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Walnut leaf brown spot disease, caused by Ophiognomonia leptostyla, is among
the most destructive fungal diseases in walnut cultivation. In the development of
smart agriculture, precision grading of plant diseases remains a core technical
challenge; specifically, this disease is plagued by blurred lesion edges and
inefficient extraction of complex features, which directly limits the accurate
grading of the disease. To address these issues, this study proposes a disease
grading method integrating hierarchical feature selection and adaptive multi-
scale dilated convolution, and develops the CogFuse-MobileViT model. This
model overcomes the limitations of the standard MobileViTv3 modelin capturing
blurred edges of tiny lesions via three innovative modules: specifically, the
Hierarchical Feature Screening Module (HFSM) enables hierarchical screening
of disease-related features; the Edge Feature Focus Module (ECFM) works in
synergy with the HFSM to enhance the focus on lesion edge features; and the
Adaptive Multi-Scale Dilated Convolution Fusion Module (AMSDIDCM) achieves
dynamic multi-scale fusion of lesion textures and global structures. Experimental
results demonstrate that the proposed model achieves an accuracy of 86.61% on
the test set, representing an improvement of 7.8 percentage points compared
with the original MobileViTv3 model and significantly outperforming other
mainstream disease grading models. This study confirms that the CogFuse-
MobileViT model can effectively resolve the issues of blurred edges and
inefficient feature extraction in this disease, provides a reliable technical
solution for its precision grading, and holds practical application value for the
intelligent diagnosis of plant diseases in smart agriculture.

walnut, brown spot disease (Ophiognomonia leptostyla), hierarchical feature selection,
edge features perception, adaptive multi-scale dilated convolution, disease grading
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1 Introduction

Walnut diseases pose a serious threat to walnut production in
Xinjiang. The spread of crop diseases significantly exacerbates the
security risks of the walnut industry if timely prevention and
control measures are not taken (Cooke, 2006; Khan et al., 2021).
As a core component of the disease prevention and control system,
early precise grading plays a critical role in agricultural production
management (Adaskaveg et al., 2009; Chiang et al., 2016;
Lamichhane, 2014). Walnut brown spot, caused primarily by the
fungus Ophiognomonia leptostyla, typically forms specific
symptoms on organs such as leaves, flowers, and fruits. Among
them, leaves, as the primary carrier of plant diseases, exhibit
characteristics such as lesion morphology and color changes on
their surfaces, which often serve as important bases for disease
grading (Ghaiwat and Arora, 2014; Weber, 1980; Zarei et al., 2019).
Traditional disease identification relies on manual experience
(Moragrega et al,, 2011; Wang et al., 2020), a method that is not
only time- color system to reduce interference from light and leaf
veins, and lesion edge detection using the Sobel operator, ultimately
achieving fast and accurate grading based on the ratio of lesion area
to leaf area. Jadhav and Patil (2016) developed a leaf image
partitioning technique based on k-means clustering and squared
Euclidean distance, automatically quantifying damaged leaf area
through the pixel ratio of lesions to leaves for disease grading.
Arivazhagan et al. (2013) proposed a four-step processing system
involving color conversion, green pixel removal, segmentation, and
texture feature classification for leaf disease grading. However,
traditional methods for acquiring disease information suffer from
insufficient segmentation accuracy for plant leaf disease images with
complex textures and unclear lesion boundaries, thereby resulting
in poor disease severity grading performance.

With the continuous advancement of computational power,
deep learning has increasingly become a key technology for
addressing complex lesion segmentation, primarily due to its
superior capability in automatic feature extraction (Mao et al,
2023). Chen et al. (2021) proposed the BLSNet method based on
the UNet semantic segmentation network, enhancing lesion
segmentation accuracy through the introduction of attention
mechanisms and multi-scale feature fusion. Experiments showed
that its segmentation and classification accuracy outperformed
benchmark models such as DeepLabv3+ and UNet, preliminarily
verifying the reliability of this method in automatic assessment of
BLS disease severity. Ngugi et al. (2020) developed the KijaniNet
segmentation network based on fully convolutional neural
networks, demonstrating excellent performance in tomato leaf
segmentation under complex backgrounds; Lin et al. (2019)
developed a CNN semantic segmentation model that achieved
high-precision pixel-level segmentation of cucumber powdery
mildew on leaves. Additionally, some studies have fused
traditional features with deep learning: Tripathi (2021) proposed
a convolutional neural network method based on AlexNet,
achieving disease grading by fusing features extracted by the
model with external leaf segmentation features; Ma et al. (2017)
introduced Comprehensive Color Features (CCF) combining
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hyper-red index, HSV/H and Lab/b components, and achieved
lesion segmentation via interactive region growing, with
experiments confirming that this method enables accurate
grading of disease images such as cucumber downy mildew under
actual field conditions. However, although such methods have
improved grading accuracy to some extent, they still suffer from
insufficient feature capture of blurred disease edges, making it
difficult to achieve fine-grained differentiation of subtle differences
between disease grades (Rastogi et al., 2015).

In recent years, the application of deep learning in plant disease
classification has continued to expand. Parashar et al. (2024)
systematically validated the capability of complex feature
modeling for crop yield prediction, further substantiating the
critical role of adaptive feature extraction in agricultural
intelligent decision-making. Concurrently, Vishnoi et al. (2022)
enhanced small-target detection precision in apple disease
identification through a spatial attention mechanism-based CNN
architecture for leaf disease diagnosis. Ozturk et al. (2025)
constructed an ensemble learning classification model based on
ResNet50, Mobile Net, EfficientNetB0, and DenseNetl21,
enhancing generalization performance through statistical cross-
validation and improving decision interpretability via Grad-CAM
visualization. Experimental results showed that the ensemble model
achieved stable high-precision classification performance across
multiple validation rounds. These studies provide robust and
interpretable solutions for intelligent plant disease recognition
through technical integration and architectural innovation. Hu et
al. (2021) integrated Retinex enhancement, Faster R-CNN
detection, and VGGI16 classification to improve the grading and
detection accuracy of blurred diseased leaves. Picon et al. (2019)
proposed an adaptive deep residual neural network algorithm for
the classification of three European wheat diseases (Septoria leaf
blotch, brown spot, and rust) in real-world scenarios, which
effectively improved the classification accuracy of wheat diseases.
Kim and Ahn (2021) employed deep CNN architectures such as
ResNet, Xception, and DenseNet, combined with transfer learning
and fine-tuning, to classify 9 categories of pests, diseases, and
healthy states in tomatoes. Although DenseNet combined with
the RMSprop algorithm achieved an accuracy of 98.63%, single
CNN architectures have clear bottlenecks in handling complex
plant lesions and overlapping multiple diseases, including
insufficient specificity in feature extraction and limited ability to
distinguish subtle differences between lesions. Shi et al. (2023)
analyzed the application of CNNs in evaluating the severity of
plant diseases, pointing out that hybrid architectures such as
classical CNNs, improved CNNs, and segmentation networks
have limitations in handling complex plant lesions: classification
errors caused by concurrent multiple diseases, as well as constraints
on model generalization ability due to unbalanced datasets and
insufficient annotation accuracy. These issues significantly restrict
their precise application in practical agricultural scenarios.

Although significant advancements have been made in plant
lesion segmentation and disease classification using deep learning,
the grading task for walnut leaf brown spot disease—characterized
by blurred edge representation and complex small lesions—still
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faces notable challenges. Current MobileViT-based hybrid models
fall into two categories: general architectures (MobileViTv1/v2/v3)
focus on optimizing the CNN-Transformer balance for natural
images; domain-improved models (Mobile-Former/EdgeViT) are
oriented toward medical/industrial tasks, with their task focus on
localization rather than grading, which mismatches the pain points
and fails to address the blurriness of agricultural lesions, tissue
interference, and morphological variations. Thus, the present study
proposes a novel CogFuse-MobileViT model specifically designed
for disease grading, with its specific contributions as follows:

1. A diverse field-collected walnut leaf dataset was
constructed, with images divided into four distinct
severity levels based on qualitative assessment of disease
severity, ensuring the accuracy of disease severity grading.

2. The Hierarchical Feature Selection Module (HFSM)
enhances the fusion of local details (such as lesion texture
and color) with global context through local and global
attention mechanisms and task-driven feature selection,
while suppressing interference from healthy regions.

3. The Edge Convolution Fusion Module (ECFM) strengthens
edge details through Sobel convolution and residual
connections, achieving effective integration of edge-
specific features with general features, further enhancing
edge details and enabling more precise capture of lesion
contour details.

4. The Adaptive Multi-Scale Dilated Dense Inception
Convolution Module (AMSDDICM) extracts
differentiated features using multi-shaped convolution
kernels and adaptively fuses multi-scale information via a
dynamic weight mechanism, capturing lesion
morphologies at different pathogenesis stages.

