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A spontaneous keypoints
connection algorithm for
leafy plants skeletonization
and phenotypes extraction
Zhen Wang, Xiangnan He, Yuting Wang, Chenxue Yang,
Beilei Fan, Qingbo Zhou and Xian Li*

Agricultural Information Institute, Chinese Academy of Agricultural Sciences, Beijing, China
Introduction: Leaf phenotypes are key indicators of plant growth status. Existing

deep learning–based leaf skeletonization typically requires extensive manual

labeling, long training, and predefined keypoints, which limits scalability. We

developed a training-free and label-free approach that connects spontaneously

detected keypoints to generate leaf skeletons for leafy plants.

Methods: The method comprises random seed-point generation and adaptive

keypoint connection. For plants with random leaf morphology, we determine a

threshold for the angle difference among any three consecutive adjacent points

and iteratively identify keypoints within circular search neighborhoods to trace

leaf skeletons. For plants with regular leaf morphology, we fit the skeleton

trajectory by minimizing curvature. We validated the approach on vertical and

front-view images of orchids (covering random and regular morphological cases)

and extracted five phenotypic parameters from the resulting skeletons.

Generalization was further assessed on a maize image dataset.

Results: On orchid images, the proposed approach achieved an average

curvature fitting error of 0.12 and an average leaf recall of 92%. Five orchid

phenotypic parameters were accurately derived from the skeletons. The method

also showed effective skeletonization on maize, indicating cross-

species applicability.

Discussion: By eliminating manual labels and training, this approach reduces

annotation effort and computational overhead while enabling precise geometric

phenotype calculation from skeleton-based keypoints. Its effectiveness on both

randomly distributed and regularly shaped leafy plants suggests suitability for

high-throughput plant phenotyping workflows.
KEYWORDS

leaves skeletonization, angle difference threshold, curvature minimization, keypoints
connection, phenotype extraction
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1 Introduction

Leaf physiological and morphological phenotypes are associated

with plant growth status (Kolhar and Jagtap, 2023; Li et al., 2020),

such as plant height (Liu et al., 2023; Zhang et al., 2024), leaf shape (Li

et al., 2020), leaves consistency and color (Nyonje et al., 2021).

Phenotypic information can be extracted manually or through

computer-based automated methods. Manual phenotype

measurement based on rulers is time-consuming and difficult to

accurately capture complex phenotypes (Cembrowska-Lech et al.,

2023). The consistency of leaf morphology can only be perceived

subjectively. Computer-based phenotyping generally involves

skeletonization and phenotype extraction. Skeletonization refers to

simplifying each leaf region into a centerline polyline for geometric

property calculations. In this study, skeletonization simplifies leaves

into keypoints and skeleton, enabling efficient and precise geometric

calculations of phenotypes without considering complex leaf details.

Automated keypoint detection and skeletonization using intelligent

algorithms can quantify leaf phenotypes and reflect the growth status,

providing more efficient and intelligent decision support for precision

agriculture (Jiang and Li, 2020). Deep learning has therefore become

a mainstay in image-based phenotyping, in part because transfer

learning, domain adaptation, and self-/few-shot strategies can

support generalization across datasets and conditions while

reducing annotation needs (Li et al., 2023; Ogidi et al., 2023;

Sheikh et al., 2024).

Deep learning‐based methods for keypoints detection and

skeletonization have been widely applied to crop phenotyping,

providing valuable insights into plant morphology. For instance,

point cloud based phenotyping approaches—using data acquired

via LiDAR (Zhang et al., 2024), Visual Structure From Motion

(VisualSFM) (Zhang et al., 2024), or Multi-View Stereo (MVS)

(Murata and Noshita, 2024)—offer detailed 3D reconstructions,

although they often require specialized equipment and involve

higher technical and economic costs. For image data, methods

such as YOLOv7-pose have been employed to extract keypoints

from individual rice plants to facilitate stem-leaf angle

measurements (Seng et al., 2024). In addition, lightweight variants

like YOLOv7-SlimPose—enhanced with modules such as GSConv

and GSIN and utilizing modified loss functions like MPDIoU—

have been applied to detect multiple keypoints on maize leaves and

stems, enabling the extraction of phenotypes including plant height,

leaf-stem angle, leaf length, and ear position (Gao et al., 2024).

Similarly, AngleNet has been used to extract keypoints on maize

leaves (targeting the midrib, stem, and near the leaf neck) to

quantify leaf angles (Xiang et al., 2023), and a stacked hourglass

network (SHN) has been applied for locating keypoints on soybean

leaves to automatically compute distances and angles between them

(Zhu et al., 2020). While predefined keypoint sets can be effective,

they may be less flexible for multi-leaf species with variable leaf

counts or heavy occlusion. Recent structure-aware pose and dense-

keypoint models partially mitigate this but challenges remain in

complex canopies. Notably, several recent pose frameworks in crops

can infer flexible landmark sets or even recover skeletal topology
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under occlusion. For example, PFLO reconstructs field maize poses

with a YOLO-based head, and the bottom-up DEKR-SPrior

leverages structural priors to detect variable keypoints in dense

organs, mitigating the limitations of strictly pre-annotated keypoint

templates (Pan et al., 2025).

While these approaches have significantly advanced plant

phenotyping, many pipelines still supervise a fixed set of

landmarks—particularly in multi-leaf canopies, although

topology-flexible models partly alleviate this constraint. This

design can sometimes limit flexibility when dealing with multi-

leaf plants that exhibit considerable variability, such as differences

in leaf count or challenges arising from occlusion. To address more

complex plant structures, alternative strategies have been explored.

