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A spontaneous keypoints
connection algorithm for
leafy plants skeletonization
and phenotypes extraction

Zhen Wang, Xiangnan He, Yuting Wang, Chenxue Yang,
Beilei Fan, Qingbo Zhou and Xian Li*

Agricultural Information Institute, Chinese Academy of Agricultural Sciences, Beijing, China

Introduction: Leaf phenotypes are key indicators of plant growth status. Existing
deep learning—based leaf skeletonization typically requires extensive manual
labeling, long training, and predefined keypoints, which limits scalability. We
developed a training-free and label-free approach that connects spontaneously
detected keypoints to generate leaf skeletons for leafy plants.

Methods: The method comprises random seed-point generation and adaptive
keypoint connection. For plants with random leaf morphology, we determine a
threshold for the angle difference among any three consecutive adjacent points
and iteratively identify keypoints within circular search neighborhoods to trace
leaf skeletons. For plants with regular leaf morphology, we fit the skeleton
trajectory by minimizing curvature. We validated the approach on vertical and
front-view images of orchids (covering random and regular morphological cases)
and extracted five phenotypic parameters from the resulting skeletons.
Generalization was further assessed on a maize image dataset.

Results: On orchid images, the proposed approach achieved an average
curvature fitting error of 0.12 and an average leaf recall of 92%. Five orchid
phenotypic parameters were accurately derived from the skeletons. The method
also showed effective skeletonization on maize, indicating cross-
species applicability.

Discussion: By eliminating manual labels and training, this approach reduces
annotation effort and computational overhead while enabling precise geometric
phenotype calculation from skeleton-based keypoints. Its effectiveness on both
randomly distributed and regularly shaped leafy plants suggests suitability for
high-throughput plant phenotyping workflows.

KEYWORDS

leaves skeletonization, angle difference threshold, curvature minimization, keypoints
connection, phenotype extraction
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1 Introduction

Leaf physiological and morphological phenotypes are associated
with plant growth status (Kolhar and Jagtap, 2023; Li et al., 2020),
such as plant height (Liu et al., 2023; Zhang et al., 2024), leaf shape (Li
et al, 2020), leaves consistency and color (Nyonje et al, 2021).
Phenotypic information can be extracted manually or through
computer-based automated methods. Manual phenotype
measurement based on rulers is time-consuming and difficult to
accurately capture complex phenotypes (Cembrowska-Lech et al,
2023). The consistency of leaf morphology can only be perceived
subjectively. Computer-based phenotyping generally involves
skeletonization and phenotype extraction. Skeletonization refers to
simplifying each leaf region into a centerline polyline for geometric
property calculations. In this study, skeletonization simplifies leaves
into keypoints and skeleton, enabling efficient and precise geometric
calculations of phenotypes without considering complex leaf details.
Automated keypoint detection and skeletonization using intelligent
algorithms can quantify leaf phenotypes and reflect the growth status,
providing more efficient and intelligent decision support for precision
agriculture (Jiang and Li, 2020). Deep learning has therefore become
a mainstay in image-based phenotyping, in part because transfer
learning, domain adaptation, and self-/few-shot strategies can
support generalization across datasets and conditions while
reducing annotation needs (Li et al., 2023; Ogidi et al., 2023;
Sheikh et al., 2024).

Deep learning-based methods for keypoints detection and
skeletonization have been widely applied to crop phenotyping,
providing valuable insights into plant morphology. For instance,
point cloud based phenotyping approaches—using data acquired
via LIDAR (Zhang et al., 2024), Visual Structure From Motion
(VisualSEM) (Zhang et al., 2024), or Multi-View Stereo (MVS)
(Murata and Noshita, 2024)—offer detailed 3D reconstructions,
although they often require specialized equipment and involve
higher technical and economic costs. For image data, methods
such as YOLOv7-pose have been employed to extract keypoints
from individual rice plants to facilitate stem-leaf angle
measurements (Seng et al., 2024). In addition, lightweight variants
like YOLOV7-SlimPose—enhanced with modules such as GSConv
and GSIN and utilizing modified loss functions like MPDIoU—
have been applied to detect multiple keypoints on maize leaves and
stems, enabling the extraction of phenotypes including plant height,
leaf-stem angle, leaf length, and ear position (Gao et al., 2024).
Similarly, AngleNet has been used to extract keypoints on maize
leaves (targeting the midrib, stem, and near the leaf neck) to
quantify leaf angles (Xiang et al., 2023), and a stacked hourglass
network (SHN) has been applied for locating keypoints on soybean
leaves to automatically compute distances and angles between them
(Zhu et al., 2020). While predefined keypoint sets can be effective,
they may be less flexible for multi-leaf species with variable leaf
counts or heavy occlusion. Recent structure-aware pose and dense-
keypoint models partially mitigate this but challenges remain in
complex canopies. Notably, several recent pose frameworks in crops
can infer flexible landmark sets or even recover skeletal topology
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under occlusion. For example, PFLO reconstructs field maize poses
with a YOLO-based head, and the bottom-up DEKR-SPrior
leverages structural priors to detect variable keypoints in dense
organs, mitigating the limitations of strictly pre-annotated keypoint
templates (Pan et al., 2025).

