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Introduction: Arbuscular mycorrhizal fungi (AMF) are key regulators of
phosphorus (P) cycling in agricultural systems. However, under intercropping
conditions, the mechanisms through which AMF hyphae and spores recruit
specific bacterial taxa and synergistically solubilize insoluble P in red soils
remain poorly understood.

Methods: Through a greenhouse pot experiment, we investigated how the
symbiotic relationship between AMF and crops varies across a gradient of P
fertilizer levels (PO to P250). We aimed to identify the P level that optimizes this
symbiosis and to elucidate, via high-throughput sequencing and network
analysis, the regulatory mechanism by which interactions between AMF and
phosphate-solubilizing bacteria (PSB) drive P solubilization.

Results: Mycorrhizal colonization rate, hyphal length density (HLD), and spore
density (SD) exhibited a hump-shaped response to increasing P fertilizer inputs,
peaking at P150. IMS enhanced these parameters and also enriched the AMF
taxon Glomus_f_Glomeraceae and eight key bacterial genera (e.g.,
Sphingomonas, Unclassified_f_Micrococcaceae, and Streptomyces). The
relative abundance of Glomus_f_Glomeraceae was highest at P150,
corresponding to the strongest AMF-crop symbiosis. Network analysis revealed
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a higher proportion of positive associations between AMF and bacteria in IMS
than in monoculture.

Discussion: Our findings demonstrate that IMS facilitates P solubilization in red
soil by shifting the AMF and bacterial communities toward a more synergistic
state. Furthermore, our results provide a mechanistic understanding of how
optimized P management in IMS can enhance AMF and bacterial cooperation to
improve P use efficiency. These insights offer novel strategies for mycorrhizal

function conservation and sustainable agroecosystem management.

KEYWORDS

maize/soybean intercropping, arbuscular mycorrhizal fungi, red soil, phosphorus

solubilization, PSB

1 Introduction

Phosphorus (P) is one of the most essential mineral nutrients
after nitrogen, and its availability limits crop productivity in
numerous agricultural systems (Raymond et al, 2021). The
concentration of plant-available P in soil is typically low due to its
adsorption and precipitation into insoluble compounds. This
problem is particularly acute in the acidic red soils of southern
China, where low pH increases the solubility of Fe and Al oxides,
which facilitates phosphate precipitation and the formation of
insoluble P-containing minerals (Hinsinger, 2001). Consequently,
the seasonal utilization rate of P fertilizer in these soils is often less
than 10% (Lu et al,, 1995). To maintain or increase crop productivity,
P fertilizers with varying levels of available P are routinely applied.
However, these fertilizers are derived from phosphate rock, a
nonrenewable resource, with approximately 80% of the global
supply used for fertilizer production (Chowdhury et al, 2014;
Fischer et al., 2017). At current consumption rates, these reserves
are projected to face severe depletion within decades (Cordell et al.,
2009; Penuelas et al., 2013). Given this situation, there is an urgent
need to develop sustainable agricultural systems that enhance P-use
efficiency and reduce dependence on phosphate fertilizers. Diversified
intercropping represents one such system, harnessing the biological
potential of crops. This strategy has emerged as a promising solution
to the dual challenge of low P-use efficiency and global P scarcity, and
is consequently attracting growing research and practical attention.

Intercropping, an ancient cropping system practiced worldwide,
involves simultaneously cultivating two or more crop species on the
same land. Evidence shows that this system can reduce fertilizer
application per unit yield by 19%-36% compared to monoculture
under equivalent management (Li et al., 2020). Specifically, studies
on legume/cereal intercropping have demonstrated its ability to
regulate the soil P pool, enhance P availability, and promote plant P
uptake (Li et al., 2007; Wang et al., 2017; An et al., 2024). Regarding
the mechanisms by which intercropping enhances P use efficiency,
previous studies have primarily focused on: (1) modifications in
root system architecture (Zhang et al,, 2016b; An et al, 2023);
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(2) the secretion of protons, organic acids, and phosphatases (Li
et al,, 2007; Latati et al., 2014; Qu et al., 2024); and (3) the
enrichment of specific microbial groups in the rhizosphere (Tang
etal., 2016; Chen et al., 2020). However, while previous studies have
primarily focused on the plant itself and broad microbial groups,
the key mechanism—how AMF in intercropping systems recruit
PSB via their hyphae and spores, thereby synergizing with them to
enhance the solubilization of sparingly soluble P in red soils—
remains poorly understood.

Elucidating this mechanism requires a focused examination of
the rhizosphere—a pivotal zone for plant-soil interactions that plays
a crucial role in nutrient cycling and sustains microbial community
diversity (Kuzyakov and Blagodatskaya, 2015). Within this zone,
AMF are among the most critical microorganisms governing P
supply dynamics (Adomako et al., 2022). Under low-P conditions,
the arbuscular mycorrhizae symbiosis can contribute up to 78% of
total plant P uptake (Nagy et al., 2009). Evidence from a field study
indicates that not only can the establishment of fungal hyphal
networks expand the host plant's range for P acquisition by 15-fold
(Mai et al, 2019), but the contribution of indigenous AMF
communities to crop P nutrition can also be equivalent to the
application of 30 kg P ha™' of chemical P fertilizer (Wang et al,
2020). However, during their long-term co-evolution with plants,
AMEF have lost saprotrophic functional genes responsible for
mineralizing organic P (Tisserant et al., 2013; Morin et al., 2019).
To compensate for this functional deficiency and maintain
symbiotic stability, AMF recruit phosphate-solubilizing bacteria
(PSB) to the hyphosphere through hyphal exudates—primarily
glucose, fructose, and trehalose (Bharadwaj et al., 2012; Zhang
et al, 2022a; Zhang et al., 2018a). This exudation strategy exhibits
striking parallels with the plant root strategy of recruiting
specialized microbial communities through root metabolites (e.g.,
organic acids and sugars) (Zhalnina et al., 2018), as both systems
enhance insoluble phosphate mobilization by regulating microbial
activities. Nevertheless, under low P conditions, both AMF and root
hairs shape rhizosphere microbial composition, with AMF
exhibiting superior regulatory capacity; however, these regulatory
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effects are substantially diminished under high P conditions (Zhou
et al, 2022). Critically, the root and mycorrhizal pathways are
tightly interconnected, achieving functional integration through
dynamic coordination (Genre et al., 2020; Chu et al., 2020; Zhou
et al., 2022).