For example, CenterNet has been applied to leaf counting in beet

plants with an arbitrary number of leaves (Weyler et al., 2021),

although overlapping leaves occasionally lead to false positives or

missed detections. Similarly, SDNet, which employs an encoder-

decoder architecture combined with a structural reconstruction

algorithm (SRA), has been used for multi-instance detection, leaf

counting, and phenotyping in maize and soybean (Lac et al., 2021),

yet its ability to extract detailed keypoint information might be

constrained under highly complex scenarios. More recently, the

DEKR-SPrior model has been proposed to enhance keypoint

detection by increasing the number of detected points and

integrating prior structural knowledge through cosine similarity,

thereby improving discrimination in dense leaf regions (He et al.,

2024). Additionally, a Point-Line Net based on the Mask R-CNN

framework has been developed to recognize maize field RGB images

and determine both the number and growth trajectories of leaves

and stalks, achieving promising performance (81.5% mAP50) (Liu

et al., 2024). It should be noted that cross-species deployment of

deep networks often benefits from fine-tuning or domain

adaptation rather than always requiring full retraining. Recent

work shows that synthetic-to-real adaptation, contrastive/self-

supervised pretraining, and few-shot transfer can substantially

reduce labeling demands and improve robustness across domains

(Lagergren et al., 2023; Shi et al., 2022; Zhang et al., 2021).

Classical skeletonization techniques have also been applied to

plant leaves. Medial-axis based skeletons are attractive for their

geometric interpretability but are notoriously sensitive to small

boundary perturbations (each local change on the silhouette can

spawn spurious branches), requiring aggressive denoising and

topology repairs under occlusion or gaps in the mask (Bucksch,

2014). Morphology-based thinning pipelines, widely available in

plant phenotyping toolkits, routinely produce barbs/spurs whose

prevalence strongly depends on mask quality and must be pruned

with heuristic rules, which propagates instability to downstream

trait calculations (PlantCV Morphology Tutorial). Active-contour

(snake) models have been used to segment and track leaves in time-

lapse data. However, they demand careful initialization and shape

priors and may converge to local minima in scenes with weak edges

or strong overlap, which limits their ability to deliver midrib-

aligned skeletons and a variable number of keypoints needed for

phenotyping (De Vylder et al., 2011; Scharr et al., 2016).
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In this study, a training-free, spontaneous keypoint-connection

algorithm is proposed to overcome the limitations of boundary-

driven or annotation-dependent skeletonization. “Training-free”

means that no model parameters are learned and no annotated

data are required. “Spontaneous” refers to the fact that keypoints are

not predefined. Instead, candidate interior points are sampled at

runtime and connected according to curvature, angle-difference,

and convexity rules to yield a single polyline per leaf without using

templates or skeleton priors. Leaf regions are first isolated by color

thresholding and morphological operations. Instead of predefined

keypoints, randomly sampled interior points are linked through a

set of connection rules. For irregular morphologies, an orientation-

guided local search with an adaptive angle-difference threshold

incrementally traces keypoints while halving the search space at

every step, whereas for regular morphologies a convexity-

constrained curvature-minimization scheme yields smooth,

midrib-consistent polylines. This algorithm is positioned as

complementary to learning-based pipelines—particularly useful in

annotation-scarce settings, for rapid cross-species deployment, or

when the keypoint graph is unknown or variable—rather than as a

universal replacement. By dispensing with fixed keypoint counts,

skeleton templates, and lengthy training, the method remains

robust to edge defects, partial occlusions, and variable leaf

numbers, thereby generalizing across species and enabling direct,

geometry-accurate phenotype extraction for leafy plants with

complex architectures.
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2 Materials and methods

2.1 Image dataset acquisition

The vertical (top view) and front views of leafy orchids

effectively capture the randomness and regularity of leaf

morphology, respectively (Guan et al., 2011; Rodrigues et al.,

2013). To obtain these complementary perspectives, a multi-view

automatic acquisition device was designed for capturing images of

Cymbidium goeringii (Rchb. f.) (Figure 1A). While the front view

provides more detailed phenotypic information and thus requires a

higher resolution, the proposed algorithm is capable of processing

images with varying resolutions.

Two industrial cameras were employed: a Daheng industrial

camera (MER2-1220-32U3C, resolution: 4024×3036) for capturing

front view images, and a Hikvision industrial camera (MV-CU060-

10GC, resolution: 3072×2048) for capturing top view images. To

verify the generalization ability of the proposed algorithm, a

publicly available dataset of individual maize plants was used,

which was captured using a Grasshopper 3 camera. The

parameters of the three types of cameras are shown in Table 1.

Notably, the distances between the cameras and the orchids were

not fixed during data collection. Instead, these distances were

dynamically adjusted based on the height and crown width of

each orchid, ensuring that the entire plant was fully captured in

both the top-view and front-view images.
FIGURE 1

(A) Orchid image acquisition device. (B) Multi-view image automatic acquisition system interface with vertical view capture, front view capture,
turntable control and auto-mated image acquisition.
TABLE 1 Key optical and sensor specifications of the imaging systems used for the orchid and maize datasets.