While these approaches have significantly advanced plant
phenotyping, many pipelines still supervise a fixed set of
landmarks—particularly in multi-leaf canopies, although
topology-flexible models partly alleviate this constraint. This
design can sometimes limit flexibility when dealing with multi-
leaf plants that exhibit considerable variability, such as differences
in leaf count or challenges arising from occlusion. To address more
complex plant structures, alternative strategies have been explored.
For example, CenterNet has been applied to leaf counting in beet
plants with an arbitrary number of leaves (Weyler et al., 2021),
although overlapping leaves occasionally lead to false positives or
missed detections. Similarly, SDNet, which employs an encoder-
decoder architecture combined with a structural reconstruction
algorithm (SRA), has been used for multi-instance detection, leaf
counting, and phenotyping in maize and soybean (Lac et al., 2021),
yet its ability to extract detailed keypoint information might be
constrained under highly complex scenarios. More recently, the
DEKR-SPrior model has been proposed to enhance keypoint
detection by increasing the number of detected points and
integrating prior structural knowledge through cosine similarity,
thereby improving discrimination in dense leaf regions (He et al,
2024). Additionally, a Point-Line Net based on the Mask R-CNN
framework has been developed to recognize maize field RGB images
and determine both the number and growth trajectories of leaves
and stalks, achieving promising performance (81.5% mAP50) (Liu
et al,, 2024). It should be noted that cross-species deployment of
deep networks often benefits from fine-tuning or domain
adaptation rather than always requiring full retraining. Recent
work shows that synthetic-to-real adaptation, contrastive/self-
supervised pretraining, and few-shot transfer can substantially
reduce labeling demands and improve robustness across domains
(Lagergren et al., 2023; Shi et al,, 2022; Zhang et al., 2021).

Classical skeletonization techniques have also been applied to
plant leaves. Medial-axis based skeletons are attractive for their
geometric interpretability but are notoriously sensitive to small
boundary perturbations (each local change on the silhouette can
spawn spurious branches), requiring aggressive denoising and
topology repairs under occlusion or gaps in the mask (Bucksch,
2014). Morphology-based thinning pipelines, widely available in
plant phenotyping toolkits, routinely produce barbs/spurs whose
prevalence strongly depends on mask quality and must be pruned
with heuristic rules, which propagates instability to downstream
trait calculations (PlantCV Morphology Tutorial). Active-contour
(snake) models have been used to segment and track leaves in time-
lapse data. However, they demand careful initialization and shape
priors and may converge to local minima in scenes with weak edges
or strong overlap, which limits their ability to deliver midrib-
aligned skeletons and a variable number of keypoints needed for
phenotyping (De Vylder et al., 20115 Scharr et al., 2016).
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In this study, a training-free, spontaneous keypoint-connection
algorithm is proposed to overcome the limitations of boundary-
driven or annotation-dependent skeletonization. “Training-free”
means that no model parameters are learned and no annotated
data are required. “Spontaneous” refers to the fact that keypoints are
not predefined. Instead, candidate interior points are sampled at
runtime and connected according to curvature, angle-difference,
and convexity rules to yield a single polyline per leaf without using
templates or skeleton priors. Leaf regions are first isolated by color
thresholding and morphological operations. Instead of predefined
keypoints, randomly sampled interior points are linked through a
set of connection rules. For irregular morphologies, an orientation-
guided local search with an adaptive angle-difference threshold
incrementally traces keypoints while halving the search space at
every step, whereas for regular morphologies a convexity-
constrained curvature-minimization scheme yields smooth,
midrib-consistent polylines. This algorithm is positioned as
complementary to learning-based pipelines—particularly useful in
annotation-scarce settings, for rapid cross-species deployment, or
when the keypoint graph is unknown or variable—rather than as a
universal replacement. By dispensing with fixed keypoint counts,
skeleton templates, and lengthy training, the method remains
robust to edge defects, partial occlusions, and variable leaf
numbers, thereby generalizing across species and enabling direct,
geometry-accurate phenotype extraction for leafy plants with
complex architectures.

e
Elg€tric Turntable
Electric Motor _/

FIGURE 1
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2 Materials and methods
2.1 Image dataset acquisition

The vertical (top view) and front views of leafy orchids
effectively capture the randomness and regularity of leaf
morphology, respectively (Guan et al., 2011; Rodrigues et al,
2013). To obtain these complementary perspectives, a multi-view
automatic acquisition device was designed for capturing images of
Cymbidium goeringii (Rchb. f.) (Figure 1A). While the front view
provides more detailed phenotypic information and thus requires a
higher resolution, the proposed algorithm is capable of processing
images with varying resolutions.

Two industrial cameras were employed: a Daheng industrial
camera (MER2-1220-32U3C, resolution: 4024x3036) for capturing
front view images, and a Hikvision industrial camera (MV-CU060-
10GC, resolution: 3072x2048) for capturing top view images. To
verify the generalization ability of the proposed algorithm, a
publicly available dataset of individual maize plants was used,
which was captured using a Grasshopper 3 camera. The
parameters of the three types of cameras are shown in Table 1.
Notably, the distances between the cameras and the orchids were
not fixed during data collection. Instead, these distances were
dynamically adjusted based on the height and crown width of
each orchid, ensuring that the entire plant was fully captured in

both the top-view and front-view images.

(A) Orchid image acquisition device. (B) Multi-view image automatic acquisition system interface with vertical view capture, front view capture,

turntable control and auto-mated image acquisition.

TABLE 1 Key optical and sensor specifications of the imaging systems used for the orchid and maize datasets.

