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Salinity intrusion, exacerbated by climate change and anthropogenic activities,

poses a significant global threat to agricultural productivity, particularly in coastal

and deltaic regions. Rice, a staple crop critical for food security and economic

stability in many developing nations, is highly susceptible to salt stress, which

reduces yields and threatens livelihoods. In the Vietnamese Mekong Delta (VMD),

a key rice-producing region, recurrent drought-induced salinity events have

caused substantial damage to agriculture, and the economic well-being of

millions of residents. These events highlight the urgent need for sustainable

solutions to maintain rice production under adverse environmental conditions.

Plant-Growth-Promoting Rhizobacteria (PGPR) have emerged as a promising

eco-friendly approach to enhance plant salt tolerance, offering potential to

mitigate salinity stress in rice crops. Here we review the role of PGPR in

alleviating salinity stress in rice farming in the VMD, highlighting its potential as

a sustainable agricultural approach. The review synthesizes existing research to

assess the causes of salinity intrusion, the efficacy of PGPR, and the limitations of

current studies in this region. The major points are the following: 1) Saline

intrusion in the VMD is driven by multiple factors, including sea-level rise, land

subsidence, upstream dams’ operation, and excessive sand mining, which

exacerbate agricultural challenges; 2) PGPR enhance rice salt tolerance

through mechanisms such as osmotic regulation, improved nutrient uptake,

and activation of stress-responsive genes, as evidenced in controlled and field

studies; 3) Research in Vietnam is constrained by a lack of long-term

investigations and a reliance on publications in Vietnamese-language scientific
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Abbreviations: ABA, abscisic acid; ACC, 1-Aminocyclo

ACCD, 1-Aminocyclopropane-1-carboxylate deami

peroxidase; B, boron; Ca2+, calcium; CAT, catalase; Cl–

Fe2+, ferrous; Fe, iron; GC-MS, Gas Chromatography-M

glutathione reductase; IAA, indole acetic acid; JA, jasmo

LC-MS, Liquid Chromatography-Mass Spectrometry;
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PGPR, plant growth promoting rhizobacteria; PO4

peroxidase; ROS, reactive oxygen species; S, sulfu

dismutase; STRVs, salt-tolerant rice varieties; VMD

Delta; Zn, zinc.
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journals, which may limit international attention and rigorous peer-review

processes, necessitating further studies to support scalability and adoption by

VMD farmers, and also enlarge international collaboration in this important field

of study.
KEYWORDS

salinity intrusion, plant growth promoting rhizobacteria, salt stress tolerance, rice
production, Vietnamese Mekong Delta
1 Introduction

Rice is a staple food for billions of peoples worldwide, especially

in Asia (Vinci et al., 2023). Rice production and exportation are

critical to Vietnam’s food security and economy (Maitah et al.,

2020). In 2023, Vietnam ranked as the third-largest rice exporter

globally, following India and Thailand. The agricultural regions

surrounding the Mekong River are renowned for their fertile soil

and biodiversity, making them ideal for rice and other crop

cultivation. However, these regions are increasingly threatened by

climate change, notably sea-level rise. Vietnam is one of five

countries, along with China, Japan, India, and Bangladesh, most

severely affected by sea-level rise. The Red River Delta and Mekong

River Delta, two Vietnam’s primary rice production hubs, face

significant risks from this environmental challenge. Based on some

previsions, a one-meter rise of seawater may lead to the

submergence of 0,3–0,5 million hectares (ha) of the Red River

Delta and approximately 90% of the Vietnamese Mekong Delta

(VMD) (Danh and Khai, 2014). In addition, land subsidence in the

VMD poses an even greater threat than sea-level rise, as the rate of

land sinking surpasses that of rising sea levels (Dunn and

Minderhoud, 2022). Salinity intrusion in the VMD is currently a

critical environmental challenge caused by a combination of climate

change and anthropogenic factors. The rise of seawater damages

coastal areas in this region and upstream damming of the Mekong

River reduces freshwater flow, especially during the dry season,

thereby diminishing the natural barrier against saltwater intrusion

(Tri, 2019; Van Tho, 2022). Additionally, excessive groundwater

extraction for agriculture, aquaculture, industry, and domestic

activities accelerates land subsidence by compacting the
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underlying soil layers, which results in land sinking (Van Tho,

2022). This unsustainable practice amplifies the extent of saline

intrusion. These factors have profound impacts on arable land, thus

significantly reducing rice yields (Binh et al., 2025). Soil

degradation, shortage of freshwater and declined agricultural

productivity threaten national food security and livelihoods of

millions of farmers in the VMD, necessitating appropriate

solutions to remain rice production stabi l i ty in this

prominent region.

Most rice varieties are glycophytic, so their growth and yield can

be severely impacted by elevated salt concentrations (Hoang et al.,

2016). Rice is the most salinity-sensitive cereal crop, with an

electrical conductivity (EC) of 3 dS m−1, even below the threshold

for generally recognized saline soil, causing a 10% loss of yield for

most cultivated varieties (Hoang et al., 2016). In regions like the

VMD, where conditions are challenging, ensuring stable rice yields

and farmer’s income is a priority for breeding programs and

agricultural technology advancements. The rising sea levels in the

VMD present significant challenges for local farmers, offering

critical opportunities to study their adaptive responses to a harsh

environment. So far, numerous plant breeding programs are

focused on developing rice varieties with multiple tolerant traits

to abiotic stresses, including salinity, flooding, and water deficits

(Crop Trust, 2021). Despite various approaches to enhance salinity

tolerance in rice, significant breakthroughs remain elusive.

Developing salt-tolerant rice through conventional breeding or

biotechnology is labor-intensive and time-consuming. Moreover,

challenges such as limited parental resources, complex genomic

traits (e.g., multiple genes involved in salinity tolerance), and

transgene silencing continue to impede progress in variety

improvement (Qin et al., 2020).

Among various strategies to enhance salt stress tolerance in rice,

the implementation of plant growth-promoting rhizobacteria

(PGPR) offers an environmentally sustainable and effective

approach. However, in Vietnam, research on the effects of PGPR

on the rice plant growth, development, nutrient uptake, phosphate

(PO43−) and silicate (Si) solubilization, nitrogen (N) fixation, and

mitigation of salinity’s adverse impacts remain limited (Habibi

et al., 2014; Hussain et al., 2022). By far, finding PGPR-related

studies published in Scopus- or ISI-indexed journals is challenging,

with few available (Rose et al., 2014; Khuong et al., 2021). Based on
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our findings, the 15-year study on the biofertilizer BioGro by

Nguyen et al. (2017) is the only long-term investigation

conducted in Vietnam to date (Nguyen et al., 2017), while most

other papers published in Vietnamese-language scientific journals

(Đường et al., 2018; Đường and Nghĩa, 2020; Chiêu and Hiệp, 2010;

Giang et al., 2024; Huy and Hiệp, 2019). This knowledge gap and

limited accessibility hinders advancements in PGPR engineering,

commercialization, as well as international collaboration. In this

work, we evaluate the current state of saline intrusion in the VMD,

highlight salient findings from PGPR studies in Vietnam, and

explore the potential use of indigenous strains to enhance rice

tolerance to salt stress in Vietnam.
2 Key drivers of salinity intrusion

2.1 Climatic and geological factors

The VMD, spanning 39,000 km2, is Vietnam’s primary rice

production region, which has contributed over 50% of national rice

yield and 90% of rice exports (Thach et al., 2023; Tuan et al., 2024).