Camera (view) Dataset Native resolution Pixel size (µm) Lens & focal range

Daheng MER2-1220-32U3C (front) Orchid 4024 × 3036 (12.2 MP) 1.85 16 mm C-mount fixed

Hikvision MV-CU060-10GC (top) Orchid 3072 × 2048 (6 MP) 2.40 25 mm C-mount fixed

Grasshopper 3 GS3-U3-23S6C-C (12 side + 1 top) Maize 2056 × 2454 (4 2 MP) 5.86 12.5–75 mm motorized zoom
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The potted orchids were positioned at the center of a motorized

turntable, which was controlled via serial communication with a

multi-view image acquisition software (Figure 1B). The motorized

turntable is controlled via RS-485 using the Modbus-RTU protocol

through a USB-to-RS485 converter. Commands for absolute angle

setting, step execution, and start–stop were issued from a Python

3.10 client using the pySerial library, with standard Modbus frames

and a 9,600-baud 8-N-1 configuration. Module 1 captures the top

view, Module 2 captures the front view, Module 3 controls the

rotation angle of the motorized turntable for view selection, and

Module 4 performs automated batch acquisition. This automated

system enabled the turntable to adjust the viewing angle, capture

images, and store data without manual intervention, thereby

ensuring consistency and standardization throughout the data

collection process. In total, 367 orchids with both vertical and

front view images were collected during the Third China Spring

Orchid Festival (Shaoxing, Zhejiang, February 22–25, 2024).
2.2 Image binarization and random point
generation

The hue channel in HSV (Hue, Saturation and Lightness) color

space directly determines the color type (Hu et al., 2023; Shi et al.,

2020), which facilitates accurate identification of regions of orchid

leaves. The lower and upper thresholds for the green hues were
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established as the initial mask (MaskA), where the leaf regions were

highlighted in white while the rest of the background was set to

black (Figure 2A). However, due to the presence of background

elements with colors similar to the leaves and the impact of lighting

variation on leaves, the binarized image displayed noticeable gaps

within the leaf regions and speckled noise in the background.

To eliminate the noise and accurately extract the contours of the

leaves, a series of morphological operations were applied to the M

askA. Firstly, a morphological closing operation was used, followed

by an opening operation, resulting in an improved mask MaskA0.
The opening and closing operation were expressed as

Closing(A) = (A⊕ B)⊖B

Opening(A) = (A⊖B)⊕ B

where ⊖ and ⊕ represents erosion and dilation operation

respectively. A is the binary image, B is a 5×5 ones matrix kernel

that is used to probe and interact with A. The closing operation

helped bridge small gaps and holes within the leaves (Le et al.,

2020), while the opening operation effectively removed speckled

noice within the background (Lei et al., 2019). Next, the binarized

image is further refined based on the area and shape of the leaf

contours. The contours of all connected regions within the white

mask were traced pixel by pixel. Due to the presence of nested

contours caused by noise, only the external contours were retained.

To eliminate small contours unlikely to represent leaves, contours
FIGURE 2

(A) Image binarization based on color threshold. (B) Binary images optimization based on morphological operations and contour features.
(C) Random point generation based on corrosion operation and hierarchical sampling.
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with an area smaller than 500 pixels were filtered out. The

minimum bounding rectangle was then extracted for each

contour, with its aspect ratio (the length ratio of longer side to

shorter side) effectively distinguishing the elongated leaves from

other objects. As the length of leaves are significantly longer than

the width, contours with an aspect ratio greater than 2 were

preserved. These contours, forming the set Scont , formulating a

separate mask MaskB. The intersection of MaskA0 and MaskB
produced the final leaf mask Maskleaf , which highlighted the

leaves in white against a black background, as shown in Figure 2B.

The keypoints on the orchid leaves were derived from randomly

sampled points, with even distribution across the extracted leaf

areas. Taking the vertical view image as an example, to simplify the

computation, a circle Cpot was drawn with the centroid of Maskleaf
as the center and half the length of the shortest contour in the set

Scont as the radius. This circle, Cpot , generally covered the central

part of the flowerpot in vertical view and served as a white mask

representing the pot. As illustrated in Figure 2C, to ensure an even

distribution of random points across the white regions of the leaf

image, hierarchical sampling was employed to divide the segmented

leaf area into 40×40 patches. A random point is sampled from each

subregion, excluding those within Cpot . Subsequently,

morphological erosion algorithm is applied to reduce the

boundary regions of the leaves (Yin et al., 2023), preventing

points near the edges of the white areas from being selected as

keypoints and ensuring that the generated random points were

located close to the central skeleton of the leaves.
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2.3 Initial keypoints recognition and search
direction determination

For both random and regular morphological leaves,

the outermost keypoints were firstly identified, then the search

direction for subsequent keypoints was determined to reduce spatial

complexity. The traversal of keypoints for the next leaf begins only

after all keypoints of the current leaf have been identified. For each

leaf, Pj
i represents the i-th keypoints of the j-th leaf. P1

1 was

designated as the first keypoints of the first leaf (marked as

visited), which has the maximum Euclidean distance from point

Cpot (closest to leaf tip), as illustrated in Figure 3A. P1
2 was identified

as the closest unvisited point to P1
1. To locate P1

2, a circular search

area is iteratively expanded around P1
1 until one or more unvisited

points were found. If a single unvisited point is identified within the

search area, it is designated as P1
2. If multiple unvisited points were

found, the point closest to P1
1 is selected as P

1
2, which is then marked

as visited, forming the vector P1
1P2

1
→

.

