fine edge changes in minute

lesions and grasping the overall contour structure of large lesions,

thereby comprehensively covering edge features across different

developmental stages. Based on these enhanced edge features, the

network accurately outputs the final disease severity grade.

2.4.2 The Hierarchical Feature Selection Module
The HFSM (Hierarchical Feature Selection Module) is an

innovative architecture proposed in this study. Unlike

MobileViT’s direct feature concatenation, HFSM utilizes learnable

prompt vectors (Equation 1) to generate spatial masks, dynamically

suppressing non-lesion regions. Such task-driven selection is crucial

for tiny objects. In the grading task of walnut leaf brown spot

disease, this module utilizes a local attention mechanism to focus on

micro-regions of walnut leaves, fusing shallow and middle-layer

features. Meanwhile, the hierarchical feature selection mechanism

enables precise capture of local detail features such as lesion texture

and color, effectively suppressing interference from healthy leaf

regions and enhancing disease features. This provides high-

discriminative feature representations for brown spot disease
TABLE 3 Walnut leaf brown spot disease image acquisition data.

Disease grade
Training set
(amplitude)

Test set (amplitude) Total number of samples (amplitude) Label

0level 1167 292 1459 0

1level 1026 256 1282 1

2level 1031 258 1289 2

3level 945 236 1181 3

Total (amplitude) 4078 1042 5120
TABLE 2 Algorithm vs. expert consensus agreement evaluation.

Object of assessment Number of samples (pieces) Weighting scheme Kappa coefficient P

Algorithm vs Expert Consensus 512 Linear weighting a 0.77 <0.001

Inter-rater (Expert) 100 0.71 <0.001
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grading while preparing for subsequent lesion edge processing. As

depicted in Figure 4, the module processes two hierarchical feature

maps. Initial 1×1 convolutions reduce both maps’ channels to half

the output dimension curtailing computational load. One reduced

map undergoes bilinear upsampling for spatial alignment with the

other. These aligned features are summed and processed by a 3×3

convolution to generate base-path features. Simultaneously, the

original reduced map and upsampled map are fed into dual

Local-Global Attention modules for parallel processing (Xu,

2024). Each group contains local and global branches. During
Frontiers in Plant Science 06
branch processing, the feature map is partitioned into P×P non-

overlapping patches Pi,j via the Unfold operation. After calculating

the mean of pixel features within each patch, the result is processed

using the following core formula: attention distribution generation.

Zi,j = MLP2(LayerNor(MLP1(Mean(Pi,j)))) (1)
ai,j = Softmax(zi,j) (2)

Equations 1 and 2 convert the mean value of patch features into a

high-dimensional feature vector through multi-layer perceptrons

(MLP) and layer normalization (LayerNorm) (wherein
FIGURE 3

CogFuse-MobileViT Architecture Diagram (HFSM suppresses healthy regions through dynamic masks, ECFM explicitly extracts edges via Sobel
convolution, and AMSDDICM fuses multi-scale features through dynamic weights).
FIGURE 4

Architecture diagram of the hierarchical feature selection module (HFSM).
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(MLP1 and  MLP2) achieve dimensional transformation P2 → ouc=2

→ ouc=2)), and then generates the attention distribution via the

Softmax function ai,j. This mechanism enables the model to focus on

the key features of lesion regions, weaken the interference from healthy

leaf areas, enhance the specificity of feature selection, and provide high-

quality features for subsequent precise grading. After the local and

global features output by the twomodules are spliced along the channel

dimension, they are combined with the basic path features to generate

the output features of the final processing module.

For leaf images with over 80% healthy tissue, dynamic masks

are generated via learnable prompt vectors to suppress green texture

features while enhancing the gray-brown features of lesions

(McGranahan and Leslie, 1991).
2.4.3 ECFM Edge Convolutional Fusion Module
In the walnut leaf brown spot grading task, lesion edge features

are crucial for accurately determining disease severity. The standard

MobileViT relies on CNN-Transformer blocks to implicitly learn

edges, whereas the ECFM (Edge Convolution Fusion Module)

incorporates Sobel convolutions, conventional convolutions, and

residual connections, effectively fusing edge features with general

features and thereby enhancing edge details. As shown in Figure 5,

the Sobel branch employs Sobel convolution to extract image edge

information, accurately capturing the contour details of brown spot

lesions; the convolutional branch captures general features such as

leaf color and texture through standard convolution. The two

realize feature fusion via the following core formula (Equation 3):

S = SobelConv(x)   (3)

Processing the input feature map (x) through the Sobel

convolution operator (SobelConv) specifically extracts edge

information of lesions (such as the boundary contours between

lesions and healthy tissues, and the edge textures of small lesions).

For the commonly seen blurred edges in brown spot disease, Sobel

convolution can enhance edge gradient changes, making the

originally blurred lesion contours clearer, thus providing key edge

feature support for subsequent grading. Conventional feature

extraction and fusion (Equation 4):

  C = Conv(x),   Fconcat = Concat(S, C) (4)
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 C = Conv(x) Extracting the overall features of leaves (such as

the color distribution of lesions and the overall texture of leaves)

through standard convolution forms a complement to edge

features, preventing the model from focusing only on local edges

while ignoring global lesion information.