Camera (view)

Native resolution

Pixel size (um)

Lens & focal range

Daheng MER2-1220-32U3C (front) Orchid 4024 x 3036 (12.2 MP) 1.85 16 mm C-mount fixed
Hikvision MV-CU060-10GC (top) Orchid 3072 x 2048 (6 MP) 2.40 25 mm C-mount fixed
Grasshopper 3 GS3-U3-23S6C-C (12 side + 1 top) Maize 2056 x 2454 (4 2 MP) 5.86 12.5-75 mm motorized zoom
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The potted orchids were positioned at the center of a motorized
turntable, which was controlled via serial communication with a
multi-view image acquisition software ( ). The motorized
turntable is controlled via RS-485 using the Modbus-RTU protocol
through a USB-to-RS485 converter. Commands for absolute angle
setting, step execution, and start-stop were issued from a Python
3.10 client using the pySerial library, with standard Modbus frames
and a 9,600-baud 8-N-1 configuration. Module 1 captures the top
view, Module 2 captures the front view, Module 3 controls the
rotation angle of the motorized turntable for view selection, and
Module 4 performs automated batch acquisition. This automated
system enabled the turntable to adjust the viewing angle, capture
images, and store data without manual intervention, thereby
ensuring consistency and standardization throughout the data
collection process. In total, 367 orchids with both vertical and
front view images were collected during the Third China Spring
Orchid Festival (Shaoxing, Zhejiang, February 22-25, 2024).

2.2 Image binarization and random point
generation

The hue channel in HSV (Hue, Saturation and Lightness) color
space directly determines the color type ( ;

), which facilitates accurate identification of regions of orchid
leaves. The lower and upper thresholds for the green hues were

10.3389/fpls.2025.1641255

established as the initial mask (Mask ), where the leaf regions were
highlighted in white while the rest of the background was set to
black (
elements with colors similar to the leaves and the impact of lighting

). However, due to the presence of background

variation on leaves, the binarized image displayed noticeable gaps
within the leaf regions and speckled noise in the background.

To eliminate the noise and accurately extract the contours of the
leaves, a series of morphological operations were applied to the M
ask,. Firstly, a morphological closing operation was used, followed
by an opening operation, resulting in an improved mask Mask,,.
The opening and closing operation were expressed as

Closing(A) = (A@ B)©B

Opening(A) = (A©B)® B

where © and @ represents erosion and dilation operation
respectively. A is the binary image, B is a 5x5 ones matrix kernel
that is used to probe and interact with A. The closing operation
helped bridge small gaps and holes within the leaves (

), while the opening operation effectively removed speckled
). Next, the binarized
image is further refined based on the area and shape of the leaf

noice within the background (

contours. The contours of all connected regions within the white
mask were traced pixel by pixel. Due to the presence of nested
contours caused by noise, only the external contours were retained.
To eliminate small contours unlikely to represent leaves, contours

Origin Image

— Morphological operations

Optimized Binary Image with flowerpot}

[Closing]—-b[ Opening ]

— Contour optimization

Retrieve
External

redundant points]

Remove

HSV space
[l Lowest green [l Highest green
I — Leaf segmentation

~—— Contour filtering ——

w
K\]h

Aspect ratio > 2

Contours

Original Bin[ry Image

|

FIGURE 2

(A) Image binarization based on color threshold. (B) Binary images optimization based on morphological operations and contour features.
(C) Random point generation based on corrosion operation and hierarchical sampling
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with an area smaller than 500 pixels were filtered out. The
minimum bounding rectangle was then extracted for each
contour, with its aspect ratio (the length ratio of longer side to
shorter side) effectively distinguishing the elongated leaves from
other objects. As the length of leaves are significantly longer than
the width, contours with an aspect ratio greater than 2 were
preserved. These contours, forming the set S, formulating a
separate mask Maskg. The intersection of Mask,, and Maskg
produced the final leaf mask Masky,s, which highlighted the
leaves in white against a black background, as shown in Figure 2B.

The keypoints on the orchid leaves were derived from randomly
sampled points, with even distribution across the extracted leaf
areas. Taking the vertical view image as an example, to simplify the
computation, a circle C,; was drawn with the centroid of Maske,s
as the center and half the length of the shortest contour in the set
Scont as the radius. This circle, C,,, generally covered the central
part of the flowerpot in vertical view and served as a white mask
representing the pot. As illustrated in Figure 2C, to ensure an even
distribution of random points across the white regions of the leaf
image, hierarchical sampling was employed to divide the segmented
leaf area into 40x40 patches. A random point is sampled from each
subregion, excluding those within C,,. Subsequently,
morphological erosion algorithm is applied to reduce the
boundary regions of the leaves (Yin et al., 2023), preventing
points near the edges of the white areas from being selected as
keypoints and ensuring that the generated random points were
located close to the central skeleton of the leaves.

(A) 1 1 1 1k
Pyg) | (P3) (P2)  (P)
v 1pd | e pl

__ Stop Search | 1" i+1(k)U P

R ]
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2.3 Initial keypoints recognition and search
direction determination

For both random and regular morphological leaves,
the outermost keypoints were firstly identified, then the search
direction for subsequent keypoints was determined to reduce spatial
complexity. The traversal of keypoints for the next leaf begins only
after all keypoints of the current leaf have been identified. For each
leaf, P{ represents the i-th keypoints of the j-th leaf. P} was
designated as the first keypoints of the first leaf (marked as
visited), which has the maximum Euclidean distance from point
C

P
as the closest unvisited point to P}. To locate P}, a circular search

o (closest to leaf tip), as illustrated in Figure 3A. P} was identified

area is iteratively expanded around P} until one or more unvisited
points were found. If a single unvisited point is identified within the
search area, it is designated as P}. If multiple unvisited points were
found, the point closest to Py is selected as P}, which is then marked
as visited, forming the vector P;'P,.