However, saline intrusion, driven by complex interactions of

climatic, geological, and anthropogenic factors, poses significant

threat to this agricultural region. Coastal provinces, such as Ben Tre,

Tra Vinh, Soc Trang, and Ca Mau, confront heightened

vulnerability due to their inherently low elevation and proximity

to the East Sea. Since the 1990s, salinity intrusion has increased its

magnitude, penetrating deeper inland and lasting longer,

particularly during the dry season. This phenomenon disrupts

irrigation systems which are critical for rice cultivation. Salinity

intrusion jeopardizes farmer livelihoods and necessitate innovative

solutions like salt-tolerant rice varieties and plant growth

promoting rhizobacteria (PGPR). The primary causes and effects

of saline intrusion are summarized in Table 1.

Sea-level rise, which is propelled by climate change, accelerates

saline intrusion by penetrating seawater into the irrigation canal

network in the VMD. Previous data indicate that salinity intrusion

has worsened since the 1990s, and projections suggest a one-meter

sea-level rise could submerge approximately 90% of the VMD by
Frontiers in Plant Science 03
2100, detrimentally affecting provinces like Bac Lieu (39% land at

risk) and Tra Vinh (Danh and Khai, 2014; Ngo et al., 2016). During

the dry season, low river discharge and tidal amplification enable

seawater to penetrate 50–130 km inland, which salinizes irrigation

systems in Ben Tre and Soc Trang, where rice fields heavily rely on

freshwater (Nguyen et al., 2024).
2.2 Anthropogenic factors

Upstream hydropower dams in the Mekong River Basin

significantly alters downstream hydrology by reducing freshwater

flow, intensifying salinity intrusion during the dry season. By 2016,

56 dams, including mega-dams Xiaowan and Nuozhadu, disrupt

flow patterns, decrease frequency and intensity of seasonal floods,

contributing to severe droughts in 2015–2016 and 2019–2020

(Phuong et al., 2018). These upstream dams also trap nutrient-

rich sediments, reducing soil fertility and exacerbating salinity

destructive impacts (Loc et al., 2021). The limited coordination

and collaboration restrict Vietnam to secure sufficient amount of

freshwater for irrigation and household consumption, especially

during dry season. Furthermore, riverbed sand mining with

approximately 8,5–45,7 Mm3 annually causes riverbed incision,

pushing seawater intrusion and destabilizing riverbanks (Hackney

et al., 2020). Illegal sand mining, a long lasting and unsolvable

environmental issue, which is linked to construction demand,

magnifies ecological damage, including loss of fish habitats that

support rice-based agroecosystems (Park et al., 2020; Yuen et al.,

2024) (Park et al., 2020; Yuen et al., 2024). Additionally, land

subsidence, which fundamentally caused by excessive extraction of

groundwater for domestic, agricultural, and industrial activities,

aggravates this fragility. Subsidence rates average around 2,5 cm

year−1 and reach 4 cm year−1 in Ca Mau, outpacing global sea-level

rise (2,8–3,6 mm year −1). This crucial threat lowers the VMD’s

elevation and increases flooding risks in rice field (Minderhoud

et al., 2017; Qin et al., 2013). Moreover, over-extraction of

groundwater has depleted aquifers, leading to the infiltration of

saline water through capillary rise, degrading arable land (Erban

et al., 2014).
TABLE 1 Causes and effects of saline intrusion in the VMD.

Cause Mechanism
Impacts on salinity
intrusion

Effect on rice production
and economy

References

Sea-level
rise

Facilitates upstream seawater movement,
increase tidal influence on lowland regions

Early onset, deeper inland
penetration, longer duration of
intrusion

Reduces arable field; yield losses of
2,5–4 ton ha−1; economic losses up to
337 million USD

(Danh and Khai, 2014;
Kantoush et al., 2017; Park
et al., 2022; Toan, 2014)

Land
subsidence

Groundwater extraction lowers elevation,
enhancing saltwater intrusion

Amplifies negative effects of sea-
level rise, weakens infrastructure
protection

Degrades soil quality; reduces rice
yields and farmland availability

(Erban et al., 2014; Minderhoud
et al., 2017)

Upstream
dams

Reduces freshwater flow and sediment
load, increases salinity in irrigation system
during dry season

Increases saline water
penetration, weakens freshwater
dilution capacity

Lowers rice productivity; contributes
to drought and economic losses

(Loc et al., 2021; Phuong et al.,
2018)

Riverbed
sand
mining

Deepens riverbeds, alters river
morphology, destabilizes irrigation systems

Enhances tidal influences and
river incision, allowing saltwater
intrusion

Reduces rice yields; increases irrigation
challenges and economic losses

(Binh et al., 2020; Hackney
et al., 2020)
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2.3 Effects on rice production and
economy

Saline intrusion significantly damages rice production. During

severe events such as the El Nino-driven droughts and reduced river

flow in 2015–2016 and 2019–2020, the impacts were extensive

(Figure 1). In 2016, approximately 224,000 ha of paddy field, 13,000

ha of cash crops, 25,500 ha of fruit trees, and 14,400 ha of

aquaculture were damage (CGIAR Research Centers in Southeast

Asia, 2016). In the 2020 event, salt concentrations reached 4 g L−1,

with seawater penetrating 50–130 km into major rivers, affecting an

estimated 215,445 ha of rice and causing economic losses of 337

million USD (Park et al., 2022; Baca et al. 2017). Household affected

by salinity intrusion experience lower total production with

approximately 761,47 kg ha−1 less for rice, resulting in reduced

total and net revenues compared to unaffected farmers (Thanh

et al., 2023). In Lich Hoi Thuong area, Soc Trang province, salinity

reduced rice yields by 2,54 tons ha−1 annually (Khai et al., 2018).

Besides agriculture, these climatic events also disrupted water

supplies for millions of residents in the VMD (Tran and

Yong, 2025).

Salinity has driven significant shifts in agricultural practices,

moving farmers from traditional triple- or double-rice cropping to

aquaculture, or even pushing farmer displacement and migration to
Frontiers in Plant Science 04
urban sectors (Binh et al., 2025; Le et al., 2022; Tran et al., 2021).

Adaptation strategies including sluice gates and dikes cost money

but also face challenges due to funding restraints and rising salinity

levels (Duy et al., 2025; Tran et al., 2021). In the near future,

Vietnam faces economic challenges including reduced global rice

export competitiveness and increased food security risks (Vietnam

Chamber of Commerce and Industry (VCCI) 2025). Therefore,

enhanced transboundary water management and an intensified

investment in salinity-tolerant rice and PGPR technologies are

strongly required to address these pressing issues (Mills et al.,

2025; Pdr and Nam 2017).
3 The adverse effects of salinity on
rice growth and development

3.1 Environmental context and emerging
threats

Traditionally, the VMD relied on seasonal flooding to enrich

soils and wash out toxic residuals from rice fields, supporting

agricultural production. The floodwaters supplied alluvial

sediment, rejuvenating the fields with essential macronutrients

such as N, phosphorous (P), potassium (K), calcium (Ca),
FIGURE 1

Salinity intrusion in the VMD in 2016 and 2020. Map of salinity intrusion in the Vietnamese Mekong Delta, showing salinity boundaries (4 g L−1) for
2016 (red), 2020 (green), and 2020 extreme scenario (blue), with salt concentration distribution (0–35 g L−1) indicated by a color gradient. The map
highlights the spatial extent of saltwater intrusion along major rivers and coastal provinces, reflecting changes over time. Source: (Central Steering
Committee for Natural Disaster Prevention and Control (CCNDPC), 2020).
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magnesium (Mg), and sulfur (S) and micronutrients such as boron

(B), iron (Fe), copper (Cu), manganese (Mn), molybdenum (Mo),

and zinc (Zn). The amount of sediment largely varied from few to

ten tons per hectare. Interestingly, natural fish in the floodwaters

serve as biocontrol agents in rice ecosystems (Tong, 2017).