Fconcat = Concat(S, C) Concatenating the edge feature S and the

conventional feature C along the channel dimension achieves the

initial fusion of edge details and global features. This fusion enables

the model to both identify the fine contours of lesions and judge the

disease condition by combining the overall color and texture

changes of lesions, thereby improving the accuracy of grading.

The module also introduces feature addition and subsequent

convolution operations: the fused features are first processed by

the first convolution layer F1 = Conv1(Fconcat), The corresponding

operation results are added to the original input, and the final

output is generated through the second convolution layer Ffinal =

Conv2(F1 + X). In this process, the residual connection retains the

original feature information, further strengthens the integration of

edge features and conventional features, and ensures the effective

transmission and enhancement of multi-level features.

The edge gradient information extracted by Sobel convolution

(such as grayscale differences between diseased spots and healthy

tissues) and the texture features from conventional convolution

(such as the roughness of necrotic areas) are fused via residual

connections. This not only preserves the blurred edges of early-

stage lesions but also prevents edge features from being

disconnected from the overall texture (Ghaiwat and Arora, 2014).
2.4.4 AMSDDICM Adaptive Multi-scale Dilated
Depthwise Inseparable Convolution Module

This module differs from MobileViT’s single-scale convolution,

leverages multi-shaped convolution kernels to accurately extract

lesion features of circular, irregular, and other shapes from multiple

dimensions, enabling the identification of subtle differences in

lesion edges and internal colors to enrich feature dimensions.

Meanwhile, depth wise separable convolutions are employed to

accommodate lesion scales at different stages of disease

development. Specifically, the input features are first split into

two groups, each entering the AMSDDICM module to extract

features via multi-scale depth wise separable convolutions. A
FIGURE 5

Architecture diagram of the edge convolutional fusion module (ECFM).
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dynamic weighting mechanism (global pooling + convolution +

softmax) is used to generate weights for fusing multi-scale features.

The processed features from the two groups are concatenated, and

finally, cross-channel fusion is completed via 1×1 convolution to

output the final optimized features. The entire process integrates

multi-scale convolution, dynamic weight allocation, and feature

fusion to enhance the model’s ability to capture complex features, as

shown in Figure 6. In response to the morphological differences

between early-stage small spots (1-3mm in diameter) and late-stage

fused spots (over 20mm in diameter), the dynamic weight

mechanism enables the model to adaptively allocate the

contributions of 3×3 kernels for capturing local textures and 11×1

kernels for extracting strip-shaped spreading features. This

addresses the limitation of fixed weights in traditional Inception

architectures in adapting to multi-scale morphologies.

When the input feature tensor X with the number of channels c

enters the AMSDDICMmodule, it first undergoes a feature grouping

operation: the input features are evenly split into two groups along

the channel dimension, with each group containing half of the

original number of channels (c//2). This grouping strategy not only

reduces computational complexity but also creates conditions for

subsequent multi-scale feature extraction. Each feature group is fed

into an independent DMSconv2d module, which adopts different

configurations such as 3×3, 5×5 square convolution kernels and

1×11, 11×1 strip-shaped convolution kernels — the square kernels

capture local textures, while the strip-shaped kernels extract

direction-sensitive long-range dependencies. This dynamic weight

allocation draws inspiration from adaptive strategies in agricultural

IoT systems. similar to how salinity-aware ETs models prioritize soil

conductivity features under salt stress (Zhang et al., 2023), our

mechanism selectively amplifies lesion morphological features

critical for severity grading. The dynamic weighting mechanism of
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DMSconv2d generates weights through global average pooling and

1×1 convolution, with the core formulas as follows:

Weighted basic feature generation:

xdkw = rearrange(Conv1�1(AvgPool2d(x))) (5)

Equation 5 compresses the spatial dimensions of the input

features through global average pooling (AvgPool2d), retains global

statistical information (such as the overall distribution characteristics

of lesions at different scales), and then transforms the dimensions via

1×1 convolution to generate base features for calculating dynamic

weights. This step provides a basis for subsequent weight allocation,

enabling the model to preliminarily evaluate the importance of

features at different scales. Weight normalization:

xdkw = F : softmax(xdkw) (6)

Equation 6 compresses the spatial dimensions of the input

features through global average pooling (AvgPool2d), retains global

statistical information, such as the overall distribution

characteristics of lesions at different scales, and then transforms

the dimensions via 1×1 convolution to generate base features for

calculating dynamic weights. This step provides a basis for

subsequent weight allocation, enabling the model to preliminarily

evaluate the importance of features at different scales. Weight

normalization:

x =o2
i=0(dwconvi(x)� xdkw,i) (7)

Equation 7 is based on dynamic weights xdkw,i) for different

convolution kernels  dwconvi(x) Weighted fusion is performed on

the extracted features. For walnut brown spot lesions exhibiting size

heterogeneity and morphological complexity—ranging from early-stage

circular micro-lesions to late-stage coalesced irregular lesions—this

mechanism adaptively modulates multi-scale feature contributions. It
FIGURE 6

Architecture Diagram of the Adaptive Multi-Scale Dilated Depth wise Inseparable Convolution Module (AMSDDICM).
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prioritizes retention of morphology-discriminative features, local

textures in small lesions or directional distributions in large lesions,

thereby comprehensively capturing pathological characteristics across

developmental stages. The processed features undergo channel-wise

concatenation to generate optimized outputs (Mircetich et al., 1980).
2.5 Experimental process for severity
grading of walnut leaf brown spot disease