The search for P} is also based on extending the circular search
area centered on Pj. However, given that the orientation of the leaf
skeleton is determined, half of the random points within the circular
search area are not candidate points for Pi. The direction of the
skeleton informs the search direction for subsequent keypoints,
thereby reducing the search space for the next keypoint. The
skeletal direction is determined by the relative positions of points
P and P}, specifically by comparing the absolute differences between
the horizontal coordinates (P}, and P},) and the vertical coordinates

P3(1) g, > 200
ORI Y

Key Points Search Direction

Determination new initial point
of new leave

(Left

Search for key points of new leave

)]

P;,1,P;and P;_; need to

form a convex polyline flowerpot

FIGURE 3

Vector

[ ]
| Addition I oo
Give up Py [ Ptem1

| Piom> is above P, 1
| and still forms a convex line
I with P, and P,

Keypoints determination method for vertical (A) vertical view and (B) front view
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(P%}, and Piy). This will result in more efficient search. The rules for
determining the search direction for keypoints were shown
in Table 2.

2.4 Remaining keypoints recognition for
leaves with random and regular
morphology

In vertical view of orchids, the uncertain growth trajectory of
each leaf results in a random morphology. Therefore, based on the
predetermined keypoint search direction, the optimal keypoints
closest to the central skeleton must be adaptively identified. The
determination of P} is based on the angle formed between vectors
P'P,land P,'P,! formulated as

PiP}- P3Py, 180
Sly = 6P¥P%P;<z)|9PIlP%P;(x) = arccos | —— 230 _f —,i=1,2,3

PPy - |P;P},

minSly < 20°

i= argminSle,Pé — P;(,-)

where Py, is the i-th candidate point of P; in circular search
area. Oppypt s the angle between P} P} and PiP). Within the left
semicircle of the circular search area, there are three candidate
keypoints, resulting in three angles. In order to effectively capture
the natural curvature characteristics of orchid leaves along their
main skeleton, we set a fixed threshold for the angular difference of
candidate keypoints in our algorithm. Through statistical analysis
and experimental validation on multiple orchid samples, we found
that the local curvature variations of most leaves are confined within
a narrow range. When the angular difference between a candidate
keypoint and the current skeleton direction is less than 20°, the true
turning points can be effectively identified while avoiding
interference from noise and local anomalies. If the minimum
angle in Slg is less than 20°, the corresponding candidate point is
selected as P}. Otherwise, the circular search area is further
expanded. This 20° threshold was chosen based on the observed
morphological properties of orchid leaves and extensive empirical

10.3389/fpls.2025.1641255

testing, which demonstrated that it provides a robust balance
between sensitivity (capturing genuine turning points) and
specificity (avoiding spurious points due to noise). Fixing this
threshold not only reflects the inherent geometric properties of
orchid leaves but also simplifies the algorithm structure, thereby
enhancing computational efficiency and consistency.

Once the first three keypoints have been identified, the
subsequent keypoints were determined by iteratively running the
same search algorithm. For example, to determine Pj, the circular
search area is iteratively expanded with P} as the center. The
unvisited points within the left semicircle of this area form a set
P}ty Pia)» -+ Py The algorithm then calculates the angle set S =

0119|0100 = 2 PAPIP k= 1,2,..,N } and 8., = 2 PIP}P}.
It compares the differences between 6, , and each 6. Similar to

the selection of P%, if the smallest angle difference exceeds the
threshold of 20° the circular search area is further expanded.
Otherwise, the point with the smallest angle difference was
selected as P}, as follows

29 = {Aoi_z(k)me,-_z(k) =04 - 00 k=1,2, 3,...,N}

minS2y < 20°

. . 1 1
i = argminS2q, Py < Pii1(i)

Then, the same method was iteratively applied to locate
subsequent keypoints P!. The loop terminates under the
following condition

||Cpot = Ppag| < Toot * Viast

where Py, represents the last identified keypoints of the leaf,
Tpor 18 the radius of Cyyy, 1y is the radius of the circular search area
corresponding to Ply, and [[Cpe — Ppag|| is the Euclidean distance
between the centers of Cp,; and P,g. When the circular search area
of P} contains no unvisited points and intersects with Coot> P! is
designated as P, and the iteration stops. At this time, all keypoints
for the single leaf have been determined.

The algorithm is then repeated on other leaves. The point P3,
which has the greatest Euclidean distance from C,,,;, is identified as
the first keypoints of the second leaf. The same algorithm was then

TABLE 2 The positional relationship between and determined the search direction for subsequent keypoints.

[Py = Poy| > [Py, = Py |

[Py = Poy| < [Py, = Pay|

Py > Py, Py < Py
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applied to determine all keypoints of this leaf, continuing until the
keypoints for all leaves were found.

In front view of orchids, due to the influence of gravity, all
orchid leaves form a completely regular convex polyline
(Figure 3B). Therefore, the trajectory pattern was fitted by
minimizing curvature based on the consistent leaves trend. Let
any three continuous keypoints along the leaf (from the root to the
tip) be denoted as P}, P}, and P},;. These points must satisfy the
following condition

{Pi1y>p(li—1>y

L L ViERN -]
Piy>P(i+1)y

where N; represents the number of keypoints on the j-th leaf.
This ensures that any adjacent three keypoints form a convex sub-
polyline, and the collection of these sub-polylines constitutes the
fully convex skeleton of the leaf.

The keypoints identification process for the front view image of
the orchid leaf begins by selecting the initial point P] as the farthest
point from the leaf base. To determine the subsequent point P}, a
circular search area centered on Pi is iteratively expanded until
more than two unvisited points were found. The point with the
closest y-coordinate to P}, is then selected as P}. The next keypoint,
P}, is identified by expanding the search area centered on Pj. If
more than 2 unvisited points were found within this area, the point
that forms a convex curve with P} and P} and results in minimal
curvature is chosen as PL,,,.