AMF serve as critical mediators of interspecific interactions
(Duchene et al,, 2017; Liu et al., 2021). A single AMF strain can
colonize multiple host plants, while multiple strains may coexist
within a single host, collectively forming an underground “common
mycorrhizal network (CMN)” that interconnects diverse plant
species (Babikova et al., 2013; Genre et al,, 2020). Legume/cereal
intercropping enhances the symbiotic relationship between crops
and AMF, increasing mycorrhizal colonization rates (Zhao et al.,
20205 Song et al., 2021; Zhang et al., 2024), as well as hyphal length
density (HLD)and spore density (SD) in rhizosphere soil (Zhao
et al., 20205 Li et al.,, 2023). Notably, AMF inoculation in maize/
soybean intercropping (IMS) enhances the mobilization of
insoluble P in red soil compared to monoculture maize (MM),
thereby improving P uptake efficiency in intercropped plants
(Zhong et al., 2018). This phenomenon may be associated with
AMF-mediated microbial recruitment mechanisms. Beyond the
recruitment of PSB through hyphal exudates, specific bacterial
taxa such as Arthrobacter and Streptomyces have been found to be
enriched on the surface of AMF spores (Agnolucci et al,, 2015). It
remains unclear whether the enhanced symbiotic relationship
between crops and AMF in intercropping systems synergistically
improves P activation efficiency in red soil by expanding the PSB
community through dual recruitment mechanisms (hyphal
exudates and spore adhesion). However, current research
predominantly focuses on AMF-PSB interactions in monoculture
systems, whereas the mechanisms by which the plant-AMF-
bacteria continuum enhances P utilization and interacts with P
fertilizer levels in intercropping systems remain elusive. Addressing
this knowledge gap is critical for advancing sustainable agriculture
in red soil regions. The key challenge lies in optimizing P fertilizer
inputs to harness the biological potential of crops, thereby
enhancing agricultural benefits, while minimizing adverse impacts
on mycorrhizal functions.

We hypothesize that maize/soybean intercropping enhances the
crop-AMF symbiosis, thereby increasing HLD and SD, and
restructuring the AMF-bacterial interaction network in the
rhizosphere microdomain. This functional integration ultimately
leads to a synergistic improvement in the activation efficiency of
sparingly soluble P in red soil. To test this hypothesis, we employed
a combination of a pot experiment and high-throughput
sequencing to systematically investigate how AMF and bacterial
communities respond to and interact under varying P fertilizer
levels and cropping systems. The primary objectives were to: (1)
quantify the regulatory effects of P fertilizer levels and cropping
systems on mycorrhizal colonization rates, HLD, and SD; (2)
decipher the AMF-bacterial interaction network to elucidate the
key microbial mechanisms that synergistically drive soil P
activation; and (3) identify the optimal P fertilizer level threshold
to optimize this process, ultimately creating optimal soil conditions
for crop P utilization efficiency.
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2 Materials and methods
2.1 Experiment site and materials

The study was conducted from July to September 2023 in a
greenhouse under natural daylight conditions at the experimental
field of Yunnan Agricultural University, Kunming, China (102°45’
4" E, 25°8’1” N). The pot experiment utilized red soil collected from
Xiaoshao Village in the Guandu District of Kunming. This soil,
classified as an Ultisol according to USDA soil taxonomy, is
representative of the typical red soils of southern and
southwestern China. The initial characteristics of this soil were as
follows: pH 5.56, organic matter 10.15 g-kg™', available nitrogen
56.15 mgkg ', available P 5.50 mgkg ™', and available potassium
79.02 mgkg ™" (detailed physicochemical properties are provided in
Supplementary Table S1). During the experimental period, the
ambient temperature ranged from 22 to 35°C, with a photoperiod
of 10 to 12 h/day. The test plants, maize (Zea mays L.) cultivar
"Yunrui 88" and soybean (Glycine max (L.) Merr.) cultivar
'Yunhuang 13', were obtained from the Yunnan Academy of
Agricultural Sciences.

2.2 Experimental design

A two-factor experiment was employed, involving P fertilizer
levels and cropping systems. The P levels were determined based on
the results of a preliminary experiment, in which the P150
treatment exhibited the highest mycorrhizal colonization rates,
HLD, and SD in rhizosphere soil (data not shown). The tested P
fertilizer levels included a no-P control (P0) and five application
rates: 50, 100, 150, 200, and 250 mg P,Os kgf1 dry soil (denoted by
P50, P100, P150, P200, and P250, respectively). The cropping
systems included MM, monoculture soybean (MS), and IMS.
With all six P levels applied to each of the three cropping
systems, the experiment consisted of a total of 18 treatments
(Supplementary Table S2), each replicated four times.

Urea (CO(NH,),, 46% N), single superphosphate (16% P,Os),
and potassium sulfate (50% K,O) were applied as base fertilizers for
N, P, and K, respectively, before sowing. The application rates were
200 mg kg™ dry soil for both N and K,O. Prior to planting, the soil
was homogenized, and stones and plant residues were removed.
Maize and soybean seeds of uniform size and plumpness were
selected, surface-sterilized with 1% hydrogen peroxide for 3 min,
and thoroughly rinsed with sterile water. The seeds were sown in a
plastic pot (height: 230mm x diameter: 250mm), each containing
10kg of soil, on 20 July 2022. After emergence, the seedlings were
thinned to retain two maize seedlings per pot for MM, two soybean
seedlings for MS, or one maize and one soybean seedling for IMS.
To minimize experimental error, all pots were managed uniformly
under consistent conditions and randomly repositioned at regular
intervals during the growth period. Irrigation and weed
management were adjusted based on plant growth observations.
Pesticides were not applied throughout the experiment to avoid
disturbing soil microbial activity.
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2.3 Sampling and sample processing