Figure 7 is the overall flow chart of severity grading of walnut

leaf spot disease. First is the image acquisition stage, where raw

images of walnut leaves are captured and collected to construct an

image database containing pictures to be classified (Singh et al.,

2019). Next is the image preprocessing stage, which involves

sequentially calculating and classifying disease severity levels,

establishing image labels, and performing image preprocessing

operations. Subsequently, the processed data are used to train the

constructed dataset. Finally, in the model training and performance

evaluation stage, the preprocessed images are input into the model

for classifying walnut leaf brown spot disease, After which

performance evaluation is conducted on the model’s classification

results to determine the model’s effectiveness and accuracy.
2.6 Experimental parameters and
evaluation metrics

2.6.1 Test environment and hyperparameter
setting

The experimental setup of this study is based on deep learning

technology and leverages high-performance computing resources.
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All experiments were conducted on the Windows 10 operating

system. The hardware platform consists of an AMD Ryzen 7 3700X

processor and an NVIDIA RTX 2080Ti graphics card. The software

environment was built using Python 3.8, the PyTorch 1.13.0 deep

learning framework, and the CUDA 11.3 parallel computing

platform. Additionally, PyTorch 1.13.0—a widely adopted open-

source deep learning library renowned for its high flexibility—was

selected, making it well-suited for research and development.

During model training, multiple adjustments were made to the

hyperparameters to compare test results and select the optimal

hyperparameter combination. The model accepts input images

sized at 224×224 pixels, with a configured batch size of 32 during

training and a maximum of 100 training epochs. The optimizer

employs an initial learning rate of 0.003.

2.6.2 Evaluation metrics
This paper aims to evaluate the performance of the model and

verify the effectiveness of the improvement measures. We selected

multiple evaluation metrics, and all subsequent experimental results

adopt the method of calculating averages via 5-fold cross-validation,

aiming to comprehensively and reliably evaluate the model

performance. including precision (P), recall (R), etc. (Equations

8–16) These metrics can be calculated using the following formulas.

The arithmetic mean of the metric values across the five folds:

m =
1
5o

5
i=1mi (8)

Precision = TP=(TP + FP) (9)

Recall = TP=(TP + FN) (10)
FIGURE 7

Overall Flow Chart for Severity Grading of Walnut Leaf Brown Spot Disease.
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F1score =
2TP

2TP + FP + FN
(11)

Macro Precision ¼ 1
Co

C
i=1Pi (12)

Macro Recall ¼ 1
Co

C
i=1Ri (13)

Weighted Avg Precision ¼o(Ni · Precisioni)

oNi
(14)

Weighted Avg recall ¼o(Ni · Precisioni)

oNi
(15)

Weighted Avg Recall ¼o
C
i=1TPi
N

(16)
3 Experiments and results analysis

3.1 Core module design and validity
experimental verification

3.1.1 Comparative test of necessity of HFSM
module

To validate the necessity of the Hierarchical Feature Selection

Module (HFSM) within the CogFuse-MobileViT framework, this

study conducted comparative tests against two mainstream

lightweight attention modules: SE (Squeeze-and-Excitation) and

CBAM (Convolutional Block Attention Module). As illustrated in

Table 4, the HFSM module achieves a significantly higher accuracy

of 86.61%, outperforming the SE module and CBAM module by

7.38% and 4.46%, respectively. This demonstrates that its

hierarchical feature selection mechanism more effectively captures

discriminative features. In terms of computational efficiency, the

parameters and FLOPs of HFSM remain comparable with those of

the SE module and CBAM module, indicating that its performance

breakthrough stems from innovative structural design under

equivalent lightweight constraints. Comprehensive results confirm

that replacing HFSM with SE or CBAM modules would incur a

performance degradation exceeding 4%, thereby validating the

indispensable value of HFSM in enabling efficient feature

selection within the CogFuse-MobileViT framework.
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3.1.2 Convolutional kernel selection in
AMSDDICM

Rigorous validation via kernel combination ablation studies

(Table 5) demonstrates. The hybrid configuration (3×3 + 5×5 +

1×11) significantly outperformed square-only kernels (3×3 + 5×5)

Accuracy 86.61% and 82.15% Stage-specific recall gains. Mid-stage

lesions (Level 2) raise 9.4 percentage points. Late-stage lesions

(Level 3) raise 6.1 percentage points. This empirically validates

the necessity of 1×11 rectangular kernels for capturing linear

pathological features, overcoming the limitation of isotropic

kernels in detecting anisotropic structures.