2 Materials and methods

2.1 Characteristics of walnut leaf brown
spot and classification of disease severity
levels

In the local standard Technical Regulations for Prevention and
Control of Walnut Brown Spot (McGranahan and Leslie, 1991),
walnut brown spot is divided into four severity levels. The severity
of plant leaf diseases is generally determined using the spot coverage
method. In this study, walnut leaves with different disease severities
were processed to separate disease-infected spots from healthy leaf
areas, and the percentage of lesion area to total leaf area was
calculated. With reference to the local standard, the disease
grades specified in the standard were re-determined through
calculations in this study, as shown in Table 1. Classification of
different severity levels of walnut leaf brown spot was conducted in
accordance with Technical Regulations for Prevention and Control
of Walnut Brown Spot (Wang et al., 2022; Yang et al., 2021).
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Walnut leaf brown spot is caused by infection with the fungus
Ophiognomonia leptostyla (Mircetich et al., 1980). In the early
infection stage, near-circular or irregular small spots appear on
the leaves, with a gray-brown center and dark yellow-green to
purplish-brown edges, and diseased leaves tend to fall off
prematurely. In the middle stage, elongated elliptical or irregular
slightly sunken dark brown lesions form, with larger spot size and
light brown edges; longitudinal cracks are often present in the
center of the lesions. In the late stage, lesions often coalesce to form
large scorched necrotic areas, surrounded by yellow to golden-
yellow zones, and small black granules (conidiomata and conidia of
the pathogen) are scattered on the surface of the diseased tissue
(Mircetich et al., 1980). According to the degree of color and texture
feature changes in infected leaves, walnut leaf disease is divided into
four stages: healthy, early, middle, and late stages, corresponding to
disease severity levels: healthy (Level 0), mild (Level 1), moderate
(Level 2), and severe (Level 3). The different severity levels of walnut
leaf brown spot are shown in Figure 1.

Table 1 shows the ratio of walnut leaf brown spot lesion area to
total leaf area. Level 0 (Healthy): Healthy leaves without symptoms.
Level 1 (Mild): Near-circular or irregular small white spots appear on
leaves, accounting for less than 5% of the leaf area. Level 2 (Moderate):
Lesions expand into irregular dark brown spots, covering 5% to 30% of
the leaf area. Level 3 (Severe): Abundant lesion coalesce to form large
scorched necrotic areas, exceeding 30% of the leaf area.

2.2 Calculation algorithm for walnut leaf
brown spot disease severity levels

After capturing walnut leaf brown spot samples using a camera,
to minimize subjective bias, this study strictly adhered to the
objective quantitative criteria defined in the Technical Regulations
for the Control of Walnut Brown Leaf Spot (Table 1), utilizing the
lesion area percentage (K) as the primary grading indicator. we re-
determined the severity levels through computational analysis, with
the specific determination process shown in Figure 2.

First, a Python-based color segmentation algorithm was
employed to convert images from the BGR color space to the HSV

TABLE 1 Walnut leaf brown spot disease severity grading criteria.

Disease Area ratio
Symptom of S1to S2
grade )
0 Absence of symptoms 0
Near-round or irregular-shaped small white
1 0<K<5%
spots
) Leaf disease spots become large, irregular S06<K<30%
black and brown
There are a large number of spots on the
3 leaves, the spots fusion, forming a large area >30%
of coke
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Mildly infected leaves

FIGURE 1
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Cc D
Moderately infected leaves Severely infected leaves

Walnut leaves infected with brown spot disease at different severity levels. (A) Healthy leaves; (B) Mildly infected leaves; (C) Moderately infected

leaves; (D) Severely infected leaves

color space for processing. The HSV color space offers inherent
advantages in color segmentation tasks. By analyzing the hue,
saturation, and value characteristics of diseased regions, the color
threshold range in the HSV space was determined (Chaudhary et al,
2012). After generating an initial disease region mask based on this
threshold range, morphological operations such as closing and
opening were applied to optimize mask quality, effectively
eliminating noise while preserving the integrity of lesion contours.
Subsequently, the original image was converted to grayscale mode,
and the leaf region was extracted using an adaptive threshold
binarization algorithm. Leaf boundaries were localized via contour
detection technology, and a complete leaf mask was generated
through contour filling. Pixel statistical analysis was performed on
both the leaf mask and disease mask to calculate the total leaf area and
diseased region area, respectively. When a valid leaf area (>0) was
detected, the disease severity index was calculated using the following
formula: Disease Severity Index (%) = g—; x 100% S,: Total Area of
Diseased Regions S,: Total Area of the Complete Leaf.

2.3 Dataset construction

Data were collected from the Walnut Plantation Base of Tarim
University (Alar, Xinjiang) between May and October 2024. Leaves

Morphological
color space

FIGURE 2

Grayscale
image

from three locally dominant early-fruiting cultivars (‘Wen 185’,
Xinxin 2’, Zha 343’)widely cultivated in southern Xinjiang were
vertically photographed using an iPhone 13. This genotypic
diversity ensures model generalizability by encompassing varied
disease phenotypes. The orchard follows standardized cultivation
with 4m plant spacing, 5m row spacing (=50 plants/mu), and
conventional management practices. Sampled trees were in full
fruiting stage. To capture disease traits across microenvironments,
samples were collected from safely accessible crown layers. The
dataset includes healthy and brown spot-infected leaves three
severity levels, spanning varied time periods, light conditions, and
angles. After removing duplicates and invalid images,5,120 high-
quality JPGs were retained for analysis.

2.3.1 Development of the walnut leaf brown spot
dataset

Disease severity grading was established through quantitative
lesion area analysis (Figure 2). A representative subset of 512 images
(10% of the full 5,120-image dataset) was selected via stratified
random sampling, accurately preserving the original severity
distribution. To ensure labeling rigor, two plant protection
specialists (>5 years’ expertise in walnut pathology, certified in
local protocols) executed standardized annotation: Pre-annotation
training unified diagnostic criteria for ambiguous cases, with formal

disease area S1

Sy
Trt e
<SP
P B V{’}p’%‘!f?f’\' .

S1
52

0

leaf area S2

Computational method for different severity levels of brown spot infection in walnut leaves.
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TABLE 2 Algorithm vs. expert consensus agreement evaluation.

Object of assessment

Number of samples (pieces)

10.3389/fpls.2025.1641677

Weighting scheme Kappa coefficient

Algorithm vs Expert Consensus ‘ 512

‘ Linear weighting a <0.001

Inter-rater (Expert) ‘ 100

annotation commencing only after achieving pre-calibration inter-
rater agreement (Kappa coefficient 20.75). As validated in Table 2,
dual statistical metrics confirmed gold-standard reliability—inter-
rater Cohen’s Kappa reached 0.71, meeting Landis & Koch’s
“substantial agreement” threshold; algorithm-expert consensus
attained a weighted Fleiss’ Kappa of 0.77, substantially
outperforming conventional Cohen’s Kappa in multi-annotator
scenarios. A three-stage standardization pipeline eliminated
preprocessing discrepancies. The final dataset, partitioned into
training/testing sets (8:2 ratio), strictly adheres to plant disease
survey protocols and provides benchmarked data for deep learning
model development (Table 3).

2.4 Construction of walnut leaf brown spot
disease severity grading model

2.4.1 The optimized MobileViTv3 network:
CogFuse-MobileViT

To address the challenge of difficult feature capture for small
lesions in walnut leaf brown spot severity grading, this study
proposes an innovative model, CogFuse-MobileViT. MobileViTv3
was selected as the backbone network due to its suitability for
walnut brown spot grading. Its hybrid MobileNet-ViT architecture
integrates CNN-based local feature extraction essential for lesion
detail capture with Transformer-enabled global contextual
modeling critical for analyzing lesion spatial distribution. This
design aligns with pathological requirements for severity grading,
necessitating concurrent attention to local lesion characteristics and
global infection patterns. The lightweight architecture further
supports real-time processing on embedded devices, enabling
future field deployment.

The model embodies a “grading task-driven” design principle.
Conceptually, it establishes a disease-specific framework of
“hierarchical screening to edge enhancement to dynamic fusion.”
This framework elevates general feature extraction to targeted
solutions addressing three major agricultural challenges:

TABLE 3 Walnut leaf brown spot disease image acquisition data.

<0.001

Suppressing interference from healthy tissues via hierarchical
screening resolving feature confusion; Strengthening blurred
lesion contours through edge enhancement overcoming the
bottleneck of edge blurriness; Adaptively handling multi-stage
morphological variations using dynamic fusion addressing
morphological variation challenges. Structurally, as illustrated in
Figure 3, the network implements a progressive feature extraction
strategy. The Hierarchical Feature Selection Module (HFSM) first
fuses shallow and middle-layer features. It employs a hierarchical
attention mechanism to enhance semantic consistency while
preserving spatial details. The Edge Convolution Fusion Module
(ECEM) then processes these features. It utilizes learnable Sobel
operators to extract edge information, which is fused with
conventional convolutional features via residual connections to
augment edge perception capability. Finally, the Adaptive Multi-
Scale Dilated Inception Convolution Module (AMSDDICM)
enables adaptive processing of multi-scale edge features. This
module is capable of both capturing fine edge changes in minute
lesions and grasping the overall contour structure of large lesions,
thereby comprehensively covering edge features across different
developmental stages. Based on these enhanced edge features, the
network accurately outputs the final disease severity grade.