Rhizosphere soil and plant samples were collected on 7
September 2023, which was 48 days after sowing and
corresponded to the maize V12 stage. Simultaneously, the roots
were shaken slightly to remove the bulk soil, and then the
rhizosphere soil adhering to the whole roots was brushed off and
homogenized. The collected soil was sieved (2mm) and divided into
two subsamples. One subsample of soil was stored at — 80°C for
subsequent microbial DNA extraction, while the other was air-dried
for the determination of HLD and soil physicochemical properties.
The roots were then carefully rinsed with water to remove residual
soil and stored at 4°C for the assessment of AMF colonization in the
roots. Soil available P (AP, measured as Olsen-P), total P (TP), and
available nitrogen (AN) were determined as follows: AP by the
Olsen method, TP by the sodium hydroxide (NaOH) fusion
method, and AN by the diffusion adsorption method (Bao, 2000).
AMEF colonization in the roots was quantified using the trypan blue
staining method (Giovannetti and Mosse, 1980). The HLD was
measured in the soil using the membrane filter technique (Jakobsen
etal., 1992). AMF spores were extracted from 10.0g of air-dried soil
using the wet sieving and decanting method (Ianson and Allen,
1986) and counted under a stereomicroscope. SD was expressed as
the number of spores per gram of air-dried soil.

2.4 Soil DNA extraction and sequencing

Following the manufacturer’s instructions, soil microbial DNA
was extracted from 0.5g of frozen rhizosphere soil using the FastDNA
Spin Kit for Soil (MP Biomedicals, Santa Ana, California, United
States of America). The quality and concentration of the DNA were
assessed by 1.0% agarose gel electrophoresis and a NanoDrop 2000
spectrophotometer (Thermo Scientific, Waltham, Massachusetts,
United States of America), respectively. The purified DNA was
stored at — 80°C for subsequent analysis.

The V4-V5 hypervariable region of the 185 rRNA gene and the
V3-V4 hypervariable region of the 16S rRNA gene were used to
amplify the sequences of AMF and bacteria in the sample DNA,
respectively. A nested PCR approach was employed for the AMF 18S
rRNA gene region. The first round of amplification used the universal
primers AMLIF (5-ATCAACTTTCGATGGTAGGATAGA-3") and
AML2R (5'-GAACCCAAACACTTTGGTTTCC-3’). This was
followed by a second round of amplification using the AME-specific
primers AMV4-5NF (5'-AAGCTCGTAGTTGAATTTCG-3’) and
AMDGR (5'-CCCAACTATCCCTATT AATCAT-3’). Amplicon
sequencing was performed on the Illumina MiSeq PE300 platform
by Majorbio Bioinformatics Technology Co. Ltd. (Shanghai, China).

2.5 Processing of sequencing data
The raw sequencing data were quality-filtered using FASTP

(v0.19.6) (Chen et al, 2018), and the paired-end clean reads were
merged using FLASH (v1.2.11) (Magoc¢ and Salzberg, 2011).
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The resulting optimized sequences were clustered into operational
taxonomic units (OTUs) at a 97% sequence similarity threshold using
UPARSE (v11.0) (Stackebrandt and Goebel, 1994; Edgar, 2013).
Taxonomic annotation was assigned to each OTU representative
sequence with a confidence threshold of 0.7, based on the MaarjAM
database (v.81) for AMF (Opik et al, 2010) and the Silva (v.138)
database for bacteria (Wang et al., 2007), respectively.

2.6 Data analysis

The P activation coefficient (PAC), which reflects the
transformation between soil total P and available P (Yang et al,
2019), was calculated as follows:

PAC(%) =[AP /(TP x1000)] x 100

Where AP represents the soil available P content (mg kg ') and
TP denotes total P content (mg kg™).

The statistical analyses were conducted by IBM SPSS Statistics 24.0.
Prior to analysis of variance (ANOVA), the assumptions of normality
and homogeneity of variances were assessed using the Shapiro-Wilk
test and Levene’s test, respectively. For data satisfying both assumptions,
A two-way ANOVA followed by Duncan’s multiple comparison test
was performed to evaluate the effects of P fertilizer level and cropping
system, as well as their interaction (p <0.05), on mycorrhizal
colonization parameters, soil properties, and the diversity of both
AMF and bacterial communities. Additionally, one-way ANOVA
coupled with Duncan’s test was conducted to compare treatment
means at a significance level of p <0.05. The sequencing data analysis
was conducted using the Majorbio Cloud Platform. Alpha diversity
indices (including the Shannon and ACE indices) were calculated based
on an OTU table using the Mothur software (v.1.30.2). Nonmetric
multidimensional scaling (NMDS) was performed based on the Bray-
Curtis distance matrix using the vegan package (version 2.4.3) in R
software. All bar graphs were plotted, and all regression analyses were
performed using GraphPad Prism software (v.10.0.0).

To elucidate the interactions between AMF and bacterial
communities in rhizosphere soil, an interdomain ecological
network was constructed using Networkx (v1.11). Only OTUs
with a prevalence of > 10 (i.e., present in 10 or more samples)
were retained. Spearman correlation coefficients were calculated for
all OTU pairs and co-occurrence relationships between OTUs were
identified based on a threshold of |r|> 0.60 and p <0.05 (Barberan
etal,, 2012). Key network properties, including the number of edges,
number of nodes, average degree, average path length, network
density, network diameter, and clustering coefficient, were
calculated. The significant co-occurrences network was mapped
and visualized using Gephi (v0.10.1) (Bastian et al., 2009).
Furthermore, Pearson correlation analysis was conducted to
assess the relationships between the relative abundances of the
top 12 bacterial genera and AMF parameters (Shannon index, ACE
index, mycorrhizal colonization rate, HLD, and SD), as well as soil
chemical properties (TP, AP, PAC, and AN/AP). The resulting
correlation heatmap was visualized using the ChiPlot online
platform (https://www.chiplot.online/).

frontiersin.org


https://www.chiplot.online/
https://doi.org/10.3389/fpls.2025.1638043
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Qian et al.