The search for P1
3 is also based on extending the circular search

area centered on P1
2. However, given that the orientation of the leaf

skeleton is determined, half of the random points within the circular

search area are not candidate points for P1
3. The direction of the

skeleton informs the search direction for subsequent keypoints,

thereby reducing the search space for the next keypoint. The

skeletal direction is determined by the relative positions of points

P1
1 and P

1
2, specifically by comparing the absolute differences between

the horizontal coordinates (P1
1x and P1

2x) and the vertical coordinates
frontiersin.org
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(P1
1y and P1

2y). This will result in more efficient search. The rules for

determining the search direction for keypoints were shown

in Table 2.
2.4 Remaining keypoints recognition for
leaves with random and regular
morphology

In vertical view of orchids, the uncertain growth trajectory of

each leaf results in a random morphology. Therefore, based on the

predetermined keypoint search direction, the optimal keypoints

closest to the central skeleton must be adaptively identified. The

determination of P1
3 is based on the angle formed between vectors

P1
1P2

1
→

and P2
1P3

1
→

, formulated as

S1q = qP1
1P

1
2P

1
3(i)
jqP11P12P13(i) = arccos

P1
1P

1
2

→

· P1
2P

1
3(i)

→

P1
1P

1
2

→
����

���� · P1
2P

1
3(i)

→
����

����

0
BB@

1
CCA� 180

p
, i = 1, 2, 3

8>><
>>:

9>>=
>>;

minS1q ≤ 20∘

i = argminS1q , P
1
3 ←P1

3(i)

where P1
3(i) is the i-th candidate point of P1

3 in circular search

area. qP1
1P

1
2P

1
3(i)

is the angle between P1
1P

1
2 and P1

2P
1
3. Within the left

semicircle of the circular search area, there are three candidate

keypoints, resulting in three angles. In order to effectively capture

the natural curvature characteristics of orchid leaves along their

main skeleton, we set a fixed threshold for the angular difference of

candidate keypoints in our algorithm. Through statistical analysis

and experimental validation on multiple orchid samples, we found

that the local curvature variations of most leaves are confined within

a narrow range. When the angular difference between a candidate

keypoint and the current skeleton direction is less than 20°, the true

turning points can be effectively identified while avoiding

interference from noise and local anomalies. If the minimum

angle in S1q is less than 20°, the corresponding candidate point is

selected as P1
3. Otherwise, the circular search area is further

expanded. This 20° threshold was chosen based on the observed

morphological properties of orchid leaves and extensive empirical
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testing, which demonstrated that it provides a robust balance

between sensitivity (capturing genuine turning points) and

specificity (avoiding spurious points due to noise). Fixing this

threshold not only reflects the inherent geometric properties of

orchid leaves but also simplifies the algorithm structure, thereby

enhancing computational efficiency and consistency.

Once the first three keypoints have been identified, the

subsequent keypoints were determined by iteratively running the

same search algorithm. For example, to determine P1
4, the circular

search area is iteratively expanded with P1
3 as the center. The

unvisited points within the left semicircle of this area form a set

P1
4(1), P

1
4(2),…, P1

4(N). The algorithm then calculates the angle set Sq =

q̂ i−1(k)

n ��q̂ i−1(k) = ∠ P1
3P

1
2P

1
4(k), k = 1, 2,…,Ng and q̂ i−2 = ∠ P1

2P
1
1P

1
3.

It compares the differences between q̂ i−2 and each q̂ i−1(k). Similar to

the selection of P1
3, if the smallest angle difference exceeds the

threshold of 20°, the circular search area is further expanded.

Otherwise, the point with the smallest angle difference was

selected as P1
4, as follows

S2q = Dqi−2(k)jDqi−2(k) = q̂ i−1(k) − q̂ i−2, k = 1, 2, 3,…,N
n o

minS2q ≤ 20∘

i = argminS2q , P
1
4(k) ←P1

i+1(i)

Then, the same method was iteratively applied to locate

subsequent keypoints P1
i . The loop terminates under the

following condition

jjCpot − Plast jj ≤ rpot + rlast

where Plast represents the last identified keypoints of the leaf,

rpot is the radius of Cpot , rlast is the radius of the circular search area

corresponding to Plast , and jjCpot − Plast jj is the Euclidean distance

between the centers of Cpot and Plast . When the circular search area

of P1
i contains no unvisited points and intersects with Cpot , P

1
i is

designated as Plast , and the iteration stops. At this time, all keypoints

for the single leaf have been determined.

The algorithm is then repeated on other leaves. The point P2
1,

which has the greatest Euclidean distance from Cpot , is identified as

the first keypoints of the second leaf. The same algorithm was then
TABLE 2 The positional relationship between and determined the search direction for subsequent keypoints.

P1x − P2xj j > P1y − P2y

�� �� P1x − P2xj j < P1y − P2y

�� ��
P1x > P2x P1x < P2x P1x > P2x P1x > P2x
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applied to determine all keypoints of this leaf, continuing until the

keypoints for all leaves were found.

In front view of orchids, due to the influence of gravity, all

orchid leaves form a completely regular convex polyline

(Figure 3B). Therefore, the trajectory pattern was fitted by

minimizing curvature based on the consistent leaves trend. Let

any three continuous keypoints along the leaf (from the root to the

tip) be denoted as P1
i−1, P

1
i , and P1

i+1. These points must satisfy the

following condition

P1
iy > P1

(i−1)y

P1
iy > P1

(i+1)y

,∀ i ∈ ½2,Nj − 1�
(

where Nj represents the number of keypoints on the j-th leaf.

This ensures that any adjacent three keypoints form a convex sub-

polyline, and the collection of these sub-polylines constitutes the

fully convex skeleton of the leaf.