2.4.2 The Hierarchical Feature Selection Module
The HFSM (Hierarchical Feature Selection Module) is an
innovative architecture proposed in this study. Unlike
MobileViT’s direct feature concatenation, HFSM utilizes learnable
prompt vectors (Equation 1) to generate spatial masks, dynamically
suppressing non-lesion regions. Such task-driven selection is crucial
for tiny objects. In the grading task of walnut leaf brown spot
disease, this module utilizes a local attention mechanism to focus on
micro-regions of walnut leaves, fusing shallow and middle-layer
features. Meanwhile, the hierarchical feature selection mechanism
enables precise capture of local detail features such as lesion texture
and color, effectively suppressing interference from healthy leaf
regions and enhancing disease features. This provides high-
discriminative feature representations for brown spot disease

Disease grade Ul S5 Test set (amplitude) Total number of samples (amplitude) Label
(amplitude)
Olevel 1167 292 1459 0
1level 1026 256 1282 1
2level 1031 258 1289 2
3level 945 236 1181 3
Total (amplitude) 4078 1042 5120
Frontiers in Plant Science 05 frontiersin.org
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FIGURE 3

CogFuse-MobileViT Architecture Diagram (HFSM suppresses healthy regions through dynamic masks, ECFM explicitly extracts edges via Sobel
convolution, and AMSDDICM fuses multi-scale features through dynamic weights).

grading while preparing for subsequent lesion edge processing. As
depicted in Figure 4, the module processes two hierarchical feature
maps. Initial 1x1 convolutions reduce both maps’ channels to half
the output dimension curtailing computational load. One reduced
map undergoes bilinear upsampling for spatial alignment with the
other. These aligned features are summed and processed by a 3x3
convolution to generate base-path features. Simultaneously, the
original reduced map and upsampled map are fed into dual
Local-Global Attention modules for parallel processing (Xu,
2024). Each group contains local and global branches. During

H'x Wix C
’ (xD

[—‘.[ conv

H2xW?xC
(1x1)

conv

branch processing, the feature map is partitioned into PxP non-
overlapping patches P;; via the Unfold operation. After calculating
the mean of pixel features within each patch, the result is processed
using the following core formula: attention distribution generation.

Z;; = MLP,(LayerNor(MLP, (Mean(Py;))))
a;; = Softmax(z;;)

(1)
2)

Equations 1 and 2 convert the mean value of patch features into a
high-dimensional feature vector through multi-layer perceptrons
(MLP) and layer normalization (LayerNorm) (wherein
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FIGURE 4

Architecture diagram of the hierarchical feature selection module (HFSM).

Frontiers in Plant Science

06

frontiersin.org


https://doi.org/10.3389/fpls.2025.1641677
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Wei et al.

(MLP; and MLP,) achieve dimensional transformation P> — ouc/2
— ouc/2)), and then generates the attention distribution via the
Softmax function a;;. This mechanism enables the model to focus on
the key features of lesion regions, weaken the interference from healthy
leaf areas, enhance the specificity of feature selection, and provide high-
quality features for subsequent precise grading. After the local and
global features output by the two modules are spliced along the channel
dimension, they are combined with the basic path features to generate
the output features of the final processing module.

For leaf images with over 80% healthy tissue, dynamic masks
are generated via learnable prompt vectors to suppress green texture
features while enhancing the gray-brown features of lesions
(McGranahan and Leslie, 1991).

2.4.3 ECFM Edge Convolutional Fusion Module

In the walnut leaf brown spot grading task, lesion edge features
are crucial for accurately determining disease severity. The standard
MobileViT relies on CNN-Transformer blocks to implicitly learn
edges, whereas the ECFM (Edge Convolution Fusion Module)
incorporates Sobel convolutions, conventional convolutions, and
residual connections, effectively fusing edge features with general
features and thereby enhancing edge details. As shown in Figure 5,
the Sobel branch employs Sobel convolution to extract image edge
information, accurately capturing the contour details of brown spot
lesions; the convolutional branch captures general features such as
leaf color and texture through standard convolution. The two
realize feature fusion via the following core formula (Equation 3):

S = SobelConv(x) (3)

Processing the input feature map (x) through the Sobel
convolution operator (SobelConv) specifically extracts edge
information of lesions (such as the boundary contours between
lesions and healthy tissues, and the edge textures of small lesions).
For the commonly seen blurred edges in brown spot disease, Sobel
convolution can enhance edge gradient changes, making the
originally blurred lesion contours clearer, thus providing key edge
feature support for subsequent grading. Conventional feature
extraction and fusion (Equation 4):

C = Conv(x), Feoncat = Concat(S, C) (4)

Sobel

FIGURE 5
Architecture diagram of the edge convolutional fusion module (ECFM).

Frontiers in Plant Science

07

10.3389/fpls.2025.1641677

C = Conv(x) Extracting the overall features of leaves (such as
the color distribution of lesions and the overall texture of leaves)
through standard convolution forms a complement to edge
features, preventing the model from focusing only on local edges
while ignoring global lesion information.

Feoncat = Concat(S, C) Concatenating the edge feature S and the
conventional feature C along the channel dimension achieves the
initial fusion of edge details and global features. This fusion enables
the model to both identify the fine contours of lesions and judge the
disease condition by combining the overall color and texture
changes of lesions, thereby improving the accuracy of grading.
The module also introduces feature addition and subsequent
convolution operations: the fused features are first processed by

the first convolution layer F; = Conv,(F ,ne)> The corresponding

operation results are added to the original input, and the final
output is generated through the second convolution layer Fg. . =
Conv,(F; + X). In this process, the residual connection retains the
original feature information, further strengthens the integration of
edge features and conventional features, and ensures the effective
transmission and enhancement of multi-level features.

The edge gradient information extracted by Sobel convolution
(such as grayscale differences between diseased spots and healthy
tissues) and the texture features from conventional convolution
(such as the roughness of necrotic areas) are fused via residual
connections. This not only preserves the blurred edges of early-
stage lesions but also prevents edge features from being
disconnected from the overall texture (Ghaiwat and Arora, 2014).

2.4.4 AMSDDICM Adaptive Multi-scale Dilated
Depthwise Inseparable Convolution Module

This module differs from MobileViT’s single-scale convolution,
leverages multi-shaped convolution kernels to accurately extract
lesion features of circular, irregular, and other shapes from multiple
dimensions, enabling the identification of subtle differences in
lesion edges and internal colors to enrich feature dimensions.
Meanwhile, depth wise separable convolutions are employed to
accommodate lesion scales at different stages of disease
development. Specifically, the input features are first split into
two groups, each entering the AMSDDICM module to extract
features via multi-scale depth wise separable convolutions. A
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https://doi.org/10.3389/fpls.2025.1641677
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Wei et al.

10.3389/fpls.2025.1641677

sum=0]—>[ stack] x1

FIGURE 6

Architecture Diagram of the Adaptive Multi-Scale Dilated Depth wise Inseparable Convolution Module

dynamic weighting mechanism (global pooling + convolution +
softmax) is used to generate weights for fusing multi-scale features.
The processed features from the two groups are concatenated, and
finally, cross-channel fusion is completed via 1x1 convolution to
output the final optimized features. The entire process integrates
multi-scale convolution, dynamic weight allocation, and feature
fusion to enhance the model’s ability to capture complex features, as
shown in Figure 6. In response to the morphological differences
between early-stage small spots (1-3mm in diameter) and late-stage
fused spots (over 20mm in diameter), the dynamic weight
mechanism enables the model to adaptively allocate the
contributions of 3x3 kernels for capturing local textures and 11x1
kernels for extracting strip-shaped spreading features. This
addresses the limitation of fixed weights in traditional Inception
architectures in adapting to multi-scale morphologies.

When the input feature tensor X with the number of channels ¢
enters the AMSDDICM module, it first undergoes a feature grouping
operation: the input features are evenly split into two groups along
the channel dimension, with each group containing half of the
original number of channels (c//2). This grouping strategy not only
reduces computational complexity but also creates conditions for
subsequent multi-scale feature extraction. Each feature group is fed
into an independent DMSconv2d module, which adopts different
configurations such as 3x3, 5x5 square convolution kernels and
1x11, 11x1 strip-shaped convolution kernels — the square kernels
capture local textures, while the strip-shaped kernels extract
direction-sensitive long-range dependencies. This dynamic weight
allocation draws inspiration from adaptive strategies in agricultural
IoT systems. similar to how salinity-aware ETs models prioritize soil
conductivity features under salt stress (Zhang et al, 2023), our
mechanism selectively amplifies lesion morphological features
critical for severity grading. The dynamic weighting mechanism of
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(AMSDDICM).