3 Results

3.1 Mycorrhizal colonization rate, HLD, SD,
and P availability of the rhizosphere soil

Mycorrhizal colonization rates in maize and soybean, along
with HLD and SD in the rhizosphere soil, exhibited a hump-shaped
trend with increasing P fertilizer inputs, peaking at the P150 level
(Figure 1). In IMS, mycorrhizal colonization rates for both maize
and soybean were significantly higher than those in their respective
monoculture, except for maize at the P250 level (Figures 1a, b). At
any given P level, HLD and SD in rhizosphere soil consistently
followed the order of IMS > MM > MS among the cropping systems
(Figures 1c, d). Both P fertilizer level and cropping system exerted a
significant impact on mycorrhizal colonization rates in maize and
soybean, along with HLD and SD in the rhizosphere soil. Moreover,
their interaction also significantly affected mycorrhizal colonization
in maize, HLD, and SD.

Based on the response patterns of mycorrhizal colonization
rates in maize and soybean, along with HLD and SD in rhizosphere
soil, three P fertilizer levels (P50, P150, and P250) were selected for
determining soil AP and TP, and for calculating the PAC. The
results showed that AP and PAC were significantly influenced by P
input level, cropping system, and their interaction. At the same P
level, IMS exhibited significantly higher AP and PAC than MM.

10.3389/fpls.2025.1638043

Although IMS also showed higher values than MS, the differences
were not always statistically significant (Figure 2).

3.2 Diversity and composition of AMF and
bacterial communities

P fertilizer levels had a significant effect on the diversity of AMF
in rhizosphere soil (Figures 3a, b). The Shannon indices of AMF in
both MM and IMS treatments showed an increasing trend with
increasing P fertilizer inputs. In contrast, the Shannon index in MS
increased first and then decreased from P50 to P250, peaking at
P150. The Shannon index of AMF in IMS was consistently higher
than in MM at the same P fertilizer level, except at P50, although the
differences were not significant (Figure 3a). Meanwhile, the richness
index of AMF (Ace) exhibited an increasing but non-significant
trend with higher P fertilizer inputs, and it was markedly shaped by
cropping system and its interaction with P fertilizer
level (Figure 3b).

Compared with AMF, the Shannon index of rhizosphere
bacteria responded significantly to P fertilizer level, cropping
system, and their interaction (Figures 3¢, d). The Shannon index
of bacteria in MM decreased significantly with increasing P fertilizer
inputs, while there was no significant change in IMS and MS.
Similarly, at the same P fertilizer level, the Shannon index of
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bacteria in IMS (except at P50) was significantly higher than that in
MM by 5.85% and 5.52%, respectively for P150 and P250
(Figure 3c). The richness index (Ace) of rhizosphere bacteria in
MM and MS showed non-significant declines with increasing P
fertilizer inputs, while IMS exhibited a hump-shaped trend from
P50 to P250, peaking at P150. Across equivalent P fertilizer levels,
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the richness index in IMS was consistently higher than in both MM
and MS (Figure 3d).

The AMF and bacterial community composition were further
analyzed using NMDS based on the Bray-Curtis distance. The results
indicated that the community composition of both AMF (ANOSIM: R =
0.5982, p < 0.001; Figure 4a) and bacteria (ANOSIM: R = 0.5010, p <
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0.001; Figure 4b) was significantly influenced by P fertilizer levels and
cropping systems. When P fertilizer levels were equivalent, the AMF and
bacterial communities in IMS were separated from those in MM and
MS. Similarly, under the same cropping system, communities were
clearly separated across different P fertilizer levels (Figure 4). These
results indicated that both P fertilizer level and cropping system
collectively shaped the composition of AMF and bacterial communities.

3.3 Relationship between AMF community
structure and symbiotic function

In this study, the rhizosphere AMF communities across
all treatments were predominated by Acaulospora and
Glomus_f_Glomeraceae, with their combined relative abundance
exceeding 95% of the total community (Supplementary Figure S1).
Compared to MM, IMS reduced the relative abundance of Acaulospora
(except at P50) and increased that of Glomus_f_Glomeraceae. At the
P150 level, Acaulospora exhibited the lowest relative abundance
(35.73% and 23.63% reduction relative to MM and MS, respectively),
while the relative abundance of Glomus_f Glomeraceae reached its
peak, exhibiting significant increases by 78.17% and 33.90% compared
with MM and MS (p <0.05), respectively (Figures 5a, b).

Linear regression analysis revealed that the relationships
between the abundance in dominant rhizospheric genera and
mycorrhizal colonization rate, HLD, and SD varied with
cropping system and P fertilizer inputs. The relative abundance
of Acaulospora was negatively correlated with mycorrhizal
colonization rates in both maize and soybean (Figures 5¢, d),
while the relative abundance of Glomus_f_Glomeraceae showed a
positive correlation with mycorrhizal colonization rates, though
neither correlation reached statistical significance (Figures 5e, f).
The relative abundance of Acaulospora exhibited a significant
negative correlation with HLD in MM and IMS (p <0.05), while
showing a nonsignificant positive correlation with HLD in
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MS (Figure 5g). In contrast, the relative abundance of
Glomus_f_Glomeraceae was positively correlated with HLD in
MM and IMS, with a significant correlation in IMS (p <0.05). In
MS, however, it showed a non-significant negative correlation with
HLD (Figure 5h). The relative abundance of Acaulospora was
negatively correlated with SD across all treatments, with
significant correlations observed in IMS and MS treatments (p
<0.01), whereas the relative abundance of Glomus_f_Glomeraceae
was significantly and positively correlated with SD in all treatments
(p <0.01) (Figures 5i, j).