However, in recent decades, many contributors, such as climate

change, upstream dam operation, sea-level rise, and reduced

freshwater discharge, intensify salinity intrusion. This threat

jeopardizes rice cultivation and risks livelihood of million people

in the region (Hoang et al., 2018). On a global scale, soil salinization

has emerged as a critical constraint on crop production. In some

provisions, by 2050, nearly half of the global arable land could be

affected by salinity, dramatically reducing food security worldwide

(Hasanuzzaman et al., 2014). Salinization can be classified into two

types: primary salinization originated from natural processes such

as mineral weathering and salt accumulation via capillary rise from

saline groundwater, and secondary salinization caused by

anthropogenic factors, for example improper irrigation practices

and poor drainage (Butcher et al., 2016; Mohanavelu et al., 2021).
3.2 Ion imbalances, osmotic stress and
plant stress responses

Salinity alters soil chemistry by increasing concentrations of

primary cations (Na+, K+, Ca2+, and Mg2+), and anions (Cl−, SO4
2−,

NO3
2−, and HCO3

−). Among them, Na+ and Cl− are considered the

most harmful contributors to rice metabolism (Corwin, 2021).

Excess Na+ disrupts soil structure and enzyme activity, while Cl−

interfere with photosynthesis. Ion toxicity disrupts intracellular

signaling and displaces essential nutrients, particularly K+, leading

to nutrient deficiency (Assaha et al., 2017). The accessibility of other

important nutrients like Ca2+, Mg2+, Mn2+, and Fe2+ are also

reduced by the abundance of Na+ and Cl− in soils (Tavakkoli

et al., 2010).

An obvious effect of salinity stress is osmotic stress, which is

caused by a rise of soil’s osmotic potential, restricting plant water

uptake. This results in dehydration-like symptoms, stomatal closure,

and suppressed photosynthesis (Katori et al., 2010). In general, plant

responses to salinity stress occur in two phases: (i) an initial, rapid

osmotic stress phase, or so-called ion-independent, happening within

minutes to days, primarily affecting water uptake and cell turgor. The

ion-independent phase involves rapid signaling cascades and

hormonal adjustment in response to Na+ influx; (ii) a slower, long-

term ion toxicity phase, so called ion-dependent response, lasting

days to weeks and is characterized by toxic ion accumulation in

shoots (Balasubramaniam et al., 2023; Munns and Tester, 2008).
3.3 Antioxidant and hormonal responses

The metabolic disruptions lead to an overproduction of reactive

oxygen species (ROS) such as superoxide radicals, hydrogen

peroxide, and hydroxyl radicals (Khan et al., 2016). Oxidative

stress triggers significant cellular damages, including lipid
Frontiers in Plant Science 05
peroxidation in membranes, which indicated by increased

malondialdehyde (MDA), and MDA content, and increases

electrolyte leakage (Degon et al., 2023; Jaemsaeng et al., 2018).

Hormones like abscisic acid and ethylene rise dramatically in

response to salt, regulating stomatal behavior and stress signaling.

Ethylene biosynthesis, driven by 1-aminocyclopropane-1-

carboxylic acid (ACC) oxidase, also leads to the emission of

volatile organic compounds (VOCs). These VOCs (e.g.,

benzenoids, terpenes, and aldehydes) play dual roles as

antioxidants and interplant messengers (Chatterjee et al., 2018).

An excess amount of ethylene is often associated with senescence

(Dubois et al., 2018).
3.4 Overall impact on rice growth and yield

Growth and development of rice plants are obviously impacted

under salinity conditions. Salinity reduces plant height and leaf

expansion, shoot and root biomass, and survival rates. It negatively

impacts yield components such as panicle length, thousand-grain

weight, percentage offilled grains, and the number of effective tillers

(Debapriya Choudhury et al., 2024; Li et al., 2024). Early exposure

to salinity during the grain-filling stage has been shown to reduce

grain quality and yield in fragrant rice cultivars, with average yield

reductions of 33,8% across four consecutive seasons in Thailand

(Dangthaisong et al., 2023). Rice variety Huanghuazhan, after

exposure to 50 mM sodium chloride (NaCl) for two weeks,

showed severe chlorophyll degradation, root inhibition, and

reduced biomass (Xue et al., 2024).
4 Integrated mechanisms of salt stress
tolerance in rice using omics
approach

4.1 Genes involved in plant response to
salinity stress

Rice plants have evolved a complex, multi-layered defense system

to cope with the detrimental effects of salt stress. This adaptation

involves a tightly coordinated interplay of molecular, physiological,

and even biotic mechanisms, frommaintaining cellular ion balance to

recruiting beneficial microbes in the root environment. Recent

studies, which utilized high-throughput omics platforms, has

illuminated these integrated pathways, allowing for a

comprehensive understanding of how tolerant genotypes thrive

under saline conditions. A primary challenge under salt stress is

the toxic accumulation of Na+ ions. Rice plants manage this through

a combination of ion transport and osmotic adjustment (Kumar et al.,

2013). The Salt Overly Sensitive (SOS) pathway represents a

fundamental line of defense. When high salt levels induce cytosolic

Ca2+ spikes, the Ca2+-binding protein SOS3 senses this signal,

activating the kinase SOS2. This, in turn, phosphorylates the

plasma membrane Na+/H+ antiporter SOS1, which actively

extrudes Na+ from the roots, thus preventing its upward movement
frontiersin.org
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to the shoots (Qiu et al., 2002; Xiao and Zhou, 2023). In addition to

this extrusion mechanism, rice employs intracellular strategies. The

vacuolar Na+/H+ antiporter OsNHX1 sequesters excess Na+ into the

vacuole, effectively isolating it from the cytoplasm tomaintain cellular

ion homeostasis and protect metabolic processes (Fukuda et al.,

2004). Similarly, the high-affinity K+ transporter OsHKT1;5, located

on the Saltol QTL, plays a crucial role in maintaining the essential K+

balance (Platten et al., 2013). It facilitates the unloading of Na+ from

the xylem into root cells, thereby reducing its harmful accumulation

in the shoots (Ren et al., 2005). The expression of OsHKT1;5 is itself

meticulously regulated by a complex centered on the transcription

factor OsMYB106 and its cofactors OsDNAJ15, OsSUVH7, and

OsBAG4 (Liu et al., 2023), highlighting a key intersection between

ion transport and transcriptional control. Beyond managing ion

toxicity, rice plants also counter the osmotic stress. This is achieved

by accumulating compatible solutes like proline and various sugars,

which act as osmolytes to maintain turgor pressure. This process is

often complemented by robust antioxidant defense mechanisms

involving enzymes such as superoxide dismutase (SOD), peroxidase

(POD), and catalase (CAT), which detoxify the reactive oxygen

species (ROS) produced under stress conditions.
4.2 Transcriptional regulation and
hormonal signaling

These physiological responses are orchestrated at the genetic level

by various transcription factors (TFs), acting as central hubs in stress-

responsive signaling cascades. These regulatory networks are often

influenced by hormonal signals, particularly abscisic acid (ABA), which

can activate both ABA-dependent and ABA-independent pathways.

Many studies elucidated critical roles of transcription factor families in

regulating expression of stress-related genes in response to salinity.