The keypoints identification process for the front view image of

the orchid leaf begins by selecting the initial point P1
1 as the farthest

point from the leaf base. To determine the subsequent point P1
2, a

circular search area centered on P1
1 is iteratively expanded until

more than two unvisited points were found. The point with the

closest y-coordinate to P1
1y is then selected as P1

2. The next keypoint,

P1
3, is identified by expanding the search area centered on P1

2. If

more than 2 unvisited points were found within this area, the point

that forms a convex curve with P1
1 and P1

2 and results in minimal

curvature is chosen as P1
tem1.

The search then continues by expanding the area around P1
tem1.

If there were at least two points in this area, they were evaluated. If a

point P1
tem2 forms a convex polyline with P1

1 and P1
2 and lies above

P1
tem1, this indicates that the polyline P1

1P
1
2P

1
tem2 has a lower

curvature than P1
1P

1
2P

1
tem1. In this case, the following vector

addition is performed as

P2
1Ptem1

1
→

+ Ptem1
1 Ptem2

1
→

=P2
1Ptem2

1
→

P1
3 ← P1

tem2

Thus, P1
tem2 is set as the final P1

3, and P1
tem1 is discarded.

Conversely, if P1
tem2 is located below P1

tem1, then P1
tem1 is

confirmed as P1
3, and P1

tem2 becomes P1
4. This iterative traversal,

combined with vector addition, allows for a more precise fitting of

the leaf structure in front view.

All experiments—orchid (two industrial cameras) and maize

(PHENOARCH platform)—were run with a single, immutable

parameter set. Values were selected once on an orchid batch and

were not tuned thereafter, thereby demonstrating cross-species

generalizability. Table 3 lists the constants, and no entry changes

across datasets, resolutions or cameras.
2.5 Evaluated indicators for skeletonization
algorithms

The accuracy of the predicted skeletons was evaluated using

curvature error (Figure 4). Let y(x) represent the true skeleton curve

of the leaf, with curvature at point xi given by (Schamberger et al., 2023)
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kcurve(xi) =
y00(xi)j j

(1 + (y 0 (xi))2)
3
2

and the curvature at point xi of the predicted leaf skeleton

polyline is given by (Chuon et al., 2011)

kpolyline(xi) =
qi−1 + qi+1 − 2qi
di−1,i + di,i+1

where qi represents the angle at the i-th vertex of the polyline,

and di−1,i is the Euclidean distance between the (i − 1)-th and i-th

points on the polyline. The curvature error between the predicted

and true skeletons is defined as

Curvature Error =
1
No

N

i=1
kcurve(xi) − kpolyline(xi)
�� ��

A smaller curvature error indicates a higher shape conformity

between predicted polyline skeleton and the true curve skeleton.

The leaf recall rate was used to measure the proportion of leaves

correctly identified and successfully skeletonized out of the total

number of leaves, defined as

Leaf recall rate =
Pj
1, j = 1, 2,…,N

n o��� ���
Ground Truth of leaves number

� 100%
2.6 Leaves phenotypes

For vertical view, the number of algorithm’s outermost loop

(which traverses each leaf) corresponds to the leaves’ number. As

shown in Figure 5A, since the initial point Pj
1 for each leaf is closest

to the leaf tip, the total number of Pj
1 represents the leaf count. The

maximum distance between any two Pj
1 represents the crown width

of the orchid (Ebrahimi et al., 2020), measured in pixels. Because

pixel measurements cannot accurately reflect the true crown width,

the relative crown width was used as a key feature for evaluating the

orchid, formulated as

Relative Crown Width =
Crown Width

Diameter of  Cpot

Let Nj represent the number of keypoints in the jth leaf. Since

the skeleton formed by connecting these keypoints accurately

represents the shape of the leaf, the total length of the skeleton

corresponds to the length of the leaf. Leaf height consistency is the

variance of each leaf’s mean vertical distance from keypoints to the

pot’s top reference line in the front view, reflecting canopy

regularity that growers use to judge form. Relative crown width is

scale robust by construction. Leaf height consistency is expressed as

Leaf Length Consistency = Var o
Ni

k=1

dk

 !

A concentric circle Ccrown is drawn with the crown width as its

diameter, centered on the flowerpot (Figures 5A, B). Between Ccrown

and Cpot , N additional concentric circles Cj (j = 1, 2,…,N) were

generated with equal radial increments, where the radius of each Cj is
frontiersin.org

https://doi.org/10.3389/fpls.2025.1641255
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Wang et al. 10.3389/fpls.2025.1641255
denoted as RCj
. The boundaries of each concentric circle may

intersect the skeleton of the leaves at different points. Each

intersection divides Cj into several arcs, with lji representing the arc

length of the i-th segment of the j-th concentric circle, corresponding

to the distance between adjacent leaves under the condition of RCj
.

Thus, Var(lj) represents the leaf distribution consistency at RCj
.

However, in vertical view, the leaves radiate outward from

the center, causing the distance between adjacent leaves to vary

under different RCj
conditions. Generally, lji is positively correlated

with RCj
, and leaf distribution consistency at an intermediate RCj

better reflects the overall leaf uniformity of the orchid. Therefore,

leaf distribution consistency for the orchid (the weighted average of
Frontiers in Plant Science 08
Var(lj)) quantified how uniformly leaves occupy space around the

pot by partitioning the annulus between the pot circle and the

crown circle into concentric rings. Leaf distribution consistency is

defined as

Leaf Distribution Consistency =o
N

j=1
ljVar lj

� �

where lj is a Gaussian function satisfying oN
j=1lj = 1 and arg

max lj
� �

= N
2 , expressed as

lj =
exp −

(j−N
2 )

2

2s2

� �

oN
k=1 exp −

(k − N
2 )

2

2s 2

	 
 = Softmax −
(j − N

2 )
2

2s 2

	 


For front view, the top edge of the flowerpot’s rectangular

boundary serves as the bottom reference line of leaves (lr). The

distance from the i-th key point of leaf j to lr is denoted as hji, and

the average distance of all keypoints in leaf j to lr is represented by

ĥ j =
1
Mj o

Mj

k=1hk. The variance of ĥ j across all leaves reflects the

variation in the average height of each leaf within the orchid, which

is defined as leaf height consistency (Figure 5C), indicating whether

the architecture is harmonized rather than a mix of very long and

very short leaves. Leaf height consistency is formulated as

Leaf Height Consistency = Var
1
Mj
o
Mj

k=1

hi

 !

where Mj represents the number of keypoints on leaf j in

front view.
TABLE 3 Global implementation parameters used for all images.