DMSconv2d generates weights through global average pooling and
1x1 convolution, with the core formulas as follows:
Weighted basic feature generation:

Xy = rearrange(Convy, (AvgPool2d(x))) (5)

Equation 5 compresses the spatial dimensions of the input
features through global average pooling (AvgPool2d), retains global
statistical information (such as the overall distribution characteristics
of lesions at different scales), and then transforms the dimensions via
1x1 convolution to generate base features for calculating dynamic
weights. This step provides a basis for subsequent weight allocation,
enabling the model to preliminarily evaluate the importance of
features at different scales. Weight normalization:

Xdiw = F . softmax(Xg,) (6)

Equation 6 compresses the spatial dimensions of the input
features through global average pooling (AvgPool2d), retains global
statistical information, such as the overall distribution
characteristics of lesions at different scales, and then transforms
the dimensions via 1x1 convolution to generate base features for
calculating dynamic weights. This step provides a basis for
subsequent weight allocation, enabling the model to preliminarily
evaluate the importance of features at different scales. Weight

normalization:
x = 32 (dweonv;(x) X Xgiy,) (7)

Equation 7 is based on dynamic weights xg,;) for different
convolution kernels dwconv;(x) Weighted fusion is performed on
the extracted features. For walnut brown spot lesions exhibiting size
heterogeneity and morphological complexity—ranging from early-stage
circular micro-lesions to late-stage coalesced irregular lesions—this
mechanism adaptively modulates multi-scale feature contributions. It
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Image acquisition of brown spot
disease on walnut leaves

FIGURE 7

Overall Flow Chart for Severity Grading of Walnut Leaf Brown Spot Disease.

prioritizes retention of morphology-discriminative features, local
textures in small lesions or directional distributions in large lesions,
thereby comprehensively capturing pathological characteristics across
developmental stages. The processed features undergo channel-wise
concatenation to generate optimized outputs (Mircetich et al., 1980).

2.5 Experimental process for severity
grading of walnut leaf brown spot disease

Figure 7 is the overall flow chart of severity grading of walnut
leaf spot disease. First is the image acquisition stage, where raw
images of walnut leaves are captured and collected to construct an
image database containing pictures to be classified (Singh et al,
2019). Next is the image preprocessing stage, which involves
sequentially calculating and classifying disease severity levels,
establishing image labels, and performing image preprocessing
operations. Subsequently, the processed data are used to train the
constructed dataset. Finally, in the model training and performance
evaluation stage, the preprocessed images are input into the model
for classifying walnut leaf brown spot disease, After which
performance evaluation is conducted on the model’s classification
results to determine the model’s effectiveness and accuracy.

2.6 Experimental parameters and
evaluation metrics

2.6.1 Test environment and hyperparameter
setting

The experimental setup of this study is based on deep learning
technology and leverages high-performance computing resources.
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All experiments were conducted on the Windows 10 operating
system. The hardware platform consists of an AMD Ryzen 7 3700X
processor and an NVIDIA RTX 2080Ti graphics card. The software
environment was built using Python 3.8, the PyTorch 1.13.0 deep
learning framework, and the CUDA 11.3 parallel computing
platform. Additionally, PyTorch 1.13.0—a widely adopted open-
source deep learning library renowned for its high flexibility—was
selected, making it well-suited for research and development.

During model training, multiple adjustments were made to the
hyperparameters to compare test results and select the optimal
hyperparameter combination. The model accepts input images
sized at 224x224 pixels, with a configured batch size of 32 during
training and a maximum of 100 training epochs. The optimizer
employs an initial learning rate of 0.003.

2.6.2 Evaluation metrics

This paper aims to evaluate the performance of the model and
verify the effectiveness of the improvement measures. We selected
multiple evaluation metrics, and all subsequent experimental results
adopt the method of calculating averages via 5-fold cross-validation,
aiming to comprehensively and reliably evaluate the model
performance. including precision (P), recall (R), etc. (Equations
8-16) These metrics can be calculated using the following formulas.

The arithmetic mean of the metric values across the five folds:

_ 1
m= o3l (®)

Precision = TP/(TP + FP) 9)

Recall = TP/(TP + FN)
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Flscore = —— o0 ___ (1m
~ 2TP +FP +FN
. l e
Macro Precision = c >P (12)
1
Macro Recall = c SER; (13)
N; - Precision,
Weighted Avg Precision = 2(N; - Precision;) (14)
2N
N, - Precision
Weighted Avg recall = 2N, - Precision;) (15)
N
C
~ TP:
Weighted Avg Recall = DIEEL] (16)

N

3 Experiments and results analysis

3.1 Core module design and validity
experimental verification

3.1.1 Comparative test of necessity of HFSM
module

To validate the necessity of the Hierarchical Feature Selection
Module (HFSM) within the CogFuse-MobileViT framework, this
study conducted comparative tests against two mainstream
lightweight attention modules: SE (Squeeze-and-Excitation) and
CBAM (Convolutional Block Attention Module). As illustrated in
Table 4, the HFSM module achieves a significantly higher accuracy
of 86.61%, outperforming the SE module and CBAM module by
7.38% and 4.46%, respectively. This demonstrates that its
hierarchical feature selection mechanism more effectively captures
discriminative features. In terms of computational efficiency, the
parameters and FLOPs of HFSM remain comparable with those of
the SE module and CBAM module, indicating that its performance
breakthrough stems from innovative structural design under
equivalent lightweight constraints. Comprehensive results confirm
that replacing HFSM with SE or CBAM modules would incur a
performance degradation exceeding 4%, thereby validating the
indispensable value of HFSM in enabling efficient feature
selection within the CogFuse-MobileViT framework.

TABLE 4 Performance comparison of attention modules within the
CogFuse-MobileViT framework.

Method

Params

FLOPs(G)

e Accuracy (%) M)
SE Module ‘ 7923 2.00 2.09
CBAM Module ‘ 8215 194 199
HESM Module ‘ 86.61 2.02 2.10

Measured on NVIDIA RTX 2080Ti GPU (PyTorch 1.13.0, CUDA 11.3) with 224x224 input.
The bold font is used to highlight the performance of the HFSM and illustrate the necessity of
the module.
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3.1.2 Convolutional kernel selection in
AMSDDICM

Rigorous validation via kernel combination ablation studies
(Table 5) demonstrates. The hybrid configuration (3x3 + 5x5 +
1x11) significantly outperformed square-only kernels (3x3 + 5x5)
Accuracy 86.61% and 82.15% Stage-specific recall gains. Mid-stage
lesions (Level 2) raise 9.4 percentage points. Late-stage lesions
(Level 3) raise 6.1 percentage points. This empirically validates
the necessity of 1x11 rectangular kernels for capturing linear
pathological features, overcoming the limitation of isotropic
kernels in detecting anisotropic structures.

3.1.3 The impact of new modules on
computational complexity

Figure 8 shows that the HFSM module incurs a 169% FLOPs
increase to achieve a breakthrough improvement in early-stage lesion
detection—reducing Level 0/1 misclassification by 24%, thereby
establishing the pathological foundation for severity grading. The
ECFM module contributes a mere 3% FLOPs increment yet drives a
3.68 percentage point accuracy gain through enhanced edge feature
representation. With only a 0.028G FLOPs overhead 1.3%, the
AMSDDICM module enables adaptive fusion of multiscale
pathological deformations, culminating in a 7.80-pp accuracy leap.
These modules form a cascaded optimization paradigm: HFSM’s
substantial cost resolves the core pathological bottleneck, while
subsequent modules deliver superlinear returns—harvesting 6.85-pp
accuracy gain with just 14% additional FLOPs—collectively establishing
the globally optimal computation-performance equilibrium.

3.1.4 Comparison of the influence of different
module fusion on model performance

To validate the effect of module fusion, Table 6 compares model
performances with different combinations. When only HFSM
(Hierarchical Feature Selection Module) is introduced, precision
increases from the baseline of 82.23% to 83.77%, but recall decreases
by 3 percentage points to 72.31%, causing the F1 score to slightly
decline to 78.04%. Accuracy rises to 82.15%, indicating improved
overall classification correctness of the model, but with potential
risk of missed detections.

When HFSM and ECEM (Edge-Context Feature Module) are
synergistically introduced, precision increases to 86.34%, recall
recovers to 74.69%, and both F1 score and accuracy are significantly
optimized. HFSM fuses shallow and middle-layer features through a
hierarchical attention mechanism, laying the foundation for

TABLE 5 Comparison of different convolution kernels in AMSDDICM.

Method PealEEn () Level2 Level3
Type y % Recall (%) Recall (%)
3x3 79.32 68.5 62.1
3x3 + 5%5 82.15 743 67.5
3x3 + 5x5 +
86.61 83.7 73.6

1x11

Level 2/3 corresponds to intermediate/late stage lesions.
The bold font is used to highlight the performance advantages of selecting specific convolution
kernels.
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subsequent edge feature processing; ECFM enhances lesion edge
features. The combination of the two effectively improves the
integrity of feature representation and the clarity of lesion boundaries.

The combination of HFSM and AMSDDICM (Adaptive Multi-
Scale Dilated Depthwise Inseparable Convolution Module) further
pushes recall to 76.24%, accuracy to 83.94%, and F1 score to
80.79%, outperforming the HFSM+ECFM combination.
AMSDDICM compensates for HFSM’s deficiency in local feature
refinement through attention-guided multi-scale detail fusion,
which integrates multi-layer detail feature weights, especially
suitable for scenarios with small targets or blurred features.