AP2/ERF family is central to regulating stomatal closure, antioxidant

defenses, and osmotic adjustment. DREB TFs, for example, enhance

salt tolerance by regulating osmoprotection, with some like OsDREB1F

participating in ABA-dependent pathways while others function

independently (Ito et al., 2006). A related TF, OsEREBP1, enhances

salt tolerance through the jasmonic acid (JA) and ethylene pathways,

further demonstrating the interconnectedness of hormone signaling

(Wang et al., 2020). bZIP family is characterized by a conserved basic

leucine zipper domain, these TFs are primarily involved in the ABA-

dependent pathway.OsABF2, a keymember, acts as a positive regulator

of salt stress by binding to ABRE to activate downstream genes

(Hossain et al., 2010), while OsHBP1b enhances antioxidant defenses

(Das et al., 2019). The NAC family modulates other TFs like DREB,

MYB, and bZIP to enhance salt tolerance by upregulating genes for

osmoprotection, ion homeostasis, and antioxidant defense. Key

members like ONAC022 and OsNAC10 positively regulate salt

tolerance through ABA-mediated pathways (Hong et al., 2016; Jeong

et al., 2010). In addition, MYB and Zinc Finger (ZF) TFs also play

critical roles in salt stress tolerance. OsMYBc enhances salt tolerance by

regulating the expression of the ion transporter OsHKT1;1 (Xiao et al.,

2022). Meanwhile, C2H2-type ZF TFs like ZFP179 and ZFP252

positively regulate the synthesis of compatible solutes like proline
Frontiers in Plant Science 06
(Sun et al., 2010), while the DST gene, another C2H2-type ZF TF,

acts as a negative regulator of salt tolerance by modulating stomatal

closure (Huang et al., 2009).

Beyond these internal cellular and genetic mechanisms, the

plant’s response is further shaped by its interaction with the soil

environment. Recent research has revealed that the rhizosphere

microbiome plays a significant role in mediating salt tolerance. A

key discovery was the SST (Seedling Salt Tolerant) gene, whose

mutation in rice leads to enhanced growth under salt stress by

reducing Na+ uptake and increasing K+ accumulation (Lian et al.,

2020). This improved ion homeostasis is coupled with a significant

shift in the rhizosphere microbiome, suggesting a link between the

plant’s internal genetics and its ability to recruit beneficial microbes.

Specifically, salt-tolerant rice varieties maintain greater bacterial

diversity in the rhizosphere compared to salt-sensitive ones, and

they actively recruit distinct bacterial consortia. For example,

tolerant rice plants enrich bacteria with functional genes related

to saline-alkali tolerance, such as those for ABC transporters and

biofilm formation (Lei et al., 2025). This biotic interaction

underscores the need for a consortium approach using multiple

beneficial microbes rather than a single strain to effectively enhance

salt tolerance in agriculture. The combined evidence from

molecular, physiological, and microbial studies presents a more

holistic view of rice remarkable resilience to salt stress.
5 Roles of rice genotype and root
exudates in shaping the rhizosphere
microbiome

5.1 The role of root exudates and soil
metabolites

The plant’s response to environmental stress is not limited to

internal cellular and genetic mechanisms. It is further shaped by its

interaction with the soil environment. Rice plant is not a passive

recipient, instead, it actively influences the associated PGPR

communities and their activities. This sophisticated, mutualistic

relationship is driven by several factors, including the release of root

exudates that act as chemical signals influencing PGPR activity and

colonization. Recent research has revealed that the rhizosphere

microbiome plays a significant role in mediating salt tolerance, a

process strongly influenced by root exudates, soil metabolites, and

the plant’s genotype (Yusuf et al., 2025; Fan et al., 2025). These

factors collectively drive a sophisticated feedback loop that

enhances plant growth and resilience. The rhizosphere is a

dynamic interface where plants, microbes, and soil continuously

interact, with root exudates serving as a crucial communication

factor (Bacilio-Jiménez et al., 2003). These exudates, composed of

small, low-molecular-weight organic compounds known as soil

metabolites—including sugars, amino acids, and organic acids—

serve as a primary source of carbon and nutrients for

microorganisms (Song et al., 2024; Bolan et al., 2011). They also

enable plants to selectively recruit beneficial microbes, such as

PGPR (Parasar, Sharma, and Agarwala 2024). Rice root exudates
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induce a higher chemotactic response for endophytic bacteria,

facilitating their colonization (Zhang et al., 2022). In addition to

providing nutrients, these exudates contain secondary metabolites

like phenolic compounds, flavonoids, and volatile organic

compounds that act as signaling molecules, antimicrobial agents,

or chemoattractants, directly influencing the structure and function

of microbial communities (Bais et al., 2006; Hu et al., 2018;

Zhalnina et al., 2018). Beyond plant-derived exudates, the soil

metabolite pool is also shaped by microbial byproducts and

specific signaling compounds like quorum-sensing molecules,

which regulate microbial communication and impact plant-

microbe interactions (Venturi and Fuqua, 2013). Quorum-sensing

molecules, like N-acyl-homoserine lactones, regulate microbial

communication, impacting plant-microbe interactions (Venturi

and Fuqua, 2013). Precise identification and quantification of

these metabolites are critical for understanding rhizosphere

dynamics under environmental stresses. Gas Chromatography-

Mass Spectrometry (GC-MS) and Liquid Chromatography-Mass

Spectrometry (LC-MS) are standard for metabolite profiling. GC-

MS detects volatile and semi-volatile compounds, such as VOCs,

while LC-MS analyzes polar and non-volatile metabolites, including

organic acids and amino acids (Lisec et al., 2006). These

complementary platforms enable comprehensive analysis of the

rhizosphere metabolome. Emerging techniques, such as Matrix-

Assisted Laser Desorption/Ionization Imaging Mass Spectrometry

(MALDI-IMS), provide spatial resolution of metabolite distribution

around rice roots, revealing localized interactions between roots and

microbes (Yang et al., 2012). This is particularly valuable for

studying metabolite gradients in rice paddies. Complex datasets

from untargeted metabolomics are analyzed using bioinformatics

and statistical tools, such as principal component analysis (PCA) or

partial least squares-discriminant analysis (PLS-DA), to identify key

metabolites differentiating rice genotypes or stress conditions (Li

et al., 2023).
5.2 Genotype-specific shaping of the
rhizosphere community

Plant genotypes substantially impact the composition of its root-

associated microbial communities, and this effect is the most

pronounced in the rhizosphere (Edwards et al., 2015). Different rice

genotypes possess varying root exudate profiles, which influence the

recruitment of specific bacteria. For example, the abundance of

Bacillus and Candidatus_Koribacter differed significantly between

rice genotypes under drought conditions (Li et al., 2023). A recent

study by Zhong et al. (2025) analyzed rhizosphere microbial

communities in rice varieties Jida177 and Tongxi933 under saline-

alkaline stress. Proteobacteria dominated high-stress soils, with

Jida177 showing higher microbial diversity and better stress

tolerance, reducing soil salinity by 73%. Microbial functions varied,

with pH as the primary driver of community structure (Zhong et al.,

2025). An important finding was related to the SST (Seedling Salt

Tolerant) gene, whose mutation in rice led to enhanced growth and
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improved ion homeostasis under salt stress by reducing Na+ uptake

and increasing K+ accumulation (Lian et al., 2020). Importantly, this

genetic alteration was coupled with a significant shift in the

rhizosphere microbiome, suggesting a direct link between the

plant’s internal genetics and its ability to recruit beneficial microbes.

Salt-tolerant rice varieties, in general, are found to maintain greater

bacterial diversity in the rhizosphere and actively recruit distinct

bacterial consortia. For instance, these tolerant plants enrich bacteria

with functional genes related to saline-alkali tolerance, such as those

for ABC transporters and biofilm formation (Lei et al., 2025). The

mutual interaction between PGPR and rice is a sophisticated and

cooperative relationship. PGPR enhances rice growth and stress

resilience through various modulations, while the rice plant, in

turn, influences the survival, activity, and community structure of

these beneficial bacteria. This understanding underscores the need for

a consortium approach usingmultiple beneficial microbes rather than

a single strain to overcome the inherent limitations of using a single

microbial strain in complex agricultural systems, especially under

challenging environmental conditions.
6 Omics approaches in PGPR-
mediated salt stress mitigation in rice

6.1 Physiological and morphological
improvements

Implementations of PGPR significantly improve rice plants

physiologically and morphologically (Figure 2; Table 2).