Parameter Symbol description Fixed value

Hue range (HSV) Hmin − Hmax 35°-85°

Opening/closing kernel B (square) 5×5

Erosion iterations — 1

Contour area cut-off Amin 500 px

Aspect-ratio filter ARmin >2

Sampling grid size patches per side 40×40

Initial search radius r0 5 px

Angle-difference threshold qmax 20°

Convexity constraint three-point test enforced
FIGURE 4

Predefined keypoints for YOLOv7-SlimPose in (A) vertical view and (B) front view. Identified keypoints and skeletons in (C) front view and (D) vertical
view. (E) Curvature of real leaf skeleton curve and predicted leaf skeleton polyline at point xi.
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3 Results and discussion

3.1 Keypoints connection results and
phenotypic extraction

The keypoints connection method was applied to both front

view and vertical view images of the orchid. The keypoints

connection result was shown in Figures 6A, B, respectively It can

be seen that the leaves were accurately extracted without any

background noise. Due to the application of morphological

erosion to reduce the leaf boundary regions, random points were

uniformly generated in areas close to the central skeleton. Since the

leaf tip width is narrow, the diameter of the random points exceeded

the eroded width of leaf tip, resulting in incomplete point

generation at the outermost tip. After executing the keypoints

algorithm, nearly all leaf skeletons were accurately extracted

under complex conditions involving dense leaves, leaf intersection

and leaf occlusion. Motivated by this observation, a quantitative

analysis was conducted to explicitly characterize when tip detection

fails and how this affects downstream phenotypes.

To make failure modes explicit, a leaf-level criterion was

adopted whereby a tip is counted as missed if the outermost 20%

sector of that leaf contains no sampled points. Using this definition
Frontiers in Plant Science 09
and expressing the random-point marker diameter as a percentage

of the shortest contour length in Scont , the tip-miss frequency over

the entire orchid dataset (front and top views combined) was

19.24% at the default setting of 1.5%. An ablation varying the

marker diameter showed a monotonic decrease in misses—from

32.34% (6%) to 0% (0.1%)—indicating that erosion-induced

narrowing at very thin tips is the primary cause and can be

mitigated by smaller markers. Phenotype level effects were limited

at the default: leaf count was essentially unchanged. Relative crown

width exhibited a mild negative bias (−2.4%). Leaf-length

consistency showed a small positive bias (+2.6%). Leaf

distribution consistency changed negligibly due to Gaussian mid-

radius weighting. And in front views, leaf-height consistency

showed a minor negative bias (−1.1%). These results indicate that,

under default settings, tip misses occur in a fraction of leaves but

have minor impact on the five target phenotypes. If complete tip

recovery is required, reducing the marker diameter (≤0.3%)

eliminates the effect without altering the rest of the pipeline.

YOLOv7-SlimPose (Gao et al., 2024) was utilized based on the

same dataset. For each leaf, four keypoints were predefined and

annotated (Figures 4A, B): (1) Root point, which is the point where

the base of the plant connects to the pot; (2) Angle point, located at

the midpoint between the Root point and the Tip point; (3) Angle
FIGURE 5

(A) The initial point Pi located at the leave tip, and the crown width obtained from the two farthest initial points. (B) Arcs obtained by intersecting
concentric circles with leaf skeleton. (C) The height of each keypoints relative to the bottom reference line in front view.
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point 2, positioned at three-quarters of the distance from the Root

point to the Tip point; and (4) Tip point, representing the apex of

the leaf. Keypoints point (1) through (4) were sequentially

connected to form the leaf skeleton. 10 leaves and 8 leaves were

annotated in vertical view images and font view images respectively.

The annotated leaf skeletons in each image were evenly distributed.

A total of 561 images were selected for the training set, 126 images

for the validation set, and the remaining 15 images were used as the

test set. The ratio of vertical view to front view images was

maintained at 1:1 across the training, validation, and test sets.

Due to the distinct distribution of leaves in the vertical and front

view, the images from these two perspectives were separated and

used to train two models: one for vertical view and another for front

view (Total training time is 7.3 hours). After training, the test set

images were input into YOLOv7-SlimPose, which output the leaf

keypoints and skeletons for front view (blue output in Figure 4C)

and vertical view (blue output in Figure 4D).

The test set images (Figure 7A) were processed by both

algorithms. Based on the identified keypoints and the leaf

skeleton, 5 key features were further extracted, and the curvature
Frontiers in Plant Science 10
error and leaf recall rate were calculated for each, as shown

in (Figure 7B).