When the three modules work synergistically, all indicators reach
optimal levels: precision, recall, F1 score, and accuracy increase by
12.19%, 7.67%, 9.62%, and 10.00% respectively compared with the
baseline. Among them, HFSM lays the foundation for cross-layer
feature fusion, ECFM effectively integrates edge-specific features with
general features to enhance image edge information, and
AMSDDICM adaptively fuses multi-scale and multi-type features
through an attention mechanism, forming a progressive optimization
chain from “hierarchical feature extraction” to “edge semantic

TABLE 6

Impact of fusion of different modules on model performance.

enhancement” and then to “multi-layer detail fusion”. The
experimental results show a balanced improvement in both
precision and recall, indicating that the fusion of the three modules
enables the model to focus more on learning the features of small
brown spot lesions, thereby improving its classification performance.
This synergistic task-specific design, combining hierarchical
selection, explicit edge enhancement, and adaptive multi-scale
fusion, fundamentally distinguishes CogFuse-MobileViT from prior
MobileViT hybrids designed for general vision or localization tasks.

3.1.5 Influence of different module combinations
on Fl-score of level (0-3)

In order to verify the targeted improvement of each module for a
specific disease level, we conducted the following comparative
experiments as shown in the Table 6, When HFSM is introduced
alone, the Fl-score of Level 0 increases from 83.10% to 85.60%,
effectively reducing feature confusion between healthy leaves and
early-stage lesions. After adding ECFM, the Fl-score of Level 1 rises
from 73.20% (with HFSM alone) to 79.80%, significantly mitigating the
recognition bias caused by blurred edges of small lesions. AMSDDICM

Module Level O Level 1 Level 2 Level3 Overall F1 Precision Recall Accuracy
F1(%) F1(%) F1(%) F1(%) (%) (%) (VA (VA
Model 1 83.10 76.56 75.78 80.37 78.95 8223 75.26 78.81
Model 2 HESM 85.60 7320 76.50 78.10 78.04 83.77 7231 79.56
Model 3 HFSM+ECFM 87.80 79.80 80.60 81.20 80.51 86.34 74.69 82.49
HFSM
Model 4 86.30 80.50 81.30 $2.10 80.79 85.34 76.24 83.94
+AMSDDICM
ECFM
Model 5 84.10 78.80 79.70 0.80 81.82 89.38 7427 81.33
+AMSDDICM
CogFuse- Tri-module 93.99 82.57 84.28 85.54 86.60 9224 80.99 86.61
MobileViT collaboration : ’ i : : : ’ ’

The bold font is used to highlight the impact of the collaborative fusion of the three modules on the model performance.
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increases the F1-score of Level 3 from 80.37% to 85.54%, enhancing the
adaptability to the morphology of large-scale fused scorched areas.
With the collaboration of the three modules, the F1-scores of Level 0-3
reach 93.99%, 82.57%, 84.28%, and 85.54% respectively, achieving
balanced optimization of performance across all levels.

3.2 Results comparison of different
algorithms and statistical significance
verification

3.2.1 Comparison of grading results for different
classification models

To verify the effectiveness of the CogFuse-MobileViT model, we
selected 9 commonly used classification models to compare with the
optimized CogFuse-MobileViT model, and the results are the average
of 5-fold cross-validation over 120 epochs. As shown in Table 7, the

TABLE 7 Comparison of grading results for different classification models.

10.3389/fpls.2025.1641677

proposed CogFuse-MobileViT model achieved the highest grading
performance in terms of Precision, Recall, and F1-score for identifying
walnut leaf brown spot disease at different severity levels among all
compared models. The improved CogFuse-MobileViT model exhibits
an accuracy of 86.61%, representing a 7.80-percentage-point
improvement over the original model. Overall, the experimental
results highlight that the enhanced CogFuse-MobileViT model is
more conducive to focusing on lesion edge details and accurately
learning the features of different severity levels of walnut leaf brown
spot disease, thereby improving the model’s classification performance.

3.2.2 Comparison of performance and reliability
validation of different algorithms

In model training, to quantify the reliability of results and avoid
random biases from single experiments, this study employs 5-fold
cross-validation to generate 95% confidence intervals, as shown in the
Figure 9. The results demonstrate that CogFuse-MobileViT takes a

Disease grade Precision/(%) Recall/(%) F1/(%) Accuracy/(%)

0 77.40 67.60 72.40 -
1 64.70 75.90 74.50 -
DenseNet 2 62.60 68.30 71.60 -
3 81.30 53.31 55.15 -

all 71.50 66.27 68.41 68.72
0 71.40 71.37 66.44 -
1 64.80 78.75 79.06 -
EfficienNet 2 56.50 53.16 63.29 -
3 74.32 80.97 78.85 -

all 66.75 71.06 7191 69.91
0 63.69 60.82 56.41 -
1 78.05 70.00 76.95 -
EfficienNetV2 2 82.57 74.47 61.30 -
3 80.30 68.09 63.88 -

all 76.15 68.35 64.63 69.71
0 78.33 80.52 79.63 -
1 71.14 59.12 65.93 -
MobileNet 2 64.31 71.53 79.64 -
3 84.91 60.81 71.67 -

all 74.67 68.00 74.21 72.30
0 61.54 71.23 66.03 -
1 65.00 70.78 77.02 -

ResNet
2 61.33 75.38 75.32 -
3 86.05 63.51 63.51 -
(Continued)
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TABLE 7 Continued

10.3389/fpls.2025.1641677

Models Disease grade Precision/(%) Recall/(%) F1/(%) Accuracy/(%)
all 68.48 70.22 70.47 69.72
0 78.60 86.30 69.81 -
1 66.79 69.84 63.04 -
ResNeXt 2 51.76 68.90 7017 -
3 64.44 64.27 72.49 -
all 65.40 72.33 68.88 68.87
0 73.38 65.97 76.25 -
1 72.71 43.79 72.16 -
RegNet 2 70.34 62.00 65.85 -
3 97.66 71.39 84.21 -
all 78.52 60.78 74.61 71.30
0 67.50 67.40 83.10 -
1 89.48 78.28 72.56 -
Swin Transformer 2 77.65 72.66 40.78 -
3 89.07 67.52 77.87 -
all 80.93 71.47 68.53 73.63
0 87.30 78.40 83.10 -
1 77.91 75.64 76.56 -
MobileViTv3 2 72.65 75.54 75.78 -
3 81.07 71.82 80.37 -
all 82.23 75.26 78.95 78.81
0 96.14 86.21 93.99 -
1 92.98 80.47 82.57 -
CogFuse-MobileViT 2 88.71 83.70 84.28 -
3 91.13 73.60 85.54 -
all 92.24 80.99 86.60 86.61

The bold font is used to emphasize the advantages of the improved model in various metrics.

significant lead with an accuracy of 86.61% (95% CI: [85.24%, 87.89%]).
Its narrowest confidence interval range indicates the strongest
generalization capability. Among the comparative models,
MobileViTv3 has a 95% CI of [77.20%, 80.42%]; its lower bound is
significantly lower than that of CogFuse-MobileViT, confirming that
the 7.8% performance improvement is not due to random fluctuations.
Furthermore, the confidence intervals constructed through 5-fold cross-
validation further highlight the reliability of the experimental results.

3.2.3 Statistical significance verification of model
improvement

To statistically evaluate the performance improvement of
CogFuse-MobileViT over the baseline MobileViTv3, an
independent samples t-test was conducted (Table 8). For each
model architecture, five independent training runs. The null
hypothesis stated that the mean accuracy of CogFuse-MobileViT
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was equal to that of MobileViTv3 Hy: Uce = yop)> While the
alternative hypothesis stated that CogFuse-MobileViT had a higher
mean accuracy (Hj:lcog > Hop) CogFuse-MobileViT achieved a
mean accuracy, significantly outperforming MobileViTv3. The
independent samples t-test confirmed this improvement (t(8)
=18.92,p=3.7x10 %),

Under 5-fold cross-validation (Figure 10), CogFuse-MobileViT
achieves rapid convergence within the first 20 epochs,
demonstrating more efficient feature learning capability. Upon
entering the steady-state phase, its validation loss is reduced by
over 5-fold compared to the baseline MobileViTv3, directly
confirming smaller prediction errors and superior generalization
capability. Meanwhile, the smooth and minimally fluctuating loss
curve of CogFuse-MobileViT reflects strong robustness against data
noise and distribution variations. Combined with the previous
statistical findings from accuracy confidence intervals and
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Confidence intervals of accuracy for different classification models in 5-fold cross-validation.

) o independent t-tests, these results collectively validate the statistical
TABLE 8 Comparison of accuracy results between MobileViTv3 and

CogFuse-MobileViT using independent samples t-test. significance of the improved model.

Average

SD
accuracy

3.3 Model result analysis performance

MobileViTv3 78.81% +0.32% - - comparison of different models

CogFuse-MobileViT 86.61% +0.28% 18.92 3.7x107®

Figure 11A shows that in the walnut leaf brown spot disease
Because of heteroskedasticity (Levene test: F=6.34, p=0.03), Welch t-test was adopted.

The bold font is used to emphasize the effect of statistical significance testing on the improved severity gradlng task, the classification accuracy of all models
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Comparison of loss curves between the CogFuse-MobileViT model and the original model in 5-fold cross-validation within 120 epochs.
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Comparison of Accuracy and loss across different Models (A) accuracy Line chart; (B) loss line chart.

epochs, indicating that the models continuously optimized during
learning until convergence. CogFuse-MobileViT stood out
prominently: it achieved rapid accuracy improvement, reached a
high level in relatively early training epochs with minimal subsequent
fluctuations, and stably maintained the highest accuracy,
demonstrating fast convergence and strong generalization ability to
efficiently extract features distinguishing different disease levels.
DenseNet also maintained high accuracy in the late training stage,
but its accuracy improvement was slower, with slightly inferior
convergence speed and final stability compared to CogFuse-
MobileViT. Models like ResNet and RegNet showed limited
accuracy gains with gentle upward trends, and their final stable
accuracy values were significantly lower, reflecting insufficient
feature extraction capabilities possibly due to network architecture
or parameter optimization efficiency.