3.4 Interactions between AMF and bacteria

We constructed an AMF-bacteria cross-domain ecological
network to analyze the synergistic effects of P fertilizer levels and
cropping systems on microbial interactions (Figure 6;
Supplementary Table S2). Across all treatments, regardless of the
P fertilizer level or cropping system, the co-occurrence networks
between AMF and bacteria were dominated by positive interactions,
indicating close ecological cooperation between these communities
(Supplementary Table S2). Bacterial nodes exhibited dominance
within the microbial interaction networks across all treatment
groups (Figure 6g), and mutually beneficial relationships
prevailed among bacterial-bacterial, AMF-AMF, and bacterial-
AMF associations (Figure 6k). At the P50 fertilizer level, the
proportion of positive bacterial-bacterial associations in IMS
accounted for 33.62%, lower than those in MM (38.70%) and MS
(37.84%). In contrast, the proportion of positive AMF-bacterial
associations (16.93%) was slightly higher than those in MM
(16.75%) and MS (16.07%) (Figures 6a-c), indicating that IMS
enhances cross-domain cooperative partnerships between AMF
and bacteria. Furthermore, this trend persisted at P150 and P250
levels, demonstrating that the regulatory effect of IMS on microbial
cross-domain interactions remains stable across different P fertilizer
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FIGURE 5

Relative abundance of dominant AMF genera and their relationships with mycorrhizal parameters under different P fertilizer levels and cropping systems.

(a, b) Relative abundance of Acaulospora (a) and Glomus_f_Glomeraceae (b). (c—f) Linear regression analysis between mycorrhizal colonization rate and the
relative abundance of Acaulospora in maize (c) and soybean (d), and of Glomus_f_Glomeraceae in maize (e) and soybean (f). (g, h) Regression analysis of
HLD versus the relative abundance of Acaulospora (g) and Glomus_f_Glomeraceae (h). (i, j) Regression analysis of SD versus the relative abundance of
Acaulospora (i) and Glomus_f_Glomeraceae (j). Different lowercase letters indicate significant differences (Duncan’s multiple range test, p < 0.05). The
shaded areas represent the 95% confidence intervals of the fitted lines. The significance of the regression equations is denoted as *p < 0.05 and **p < 0.01.
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levels (Figures 6d-i). As P fertilizer inputs increased, the proportion

of positive AMF-bacterial associations exhibited a consistent
decreasing trend in both IMS and MS networks. In comparison,

this proportion declined initially and then increased in MM.
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Regarding bacterial-bacterial associations, their proportion
displayed a hump-shaped trend in both IMS and MS, reaching a
peak at the P150 level, while in MM, it declined initially and then
increased (Figure 6k).
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Interaction network between AMF and bacterial communities (a—i). Proportions of nodes and edges in the AMF-bacteria network (j, k). AB_N,
AMF—bacteria negative associations; AB_P, AMF—bacteria positive associations; AA_N, AMF-AMF negative associations; AA_P, AMF-AMF positive
associations; BB_N, bacteria—bacteria negative associations; BB_P, bacteria—bacteria positive associations.

3.5 Key taxa of bacterial communities
facilitated P solubilization

To determine which potential bacterial taxa were involved in the
activation of insoluble phosphates in the rhizosphere soil, we first

analyzed the bacterial community composition (Supplementary
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Figure S2). We then performed Pearson correlation analysis
between the relative abundance of the top 12 bacterial genera and
parameters related to AMF and to P activation. The results showed
that, compared to P50 and P150 levels, the correlations between the
relative abundance of bacterial genera and characteristic parameters
(including mycorrhizal colonization rate, HLD, SD, Shannon index,
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Pearson correlation heatmap. Analysis between the relative abundance of the top twelve bacterial genera and AMF parameters (diversity indices,
colonization rate, HLD, SD) as well as soil chemistry (TP, AP, PAC, AN/AP) in the rhizosphere soil of maize (a) and soybean (b) under P50 conditions.
The color and size of the circles represent the value of the correlation coefficient (R). *p < 0.05; **p < 0.01; ***p < 0.001.

and Ace index) were weakened at the P250 level (Figure 7,
Supplementary Figures 53, 54). At the P50 level, six bacterial taxa—
Unclassified_f__Micrococcaceae, Streptomyces, Bradyrhizobium,
Knoellia, Lysobacter, and Gemmatimonas—among the top 12 genera
in maize systems (monoculture and intercropping) showed positive
correlations with available P content and the P activation coefficient.
Furthermore, their abundance changes were regulated by mycorrhizal
colonization rate, HLD, and SD (Figure 7a). Similarly, four bacterial
taxa—Sphingomonas, Lysobacter, Massilia, and Gemmatimonas—
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among the top 12 genera in soybean systems (monoculture and
intercropping) were also positively correlated with available P and P
activation coefficient (Figure 7b). Collectively, these results indicate
that the above-mentioned taxa may be key players in the activation of
insoluble phosphates in the rhizosphere. They further reveal that
enhanced synergy between AMF and bacteria under low-P stress (at
the P50 level) promotes P activation, whereas high P fertilizer
conditions, as exemplified by the P250 level, inhibit this function by
weakening these interkingdom interactions.
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We then compared the relative abundances of the aforementioned
eight bacterial genera across different treatments (Figure 8). At the P50
level, IMS increased the relative abundances of seven genera—
Sphingomonas, Unclassified_f__Micrococcaceae, Streptomyces,
Bradyrhizobium, Knoellia, Lysobacter, and Gemmatimonas—
compared to MM, with increases ranging from 3.97% to 61.48%. At
the P150 and P250 levels, five genera—Unclassified_f_Micrococcaceae,
Knoellia, Lysobacter, Massilia, and Gemmatimonas—still maintained
stable enrichment in IMS. Notably, Massilia in IMS consistently
showed higher abundance than in both MM and MS at all P levels
other than P50 (Figure 8g). Furthermore, in IMS, the abundances of
these key taxa responded differently to increasing P fertilizer inputs:
Sphingomonas, Bradyrhizobium, and Gemmatimonas decreased;
Unclassified_f__Micrococcaceae and Massilia displayed a hump-
shaped trend, peaking at the P150 level; while Streptomyces, Knoellia
and Lysobacter increased continuously. In summary, our analysis of
these key taxa revealed their consistent enrichment in IMS and their
diverse responses to P fertilizer inputs. Their abundance dynamics were

Frontiers in Plant Science

11

closely associated with both AMF dynamics and soil P availability,
indicating that these taxa may collectively facilitate P activation in IMS.