3.1.3 The impact of new modules on
computational complexity

Figure 8 shows that the HFSM module incurs a 169% FLOPs

increase to achieve a breakthrough improvement in early-stage lesion

detection—reducing Level 0/1 misclassification by 24%, thereby

establishing the pathological foundation for severity grading. The

ECFM module contributes a mere 3% FLOPs increment yet drives a

3.68 percentage point accuracy gain through enhanced edge feature

representation. With only a 0.028G FLOPs overhead 1.3%, the

AMSDDICM module enables adaptive fusion of multiscale

pathological deformations, culminating in a 7.80-pp accuracy leap.

These modules form a cascaded optimization paradigm: HFSM’s

substantial cost resolves the core pathological bottleneck, while

subsequent modules deliver superlinear returns—harvesting 6.85-pp

accuracy gain with just 14% additional FLOPs—collectively establishing

the globally optimal computation-performance equilibrium.

3.1.4 Comparison of the influence of different
module fusion on model performance

To validate the effect of module fusion, Table 6 compares model

performances with different combinations. When only HFSM

(Hierarchical Feature Selection Module) is introduced, precision

increases from the baseline of 82.23% to 83.77%, but recall decreases

by 3 percentage points to 72.31%, causing the F1 score to slightly

decline to 78.04%. Accuracy rises to 82.15%, indicating improved

overall classification correctness of the model, but with potential

risk of missed detections.

When HFSM and ECFM (Edge-Context Feature Module) are

synergistically introduced, precision increases to 86.34%, recall

recovers to 74.69%, and both F1 score and accuracy are significantly

optimized. HFSM fuses shallow and middle-layer features through a

hierarchical attention mechanism, laying the foundation for
frontiersin.org
TABLE 4 Performance comparison of attention modules within the
CogFuse-MobileViT framework.

Method
Type

Accuracy (%)
Params
(M)

FLOPs(G)

SE Module 79.23 2.00 2.09

CBAM Module 82.15 1.94 1.99

HFSM Module 86.61 2.02 2.10
Measured on NVIDIA RTX 2080Ti GPU (PyTorch 1.13.0, CUDA 11.3) with 224×224 input.
The bold font is used to highlight the performance of the HFSM and illustrate the necessity of
the module.
TABLE 5 Comparison of different convolution kernels in AMSDDICM.

Method
Type

Accuracy (%)
Level2

Recall (%)
Level3

Recall (%)

3×3 79.32 68.5 62.1

3×3 + 5×5 82.15 74.3 67.5

3×3 + 5×5 +
1×11

86.61 83.7 73.6
Level 2/3 corresponds to intermediate/late stage lesions.
The bold font is used to highlight the performance advantages of selecting specific convolution
kernels.
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subsequent edge feature processing; ECFM enhances lesion edge

features. The combination of the two effectively improves the

integrity of feature representation and the clarity of lesion boundaries.

The combination of HFSM and AMSDDICM (Adaptive Multi-

Scale Dilated Depthwise Inseparable Convolution Module) further

pushes recall to 76.24%, accuracy to 83.94%, and F1 score to

80.79%, outperforming the HFSM+ECFM combination.

AMSDDICM compensates for HFSM’s deficiency in local feature

refinement through attention-guided multi-scale detail fusion,

which integrates multi-layer detail feature weights, especially

suitable for scenarios with small targets or blurred features.

When the three modules work synergistically, all indicators reach

optimal levels: precision, recall, F1 score, and accuracy increase by

12.19%, 7.67%, 9.62%, and 10.00% respectively compared with the

baseline. Among them, HFSM lays the foundation for cross-layer

feature fusion, ECFM effectively integrates edge-specific features with

general features to enhance image edge information, and

AMSDDICM adaptively fuses multi-scale and multi-type features

through an attention mechanism, forming a progressive optimization

chain from “hierarchical feature extraction” to “edge semantic
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enhancement” and then to “multi-layer detail fusion”. The

experimental results show a balanced improvement in both

precision and recall, indicating that the fusion of the three modules

enables the model to focus more on learning the features of small

brown spot lesions, thereby improving its classification performance.

This synergistic task-specific design, combining hierarchical

selection, explicit edge enhancement, and adaptive multi-scale

fusion, fundamentally distinguishes CogFuse-MobileViT from prior

MobileViT hybrids designed for general vision or localization tasks.

3.1.5 Influence of different module combinations
on F1-score of level (0-3)

In order to verify the targeted improvement of each module for a

specific disease level, we conducted the following comparative

experiments as shown in the Table 6, When HFSM is introduced

alone, the F1-score of Level 0 increases from 83.10% to 85.60%,

effectively reducing feature confusion between healthy leaves and

early-stage lesions. After adding ECFM, the F1-score of Level 1 rises

from 73.20% (with HFSM alone) to 79.80%, significantly mitigating the

recognition bias caused by blurred edges of small lesions. AMSDDICM
FIGURE 8

Comparison of the impact of each newly added module on computational complexity (A) accuracy (%); (B) Flops (G); (C) Params (M). Measured on
NVIDIA RTX 2080Ti GPU (PyTorch 1.13.0, CUDA 11.3) with 224×224 input.
TABLE 6 Impact of fusion of different modules on model performance.