In Figure 11B, all models showed high initial loss values that
dropped rapidly and then stabilized, following the typical learning
process of iterative optimization. CogFuse-MobileViT achieved
significant early loss decline and stabilized near the minimum,
indicating efficient feature learning and strong fitting capability.
While DenseNet also reached a relatively low loss level, it remained
slightly higher than CogFuse-MobileViT. Other models had higher
late-stage loss values: some showed fast initial decline but converged
to higher levels, indicating shortcomings in capturing key
disease features.

3.4 Analysis of detection results for
different classification models

The confusion matrix is a key indicator for evaluating
classification models: the higher the diagonal values, the higher
the classification accuracy for the corresponding category, and the
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lower the off-diagonal values, the fewer misjudgments. Figure 12
shows the classification results of different models for the four
disease grades (0-3) of walnut leaf brown spot disease. It is clearly
evident that the overall classification performance, particularly the
accuracy of CogFuse-MobileViT across all categories, is remarkably
high with minimal misjudgments, demonstrating that the model
has enhanced discrimination ability for disease grades and performs
optimally in distinguishing the four disease levels.

The Edge-Enhanced Feature Module (ECFM) effectively
addressed Level 0 and Level 1 misclassification by capturing
incipient lesion features. Baseline analysis revealed substantial
false negatives for early-stage lesions, with Level 1 and Level 0
misclassification reaching 32%. ECFM reduced this rate to 8%,
demonstrating its capacity to resolve texture confusion through
enhanced edge contour delineation. Similarly, the Adaptive Multi-
Scale Dilated Convolution Module (AMSDDICM) significantly
mitigated Level 2 and Level 3 mutual misclassification.
AMSDDICM drastically reduced both errors by enhancing local
fine-grained features in mid-stage lesions (Level 2) while
strengthening global fusion features in late-stage coalesced lesions
(Level 3). This resolves grading ambiguity arising from the
morphological continuum of lesion progression.

To establish a comprehensive performance evaluation framework
and quantify the model’s overall discriminative capability, Figure 13
presents the Receiver Operating Characteristic (ROC) curves of
CogFuse-MobileViT across four severity levels. These curves compare
the True Positive Rate (TPR) against the False Positive Rate (FPR) by
dynamically adjusting the classification threshold. The Area Under the
Curve (AUC) serves as the primary performance metric, where a higher
value indicates stronger classification ability. Notably, the AUC values
for all categories significantly exceed the level of random guessing
(AUC=0.5), fully demonstrating that the model possesses robust
discriminative capability across different severity levels.
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FIGURE 14

TSNE visualization of features extracted by different models. After the three modules work synergistically, the boundaries of feature clustering
between Level O (healthy) and Level 1 (early-stage) are significantly clearer, which verifies the effectiveness of edge-texture collaborative learning (A)
The original model was trained for 20 epochs; (B) The original model was trained for 50 epochs; (C) The original model was trained for 100 epochs;

(D) The improved model was trained for 100 epochs.

3.5 TSNE visualization of features extracted
by different models

The TSNE visualization of features extracted from the models is
shown in Figures 14A-D. This study analyzed the features of the
original model at the 20th, 50th, and 100th training epochs, as well as
the improved model at the 100th epoch. After 20 epochs of training,
the original model showed a highly discrete feature distribution.
Limited by the number of training epochs, the model failed to fully
learn discriminative features, resulting in insufficient distinction
between categories and significant overlap among different classes.
This indicates that under this training intensity, the original model’s
ability to capture meaningful patterns was relatively limited. When the
original model was trained to 50 epochs, compared with (a), the
feature aggregation significantly improved. However, inter-class
overlap still existed, suggesting that although prolonged training
aided feature learning, the original model’s architecture had
inherent defects in achieving clear feature separation. At 100 epochs
of training, the original model exhibited more prominent feature
clustering. Nevertheless, some regions still lacked clear separation
between different categories, indicating that even after prolonged
training, the original model faced challenges in maximizing inter-
class distance and intra-class compactness. In Figure (d), the improved
model after 100 epochs of training demonstrated a more superior

Frontiers in Plant Science 17

feature distribution: each category was tightly clustered, achieving high
intra-class compactness, while distinct boundaries between different
categories were established, resulting in significant inter-class distance.
This suggests that the model improvements effectively enhanced its
ability to extract discriminative features, greatly reduced feature
ambiguity, and improved feature discriminative power. Compared
with the original model, it showed stronger feature discrimination and
optimization potential.

3.6 Radar chart for comparison of
classification performance between
original and improved models

As shown in Figure 15, a radar chart compares the performance
of the original model and the improved CogFuse-MobileViT model
across multiple evaluation metrics. In terms of accuracy, CogFuse-
MobileViT exhibits significantly higher values than the original
MobileViTv3 model, indicating that the improved model achieves
overall higher classification accuracy. Macro-average precision,
which considers the average precision of each category, clearly
shows that CogFuse-MobileViT also performs better, meaning it
has superior precision across all categories. Meanwhile, CogFuse-
MobileViT also demonstrates better macro-average recall. When
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Multi-Metric Comparison Between MobileViTv3 and Improved CogFuse-MobileViT Model.

examining weighted-average precision and weighted-average recall
—metrics that account for class imbalance—CogFuse-MobileViT
outperforms MobileViTv3 in both, indicating that in practical
applications, even with uneven class distribution, the CogFuse-
MobileViT model can deliver better performance. These results
further demonstrate the model’s reliability and practicality.

3.7 Public data set experiment

To further validate the efficacy and generalizability of the proposed
CogFuse-MobileViT model, experiments were conducted on the
public dataset AppleLeaf9 (Yang et al., 2022). This dataset comprises
healthy apple leaves and eight categories of apple leaf diseases captured
in field environments without restrictions on imaging angles or noise
interference. The dataset was partitioned into training and test sets at
an 8:2 ratio. All images were resized to 224x224 pixels to optimize deep
learning model training efficiency. Following the hyperparameter
configurations specified in “Experimental Parameters and Evaluation
Metrics”, both the baseline MobileViTv3 and CogFuse-MobileViT
models were trained and evaluated.

Cross-species validation demonstrates that the CogFuse-
MobileViT model delivers exceptional performance on the
AppleLeaf9 dataset. As presented in Table 9, the model
comprehensively surpasses the baseline MobileViTv3 across all
four core metrics: precision increases by 0.16 percentage points,
recall achieves a breakthrough improvement of 3.45 percentage
points, Fl-score rises by 1.18 percentage points, and accuracy
elevates by 1.14 percentage points. The synergistic enhancement
in both precision and recall signifies that performance gains stem
from strengthened feature discriminability rather than metric trade-
off compromises. The remarkable percentage points recall gain
substantially mitigates leaf disease omission rates, while the
holistic advance in Fl-score further attests to the model’s
robustness. These results collectively validate the generalizability
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of CogFuse-MobileViT’s core innovations in agricultural fine-
grained disease grading, establishing a transferable paradigm for
small-target pathology identification across plant species.

4 Conclusion

This study addresses the challenges in precise grading of walnut leaf
brown spot disease. By adopting dynamic feature filtering, edge gradient
reinforcement, and multi-scale morphological adaptation, it effectively
resolves three key limitations of existing hybrid architectures and the
baseline model MobileViTv3 in plant disease grading weak capability in
capturing blurred edges, poor multi-scale adaptability, and interference
from healthy tissues. Experimental results show that the model achieves
an 86.61% grading accuracy on a dataset encompassing diverse lighting
conditions, cultivars, and lesion stages, representing a 7.80%
improvement over the baseline MobileViTv3 and outperforming nine
state-of-the-art models. At the same time, this study confirmed that the
performance improvement of CogFuse-MobileViT was statistically
significant and stable through strict statistical tests, providing a
reliable method for accurate classification of walnut leaf spot disease.
The constructed image dataset and proposed grading re-measurement
method lay the foundation for accuracy. This approach provides a new
paradigm for small-target disease grading, with core modules

TABLE 9 Experimental results of the original model and CogFuse-
MobileViT Model on Appleleaf9 data set.

Precision Recall F1 Accuracy
(VA) (VA) (%) (%)
MobileViTv3 95.87 89.91 92.89 95.08
CogFuse- 96.03 92.36 94.07 96.22
MobileViT ’ ’ ’ :

The bold font is used to emphasize the performance characteristics of the improved model on
public datasets.
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transferable to multi-crop disease recognition. Beyond disease
classification, context-aware Al frameworks demonstrate significant
efficacy in agricultural management (Acharya et al, 2022). IoT
systems dynamically adjust fertilization recommendations by
integrating real-time soil-crop data, while salinity-corrected
evapotranspiration (ETs) models optimize irrigation strategies for
saline-alkali soils (Li et al., 2023; Su et al, 2023). Similarly,
multimodal fusion techniques enhance reference evapotranspiration
(ETo) prediction accuracy, facilitating precision water allocation (Jo
etal, 2021; Rustia et al,, 2023). These breakthroughs collectively validate
the robust capability of adaptive feature processing in complex
agricultural environments—a core principle that resonates with our
dynamic weighting strategy for disease feature extraction. Future
research should therefore integrate cross-modal and cross-domain
capabilities to establish multidimensional assessment systems and
regional dynamic monitoring frameworks, thereby delivering
comprehensive technical solutions for small-target disease control.