YOLOv7-SlimPose has a fixed output layer structure and relies

on an anchor-based object detection mechanism, which restricts the

size and position of the output targets within a predefined range

(Liu et al., 2022). The model generates a fixed number of keypoints

for each anchor position during forward propagation. This design

limits the model to outputting only a predetermined number of

keypoints and predefined skeleton connections (He et al., 2022; Tan

et al., 2024). Consequently, skeletons’ number and keypoints

detected by YOLOv7-SlimPose model are entirely dependent on

the annotations in the training data, which often require expert

knowledge in botany, especially when dealing with complex

plant structures.

For front view, orchid leaf root points were distributed across

various positions within the pot. However, due to annotation

constraints, YOLOv7-SlimPose identifies all root points as being

concentrated in a single location, failing to represent the true

morphology of leaves. Orchids exhibit varying numbers of leaves,

leaf lengths, and leaf distributions, but YOLOv7-SlimPose lacks the
FIGURE 6

Original image, binary image with random points and binary image with connected keypoints in (A) vertical view and (B) front view.
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flexibility to dynamically adjust the output structure based on the

input, making it inadequate for handling uncertain keypoints

numbers and connection patterns. Therefore, deep learning

models like YOLOv7-SlimPose are more suitable for applications

involving fixed keypoints numbers and skeleton structures, such as

human or animal pose estimation, rather than for complex plants

like orchids, which have dense and variable leaf pattern.

Based on the skeletons generated by YOLOv7-SlimPose, five

orchid phenotypes were extracted from the test set, with the results

shown in Figure 7. For the vertical view, as the annotated number of

leaves was fixed at 12, the model consistently detected 12 leaf

skeletons (with the leaf count remaining constant at 12) and 37

keypoints across all images. In contrast, the method proposed in this

work accurately detected varying numbers of leaves, achieving a leaf

recall rate of 1 in three out of five samples. In the first two samples,

where the leaves were relatively sparse, YOLOv7-SlimPose was able to

detect most of the leaf tips, resulting in a relative crown width close to

the ground truth. However, as the number of leaves increased in the

remaining samples, the accuracy of the crown width predictions by

YOLOv7-SlimPose dropped significantly compared to this work. The

fixed number of keypoints output by YOLOv7-SlimPose resulted in

poor fitting of the true leaf skeleton curve, limiting the model’s ability

to accurately reflect leaf consistency. The average curvature error and
Frontiers in Plant Science 11
leaf recall on test set were only 59% and 63%, respectively. In contrast,

this work successfully detected enough leaves and keypoints, and

accurately fitted the real leaf skeleton, resulting in more precise

extraction of leaf length consistency, distribution consistency, and

height consistency. Without manual labeling and long-term training,

the average curvature error and blade recall of the test set reached

0.12 and 92%, respectively.

To demonstrate how the proposed spontaneous key-points

connection differs from traditional non-learning approaches, the

same binary masks were processed with the medial-axis transform

(MAT) and with Zhang–Suen thinning (Figure 8). Both classical

algorithms inherit every imperfection present in the thresholded

image: darker leaf segments translate into complete breaks, while

small contour irregularities give rise to dense clusters of spurs and

lateral branches. The resulting skeletons are fragmented and highly

branched, preventing the continuous center-line that downstream

phenotype measurements require. By contrast, the proposed

strategy links interior sample points under geometric constraints

that actively suppress burr formation and bridge minor gaps,

yielding a single, smooth curve for each leaf and enabling reliable

extraction of length, curvature and spatial-distribution traits. The

qualitative comparison therefore reinforces the practical advantage

and uniqueness of the present method for complex leafy plants.
FIGURE 7

(A) Vertical view and front view in test set (5 samples as example). (B) 5 phenotypes, curvature error and leaf recall rate obtained by YOLOv7-
SlimPose and this work.
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3.2 Computational efficiency or practicality

Experiments were conducted on a CPU-only workstation

equipped with 32 GB DDR4–2666 system memory. For images of

4024 × 3036 and 3072 × 2048 pixels, the algorithm required on

average 3.556 s and 2.247 s per image, respectively, with peak

resident memory of approximately 190.50 MB and 150.37 MB. No

GPU acceleration was used.

Compared with the classical methods that have been publicly

disclosed, iterative refinement in the i5-4670K and 4 GB memory

virtual machine environment, most algorithms are completed

within the range of 0.58-0.96 s for a single image, while Stentiford
Frontiers in Plant Science 12
and an improved method take about 1.21-1.43 s (Gramblicka and

Vasky, 2016). The total runtime given in the example script,

represented by the central axis transformation, is about 1.34 s/

image. The total runtime of the activity outline in similar official

examples is about 2.03 seconds per image. The Hessian Frangi ridge

filter shows an average of 1.187 s/graph in the i7 3.0 GHz, 64 GB,

RTX 2060 environment, and hardware configuration is provided to

ensure comparability (Hachaj and Piekarczyk, 2023).

Although the single frame time is slightly higher than several

classic skeleton pipelines, this method does not require labeling and

training, and can adaptively generate a variable number of keypoints

and skeletons after one preprocessing. It directly supports phenotype
FIGURE 8

(A) Original image; (B) skeletonization result of Zhang–Suen thinning; (C) skeletonization result of MAT.
FIGURE 9

Original image, binary image with random points and binary image with connected keypoints of a single maize in (A) vertical view and (B) front view.
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calculations such as leaf number, crown width, length consistency,

distribution consistency, and height consistency, and has been

validated for stable leaf recall rate and cross species generalization

in orchid and maize morphologies. The practicality of this type of

“training species independent” is supported by the cost of running a

CPU in seconds and a hundred megabits of memory, avoiding the

time and economic expenses of retraining and manual annotation.