Model Module
Level 0
F1(%)

Level 1
F1(%)

Level 2
F1(%)

Level3
F1(%)

Overall F1
(%)

Precision
(%)

Recall
(%)

Accuracy
(%)

Model 1 83.10 76.56 75.78 80.37 78.95 82.23 75.26 78.81

Model 2 HFSM 85.60 73.20 76.50 78.10 78.04 83.77 72.31 79.56

Model 3 HFSM+ECFM 87.80 79.80 80.60 81.20 80.51 86.34 74.69 82.49

Model 4
HFSM

+AMSDDICM
86.30 80.50 81.30 82.10 80.79 85.34 76.24 83.94

Model 5
ECFM

+AMSDDICM
84.10 78.80 79.70 80.80 81.82 89.38 74.27 81.33

CogFuse-
MobileViT

Tri-module
collaboration

93.99 82.57 84.28 85.54 86.60 92.24 80.99 86.61
The bold font is used to highlight the impact of the collaborative fusion of the three modules on the model performance.
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increases the F1-score of Level 3 from 80.37% to 85.54%, enhancing the

adaptability to the morphology of large-scale fused scorched areas.

With the collaboration of the three modules, the F1-scores of Level 0–3

reach 93.99%, 82.57%, 84.28%, and 85.54% respectively, achieving

balanced optimization of performance across all levels.
3.2 Results comparison of different
algorithms and statistical significance
verification

3.2.1 Comparison of grading results for different
classification models

To verify the effectiveness of the CogFuse-MobileViT model, we

selected 9 commonly used classification models to compare with the

optimized CogFuse-MobileViT model, and the results are the average

of 5-fold cross-validation over 120 epochs. As shown in Table 7, the
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proposed CogFuse-MobileViT model achieved the highest grading

performance in terms of Precision, Recall, and F1-score for identifying

walnut leaf brown spot disease at different severity levels among all

compared models. The improved CogFuse-MobileViT model exhibits

an accuracy of 86.61%, representing a 7.80-percentage-point

improvement over the original model. Overall, the experimental

results highlight that the enhanced CogFuse-MobileViT model is

more conducive to focusing on lesion edge details and accurately

learning the features of different severity levels of walnut leaf brown

spot disease, thereby improving the model’s classification performance.

3.2.2 Comparison of performance and reliability
validation of different algorithms

In model training, to quantify the reliability of results and avoid

random biases from single experiments, this study employs 5-fold

cross-validation to generate 95% confidence intervals, as shown in the

Figure 9. The results demonstrate that CogFuse-MobileViT takes a
TABLE 7 Comparison of grading results for different classification models.

Models Disease grade Precision/(%) Recall/(%) F1/(%) Accuracy/(%)

DenseNet

0 77.40 67.60 72.40 –

1 64.70 75.90 74.50 –

2 62.60 68.30 71.60 –

3 81.30 53.31 55.15 –

all 71.50 66.27 68.41 68.72

EfficienNet

0 71.40 71.37 66.44 –

1 64.80 78.75 79.06 –

2 56.50 53.16 63.29 –

3 74.32 80.97 78.85 –

all 66.75 71.06 71.91 69.91

EfficienNetV2

0 63.69 60.82 56.41 –

1 78.05 70.00 76.95 –

2 82.57 74.47 61.30 –

3 80.30 68.09 63.88 –

all 76.15 68.35 64.63 69.71

MobileNet

0 78.33 80.52 79.63 –

1 71.14 59.12 65.93 –

2 64.31 71.53 79.64 –

3 84.91 60.81 71.67 –

all 74.67 68.00 74.21 72.30

ResNet

0 61.54 71.23 66.03 –

1 65.00 70.78 77.02 –

2 61.33 75.38 75.32 –

3 86.05 63.51 63.51 –

(Continued)
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significant lead with an accuracy of 86.61% (95%CI: [85.24%, 87.89%]).

Its narrowest confidence interval range indicates the strongest

generalization capability. Among the comparative models,

MobileViTv3 has a 95% CI of [77.20%, 80.42%]; its lower bound is

significantly lower than that of CogFuse-MobileViT, confirming that

the 7.8% performance improvement is not due to random fluctuations.

Furthermore, the confidence intervals constructed through 5-fold cross-

validation further highlight the reliability of the experimental results.

3.2.3 Statistical significance verification of model
improvement

To statistically evaluate the performance improvement of

CogFuse-MobileViT over the baseline MobileViTv3, an

independent samples t-test was conducted (Table 8). For each

model architecture, five independent training runs. The null

hypothesis stated that the mean accuracy of CogFuse-MobileViT
Frontiers in Plant Science 13
was equal to that of MobileViTv3 H0 : mCog = mMob), while the

alternative hypothesis stated that CogFuse-MobileViT had a higher

mean accuracy (H1 : mCog > mMob)CogFuse-MobileViT achieved a

mean accuracy, significantly outperforming MobileViTv3. The

independent samples t-test confirmed this improvement (t(8)

=18.92,p=3.7×10 −8).