4 Discussion

4.1 Effects of intercropping and P fertilizer
level on mycorrhizal colonization, HLD,
and SD

The symbiotic interaction between plants and AMF plays a vital
role in sustaining soil ecosystem functioning and plant productivity
(Van Geel et al,, 2017). In this process, soil P availability represents
one of the most critical environmental factors regulating mycorrhizal
symbiosis (Smith and Read, 2008). Generally, extremely low soil P
levels inhibit mycorrhizal colonization (Douds et al, 1998; Bolan
et al, 1984). Conversely, excessive P supply suppresses symbiont
formation (Liu et al, 2022; Ma et al, 2023), extraradical hyphal
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growth (Abbott et al,, 1984), and spore development (Urcoviche et al.,
2015). Consistent with these foundational principles, our results
demonstrated that in a P-deficient red soil, the mycorrhizal
colonization rates of maize and soybean, along with HLD and SD
in the rhizosphere, exhibited a unimodal response to increasing P
fertilizer inputs, peaking at the P150 level (Figures 1, 2). This indicates
that AMF activity is regulated by a threshold of soil P availability: low
P levels restrict both plant and fungal growth, whereas high P levels
(P200-P250) reduce plant dependence on AMF and its carbon
allocation to the fungi (Johnson, 2010; Konvalinkova et al., 2017).
The optimal symbiotic relationship observed under the P150
treatment confirms that precision management of P fertilization
can maximize the P acquisition function mediated by AMF (Zhang
et al,, 2021; Wang et al., 2020).

When compared at the same P fertilizer level, IMS significantly
increased the mycorrhizal colonization rates in both crops (except for
maize under P200 and P250 treatments; Figures la, b). This finding is
consistent with previous studies (Zhao et al., 2020; Zhang et al., 2024). This
facilitative effect may be attributed to crop diversity expanding the range of
AMEF host selection (Torrecillas et al., 2012; Hiiesalu et al,, 2014), while
alterations in root exudates provide AMF with abundant carbon sources
(e.g., soluble sugars and organic acids), thereby promoting AMF
colonization in both maize and soybean roots (Zhang et al, 2024).
Furthermore, symbiotic signaling compounds secreted by neighboring
soybean—such as flavonoids and strigolactones—stimulate AMF spore
germination, hyphal growth, and branching (Sugiyama, 2019),
consequently enhancing the symbiotic response of host plants (Waters
et al, 2017; Campos-Lopez et al,, 2022). Notably, the competitive advantage
of maize in soil nutrient acquisition reduces available P in the soybean
rhizosphere. The resulting P stress enhances soybean dependence on AMF,
thereby further promoting AMF colonization. The results of this study also
revealed that both HLD and SD in the rhizosphere soil followed the order:
IMS > MM > MS (Figures 2a, b). This pattern may be attributed to the
heterogeneous rhizosphere environment created by crop diversity, which
provides AMF with more diverse ecological niches and thereby promotes
the development of their network diversity (Ahammed and Hajiboland,
2024). Additionally, as the root biomass of host plants directly influences
AMF spore formation (Li et al,, 2013), the significant advantages in above-
and belowground biomass exhibited by intercropped maize (data not
shown) likely supplied ample photosynthetic carbon and expanded the root
network space, ultimately fostering the growth and reproduction of AMF.
Although maize exhibits a lower mycorrhizal colonization rate than
soybean, its extensive root system sustains higher HLD and SD.
Therefore, designing efficient intercropping systems should combine
highly mycorrhizal-responsive crops (e.g, soybean) with those possessing
well-developed root systems (e.g, maize) to fully harness the ecological
functions of AMF.

4.2 Effects of intercropping and P fertilizer
level on the diversity and composition of
AMF and bacterial communities

Soil environment and plant diversity are critical predictors of
fungal diversity and abundance (Ma et al, 2023). Our results
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demonstrate that P application significantly enhanced AMF
diversity (Shannon index) in both MM and IMS, while that of MS
displayed a unimodal trend (Figure 4a). For richness index (Ace),
IMS showed a continuous increase with higher P fertilizer inputs;
whereas unimodal trends were observed in both monocropping
systems (Figure 4b). This interpretation is supported by the
existing literature. This discrepancy in responses is likely
attributable to the synergistic effects of crop-specific P demand and
mycorrhizal dependence. Previous studies have reported positive
effects of P application on AMF, with higher soil P availability
correlating with increased AMF diversity and richness (Da Silva
et al, 2021). In this study, the same results were observed in IMS.
Furthermore, the enhancement of mycorrhizal colonization rates and
extraradical hyphal density under P supplementation, as documented
by Shrestha Vaidya et al. (2008) and Gryndler et al. (2009), further
supports this finding. Conversely, other studies have shown that
AMF diversity and richness decrease with increasing soil P
availability (De Beenhouwer et al, 2015; Ceulemans et al., 2019; Ma
et al, 2021), which is consistent with the P suppression effect
observed in MS in this study. Overall, these contrasting results
demonstrate that the response of the AMF community to P
fertilizer inputs is collectively determined by the interplay of soil P
availability, host plant species, and cropping pattern.

At the same P fertilizer level, IMS exhibited higher AMF diversity
and richness than MM (except for diversity at P50), but these values
were lower than those in MS (except at P250) (Figures 4a, b). This
observation is consistent with the reported consensus that legume/
cereal intercropping enhances AMF diversity and richness compared to
cereal monocultures (Lu et al,, 2023; Zhang et al., 2024). This is likely
because the higher plant diversity in the intercropping system can drive
changes in AMF diversity by altering soil properties (Gottshall et al.,
2017). Our results further confirm this, as the available P content in
IMS was higher than that in MM (Figures 3a, b). Furthermore, the
plant diversity hypothesis posits that increased plant diversity provides
more ecological niches for microorganisms (Waldrop et al, 2006;
Hooper et al, 2000), increasing the chances of microbes finding
suitable hosts and creating a heterogeneous mycorrhizal environment
that supports greater AMF diversity and richness. Notably, at the P50
level, the AMF diversity (Shannon index) in IMS was lower than that in
MM. This result aligns with the findings of Lian et al. (2018) in a
sugarcane/soybean intercropping system, which confirmed that the
decrease in soil pH induced by intercropping was a key driver leading
to the reduction of the fungal Shannon index in the rhizosphere of
intercropped sugarcane.