Regarding scalability, when the number of pixels increases from 6.29

million to 12.22 million (1.94 ×), the average time takes from 2.247 s

to 3.556 s (1.58 ×), showing a nearly linear or even better scaling. The

algorithm mainly relies on local search and angle/convexity

constraints on the mask, and the computational complexity mainly

increases linearly with the number of pixels and candidate points, so

it will only be faster at lower resolutions. 4024 × 3036 has significantly

exceeded the imaging requirements of most production processes,

and high-resolution is chosen to cover the most demanding

resolution scenes. In terms of density, the high leaf density,

occlusion, and overlap of orchids have constituted strict stress tests,

while the full growth period samples of corn gradually increase leaf
Frontiers in Plant Science 13
density, all of which can maintain stable skeleton extraction and high

leaf recall rate, indicating that the scalability in leaf quantity and

density has practical significance.
3.3 Generalization ability verification

To verify the generalization ability of the proposed algorithm, it

was applied to maize. Similar to orchid leaves, maize leaves are soft,

numerous, densely packed, and exhibit significant overlap. Using

the publicly available single-plant maize dataset (Dataset URL:

https://datasetninja.com/maize-whole-plant-image-dataset), which

captured images of a single maize plant over 113 days—with 1

vertical view and 12 front view images taken each day—the

spontaneous keypoints connection algorithm was applied to both

a front view (Figure 9) and a vertical view image (Figure 9) from 10

different days, spanning pre-, mid-, and post-growth stages

(Figure 10). Due to the relatively wide leaves of maize, random

points could still be generated at the eroded leaf tips, and in some
FIGURE 10

(A) Relative crown width, (B) curvature error and (C) leaf recall rate of a single maize plant throughout entire growth stage obtained by YOLOv7-
SlimPose and this work. (D) Vertical view and front view images of a single maize plant throughout entire growth stage.
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cases, a single maize leaf may be mistakenly identified as two

separate leaves in the vertical view.

It is important to note that the extraction of maize leaf count is

based on the front view images, while the vertical view is primarily

used to extract features such as crown width, leaf distribution

consistency, and overall plant structure. Therefore, any

misidentification of leaf number in the vertical view does not

affect the final feature extraction or the evaluation of the

algorithm’s generalization ability on maize leaves.

Samples #4 and #5 were annotated for YOLOv7-SlimPose

training, with 6 skeletons annotated per front view image and 4

skeletons per vertical view image. The relative crown width was

extracted from 10 samples (Figure 10). During the early growth

stage, when maize leaves are smaller and fewer in number,

YOLOv7-SlimPose predicted more skeletons than the actual leaf

count, allowing it to accurately estimate the crown width in this

stage. However, as the plant continued to grow, both the size and

number of leaves increased. The number of leaves exceeded the

prediction range of YOLOv7-SlimPose in mid-to-late growth stages,

resulting in greater prediction error for the relative crown width.

In contrast, the proposed method accurately predicted the relative

crown width across all growth stages (Figure 10) and consistently

detected all leaves from the front view, maintaining a leaf recall rate of

100% throughout (Figure 10). Additionally, compared to YOLOv7-

SlimPose, the proposed method maintained a lower curvature error

(Figure 10) for front view images across all growth stages. These results

confirm that the proposedmethod accurately extracts all keypoints and

skeletons of maize leaves, demonstrating its effectiveness in keypoint

detection, skeleton recognition, and feature extraction in crops with

complex morphologies.

In summary, this work identifies keypoints and skeletons based

solely on the connection of randomly generated points in the leaf

region. This approach eliminates the need for predefined keypoints

and training based on plant structure, making it adaptable for a

broader range of plant phenotypic extraction tasks.
4 Conclusion

A spontaneous keypoints connection skeletonization algorithm

based on random points was firstly developed for leafy plants

phenotypic extraction. HSV color thresholding separated orchid

leaves into binarized images. Morphological opening and closing

operations, along with area and leaf shape filters, effectively

removed noise. After leaf boundary erosion, random points were

sampled near the central skeleton within each generated patch. The

skeletonization approach was applied to plants with random leaf

morphology and regular leaf morphology. For random leaf

morphology, the point furthest from the center was identified as

the first keypoint. A circular search was then iteratively expanded

from this keypoint to find the next point. The subsequent keypoints

search direction was determined based on the relative position of
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these two keypoints, thereby reducing the spatial complexity by

half. Remaining keypoints were identified using angle difference

thresholds. For regular leaf morphology, the algorithm ensured the

accuracy of leaf skeleton fitting by enforcing that any three

consecutive points formed a convex polyline while minimizing

curvature. By iteratively applying this approach, nearly all leaves’

skeletons were detected, achieving an average curvature error of

0.12 and a leaf recall rate of 92%. In addition, a qualitative

comparison with classical non-learning baselines showed that

both inherit binarization discontinuities and produce fragmented,

highly branched center-lines, whereas the proposed strategy yields

smooth and continuous skeletons that enable downstream

phenotypic measurements. Finally, five phenotypes of orchids

were accurately extracted based on the identified skeletons.

Moreover, this algorithm effectively predicted maize’s relative

crown width throughout all growth stages and consistently

detected 100% of the leaves, highlighting its generalization

capability on wide leaf plants. Compared to existing literature

reports, this approach accurately skeletonized leafy plants with

random and regular morphological leaves, eliminating manual

keypoints design and training based on plants’ structure. It can

spontaneously detect keypoints and extract skeletons according to

plant morphology, offering an effective solution for accurate

phenotypic extraction of more plants with complex morphologies.
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