5 Discussion and future work

Compared with existing methods, this study overcomes the
limitation of traditional deep learning models relying on fixed
convolution kernels, enabling adaptive capture of lesion features with
multi-shaped convolution kernels to accurately extract edge textures of
circular micro-lesions and regional contours of irregular lesions.
Although the constructed multi-source dataset covers diverse lighting
conditions, cultivars, and lesion development stages, the homogeneous
internal features of severe diseases lead to limited recall rate.
Meanwhile, when lesions are severely overlapped or mixed with
mechanical damage, insect damage, or other types of injuries, the
discriminative accuracy of the model is affected. For ultra-small lesions,
the local feature information is too weak and easily overlooked, and the
computational efficiency still needs optimization on some hardware
platforms. Furthermore, the adaptability of the current model in
extreme field scenarios, such as high-density occlusion and
compound damage from pests and diseases, remains to be further
verified. In these scenarios, the coupling of complex interference factors
exacerbates feature confusion, affecting grading reliability.

To address these issues, future work will focus on the following
research directions. Future research will focus on enhancing the model’s
performance in complex field environments through multiple synergistic
strategies. This includes constructing multi-interference factor coupled
datasets that incorporating insect holes, lesions, and soil adhesion to
strengthen robustness against extreme field disturbances; introducing
attention-based multi-damage feature decoupling modules and
dedicated micro-lesion enhancement modules combining super-
resolution and feature interpolation to improve discriminability in
complex scenarios and for tiny lesions; optimizing dynamic weight
calculations via approximate computation or hardware-friendly
reconstruction, while developing lightweight real-time deployment
frameworks integrated with UAV near-ground sensing technology to
boost efficiency and practical monitoring coverage; and establishing
cross-crop pathological transfer learning mechanisms, extending the
model to multi-crop disease recognition tasks with self-supervised pre-
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training to enhance algorithm universality and low-contrast lesion
feature mining capabilities. Through the above research, it is expected
to further improve the applicability and practicality of the model in
complex field environments, promoting the development of intelligent
plant disease grading technology towards more accurate, efficient, and
universal directions.

Data availability statement

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

Author contributions

YW: Writing - original draft. DZ: Writing - original draft.
LZ: Writing - review & editing.

Funding

The author(s) declare financial support was received for the
research and/or publication of this article. This work was supported
in part by the Science and Technology Key Project of the Xinjiang
Production and Construction Corps (2023AB063) Development
and application demonstration of green technology for online
monitoring of fresh fruits and cold chain logistics in Xinjiang.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative Al statement

The author(s) declare that no Generative Al was used in the
creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this
article has been generated by Frontiers with the support of artificial
intelligence and reasonable efforts have been made to ensure
accuracy, including review by the authors wherever possible. If
you identify any issues, please contact us.

Publisher’'s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations,
or those of the publisher, the editors and the reviewers. Any product
that may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

frontiersin.org


https://doi.org/10.3389/fpls.2025.1641677
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Wei et al.

References

Acharya, P., Burgers, T., and Nguyen, K.-D. (2022). Ai-enabled droplet detection and
tracking for agricultural spraying systems. Computers and Electronics in Agriculture,
202, 107325. doi: 10.1016/j.compag.2022.107325

Adaskaveg, J., Forster, H., Thompson, D., Driever, G., Connell, J., Buchner, R., et al.
(2009). Epidemiology and management of walnut blight. Walnut Res. Rep, 94, 225-256.
doi: 10.1016/j.inpa.2016.10.005

Arivazhagan, S., Shebiah, R. N., Ananthi, S., and Varthini, S. V. (2013). Detection of
unhealthy region of plant leaves and classification of plant leaf diseases using texture
features. Agricultural Engineering International: CIGR Journal, 15, 211-217.

Chaudhary, P., Chaudhari, A. K., Cheeran, A., and Godara, S. (2012). Color
transform based approach for disease spot detection on plant leaf. International
journal of computer science and telecommunications, 3, 65-70.

Chen, S., Zhang, K., Zhao, Y., Sun, Y., Ban, W, Chen, Y., et al. (2021). An approach
for rice bacterial leaf streak disease segmentation and disease severity estimation.
Agriculture, 11, 420. doi: 10.3390/agriculture11050420

Chiang, K.-S., Bock, C., El Jarroudi, M., Delfosse, P., Lee, I., and Liu, H.
(2016). Effects of rater bias and assessment method on disease severity
estimation with regard to hypothesis testing. Phytopathology, 65, 523-535.
doi: 10.1111/ppa.12435

Cooke, B. (2006). “Disease assessment and yield loss,” in The epidemiology of plant
diseases (Dordrecht: Springer), 43-80.

Ghaiwat, S. N., and Arora, P. (2014). Detection and classification of plant leaf
diseases using image processing techniques: a review. International Journal of Recent
Advances in Engineering & Technology, 2, 1-7.

Hu, G., Wang, H., Zhang, Y., and Wan, M. (2021). Detection and severity analysis of
tea leaf blight based on deep learning. Computers & Electrical Engineering, 90, 107023.
doi: 10.1016/j.compeleceng.2021.107023

Jadhav, S. B, and Patil, S. B. (2016). Grading of soybean leaf disease based on
segmented image using k-means clustering. IAES International Journal of Artificial
Intelligence, 5, 13-13. doi: 10.11591/ijai.v5.il.pp13-21

Jo, W. J,, Kim, D. S., Sim, H. S., Ahn, S. R,, Lee, H. J., Moon, Y. H,, et al. (2021).
Estimation of evapotranspiration and water requirements of strawberry plants in
greenhouses using environmental data. Frontiers in Sustainable Food Systems, 5,
684808. doi: 10.3389/fsufs.2021.684808

Khan, M. A,, Ali, M., Shah, M., Mahmood, T., Ahmad, M., Jhanjhi, N,, et al. (2021).
Machine learning-based detection and classification of walnut fungi diseases. Intelligent
Automation & Soft Computing, 30, 771-785. doi: 10.32604/iasc.2021.018039

Kim, S.-K., and Ahn, J.-G. (2021). Tomato crop diseases classification models using
deep CNN-based architectures. J Korea Acad-Ind Coop Soc, 22, 7-14. doi: 10.5762/
KAIS.2021.22.5.7

Lamichhane, J. R. (2014). Xanthomonas arboricola diseases of stone fruit, almond,
and walnut trees: progress toward understanding and management. Plant Disease, 98,
1600-1610. doi: 10.1094/PDIS-08-14-0831-FE

Li, X,, Zha, T., Liu, P., Bourque, C. P.-A,, Jia, X,, and Tian, Y. (2023). Interannual
variation in gross ecosystem production and evapotranspiration in a temperate
semiarid grassland undergoing vegetation recovery. Agricultural and Forest
Meteorology, 341, 109672. doi: 10.1016/j.agrformet.2023.109672

Lin, K, Gong, L., Huang, Y., Liu, C., and Pan, J. (2019). Deep learning-based
segmentation and quantification of cucumber powdery mildew using convolutional
neural network. Frontiers in plant science, 10, 155. doi: 10.3389/fpls.2019.00155

Ma, ], Du, K, Zhang, L., Zheng, F.,, Chu, J., and Sun, Z. (2017). A segmentation
method for greenhouse vegetable foliar disease spots images using color information
and region growing. Computers and Electronics in Agriculture, 142, 110-117.
doi: 10.1016/j.compag.2017.08.023

Mao, R, Wang, Z., Li, F., Zhou, J., Chen, Y., and Hu, X. (2023). GSEYOLOX-s: An
improved lightweight network for identifying the severity of wheat Fusarium head
blight. Agronomy, 13, 242. doi: 10.3390/agronomy13010242

McGranahan, G., and Leslie, C. (1991). Walnuts (Juglans). Molecules, 907-924.
doi: 10.17660/ActaHortic.1991.290.20

Mircetich, S. M., Sanborn, R., and Ramos, D. (1980). Natural spread, graft-
transmission, and possible etiology of walnut blackline disease. Phytopathology, 70,
962-968. doi: 10.1094/Phyto-70-962

Frontiers in Plant Science

20

10.3389/fpls.2025.1641677

Moragrega, C., Matias, J., Aleta, N., Montesinos, E., and Rovira, M. (2011). Apical
necrosis and premature drop of Persian (English) walnut fruit caused by Xanthomonas
arboricola pv. juglandis. Plant Disease, 95, 1565-1570. doi: 10.1094/PDIS-03-11-0259

Ngugi, L. C., Abdelwahab, M., and Abo-Zahhad, M. (2020). Tomato leaf segmentation
algorithms for mobile phone applications using deep learning. Computers and Electronics
in Agriculture, 178, 105788. doi: 10.1016/j.compag.2020.105788

Ozturk, O., Sarica, B, and Seker, D. Z. (2025). Interpretable and robust ensemble
deep learning framework for tea leaf disease classification. Horticulturae, 11, 437.
doi: 10.3390/horticulturael 1040437

Parashar, N, Johri, P., Khan, A. A, Gaur, N, and Kadry, S. (2024). An integrated
analysis of yield prediction models: A comprehensive review of advancements and
challenges. Computers, Materials ¢ Continua, 80 (1). doi: 10.32604/cmc.2024.050240

Picon, A., Alvarez-Gila, A., Seitz, M., Ortiz-Barredo, A., Echazarra, J., and Johannes,
A. (2019). Deep convolutional neural networks for mobile capture device-based crop
disease classification in the wild. Computers and Electronics in Agriculture, 161, 280—
290. doi: 10.1016/j.compag.2018.04.002

Rastogi, A., Arora, R,, and Sharma, S. (2015). “Leaf disease detection and grading
using computer vision technology & fuzzy logic,” in Paper presented at the 2015 2nd
international conference on signal processing and integrated networks (SPIN).