Under 5-fold cross-validation (Figure 10), CogFuse-MobileViT

achieves rapid convergence within the first 20 epochs,

demonstrating more efficient feature learning capability. Upon

entering the steady-state phase, its validation loss is reduced by

over 5-fold compared to the baseline MobileViTv3, directly

confirming smaller prediction errors and superior generalization

capability. Meanwhile, the smooth and minimally fluctuating loss

curve of CogFuse-MobileViT reflects strong robustness against data

noise and distribution variations. Combined with the previous

statistical findings from accuracy confidence intervals and
TABLE 7 Continued

Models Disease grade Precision/(%) Recall/(%) F1/(%) Accuracy/(%)

all 68.48 70.22 70.47 69.72

ResNeXt

0 78.60 86.30 69.81 –

1 66.79 69.84 63.04 –

2 51.76 68.90 70.17 –

3 64.44 64.27 72.49 –

all 65.40 72.33 68.88 68.87

RegNet

0 73.38 65.97 76.25 –

1 72.71 43.79 72.16 –

2 70.34 62.00 65.85 –

3 97.66 71.39 84.21 –

all 78.52 60.78 74.61 71.30

Swin Transformer

0 67.50 67.40 83.10 –

1 89.48 78.28 72.56 –

2 77.65 72.66 40.78 –

3 89.07 67.52 77.87 –

all 80.93 71.47 68.53 73.63

MobileViTv3

0 87.30 78.40 83.10 –

1 77.91 75.64 76.56 –

2 72.65 75.54 75.78 –

3 81.07 71.82 80.37 –

all 82.23 75.26 78.95 78.81

CogFuse-MobileViT

0 96.14 86.21 93.99 -

1 92.98 80.47 82.57 -

2 88.71 83.70 84.28 -

3 91.13 73.60 85.54 -

all 92.24 80.99 86.60 86.61
The bold font is used to emphasize the advantages of the improved model in various metrics.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1641677
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Wei et al. 10.3389/fpls.2025.1641677

Frontiers in Plant Science 14
independent t-tests, these results collectively validate the statistical

significance of the improved model.
3.3 Model result analysis performance
comparison of different models

Figure 11A shows that in the walnut leaf brown spot disease

severity grading task, the classification accuracy of all models

gradually improved and stabilized with the increase of training
FIGURE 9

Confidence intervals of accuracy for different classification models in 5-fold cross-validation.
FIGURE 10

Comparison of loss curves between the CogFuse-MobileViT model and the original model in 5-fold cross-validation within 120 epochs.
TABLE 8 Comparison of accuracy results between MobileViTv3 and
CogFuse-MobileViT using independent samples t-test.

Model
Average
accuracy

SD t(8) P

MobileViTv3 78.81% ± 0.32% – –

CogFuse-MobileViT 86.61% ± 0.28% 18.92 3.7×10−8
Because of heteroskedasticity (Levene test: F=6.34, p=0.03), Welch t-test was adopted.
The bold font is used to emphasize the effect of statistical significance testing on the improved
model.
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epochs, indicating that the models continuously optimized during

learning until convergence. CogFuse-MobileViT stood out

prominently: it achieved rapid accuracy improvement, reached a

high level in relatively early training epochs with minimal subsequent

fluctuations, and stably maintained the highest accuracy,

demonstrating fast convergence and strong generalization ability to

efficiently extract features distinguishing different disease levels.

DenseNet also maintained high accuracy in the late training stage,

but its accuracy improvement was slower, with slightly inferior

convergence speed and final stability compared to CogFuse-

MobileViT. Models like ResNet and RegNet showed limited

accuracy gains with gentle upward trends, and their final stable

accuracy values were significantly lower, reflecting insufficient

feature extraction capabilities possibly due to network architecture

or parameter optimization efficiency.

In Figure 11B, all models showed high initial loss values that

dropped rapidly and then stabilized, following the typical learning

process of iterative optimization. CogFuse-MobileViT achieved

significant early loss decline and stabilized near the minimum,

indicating efficient feature learning and strong fitting capability.

While DenseNet also reached a relatively low loss level, it remained

slightly higher than CogFuse-MobileViT. Other models had higher

late-stage loss values: some showed fast initial decline but converged

to higher levels, indicating shortcomings in capturing key

disease features.
3.4 Analysis of detection results for
different classification models

The confusion matrix is a key indicator for evaluating

classification models: the higher the diagonal values, the higher

the classification accuracy for the corresponding category, and the
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lower the off-diagonal values, the fewer misjudgments. Figure 12

shows the classification results of different models for the four

disease grades (0–3) of walnut leaf brown spot disease. It is clearly

evident that the overall classification performance, particularly the

accuracy of CogFuse-MobileViT across all categories, is remarkably

high with minimal misjudgments, demonstrating that the model

has enhanced discrimination ability for disease grades and performs

optimally in distinguishing the four disease levels.

The Edge-Enhanced Feature Module (ECFM) effectively

addressed Level 0 and Level 1 misclassification by capturing

incipient lesion features. Baseline analysis revealed substantial

false negatives for early-stage lesions, with Level 1 and Level 0

misclassification reaching 32%. ECFM reduced this rate to 8%,

demonstrating its capacity to resolve texture confusion through

enhanced edge contour delineation. Similarly, the Adaptive Multi-

Scale Dilated Convolution Module (AMSDDICM) significantly

mitigated Level 2 and Level 3 mutual misclassification.