Inoculation with Azospirillum brasilense significantly improves

total and root plant mass in rice plants grown under high salt

concentrations (100 mM and 200 mM NaCl), with improvements

observed seven and fourteen days after treatment (Degon et al.,

2023). Bacillus siamensis BW-treated seeds exhibit rapid

germination compared to untreated controls and show minimal

reduction in shoot and root growth at the early seedling stage under

saline conditions (75 mM to 150 mM NaCl) (Oubaha et al., 2024).

Similarly, rice plants inoculated with Glutamicibacter sp. YD01

show less reduction in root and shoot length under NaCl stress, as

this bacterium promotes root growth in seedlings. Glutamicibacter

sp. YD01 also significantly enhances K+, reduces Na+ content in

both leaves and roots, and increases relative water content (RWC)

in rice seedlings (Ji et al., 2020). A study by Qin et al. (2018) found

that Glutamicibacter halophytocola strain KLBMP 5180, isolated

from the root tissue of Limonium sinense, significantly promoted

host growth under NaCl stress by increasing concentrations of total

chlorophyll, proline, antioxidative enzymes, flavonoids, K+, and Ca2

+ in L. sinense leaves (Qin et al., 2018). Enterobacter asburiae D2

inoculation specifically promotes rice growth, including root length

and dry weight, under both neutral (NaCl) and alkaline (Na2CO3)

salt conditions (Ning et al., 2024). Additionally, Pseudomonas

promysalinigenes RL-WG26 significantly increases plant biomass,

root surface area, and root length in rice seedlings under both

normal and saline conditions (Ren et al., 2024).
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6.2 Gene regulation and molecular
mechanisms

PGPR improve rice growth under salt stress by regulating the

expression of key genes involved in defense and stress response

(Giannelli et al., 2023). Transcriptomic studies have shown

differentially expressed genes (DEGs) in A. brasilense-treated, salt-

stressed rice roots, including those involved in defense and stress

response (Degon et al., 2023). Other Bacillus strains, like NMTD17

and GBSW22, highly stimulated the expression of various DEGs

related to salt stress, including OsSAMDC2, OsDREB1F, OsEREBP2,

OsLEA3-1, OsERF104, and OsCYP89G1 (Ali et al., 2022).

OsSAMDC2 is involved in polyamine biosynthesis, which helps

mitigate oxidative damage under salinity (Sackey et al., 2025). Its

expression is regulated by OsNAC45, a transcription factor involved

in the salt stress response (Zhang et al., 2020). OsEREBP2 functions

downstream of OsNAC45, and its expression is upregulated in

response to salt treatment, suggesting its involvement in salt

stress signaling (Zhang et al., 2020). OsLEA3 is a late

embryogenesis abundant group 3 protein and its accumulation in

the vegetative tissues of transgenic rice helped improve tolerance to
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salt stress and water deficit (Hu, 2008). While OsERF106 acts as a

negative regulator of shoot growth and salinity tolerance in rice, the

functions of its relative, OsERF104, in response to salinity remain

unknown (Chen et al., 2021). OsCYP89G1, a CYP450 family

member, encodes for cytochrome P450 monooxygenase. Its

expression is upregulated by NaCl and repressed by ABA (Zhang

et al., 2020). Although its specific role in rice salinity response is

unclear, the overexpression of another family member, OsCYP75B4,

improved salt tolerance in transgenic rice plants (Ruan et al., 2025).

OsDREB1F belongs to the DREB transcription factor family, which

plays a key role in plant stress signaling. Its expression is induced by

salt, drought, cold stresses, and ABA, and its overexpression has

been shown to enhance tolerance to these stresses in rice and

Arabidopsis (Wang et al., 2008).
6.3 ROS, hormones, and ion transport

Salinity stress typically leads to oxidative stress and the

accumulation of reactive oxygen species (ROS), which plants

counteract using antioxidant enzymes like catalases (CAT),
FIGURE 2

Mechanisms of PGPR in Enhancing Plant Resilience Under Salt Stress. This schematic diagram illustrates the multifaceted roles of PGPR in supporting
plant growth under salt stress conditions. (Left Panel): Salt stress, characterized by elevated Na+ and Cl⁻ levels, triggers an ethylene surge via the
S-adenosylmethionine (SAM) pathway, involving 1-aminocyclopropane-1-carboxylic acid (ACC) synthase and ACC oxidase. Persistent salt stress leads
to an overproduction of ethylene, which inhibits root development, but PGPR mitigate this stress through ACC deaminase activity, reducing ethylene
levels. PGPR enhance nutrient availability by solubilizing insoluble phosphorus (P) into soluble P via organic acid production. (Center Panel): PGPR
facilitate IAA (indole-3-acetic acid) biosynthesis, promoting root development and nutrient uptake. (Right Panel): Nitrogen-fixing PGPR convert
atmospheric nitrogen (N2) into ammonia (NH3), which is further assimilated by the plant. Additionally, siderophores produced by PGPR chelate Fe²+/
Fe³+, improving iron availability.
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TABLE 2 Supportive effects of PGPR on rice plant under salt stress conditions.

Salt

ficial effects on plant hosts References

t and root length, fresh and dry seedling weight,
lorophyll, endogenous salicylic acid

(Shahzad et al., 2017)

lipid peroxidation, H2O2, lipoxygenase.
Regulate H+ ATPase activity.
and root length, dry mass, antioxidant enzyme,

oids, plant vacuolar H+ ATPase activities

(Chatterjee et al., 2018)

t growth (shoot and root length, shoot and root
oot and root dry weight), chlorophyll, proline,

water content, K+, Ca2+.
ased ethylene, ROS, Na+, Na+/K+ ratio.
egulated genes ACO1, EREBP1, MAPK5.
es BADH1, NHX1, SOS1, Cam1-1, CuZn-SOD1,

CATb

(Jaemsaeng et al., 2018)

d Na+ accumulation, electrolyte leakage,
, MDA, electrolyte leakage, ACC accumulation.
and dry weight, chlorophyll, net photosynthesis
conductance, higher K+ levels, POX, SOD, GR.
genes OsHKT1, OsNHX1, OsPOX1, OsFeSOD,
OsGR2, OsWRKY1, OsDREB2A

(Ji et al., 2020;
Hussain et al., 2022)

photosynthesis rate, transpiration, stomatal
, filled grain, 1000 grain weight, grains/plant

(Shultana et al., 2020a)

dry weight, survival rate of seedlings. Improved
1000-grain weight, filled grains/panicle, effective
r, soluble sugar, chlorophyll, carotenoids, net
rates. Increased SOD, CAT, POD, K+/Na+ ratio.
MDA, REC, DAB, shoot and root Na+.

OsALAD, OsPSY3, OsatpE, OsSOS1, OsNHX1,
KT1, OsLEA3, OsRab16A, OsDREB2A

(Niu et al., 2022)
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Species

Salt
tolerance
testing

conditions
for PGPR

Plant growth promoting
traits

tolerance
testing

conditions
for rice
plants

Rice variety Bene

Bacillus
amyloliquefaciens

RWL-1

120 and 250
mM NaCl

ABA, aspartic acid, glutamic acid,
threonine, serine, glycine, methionine,
alanine, valine, tyrosine, phenylalanine,
isoleucine, lysine, arginine, and proline

120 and 250 mM
NaCl

Japonica rice (Oryza sativa
L. “Jin so
mi”)

Increased shoo
ch

Brevibacterium linens
RS16

1.7 M NaCl

H+-ATPase activity
Hydroxyectoine biosynthesis gene (ectD)
and hydroxyectoine accumulation in
RS16 under salt stress conditions, N

fixation
Production of ACC deaminase, IAA,

ammonia.