Rhizosphere microbial communities, particularly AMF and
bacteria, play a critical role in plant nutrient cycling (Zhou et al,
2022; Vejan et al,, 2016). This study revealed that P fertilizer level
and cropping systems markedly shaped the composition of the
AMF community (Figure 3). Across all treatments, Acaulospora and
Glomus_f_Glomeraceae were the dominant genera. This dominance
may be attributed to the ecological adaptability of these two taxa:
Acaulospora prefers acidic soil environments (Gai and Liu, 2003;
Powell et al.,, 2009), while Glomus_f_Glomeraceae is commonly a
dominant genus in IMS (Zhang et al., 2024). Soil AP is a key factor
influencing the composition of AMF communities in farmland

frontiersin.org


https://doi.org/10.3389/fpls.2025.1638043
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Qian et al.

ecosystems (Lang et al., 2022; Wang et al., 2024). In both MM and
IMS, the relative abundance of Acaulospora exhibited an “initial
decline followed by an increase” with increasing P fertilizer inputs,
reaching its minimum at P150. Conversely, the abundance of
Glomus_f_Glomeraceae showed an “initial increase followed by a
decline”, peaking at the P150 treatment. By comparison, with
increasing P fertilizer inputs, MS triggered a continuous decline
in Acaulospora and a steady rise in Glomus_f_Glomeraceae
(Figures 5a, b). These divergent responses suggest differentiated P
adaptation strategies of AMF across various cropping systems.
Intercropping systems reshape AMF community structure
through interspecific interactions and functional complementarity
between crops (Zhang et al., 2020, 2024). Compared with MM, IMS
reduced the relative abundance of Acaulospora (except at P50) while
increasing that of Glomus_f_Glomeraceae (Figures 5a, b), a trend
consistent with previous findings (Zhang et al., 2024). This study
further revealed that, apart from a negative correlation with HLD in
MS, the relative abundance of Glomus_f _Glomeraceae was
positively correlated with mycorrhizal colonization rate, HLD,
and SD (Figure 5). This can be primarily attributed to the
members of the genus Glomus, which exhibit stronger root and
rhizosphere colonization potential, as well as higher sporulation
rates (Oehl et al., 2003; Powell et al., 2009). The abundance of these
Glomus taxa directly determines the levels of these mycorrhizal
symbiotic indicators (Wang et al., 2025b). Thus, the enrichment of
highly efficient symbiotic AMF taxa (e.g., Glomus_f_Glomeraceae)
in the intercropping system is the key reason why higher
mycorrhizal colonization benefits were achieved compared to
monoculture systems, ultimately resulting in an optimal state of
mycorrhizal symbiosis under the P150 treatment.

Numerous studies demonstrate that soil P availability modulates
bacterial community composition (Ran et al., 2021; Cao et al., 2024;
Liu et al,, 2024), yet its effects are highly variable across ecosystems due
to differences in vegetation and edaphic conditions (Li et al.,, 2019; Dai
et al, 2020). For instance, short-term (3-year) P fertilization had
negligible effects on soil bacterial diversity and composition in
tropical rainforests (Li et al., 2019). In another system, the Shannon
index and relative abundance of bacterial communities in wheat
rhizosphere soil decreased significantly with increasing P fertilizer
application, although this effect was absent in bulk soil (Liu et al,
2024). This context-dependent variability is partially consistent with
our findings. This study revealed that P fertilizer input and IMS
significantly influenced bacterial community composition (Figure 5b).
With increasing P fertilizer inputs, the bacterial diversity in MM
decreased significantly, but no significant effects were observed in
IMS and MS. Concurrently, the bacterial richness in both MM and MS
showed a consistent decline, while IMS exhibited an initial increase
followed by a decrease (Figures 4c, d). This discrepancy may originate
from the distinct root exudate profiles of different crop types and their
interaction patterns with AMF, which collectively shape a
differentiated rhizosphere microenvironment, thereby mediating the
specific responses of the bacterial community to P fertilizer levels. Our
results demonstrate that IMS increased the rhizosphere soil AP content
(Figures 3a, c). This finding is in line with the mechanism proposed by
Ma et al. (2024), which suggests that intercropping enhances AP
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content by reshaping the soil bacterial community. At the same P
fertilizer levels, the bacterial diversity in the rhizosphere soil of IMS
(except at P50) was significantly higher than that in MM, and its
richness was also higher than that in both MM and MS, although not
significantly (Figures 4c, d). This finding is consistent with previous
reports that legume/cereal intercropping enhances microbial diversity
(Sun et al,, 2022; Duchene et al., 2017). Moreover, the absence of a
significant effect of IMS on bacterial richness suggests a relative stability
of bacterial alpha diversity (Yu et al., 2021).