The search then continues by expanding the area around Pl,,;.
If there were at least two points in this area, they were evaluated. Ifa
point PL,, forms a convex polyline with P! and P} and lies above
Pl this indicates that the polyline P{P3Pl., has a lower
curvature than P}P}PL.;. In this case, the following vector
addition is performed as

Py Pyt + Piesn Prem2=P5' Prewna

P} P}

tem2

Thus, PL,, is set as the final P}, and P, is discarded.
Conversely, if Py, is located below PlL,;, then PL., is
confirmed as P}, and P, becomes P}. This iterative traversal,
combined with vector addition, allows for a more precise fitting of
the leaf structure in front view.

All experiments—orchid (two industrial cameras) and maize
(PHENOARCH platform)—were run with a single, immutable
parameter set. Values were selected once on an orchid batch and
were not tuned thereafter, thereby demonstrating cross-species
generalizability. Table 3 lists the constants, and no entry changes
across datasets, resolutions or cameras.

2.5 Evaluated indicators for skeletonization
algorithms
The accuracy of the predicted skeletons was evaluated using

curvature error (Figure 4). Let y(x) represent the true skeleton curve
of the leaf, with curvature at point x; given by (Schamberger et al., 2023)
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|)//(xi)|
1+ ()3

and the curvature at point x; of the predicted leaf skeleton

Kcurve(xi) =

polyline is given by (Chuon et al., 2011)

0,1 + 60,1 —26;

Knolyline (X;) =
polyline \*i
diyi+dijn

where 6; represents the angle at the i-th vertex of the polyline,
and d;_;; is the Euclidean distance between the (i — 1)-th and i-th
points on the polyline. The curvature error between the predicted
and true skeletons is defined as

N
Curvature Error = %g ’ Keurve (X7) — Kpolyhne(x,-)‘

A smaller curvature error indicates a higher shape conformity
between predicted polyline skeleton and the true curve skeleton.
The leaf recall rate was used to measure the proportion of leaves
correctly identified and successfully skeletonized out of the total
number of leaves, defined as

Hp{,jz 1,2,...,NH

x 100 %
Ground Truth of leaves number ’

Leaf recall rate =

2.6 Leaves phenotypes

For vertical view, the number of algorithm’s outermost loop
(which traverses each leaf) corresponds to the leaves’ number. As
shown in Figure 5A, since the initial point P’1 for each leaf is closest
to the leaf tip, the total number of P’1 represents the leaf count. The
maximum distance between any two P’1 represents the crown width
of the orchid (Ebrahimi et al., 2020), measured in pixels. Because
pixel measurements cannot accurately reflect the true crown width,
the relative crown width was used as a key feature for evaluating the
orchid, formulated as

Crown Width

Relative Crown Width = ———————
Diameter of C,,

Let N; represent the number of keypoints in the 7™ leaf. Since
the skeleton formed by connecting these keypoints accurately
represents the shape of the leaf, the total length of the skeleton
corresponds to the length of the leaf. Leaf height consistency is the
variance of each leaf’s mean vertical distance from keypoints to the
pot’s top reference line in the front view, reflecting canopy
regularity that growers use to judge form. Relative crown width is
scale robust by construction. Leaf height consistency is expressed as

Ni
Leaf Length Consistency = Var (Edk>
k=1

A concentric circle C, is drawn with the crown width as its

crown
diameter, centered on the flowerpot (Figures 5A, B). Between C,,y,p
and CPO,, N additional concentric circles Cj (i=12,..,N) were

generated with equal radial increments, where the radius of each C; is
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TABLE 3 Global implementation parameters used for all images.

Parameter Symbol description Fixed value
Hue range (HSV) H,pin — Hpax 35°-85°
Opening/closing kernel B (square) 5x5
Erosion iterations — 1
Contour area cut-off Anin 500 px
Aspect-ratio filter ARin >2
Sampling grid size patches per side 40x40
Initial search radius 1o 5 px
Angle-difference threshold 6,10x 20°
Convexity constraint three-point test enforced

denoted as R¢. The boundaries of each concentric circle may
intersect the skeleton of the leaves at different points. Each
intersection divides C; into several arcs, with lf representing the arc
length of the i-th segment of the j-th concentric circle, corresponding
to the distance between adjacent leaves under the condition of R, .
Thus, Var(l;) represents the leaf distribution consistency at Re,.
However, in vertical view, the leaves radiate outward from
the center, causing the distance between adjacent leaves to vary
under different R¢, conditions. Generally, lf is positively correlated
with R¢, and leaf distribution consistency at an intermediate R¢,
better reflects the overall leaf uniformity of the orchid. Therefore,
leaf distribution consistency for the orchid (the weighted average of

(B) @ Root Point @ Leaf highest point
@ Angle Point @ Tip Point

[@-©-©-0]orchid leaf

FIGURE 4

10.3389/fpls.2025.1641255

Var(l;)) quantified how uniformly leaves occupy space around the
pot by partitioning the annulus between the pot circle and the
crown circle into concentric rings. Leaf distribution consistency is
defined as

N
Leaf Distribution Consistency = > A; Var (1)
j=1

where /'L is a Gaussian function satisfying EJIX A =1 and arg

max{/l}

o expressed as
)
exp (— T )
(k-%)?
Ek 1 €Xp ( 20_2

For front view, the top edge of the flowerpot’s rectangular

l_

j

. N2
= Softmax (— 0—2)
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boundary serves as the bottom reference line of leaves (I,). The
distance from the i-th key point of leaf j to [/, is denoted as h’ and
the average distance of all keypomts in leaf j to I, is represented by
hv pr Ek / hy. The variance of h across all leaves reflects the
variation in the average height of each leaf within the orchid, which
is defined as leaf height consistency (Figure 5C), indicating whether
the architecture is harmonized rather than a mix of very long and
very short leaves. Leaf height consistency is formulated as

Leaf Height Consistency = Var Eh

Jkl

where M; represents the number of keypoints on leaf j in

front view.