50 and 100 mM
NaCl

Salt-tolerant (FL478) and
salt-sensitive (IR29) rice

cultivars
(Oryza sativa L.)

Reduce

Increased shoo
caroten

Streptomyces sp.
GMKU 336

6% (w/v) NaCl
Phosphate solubilization, siderophore

and ACC deaminase production
150 mM NaCl

Thai jasmine rice Khao Dok
Mali 105 cultivar (Oryza
sativa L. cv. KDML105)

Increased plan
fresh weight s

Decre
Downr

Upregulated ge

Glutamicibacter sp.
YD01

5–10% (w/v)
NaCl

ACC deaminase, IAA production
100 and 200
mmol/L

Not mentioned

Reduc
ROS, ethylene
Increased fresh
rate, stomatal
Upregulated

Bacillus tequilensis,
Providencia stuartii

and Bacillus
aryabhattai

2 M NaCl IAA, exopolysaccharide production EC of 8 dS/m

Salt-tolerant variety BRRI
dhan67, moderate salt-

tolerant variety Putra-1, and
sult-susceptible variety

MR297

Increased
conductanc

Streptomyces
albidoflavus OsiLf-2

150 mmol/L
NaCl

Intracellular proline, ectoine, biofilm,
intracellular polysaccharides

150 mmol/L NaCl Oryza sativa cv. indica 9311

Increased plan
panicle length,

tiler numbe
photosynthetic

Reduce
Upregulated
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d
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TABLE 2 Continued

Salt
ce

ns
e

Rice variety Beneficial effects on plant hosts References

aCl

Salinity susceptible-variety
BRRI dhan29 and salinity-

tolerant variety
BINAdhan-10

Increased shoot and root length, shoot and root dry weight
(Mahmud-Ur-Rahman

et al., 2022)

aCl Not mentioned
Increased shoot and root length, chlorophyll, proline, antioxidant

enzymes (CAT, SOD, POD)
Reduced lipid peroxidation

(Behera et al., 2023)

mM
Nipponbare variety

Induced genes related to defense and stress response, ABA, JA,
nutrient transport

(Degon et al., 2023)

aCl Amal-Mana variety
Increased total chlorophylls, carotenoids, protein, N, biomass,

seed germination
(Dutta et al., 2023)

(w/v)
Binadhan-10 variety

Increased total length, fresh and dry weight, root length, shoot
length, chlorophyll, germination rate

(Mahmud et al., 2023)

and
m

RS86 variety

Increased survival rate, fresh and dry weight, root surface area
and length, chlorophyll, K+, Ca2+ levels, proline, CAT, POD,

SOD, chlorophylls and carotenoids.
Reduced lipid peroxidation, Na+, Cl–, Na+/K+ ratio

(Ren et al., 2024)
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Species

Salt
tolerance
testing

conditions
for PGPR

Plant growth promoting
traits

toleran
testing

conditio
for ric
plants

Brevibacterium
sediminis IBGE3C,
BTCoSo2, BTCoR2

12% (w/v) NaCl Not mentioned 1% (w/v) N

Streptomyces
griseoincarnatus

RB7AG
10% (w/v) NaCl

Produce siderophores, IAA, ammonia,
hydrogen cyanide (HCN)

6% (w/v) N

Azospirillum
brasilense Sp245

Not mentioned Not mentioned
100 and 200

NaCl

Bacillus sp. PnD Not mentioned
IAA, siderophore production
phosphate solubilization

1% (w/v) N

Agrobacterium
tumefaciens (B1),

Bacillus subtilis (B2),
Lysinibacillus
fusiformis (B3)

3.5% Not mentioned
1 and 1.5%

NaCl

Pseudomonas
promysalinigenes RL-

WG26
Not mentioned

Tryptophan, IAA, betaine, ACC
deaminase

1400 µS/cm
1600 µS/c
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glutathione-S-transferases (GST), and superoxide dismutases

(SOD) (Asif et al., 2023). Accordingly, genes encoding these

enzymes are often upregulated in salt-stressed plants. However,

PGPR treatment can have varied effects on these genes. A. brasilense

treatment suppressed most of these antioxidant genes in salt-

stressed rice roots, suggesting that A. brasilense inoculation

relieves stress and reduces the need for the plant’s own

antioxidant response (Degon et al . , 2023). Similarly,

Brevibacterium linens RS16 reduced plant antioxidant enzyme

activity and lipid peroxidation (Chatterjee et al., 2018).

Conversely, other PGPR strains, such as Glutamicibacter sp.

YD01, Bacillus siamensis BW, Pseudomonas promysalinigenes RL-

WG26, and Microbacterium ginsengiterrae S4, significantly

increased the activity of antioxidant enzymes (SOD, Peroxidase,

CAT, Ascorbate Peroxidase, and Glutathione Reducer) in rice

seedlings under salinity stress (Oubaha et al., 2024; Sarkar et al.,

2018; Ren et al., 2024; Chinachanta et al., 2023; Khan et al., 2021; Ji

et al., 2024). This response is often accompanied by the

upregulation of genes encoding these enzymes, including

OsPOX1, OsFeSOD, OsGR2, OsCATA, and OsAPX1 (Asif et al.,

2023; Sarkar et al., 2018; Khan et al., 2021). PGPR treatment also

alters the expression of salt-induced ABA and JA signaling genes in

rice roots (Degon et al., 2023). Other studies using Bacillus spp.,

Lysinibacillus fusiformis , Lysinibacillus sphaericus , and

Brevibacterium pityocampae also reported decreased ABA content

in PGPR-inoculated rice plants under salt stress (Khan et al., 2021;

Asif et al., 2023), implying that these PGPRs alleviate stress to the

extent that these hormone pathways are not strongly activated.

ACC deaminase-producing PGPRs, such as Glutamicibacter sp.

YD01 and P. promysalinigenes RL-WG26, reduce ACC content

and ethylene production. This, in turn, downregulates ethylene-

responsive genes (e.g., OsERF1) and alleviates growth inhibition

caused by excessive ethylene under stress (Ganie et al., 2022; Ji et al.,

2020; Ren et al., 2024). PGPRs also modulate genes involved in Na+

and P transport and Ca2+ signaling. Key genes like OsNHX1 (Na+/

H+ antiporter), SOS1 (Salt Overly Sensitive 1), and OsHKT1 (high-

affinity K+ transporter) are strongly regulated (Degon et al., 2023;

Ganie et al., 2022). Glutamicibacter sp. YD01 upregulates OsHKT1

expression (Ganie et al., 2022), while Brevibacterium linens RS16

induces vacuolar H+ ATPase activity (Chatterjee et al., 2018), which

helps to remove Na+ from the cytosol or maintaining a low Na+

concentration in plant cells. Bacillus spp. upregulates OsPIN1A

expression (Khan et al., 2021), which is involved in auxin efflux and

root development, thereby improving nutrient acquisition under

salt stress (Xu et al., 2005).
6.4 Transcription factors and proteins

Regarding TFs and other stress-related proteins, PGPRs influence

the expression of various TF families, including WRKY, DREB, ERF,

MYB, and bZIP, which are crucial regulators of plant stress responses

(Ali et al., 2022). Glutamicibacter sp. YD01 upregulates OsWRKY11

andOsDREB2A (Ji et al., 2020), andMicrobacterium ginsengiterrae S4

induces the upregulation of OsWRKY76 (Ji et al., 2024). Genes
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associated with abiotic stress tolerance, such as OsLEA3 and

OsRab16A, also show markedly higher expression levels in

Streptomyces albidoflavus OsiLf-2-inoculated rice under salt

conditions (Niu et al., 2022; Ganguly et al., 2012; Ganguly et al.,

2020). PGPR inoculation also leads to the upregulation of chaperone

proteins, like the 60 kDa chaperonin, HSP20, GroEL, and calreticulin,

which are crucial for refolding denatured proteins and maintaining

protein homeostasis under stress (Meng et al., 2024). Some defense-

related genes like chitinases also show altered expression patterns

with A. brasilense inoculation (Degon et al., 2023).
6.5 Exopolysaccharides as a physical
barrier