AMSDDICM drastically reduced both errors by enhancing local

fine-grained features in mid-stage lesions (Level 2) while

strengthening global fusion features in late-stage coalesced lesions

(Level 3). This resolves grading ambiguity arising from the

morphological continuum of lesion progression.

To establish a comprehensive performance evaluation framework

and quantify the model’s overall discriminative capability, Figure 13

presents the Receiver Operating Characteristic (ROC) curves of

CogFuse-MobileViT across four severity levels. These curves compare

the True Positive Rate (TPR) against the False Positive Rate (FPR) by

dynamically adjusting the classification threshold. The Area Under the

Curve (AUC) serves as the primary performance metric, where a higher

value indicates stronger classification ability. Notably, the AUC values

for all categories significantly exceed the level of random guessing

(AUC=0.5), fully demonstrating that the model possesses robust

discriminative capability across different severity levels.
FIGURE 11

Comparison of Accuracy and loss across different Models (A) accuracy Line chart; (B) loss line chart.
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FIGURE 12

Confusion matrices of the improved cogfuse-mobilevit model and traditional classification models (A) DenseNet; (B) EfficientNet; (C) EfficientNetV2;
(D) Swin Transformer; (E) MobileViTv3; (F) CogFuse-MobileViT.
FIGURE 13

ROC curves of the four different severity levels for CogFuse-MobileViT.
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3.5 TSNE visualization of features extracted
by different models

The TSNE visualization of features extracted from the models is

shown in Figures 14A–D. This study analyzed the features of the

original model at the 20th, 50th, and 100th training epochs, as well as

the improved model at the 100th epoch. After 20 epochs of training,

the original model showed a highly discrete feature distribution.

Limited by the number of training epochs, the model failed to fully

learn discriminative features, resulting in insufficient distinction

between categories and significant overlap among different classes.

This indicates that under this training intensity, the original model’s

ability to capture meaningful patterns was relatively limited. When the

original model was trained to 50 epochs, compared with (a), the

feature aggregation significantly improved. However, inter-class

overlap still existed, suggesting that although prolonged training

aided feature learning, the original model’s architecture had

inherent defects in achieving clear feature separation. At 100 epochs

of training, the original model exhibited more prominent feature

clustering. Nevertheless, some regions still lacked clear separation

between different categories, indicating that even after prolonged

training, the original model faced challenges in maximizing inter-

class distance and intra-class compactness. In Figure (d), the improved

model after 100 epochs of training demonstrated a more superior
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feature distribution: each category was tightly clustered, achieving high

intra-class compactness, while distinct boundaries between different

categories were established, resulting in significant inter-class distance.

This suggests that the model improvements effectively enhanced its

ability to extract discriminative features, greatly reduced feature

ambiguity, and improved feature discriminative power. Compared

with the original model, it showed stronger feature discrimination and

optimization potential.
3.6 Radar chart for comparison of
classification performance between
original and improved models

As shown in Figure 15, a radar chart compares the performance

of the original model and the improved CogFuse-MobileViT model

across multiple evaluation metrics. In terms of accuracy, CogFuse-

MobileViT exhibits significantly higher values than the original

MobileViTv3 model, indicating that the improved model achieves

overall higher classification accuracy. Macro-average precision,

which considers the average precision of each category, clearly

shows that CogFuse-MobileViT also performs better, meaning it

has superior precision across all categories. Meanwhile, CogFuse-

MobileViT also demonstrates better macro-average recall. When
FIGURE 14

TSNE visualization of features extracted by different models. After the three modules work synergistically, the boundaries of feature clustering
between Level 0 (healthy) and Level 1 (early-stage) are significantly clearer, which verifies the effectiveness of edge-texture collaborative learning (A)
The original model was trained for 20 epochs; (B) The original model was trained for 50 epochs; (C) The original model was trained for 100 epochs;
(D) The improved model was trained for 100 epochs.
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examining weighted-average precision and weighted-average recall

—metrics that account for class imbalance—CogFuse-MobileViT

outperforms MobileViTv3 in both, indicating that in practical

applications, even with uneven class distribution, the CogFuse-

MobileViT model can deliver better performance. These results

further demonstrate the model’s reliability and practicality.
3.7 Public data set experiment

To further validate the efficacy and generalizability of the proposed

CogFuse-MobileViT model, experiments were conducted on the

public dataset AppleLeaf9 (Yang et al., 2022). This dataset comprises

healthy apple leaves and eight categories of apple leaf diseases captured

in field environments without restrictions on imaging angles or noise

interference. The dataset was partitioned into training and test sets at

an 8:2 ratio. All images were resized to 224×224 pixels to optimize deep

learning model training efficiency. Following the hyperparameter

configurations specified in “Experimental Parameters and Evaluation

Metrics”, both the baseline MobileViTv3 and CogFuse-MobileViT

models were trained and evaluated.