(E)

Predicted leaf skeleton polyline

Predefined keypoints for YOLOvV7-SlimPose in (A) vertical view and (B) front view. Identified keypoints and skeletons in (C) front view and (D) vertical
view. (E) Curvature of real leaf skeleton curve and predicted leaf skeleton polyline at point x;.
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(A) The initial point P; located at the leave tip, and the crown width obtained from the two farthest initial points. (B) Arcs obtained by intersecting
concentric circles with leaf skeleton. (C) The height of each keypoints relative to the bottom reference line in front view.

3 Results and discussion

3.1 Keypoints connection results and
phenotypic extraction

The keypoints connection method was applied to both front
view and vertical view images of the orchid. The keypoints
connection result was shown in Figures 6A, B, respectively It can
be seen that the leaves were accurately extracted without any
background noise. Due to the application of morphological
erosion to reduce the leaf boundary regions, random points were
uniformly generated in areas close to the central skeleton. Since the
leaf tip width is narrow, the diameter of the random points exceeded
the eroded width of leaf tip, resulting in incomplete point
generation at the outermost tip. After executing the keypoints
algorithm, nearly all leaf skeletons were accurately extracted
under complex conditions involving dense leaves, leaf intersection
and leaf occlusion. Motivated by this observation, a quantitative
analysis was conducted to explicitly characterize when tip detection
fails and how this affects downstream phenotypes.

To make failure modes explicit, a leaf-level criterion was
adopted whereby a tip is counted as missed if the outermost 20%
sector of that leaf contains no sampled points. Using this definition

Frontiers in Plant Science

and expressing the random-point marker diameter as a percentage
of the shortest contour length in S,,,;, the tip-miss frequency over
the entire orchid dataset (front and top views combined) was
19.24% at the default setting of 1.5%. An ablation varying the
marker diameter showed a monotonic decrease in misses—from
32.34% (6%) to 0% (0.1%)—indicating that erosion-induced
narrowing at very thin tips is the primary cause and can be
mitigated by smaller markers. Phenotype level effects were limited
at the default: leaf count was essentially unchanged. Relative crown
width exhibited a mild negative bias (-2.4%). Leaf-length
consistency showed a small positive bias (+2.6%). Leaf
distribution consistency changed negligibly due to Gaussian mid-
radius weighting. And in front views, leaf-height consistency
showed a minor negative bias (—1.1%). These results indicate that,
under default settings, tip misses occur in a fraction of leaves but
have minor impact on the five target phenotypes. If complete tip
recovery is required, reducing the marker diameter (<0.3%)
eliminates the effect without altering the rest of the pipeline.
YOLOv7-SlimPose (Gao et al., 2024) was utilized based on the
same dataset. For each leaf, four keypoints were predefined and
annotated (Figures 4A, B): (1) Root point, which is the point where
the base of the plant connects to the pot; (2) Angle point, located at
the midpoint between the Root point and the Tip point; (3) Angle
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Vertical view

Font view

Binary Image with random points _»

FIGURE 6

Original image, binary image with random points and binary image with connected keypoints in (A) vertical view and (B) front view

point 2, positioned at three-quarters of the distance from the Root
point to the Tip point; and (4) Tip point, representing the apex of
the leaf. Keypoints point (1) through (4) were sequentially
connected to form the leaf skeleton. 10 leaves and 8 leaves were
annotated in vertical view images and font view images respectively.
The annotated leaf skeletons in each image were evenly distributed.
A total of 561 images were selected for the training set, 126 images
for the validation set, and the remaining 15 images were used as the
test set. The ratio of vertical view to front view images was
maintained at 1:1 across the training, validation, and test sets.
Due to the distinct distribution of leaves in the vertical and front
view, the images from these two perspectives were separated and
used to train two models: one for vertical view and another for front
view (Total training time is 7.3 hours). After training, the test set
images were input into YOLOv7-SlimPose, which output the leaf
keypoints and skeletons for front view (blue output in Figure 4C)
and vertical view (blue output in Figure 4D).

The test set images (Figure 7A) were processed by both
algorithms. Based on the identified keypoints and the leaf
skeleton, 5 key features were further extracted, and the curvature
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error and leaf recall rate were calculated for each, as shown
in (Figure 7B).

YOLOV7-SlimPose has a fixed output layer structure and relies
on an anchor-based object detection mechanism, which restricts the
size and position of the output targets within a predefined range
(Liu et al., 2022). The model generates a fixed number of keypoints
for each anchor position during forward propagation. This design
limits the model to outputting only a predetermined number of
keypoints and predefined skeleton connections (He et al., 2022; Tan
et al, 2024). Consequently, skeletons’ number and keypoints
detected by YOLOv7-SlimPose model are entirely dependent on
the annotations in the training data, which often require expert
knowledge in botany, especially when dealing with complex
plant structures.