EPS produced by halotolerant PGPR (e.g., Bacillus cereus DB2,

Bacillus tequilensis, Bacillus siamensis BW, Enterobacter sp. JIV1)

can bind Na+ ions in the rhizosphere, making them less available for

plant uptake (Debapriya Choudhury et al., 2024; Oubaha et al.,

2024; Shultana et al., 2020b; Wang et al., 2022; Ning et al., 2024; Ji

et al., 2024). This physical barrier reduces the ionic stress on plant

roots, thereby influencing the plant’s gene expression response

to salinity.
7 Studies of PGPR on rice in Vietnam-
advances and limitations

7.1 Advances in PGPR studies in Vietnam

Studies on PGPR on rice have shown promising results in

Vietnam (Table 3). For example, a significant field study across 20

farms over four consecutive growing seasons evaluated BioGro 2, a

commercial biofertilizer containing Pseudomonas fluorescens,

Bacillus subtilis, Bacillus amyloliquefaciens, and Candida tropicalis

(Nguyen et al., 2017). While the product successfully replaced 23–

52% of N requirements, maintaining grain yields comparable to

conventional chemical fertilizers, its inability to substitute for P and

K demands represents a significant limitation. Furthermore, the

wide range of effectiveness (23–52%) and the notable influence of

timing and dosage on its performance highlight a critical need for

optimized, context-specific application strategies to ensure

consistent results and minimize risks for farmers. In response to

increasing saline intrusion in Vietnam’s coastal regions, such as Soc

Trang and Ben Tre, researchers have focused on isolating salt-

tolerant PGPR. A study in 2018 obtained 48 salt-tolerant isolates, of

which 22 produced indole-3-acetic acid (IAA) and 17 showed

potential for N fixation and PO4
3⁻ solubilization (Cuong et al.,

2020). Six of these isolates, from the genera Bacillus, Halobacillus,

Aeromonas, and Klebsiella, exhibited all three traits, indicating their

potential as multifunctional biofertilizers for saline-affected soils.

Purple nonsulfur bacteria (PNSB), like Rhodopseudomonas

palustris and Rhodopseudomonas harwoodiae, have also been

explored as biofertilizers and bioremediators. Studies have shown

they can enhance rice growth and grain yield while improving soil
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TABLE 3 Effects of PGPR on growth parameters, grain yield of some rice varieties and physio-chemical properties of soils.

Plant-
rice plants

Agronomic
benefits in the

field
References

icles per pot,
ight (33%), root
%), 1000-grain
grain yield (20%
n, 13% in Binh

Not mentioned (Trân Van et al., 2000)

lant height, root
tal biomass

Not mentioned (Đường et al., 2018)

s/m2, panicles/
ns/panicle, 1000-
eld
grains

Reduced 50% N fertilizer
use in rice production

(Huy and Hiệp, 2019)

ber of panicles,
t/panicle, and

Increased phosphatase
activity, pH

Decreased Al3+, Fe2+ in
soil

(Khuong et al., 2018)

ice stem
in rice plants

Immobilization of Al3+

and Fe2+ in acid sulfate
soil

(Xuân et al., 2019)

dry biomass,
yield
de stiffness

Increased soluble Si level
in soil

(Đường and Nghĩa, 2020)

/m2, Si level in
d

Increased soluble Si level
in soil

Increased NH4
+, NO3

-,
soluble P and K,
beneficial bacteria
densities in soil

(Nguyễn et al., 2021)

th, dry biomass
lings

Not mentioned (Giang et al., 2024)
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Bacterial trains promoting
traits

Field/Experiment conditions Beneficial effects on

Burkholderia vietnamiensis TVV75
N fixation

IAA and siderophore
production

- Hoc Mon District (acid sulfate soil); rice
variety OM5971.

- Nha Be District (saline acid sulfate soil);
local rice variety Nang Huong.

- Binh Chanh District (slightly acid sulfate
alluvial soil), local rice variety Nang Thom.

Increased number of pan
shoot height (13%), shoot we
weight (57%), leaf surface (8
weight, filled grain/pot, and
in Nha Be, 22% in Hoc Mo

Chanh)

Ochrobactrum ciceri TCM_39, Microbacterium
neimengense MCM_15, Klebsiella aerogenes
LCT_01, Olivibacter jilunii PTST_30 và

Citrobacter freundii RTTV_12

Si and P
solubilization

IAA production

Rice seedlings were grown in test tubes under
laboratory conditions
Hoagland + 0.3% NaCl

Rice variety LP5

Increased germination rate, p
length, root number, to

Burkholderia sp. PL9
Acinetobacter sp. GH1-1

N fixation
IAA production

Saline soil in rice-shrimp farming system, Soc
Trang Province

Salt-tolerant rice variety LP5

Increased plant height, tiller
m2, panicle length, filled grai

grain weight, yi
Decreased unfilled

Rhodopseudomonas palustris strains (TLS06,
VNW02, VNW64 and VNS89)

P solubilization

ASS collected from
Phung Hiep District, Hau Giang Province
and Hon Dat District, Kien Giang Province

ASS-tolerant rice variety OM5451

Increased plant height, num
panicle length, total spikele

yield.

Biofertilizers containing four acid-resistant
Rhodopseudomonas palustris VNW64,

VNS89, TLS06 and VNS02

Reduce Al3+ and Fe2+

toxicity in acid
sulfate soil (ASS)

IAA, siderophore and
5-Aminolevulinic

acid (ALA)
production

EPS secretion

ASS collected from
Phung Hiep district, Hau Giang province

under net house
ASS-tolerant rice variety OM5451

Increased N level in r
Reduced Al and Fe uptake

Ochrobactrum ciceri TCM_39, Microbacterium
neimengense MCM_15, Klebsiella aerogenes
LCT_01, Olivibacter jilunii PTST_30 and

Citrobacter freundii RTTV_12

Si and P
solubilization

IAA production

Saline soil in rice-shrimp farming system, Bac
Lieu Province

Salt-tolerant rice variety Mot Bui Do

Increased soluble Si level in
chlorophyll, and

Enhanced stem interno

Salt-tolerant microbial formulation NPISi: Bacillus
aquimaris KG6-3, Burkholderia sp. BL1-10, Bacillus

megaterium ST2-9, and Citrobacter freundii RTTV_12

N fixation
Si and P

solubilization
IAA production

Saline soil in rice-shrimp farming system, Bac
Lieu Province

Salt-tolerant rice variety Mot Bui Do

Increased plant height, tiller
rice stem, yiel

Pantoea sp. X4.1
Bacillus subtilis X8.2

N fixation
Rice seedlings were grown in test tubes under

laboratory conditions
Rice variety OM 4218

Increased root and stem leng
of 15-day-old seed
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fertility and reducing toxic Mn accumulation (Khuong et al., 2017;

2022). Field trials combining mixed PNSB with 75% of the

recommended NP fertilizer achieved yields comparable to those

obtained with 100% NP fertilizer. While these results are promising,

the reproducibility of these findings across Vietnam’s diverse acid

sulfate soils has not been comprehensively evaluated. The

effectiveness of these formulations may vary significantly with

regional soil chemistry and climatic conditions. Similarly, other

studies have investigated the growth-promoting effects of silicate-

solubilizing bacteria (SSB) and N-fixing strains like Sinorhizobium

fredii and Azospirillum spp (Điệp, 2005; Chiêu and Hiệp, 2010;