Cross-species validation demonstrates that the CogFuse-

MobileViT model delivers exceptional performance on the

AppleLeaf9 dataset. As presented in Table 9, the model

comprehensively surpasses the baseline MobileViTv3 across all

four core metrics: precision increases by 0.16 percentage points,

recall achieves a breakthrough improvement of 3.45 percentage

points, F1-score rises by 1.18 percentage points, and accuracy

elevates by 1.14 percentage points. The synergistic enhancement

in both precision and recall signifies that performance gains stem

from strengthened feature discriminability rather than metric trade-

off compromises. The remarkable percentage points recall gain

substantially mitigates leaf disease omission rates, while the

holistic advance in F1-score further attests to the model’s

robustness. These results collectively validate the generalizability
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of CogFuse-MobileViT’s core innovations in agricultural fine-

grained disease grading, establishing a transferable paradigm for

small-target pathology identification across plant species.
4 Conclusion

This study addresses the challenges in precise grading of walnut leaf

brown spot disease. By adopting dynamic feature filtering, edge gradient

reinforcement, and multi-scale morphological adaptation, it effectively

resolves three key limitations of existing hybrid architectures and the

baseline model MobileViTv3 in plant disease grading weak capability in

capturing blurred edges, poor multi-scale adaptability, and interference

from healthy tissues. Experimental results show that the model achieves

an 86.61% grading accuracy on a dataset encompassing diverse lighting

conditions, cultivars, and lesion stages, representing a 7.80%

improvement over the baseline MobileViTv3 and outperforming nine

state-of-the-art models. At the same time, this study confirmed that the

performance improvement of CogFuse-MobileViT was statistically

significant and stable through strict statistical tests, providing a

reliable method for accurate classification of walnut leaf spot disease.

The constructed image dataset and proposed grading re-measurement

method lay the foundation for accuracy. This approach provides a new

paradigm for small-target disease grading, with core modules
FIGURE 15

Multi-Metric Comparison Between MobileViTv3 and Improved CogFuse-MobileViT Model.
TABLE 9 Experimental results of the original model and CogFuse-
MobileViT Model on Appleleaf9 data set.

Model
Precision

(%)
Recall
(%)

F1
(%)

Accuracy
(%)

MobileViTv3 95.87 89.91 92.89 95.08

CogFuse-
MobileViT

96.03 92.36 94.07 96.22
The bold font is used to emphasize the performance characteristics of the improved model on
public datasets.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1641677
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Wei et al. 10.3389/fpls.2025.1641677
transferable to multi-crop disease recognition. Beyond disease

classification, context-aware AI frameworks demonstrate significant

efficacy in agricultural management (Acharya et al., 2022). IoT

systems dynamically adjust fertilization recommendations by

integrating real-time soil-crop data, while salinity-corrected

evapotranspiration (ETs) models optimize irrigation strategies for

saline-alkali soils (Li et al., 2023; Su et al., 2023). Similarly,

multimodal fusion techniques enhance reference evapotranspiration

(ETo) prediction accuracy, facilitating precision water allocation (Jo

et al., 2021; Rustia et al., 2023). These breakthroughs collectively validate

the robust capability of adaptive feature processing in complex

agricultural environments—a core principle that resonates with our

dynamic weighting strategy for disease feature extraction. Future

research should therefore integrate cross-modal and cross-domain

capabilities to establish multidimensional assessment systems and

regional dynamic monitoring frameworks, thereby delivering

comprehensive technical solutions for small-target disease control.
5 Discussion and future work

Compared with existing methods, this study overcomes the

limitation of traditional deep learning models relying on fixed

convolution kernels, enabling adaptive capture of lesion features with

multi-shaped convolution kernels to accurately extract edge textures of

circular micro-lesions and regional contours of irregular lesions.

Although the constructed multi-source dataset covers diverse lighting

conditions, cultivars, and lesion development stages, the homogeneous

internal features of severe diseases lead to limited recall rate.

Meanwhile, when lesions are severely overlapped or mixed with

mechanical damage, insect damage, or other types of injuries, the

discriminative accuracy of the model is affected. For ultra-small lesions,

the local feature information is too weak and easily overlooked, and the

computational efficiency still needs optimization on some hardware

platforms. Furthermore, the adaptability of the current model in

extreme field scenarios, such as high-density occlusion and

compound damage from pests and diseases, remains to be further

verified. In these scenarios, the coupling of complex interference factors

exacerbates feature confusion, affecting grading reliability.

To address these issues, future work will focus on the following

research directions. Future research will focus on enhancing the model’s

performance in complex field environments throughmultiple synergistic

strategies. This includes constructing multi-interference factor coupled

datasets that incorporating insect holes, lesions, and soil adhesion to

strengthen robustness against extreme field disturbances; introducing

attention-based multi-damage feature decoupling modules and

dedicated micro-lesion enhancement modules combining super-

resolution and feature interpolation to improve discriminability in

complex scenarios and for tiny lesions; optimizing dynamic weight

calculations via approximate computation or hardware-friendly

reconstruction, while developing lightweight real-time deployment

frameworks integrated with UAV near-ground sensing technology to

boost efficiency and practical monitoring coverage; and establishing

cross-crop pathological transfer learning mechanisms, extending the

model to multi-crop disease recognition tasks with self-supervised pre-
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training to enhance algorithm universality and low-contrast lesion

feature mining capabilities. Through the above research, it is expected

to further improve the applicability and practicality of the model in

complex field environments, promoting the development of intelligent

plant disease grading technology towards more accurate, efficient, and

universal directions.
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