For front view, orchid leaf root points were distributed across
various positions within the pot. However, due to annotation
constraints, YOLOv7-SlimPose identifies all root points as being
concentrated in a single location, failing to represent the true
morphology of leaves. Orchids exhibit varying numbers of leaves,
leaf lengths, and leaf distributions, but YOLOv7-SlimPose lacks the
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(A) Vertical view and front view in test set (5 samples as example). (B) 5 phenotypes, curvature error and leaf recall rate obtained by YOLOv7-

SlimPose and this work.

flexibility to dynamically adjust the output structure based on the
input, making it inadequate for handling uncertain keypoints
numbers and connection patterns. Therefore, deep learning
models like YOLOv7-SlimPose are more suitable for applications
involving fixed keypoints numbers and skeleton structures, such as
human or animal pose estimation, rather than for complex plants
like orchids, which have dense and variable leaf pattern.

Based on the skeletons generated by YOLOv7-SlimPose, five
orchid phenotypes were extracted from the test set, with the results
shown in Figure 7. For the vertical view, as the annotated number of
leaves was fixed at 12, the model consistently detected 12 leaf
skeletons (with the leaf count remaining constant at 12) and 37
keypoints across all images. In contrast, the method proposed in this
work accurately detected varying numbers of leaves, achieving a leaf
recall rate of 1 in three out of five samples. In the first two samples,
where the leaves were relatively sparse, YOLOv7-SlimPose was able to
detect most of the leaf tips, resulting in a relative crown width close to
the ground truth. However, as the number of leaves increased in the
remaining samples, the accuracy of the crown width predictions by
YOLOv7-SlimPose dropped significantly compared to this work. The
fixed number of keypoints output by YOLOv7-SlimPose resulted in
poor fitting of the true leaf skeleton curve, limiting the model’s ability
to accurately reflect leaf consistency. The average curvature error and
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leaf recall on test set were only 59% and 63%, respectively. In contrast,
this work successfully detected enough leaves and keypoints, and
accurately fitted the real leaf skeleton, resulting in more precise
extraction of leaf length consistency, distribution consistency, and
height consistency. Without manual labeling and long-term training,
the average curvature error and blade recall of the test set reached
0.12 and 92%, respectively.

To demonstrate how the proposed spontaneous key-points
connection differs from traditional non-learning approaches, the
same binary masks were processed with the medial-axis transform
(MAT) and with Zhang-Suen thinning (Figure 8). Both classical
algorithms inherit every imperfection present in the thresholded
image: darker leaf segments translate into complete breaks, while
small contour irregularities give rise to dense clusters of spurs and
lateral branches. The resulting skeletons are fragmented and highly
branched, preventing the continuous center-line that downstream
phenotype measurements require. By contrast, the proposed
strategy links interior sample points under geometric constraints
that actively suppress burr formation and bridge minor gaps,
yielding a single, smooth curve for each leaf and enabling reliable
extraction of length, curvature and spatial-distribution traits. The
qualitative comparison therefore reinforces the practical advantage
and uniqueness of the present method for complex leafy plants.
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3.2 Computational efficiency or practicality

Experiments were conducted on a CPU-only workstation
equipped with 32 GB DDR4-2666 system memory. For images of
4024 x 3036 and 3072 x 2048 pixels, the algorithm required on
average 3.556 s and 2.247 s per image, respectively, with peak
resident memory of approximately 190.50 MB and 150.37 MB. No
GPU acceleration was used.

Compared with the classical methods that have been publicly
disclosed, iterative refinement in the i5-4670K and 4 GB memory
virtual machine environment, most algorithms are completed
within the range of 0.58-0.96 s for a single image, while Stentiford

(A)

and an improved method take about 1.21-1.43 s (

). The total runtime given in the example script,
represented by the central axis transformation, is about 1.34 s/
image. The total runtime of the activity outline in similar official
examples is about 2.03 seconds per image. The Hessian Frangi ridge
filter shows an average of 1.187 s/graph in the i7 3.0 GHz, 64 GB,
RTX 2060 environment, and hardware configuration is provided to
ensure comparability ( ).

Although the single frame time is slightly higher than several
classic skeleton pipelines, this method does not require labeling and
training, and can adaptively generate a variable number of keypoints
and skeletons after one preprocessing. It directly supports phenotype

Front,view

(B)

FIGURE 9

Original image, binary image with random points and binary image with connected keypoints of a single maize in (A) vertical view and (B) front view
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calculations such as leaf number, crown width, length consistency,
distribution consistency, and height consistency, and has been
validated for stable leaf recall rate and cross species generalization
in orchid and maize morphologies. The practicality of this type of
“training species independent” is supported by the cost of running a
CPU in seconds and a hundred megabits of memory, avoiding the
time and economic expenses of retraining and manual annotation.
Regarding scalability, when the number of pixels increases from 6.29
million to 12.22 million (1.94 x), the average time takes from 2.247 s
to 3.556 s (1.58 x), showing a nearly linear or even better scaling. The
algorithm mainly relies on local search and angle/convexity
constraints on the mask, and the computational complexity mainly
increases linearly with the number of pixels and candidate points, so
it will only be faster at lower resolutions. 4024 x 3036 has significantly
exceeded the imaging requirements of most production processes,
and high-resolution is chosen to cover the most demanding
resolution scenes. In terms of density, the high leaf density,
occlusion, and overlap of orchids have constituted strict stress tests,
while the full growth period samples of corn gradually increase leaf

10.3389/fpls.2025.1641255

density, all of which can maintain stable skeleton extraction and high
leaf recall rate, indicating that the scalability in leaf quantity and
density has practical significance.