Đường et al., 2018). These studies have provided evidence that such

microbes can improve nutrient uptake, reduce fertilizer

dependency, and increase stress tolerance. The commercial

microbial formulation NPISi was shown to significantly increase

grain yield and soil health in a rice-shrimp farming model (Nguyễn

et al., 2021). However, a notable observation that the formulation

elevated K levels in rice despite the absence of K-solubilizing

bacteria highlights a critical knowledge gap regarding the full

range of microbial functions and their complex interactions in

the soil.
7.2 Limitations in existing studies and
further research directions

In summary, previous studies had some limitations as many

field experiment were conducted for only one cropping season

(Minh et al., 2020; Nguyễn et al., 2021). This drawback raises

concerns reproducibility across seasons and long-term impacts of

soil improvement products in salt-affected areas. Although the

focus of these studies on specific soil conditions, e.g., salt-affected

soil in a rice-shrimp farming system, salt-affected clay loam soil, and

acid sulfate soil, is understandable due to limitations of time and

budgets, their specificity may limit the generalizability of these

findings (Đường and Nghĩa, 2020; Huy and Hiệp, 2019; Xuân et al.,

2019). Therefore, future research should be systematically

conducted across multiple-season field trials and on a wider range

of soil types to thoroughly evaluate long-term effectiveness,

consistency and applicability of these PGPR-based approaches.

All studies provided initial characterization of the bacterial strains

(Đường et al., 2018;Đường and Nghĩa, 2020; Giang et al., 2024; Huy

and Hiệp, 2019; Minh et al., 2020; Nguyễn et al., 2021; Xuân et al.,

2019). However, these studies did not provide data regarding the

long-term consistency of these bacteria over generations. Moreover,

potential genetic drift and phenotypic changes over time and in

large-scale production were not mentioned. Therefore,

comprehensive studies on the genetics and beneficial traits’

stability over successive generations and production cycles are

critical to ensure their consistent performance and reliability as

biofertilizers for widespread applications. Additionally, studies on

the shelf-life and long-term storage stability of these biofertilizer

formulations under various conditions and extended periods should

be extensively carried out.
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8 Advances and challenges in salt-
tolerant rice breeding in the Mekong
Delta

Rice production in the Vietnamese Mekong Delta (VMD) faces

mounting challenges due to salinity intrusion, climate variability,

and infrastructural constraints. Breeding programs have responded

with the development of salt-tolerant rice varieties (STRVs), yet

limitations persist. Trade-offs in varietal traits—such as long growth

duration, low yield potential, and poor grain quality—remain

common among traditional and some modern STRVs like IR42

and Doc Phung (Quan and Lien 2023; Tin et al., 2021).

Additionally, hydrological models often fail to capture dynamic

changes in irrigation infrastructure and upstream dam operations,

complicating risk assessments (Wassmann et al., 2019). Farmer

adoption is further hindered by short warning times, limited seed

availability, and unequal access to information, particularly among

women and ethnic minorities (Paik et al., 2020). Despite these

constraints, breeding institutions such as the High Agricultural

Technology Research Institute (HATRI) (Lang et al., 2020) and the

Consortium for Unfavorable Rice Environments (CURE) (Paik

et al., 2020) have made notable progress. HATRI has developed

salt-tolerant varieties like HATRI 190, HATRI 192, and HATRI 170

using molecular markers and extensive field trials. Multi-location

testing confirmed high survival rates and yield stability under

salinity levels of 10–12 dS m−1. Grain quality traits—such as

aroma and amylose content—were prioritized, and farmer

participation through participatory variety selection (PVS)

ensured relevance and adoption across salinity-affected provinces.

CURE-related varieties, while less marketable, offer a low-cost

insurance option against severe yield losses in unprotected high-

salinity zones. Complementing institutional efforts, recent studies

have identified promising genetic resources among Vietnamese

landraces and crop wild relatives (CWRs). Most rice cultivars

tolerate salinity up to 3 dS m−1, with yield reductions of 10% at

3.5 dS m−1 and 50% at 7.5 dS m−1 (Quan & Vo, 2017). Among 41

landraces evaluated by Anh et al. (2016), 15 showed moderate to

high salinity tolerance, with varieties like Chanh Trui, Cuom Dang

2, and Nep Cuc performing comparably to Pokkali (Anh et al.,

2016). These landraces survived up to 25–26 days under extreme

salinity (16 dS m−1) and carried tolerance alleles linked to QTLs on

chromosome 4 (RM217 marker). Five traditional VMD varieties—

Nang Cha Rau, Nep Than, Trang Lun, Gie Hanh, and Nang Tich—

exhibited tolerance across all growth stages at 9.38 dS m−1.

Additionally, four CWR-derived lines (L180-3, L93-3, L71-3, and

L33-6) yielded over 6.5 tons ha−1 under saline conditions, with early

maturity and short plant height (Tin et al., 2021).

Marker-assisted selection (MAS) has facilitated the

introgression of Saltol QTL into elite Vietnamese varieties such as

AS996 and BT7 (Huyen et al., 2012; Linh et al., 2012). OM5451, a

salt-tolerant variety developed through MAS, has become one of the

most widely planted cultivars in the VMD, covering approximately

645,000 hectares across diverse soil types—including acid sulfate
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lands—in provinces like Long An, An Giang, Tien Giang, Đồng

Tháp, Tra Vinh, Soc Trang, Bac Lieu, and Ben Tre. Moving forward,

improving grain quality and market value of STRVs is essential to

enhance their desirability and adoption. Long-term studies should

evaluate varietal performance under varying salinity levels across

multiple seasons. Successful examples like CTUSM1—a mutant

cultivar with high amylose and protein content—demonstrate the

feasibility of integrating quality traits into salt-tolerant lines (Quan

& Vo, 2017).

For accurate warnings and predictions of salinity intrusion,

risk maps need to be continuously updated to correctly reflect

ongoing changes in land use and irrigation systems. Projections of

sea-level rise, precipitation data, and impact from upstream dams

should be incorporated to provide more comprehensive risk

assessment. Given the significant neighborhood effects on

farmer’s adoption, communication approaches should focus on

the community and village levels rather than individuals. Farmers

should be active contributors to rice variety development by

actively involved in participatory variety selection (PVS)

approach, addressing their preferences and specific needs (Tin

et al., 2021). Together, these efforts offer a promising path toward

sustainable rice production in the Mekong Delta’s increasingly

saline landscape.
9 Conclusion

The agricultural system in the VMD faces mounting challenges

due to both natural pressures—such as salinity intrusion, land

subsidence, and water scarcity—and anthropogenic activities

including upstream damming and unsustainable groundwater

extraction. While major research institutes like the International

Rice Research Institute (IRRI) and the Cuu Long Delta Rice

Research Institute (CLRRI) have made significant strides in

developing salt-tolerant rice varieties (STRVs), these genetic

solutions alone are insufficient to ensure long-term resilience.

Complementary strategies, particularly the application of

indigenous PGPR, offer promising avenues for enhancing rice

tolerance to abiotic stress. As demonstrated by multiple studies

conducted in Vietnam, locally adapted PGPR strains exhibit strong

compatibility with native soil conditions, climate, and rice

genotypes—making them ideal candidates for biofertilizer

development tailored to the VMD. However, several limitations

persist. Advanced technologies such as omics-based approaches

remain underutilized in Vietnamese rice research, restricting deeper

insights into the molecular and metabolic mechanisms of salt

tolerance. Additionally, many valuable studies by Vietnamese

scientists are published in local-language journals, limiting their

visibility and integration into global scientific discourse. These

drawbacks must be urgently addressed to enable farmers in the

VMD to improve their livelihoods through the adoption of high-

quality salt-tolerant rice varieties. Furthermore, cutting-edge

technologies should be integrated into future PGPR research to

uncover the underlying mechanisms of rice–microbe interactions

under salinity stress in this critical region.
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