4.3 Intercropping alters interactions
between AMF and bacterial taxa,
facilitating P solubilization

The interaction between AMF and bacteria serves as a common and
critical strategy for activating insoluble soil P (Duan et al,, 2024; Jin et al,,
2024; Wang et al,, 2023a). This study demonstrates that IMS increased
the frequency of cooperative linkages between AMF and bacteria across
various P levels (Supplementary Table S3), suggesting that intercropping
strengthens their mutually beneficial relationships and consequently
facilitates P activation in rhizosphere red soil. The underlying
mechanism may be driven by increased HLD and SD under IMS. On
one hand, the mycelium recruits bacteria carrying the gcd (encoding
glucose dehydrogenase) and phoD (encoding alkaline phosphatase
[ALP]) genes, a process that synergistically drives the activation of
organic P in the hyphosphere soil (Wang et al., 2023b).On the other
hand, as reported by Agnolucci et al. (2015), AMF spore surfaces readily
enrich PSB taxa such as Arthrobacter and Streptomyces. We therefore
speculate that the increased SD in IMS may provide new colonization
niches for these beneficial PSB taxa, consequently enhancing the
system’PAC. Molecular evidence supports this mechanism: IMS has
been demonstrated to upregulate key P transformation genes in the
rhizosphere, including phoD (encoding ALP) for organic P
mineralization (Wang et al,, 2025), and ppa/ppx (encoding inorganic
pyrophosphatase and exopolyphosphatase, respectively) for inorganic P
dissolution (Tanuwidjaja et al, 2021). It is noteworthy that both the
phoD and ppa genes are widely distributed across bacterial taxa such as
Proteobacteria, Firmicutes, and Actinobacteria, whereas the ppx gene
has been found exclusively in Proteobacteria (Siles et al,, 2022). This
distribution pattern suggests that the upregulation of these genes under
intercropping may not only involve responses from multiple bacterial
groups but also indicate potential functional specialization within the
microbial community. However, as P fertilizer inputs increased, the
proportion of positive correlations between AMF and bacteria exhibited
a declining trend in both IMS and MS. This may be attributed to the fact
that IMS elevates available P levels in the rhizosphere, which in turn
reduces plant carbon allocation to AMF (Nagy et al, 2009). The
resulting carbon limitation suppresses hyphal growth and sporulation,
ultimately diminishing opportunities for interaction with bacteria. On
the other hand, high P conditions weaken the relationship between the
relative abundance of bacterial phyla and the abundance of the P
mineralization functional gene (phoD) (Zhou et al., 2022).

The composition and function of the rhizosphere microbial
community are regulated by root and mycorrhizal exudates
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(Zhalnina et al., 2018; Sasse et al., 2018; Zhang et al., 2016a). Under low-
P stress conditions, the role of AMF becomes especially critical (Zhou
et al,, 2022). Our results demonstrate that IMS significantly alters the
structure of the rhizosphere microbial community, as primarily
reflected by an increase in the relative abundance of eight key
bacterial taxa (Figure 8). Most of these enriched bacterial taxa are
known to possess phosphate-solubilizing functions. Among these,
Sphingomonas is the most abundant bacterial genus in the
rhizosphere soil (Figure 8a, Supplementary Figure S2). It is also a
dominant taxon in the hyphosphere (Zhou et al, 2020) and
demonstrates high efficacy in degrading organic P compounds to
release soluble phosphate (Midekssa et al., 2016). Unclassified_f:
Micrococcaceae was also consistently enriched in the rhizosphere soil
(Figure 8b). This bacterial genus has been demonstrated to dissolve
mineral-bound P by secreting organic acids (Bolo et al,, 2021; Mander
et al,, 2012). AMF can significantly enrich the genera Streptomyces and
Gemmatimonas under P stress conditions (Zhou et al., 2020; Wang
etal,, 2023b). Their secreted ALP can mineralize organic P (Zhang et al,,
2018b; Wei et al, 2019). Furthermore, Bradyrhizobium, in addition to
its role in soil nitrogen cycling, can also dissolve inorganic P by
producing phosphatases and organic acids (Deng et al,, 2024; Vyas
and Gulati, 2009). Emerging evidence has demonstrated that Massilia
serves as a key member within the hyphosphere core microbiome,
exhibiting remarkable P solubilization efficiency via phosphatase
exudation (Wang et al,, 2025a). Currently, there is no documented
evidence in the literature indicating direct phosphate-solubilizing
activity in either Nocardioides or Lysobacter. Based on the enrichment
of these PSB taxa in the rhizosphere, we speculate that the core
microbiome enhances P availability synergistically, primarily through
direct pathways (e.g., secretion of phosphatases and organic acids) and
indirect pathways (e.g., interactions with noncore microbial members).
Therefore, we recommend adopting an “optimized P fertilization
combined with legume/cereal intercropping” cultivation model in red
soil regions. This approach can enhance microbial functions to
sustainably improve P availability while reducing P fertilizer inputs,
ultimately achieving synergistic outcomes in crop productivity and
agricultural ecosystem health.

A primary limitation of this study is the inability to accurately
quantify the respective contributions of root hairs and AMF
(including hyphae and spores) to the recruitment of PSB in the
rhizosphere. Future studies should employ single-cell fluorescence
tracing combined with triple-isotope labeling (using **C for root hairs,
15N for AMF hyphae, and ;30 for AMF spores), integrated with
nanoscale secondary ion mass spectrometry (NanoSIMS), high-
throughput microscopic imaging, as well as metabolomics coupled
with isotope labeling. Such integrated approaches would help elucidate
the spatial partitioning and metabolic mechanisms underlying root
hair-AMF interactions during rhizosphere microbiome assembly.

5 Conclusions

In summary, our study demonstrates that IMS enhances the
diversity and richness of AMF in the rhizosphere soil and drives a
significant increase in the relative abundance of the key functional taxon
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Glomus_f_Glomeraceae. This practice also promotes higher mycorrhizal
colonization rates, HLD, and SD, while concurrently enriching eight
pivotal bacterial taxa. Notably, at the P150 level, the relative abundance
of Glomus_f Glomeraceae reached its peak, corresponding to an
optimal AMF-crop symbiotic relationship. Cross-domain co-
occurrence network analysis revealed a greater prevalence of
cooperative relationships between AMF and bacteria in the
intercropping system compared to the monoculture, uncovering the
mechanism through which intercropping promotes P activation in red
soil via strengthened AMF-PSB synergistic interactions. This study
establishes 150 mg P,Os kg™ dry soil as the P fertilization threshold in
IMS systems. This finding not only provides a practical agricultural
management strategy for red soil regions in Southwest China but also
advances the theoretical framework for regulating farmland P cycling
from the perspective of microbial interactions.
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