Rustia, D. J. A, Lee, W.-C,, Lu, C.-Y., Wu, Y.-F., Shih, P.-Y., and Chen, S.-K. (2023).
Edge-based wireless imaging system for continuous monitoring of insect pests in a
remote outdoor mango orchard. Computers and Electronics in Agriculture, 211, 108019.
doi: 10.1016/j.compag.2023.108019

Shi, T., Liu, Y., Zheng, X., Hu, K., Huang, H., Liu, H., et al. (2023). Recent advances in
plant disease severity assessment using convolutional neural networks. Scientific
Reports, 13, 2336. doi: 10.1038/541598-023-29230-7

Singh, U. P., Chouhan, S. S, Jain, S., and Jain, S. (2019). Multilayer convolution
neural network for the classification of mango leaves infected by anthracnose disease.
IEEE access, 7, 43721-43729. doi: 10.1109/ACCESS.2019.2907383

Su, Y., Wang, J., Li, J., Wang, L., Wang, K, Li, A,, et al. (2023). Spatiotemporal
changes and driving factors of reference evapotranspiration and crop
evapotranspiration for cotton production in China from 1960 to 2019. Frontiers in
Environmental Science, 11, 1251789. doi: 10.3389/fenvs.2023.1251789

Tripathi, R. (2021). “A deep learning approach for plant material disease identification,”
in Paper presented at the IOP Conference Series: Materials Science and Engineering.

Vishnoi, V. K., Kumar, K., Kumar, B., Mohan, S., and Khan, A. A. (2022). Detection
of apple plant diseases using leaf images through convolutional neural network . IEEE
Access, 11, 6594-6609. doi: 10.1109/ACCESS.2022.3232917

Wang, F., Dun, C, Tang, T., Duan, Y., Guo, X., and You, J. (2022). Boeremia exigua
causes leaf spot of walnut trees (Juglans regia) in China. Plant Disease, 106, 1993.
doi: 10.1094/PDIS-10-21-2304-PDN

Wang, Q.-H,, Fan, K,, Li, D.-W,, Han, C.-M,, Qu, Y.-Y,, Qi, Y.-K,, et al. (2020).
Identification, virulence and fungicide sensitivity of Colletotrichum gloeosporioides ss
responsible for walnut anthracnose disease in China. Plant disease, 104, 1358-1368.
doi: 10.1094/PDIS-12-19-2569-RE

Weber, B. C. (1980). How to diagnose black walnut damage Vol. 57 (North Central
Forest Experiment Station, Forest Service, US Department of Agriculture).

Xu, W. (2024). HCF-Net: Hierarchicalcontextfusion network forinfrared small object
detection. arXiv. arXiv, 2403.10778. doi: 10.1109/ICME57554.2024.10687431

Yang, C., Deng, Y., Wang, F., Yang, H., Xu, X, Zeng, Q., et al. (2021). Brown leaf spot
on Juglans sigillata caused by Ophiognomonia leptostyla in Sichuan, China. Plant
Disease, 105, 4160. doi: 10.1094/PDIS-02-21-0344-PDN

Yang, Q., Duan, S., and Wang, L. (2022). Efficient identification of apple leaf diseases
in the wild using convolutional neural networks. Agronomy, 12, 2784. doi: 10.3390/
agronomy12112784

Zarei, S., Taghavi, S. M., Banihashemi, Z., Hamzehzarghani, H., and Osdaghi, E.
(2019). Etiology of leaf spot and fruit canker symptoms on stone fruits and nut trees in
Iran. Journal of Plant Pathology, 101, 1133-1142. doi: 10.1007/542161-019-00283-w

Zhang, Y., Li, X,, Simtinek, J., Shi, H., Chen, N, and Hu, Q. (2023). Quantifying water
and salt movement in a soil-plant system of a corn field using HYDRUS (2D/3D) and
the stable isotope method. Agricultural Water Management, 288, 108492. doi: 10.1016/
j.agwat.2023.108492

frontiersin.org


https://doi.org/10.1016/j.compag.2022.107325
https://doi.org/10.1016/j.inpa.2016.10.005
https://doi.org/10.3390/agriculture11050420
https://doi.org/10.1111/ppa.12435
https://doi.org/10.1016/j.compeleceng.2021.107023
https://doi.org/10.11591/ijai.v5.i1.pp13-21
https://doi.org/10.3389/fsufs.2021.684808
https://doi.org/10.32604/iasc.2021.018039
https://doi.org/10.5762/KAIS.2021.22.5.7
https://doi.org/10.5762/KAIS.2021.22.5.7
https://doi.org/10.1094/PDIS-08-14-0831-FE
https://doi.org/10.1016/j.agrformet.2023.109672
https://doi.org/10.3389/fpls.2019.00155
https://doi.org/10.1016/j.compag.2017.08.023
https://doi.org/10.3390/agronomy13010242
https://doi.org/10.17660/ActaHortic.1991.290.20
https://doi.org/10.1094/Phyto-70-962
https://doi.org/10.1094/PDIS-03-11-0259
https://doi.org/10.1016/j.compag.2020.105788
https://doi.org/10.3390/horticulturae11040437
https://doi.org/10.32604/cmc.2024.050240
https://doi.org/10.1016/j.compag.2018.04.002
https://doi.org/10.1016/j.compag.2023.108019
https://doi.org/10.1038/s41598-023-29230-7
https://doi.org/10.1109/ACCESS.2019.2907383
https://doi.org/10.3389/fenvs.2023.1251789
https://doi.org/10.1109/ACCESS.2022.3232917
https://doi.org/10.1094/PDIS-10-21-2304-PDN
https://doi.org/10.1094/PDIS-12-19-2569-RE
https://doi.org/10.1109/ICME57554.2024.10687431
https://doi.org/10.1094/PDIS-02-21-0344-PDN
https://doi.org/10.3390/agronomy12112784
https://doi.org/10.3390/agronomy12112784
https://doi.org/10.1007/s42161-019-00283-w
https://doi.org/10.1016/j.agwat.2023.108492
https://doi.org/10.1016/j.agwat.2023.108492
https://doi.org/10.3389/fpls.2025.1641677
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

	A precision grading method for walnut leaf brown spot disease integrating hierarchical feature selection and dynamic multi-scale convolution
	1 Introduction
	2 Materials and methods
	2.1 Characteristics of walnut leaf brown spot and classification of disease severity levels
	2.2 Calculation algorithm for walnut leaf brown spot disease severity levels
	2.3 Dataset construction
	2.3.1 Development of the walnut leaf brown spot dataset

	2.4 Construction of walnut leaf brown spot disease severity grading model
	2.4.1 The optimized MobileViTv3 network: CogFuse-MobileViT
	2.4.2 The Hierarchical Feature Selection Module
	2.4.3 ECFM Edge Convolutional Fusion Module
	2.4.4 AMSDDICM Adaptive Multi-scale Dilated Depthwise Inseparable Convolution Module

	2.5 Experimental process for severity grading of walnut leaf brown spot disease
	2.6 Experimental parameters and evaluation metrics
	2.6.1 Test environment and hyperparameter setting
	2.6.2 Evaluation metrics


	3 Experiments and results analysis
	3.1 Core module design and validity experimental verification
	3.1.1 Comparative test of necessity of HFSM module
	3.1.2 Convolutional kernel selection in AMSDDICM
	3.1.3 The impact of new modules on computational complexity
	3.1.4 Comparison of the influence of different module fusion on model performance
	3.1.5 Influence of different module combinations on F1-score of level (0-3)

	3.2 Results comparison of different algorithms and statistical significance verification
	3.2.1 Comparison of grading results for different classification models
	3.2.2 Comparison of performance and reliability validation of different algorithms
	3.2.3 Statistical significance verification of model improvement

	3.3 Model result analysis performance comparison of different models
	3.4 Analysis of detection results for different classification models
	3.5 TSNE visualization of features extracted by different models
	3.6 Radar chart for comparison of classification performance between original and improved models
	3.7 Public data set experiment

	4 Conclusion
	5 Discussion and future work
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References