3.3 Generalization ability verification

To verify the generalization ability of the proposed algorithm, it
was applied to maize. Similar to orchid leaves, maize leaves are soft,
numerous, densely packed, and exhibit significant overlap. Using
the publicly available single-plant maize dataset (Dataset URL:
https://datasetninja.com/maize-whole-plant-image-dataset), which
captured images of a single maize plant over 113 days—with 1
vertical view and 12 front view images taken each day—the
spontaneous keypoints connection algorithm was applied to both
a front view (Figure 9) and a vertical view image (Figure 9) from 10
different days, spanning pre-, mid-, and post-growth stages
(Figure 10). Due to the relatively wide leaves of maize, random
points could still be generated at the eroded leaf tips, and in some

A
=9
2 g[—® This work 1 1
2 ;[—e®—YOLOv7-SlimPosé I
2 gl —&— Ground Truth |
(] |
o 5 1
g 4f i
¥ | :
[T -
® 1t ! L . , .
1 1
B 20 #1 #2 #3 | #4 #5 #6 |, #7 #8 #9 #10
218} : :
S16f I I
T 1.4} : :
()
e 1.2} 1 1
3 1.0 = L J & L i L L i i
31 1 1
08 . N . —. . ® ® ®
c #1 #2  #3 . #4  #5  #6 _ #7  #8  #9  #10
- 0.6} . .
e
5 I I
204} 1 I
2 | 1
® I I
€02} I I
(&) | 1
0 o 1 L 1 L I L 1
D # #2 #3 | #4 #5 #6 | #T #8 #9  #10
Pre growth stage | Mid growth stage p Post growth stage
Front ! : ~ - oy : a7~ F\\/\
view { ﬂ
ll Jl' oA - | -—4
Vertican r 1 r‘l N I r‘ é - ’LQ
view l x Al Al E {:} ‘} Al u £ u

FIGURE 10

(A) Relative crown width, (B) curvature error and (C) leaf recall rate of a single maize plant throughout entire growth stage obtained by YOLOv7-
SlimPose and this work. (D) Vertical view and front view images of a single maize plant throughout entire growth stage.
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cases, a single maize leaf may be mistakenly identified as two
separate leaves in the vertical view.

It is important to note that the extraction of maize leaf count is
based on the front view images, while the vertical view is primarily
used to extract features such as crown width, leaf distribution
consistency, and overall plant structure. Therefore, any
misidentification of leaf number in the vertical view does not
affect the final feature extraction or the evaluation of the
algorithm’s generalization ability on maize leaves.

Samples #4 and #5 were annotated for YOLOv7-SlimPose
training, with 6 skeletons annotated per front view image and 4
skeletons per vertical view image. The relative crown width was
extracted from 10 samples (Figure 10). During the early growth
stage, when maize leaves are smaller and fewer in number,
YOLOvV7-SlimPose predicted more skeletons than the actual leaf
count, allowing it to accurately estimate the crown width in this
stage. However, as the plant continued to grow, both the size and
number of leaves increased. The number of leaves exceeded the
prediction range of YOLOv7-SlimPose in mid-to-late growth stages,
resulting in greater prediction error for the relative crown width.

In contrast, the proposed method accurately predicted the relative
crown width across all growth stages (Figure 10) and consistently
detected all leaves from the front view, maintaining a leaf recall rate of
100% throughout (Figure 10). Additionally, compared to YOLOv7-
SlimPose, the proposed method maintained a lower curvature error
(Figure 10) for front view images across all growth stages. These results
confirm that the proposed method accurately extracts all keypoints and
skeletons of maize leaves, demonstrating its effectiveness in keypoint
detection, skeleton recognition, and feature extraction in crops with
complex morphologies.

In summary, this work identifies keypoints and skeletons based
solely on the connection of randomly generated points in the leaf
region. This approach eliminates the need for predefined keypoints
and training based on plant structure, making it adaptable for a
broader range of plant phenotypic extraction tasks.

4 Conclusion

A spontaneous keypoints connection skeletonization algorithm
based on random points was firstly developed for leafy plants
phenotypic extraction. HSV color thresholding separated orchid
leaves into binarized images. Morphological opening and closing
operations, along with area and leaf shape filters, effectively
removed noise. After leaf boundary erosion, random points were
sampled near the central skeleton within each generated patch. The
skeletonization approach was applied to plants with random leaf
morphology and regular leaf morphology. For random leaf
morphology, the point furthest from the center was identified as
the first keypoint. A circular search was then iteratively expanded
from this keypoint to find the next point. The subsequent keypoints
search direction was determined based on the relative position of
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these two keypoints, thereby reducing the spatial complexity by
half. Remaining keypoints were identified using angle difference
thresholds. For regular leaf morphology, the algorithm ensured the
accuracy of leaf skeleton fitting by enforcing that any three
consecutive points formed a convex polyline while minimizing
curvature. By iteratively applying this approach, nearly all leaves’
skeletons were detected, achieving an average curvature error of
0.12 and a leaf recall rate of 92%. In addition, a qualitative
comparison with classical non-learning baselines showed that
both inherit binarization discontinuities and produce fragmented,
highly branched center-lines, whereas the proposed strategy yields
smooth and continuous skeletons that enable downstream
phenotypic measurements. Finally, five phenotypes of orchids
were accurately extracted based on the identified skeletons.
Moreover, this algorithm effectively predicted maize’s relative
crown width throughout all growth stages and consistently
detected 100% of the leaves, highlighting its generalization
capability on wide leaf plants. Compared to existing literature
reports, this approach accurately skeletonized leafy plants with
random and regular morphological leaves, eliminating manual
keypoints design and training based on plants’ structure. It can
spontaneously detect keypoints and extract skeletons according to
plant morphology, offering an effective solution for accurate
phenotypic extraction of more plants with complex morphologies.
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