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Deep learning-enabled
hyperspectral imaging
for high-accuracy non-
destructive quantification
of nutritional components
in multi-variety apples
Hanhan Zhai1, Pan Xie1, Xin Xie2 and Shuai Shuai Sha1*

1School of Advanced Agricultural Sciences, Kashi University, Kashi, China, 2Agricultural Science
Institute, 3rd Division of Xinjiang Production and Construction Corps, Tumxuk, China
Conventional methods for quantifying soluble solids content (SSC), vitamin C

(VC), and soluble protein (SP) levels in apples are destructive and unsuitable for

large-scale postharvest quality monitoring. This study aimed to develop a

convolutional neural network-bidirectional gated recurrent unit-attention

(CNN-BiGRU-Attention) model based on hyperspectral imaging (HSI) to

achieve high-precision non-destructive quantification of VC, SSC, and SP in

apples. The model was established using six apple varieties from diverse

geographical origins, leveraging hyperspectral data spanning 400–1000 nm

with 512 spectral bands. The model framework demonstrated superior

performance with raw hyperspectral cube inputs. Optimal predictions for VC

and SSC were achieved using full-spectrum modeling (test set: R²VC=0.891,

R²SSC=0.807, RPD VC=3.117, RPD SSC=2.337). For SP quantification, feature

wavelength selection (403, 430, 551, 617, and 846 nm) via successive

projections algorithm (SPA) yielded R²=0.848, RPD=2.642, which aligned with

the N-H/C-H vibrational overtones and aromatic amino acid absorption bands.

Cross-year validation of 2024 hyperspectral dataset confirmed the robustness of

the model, with R2 values of 0.829, 0.779, and 0.835 (RPD>2.000) for VC, SSC,

and SP, respectively. Taken together, this study resolves high-dimensional data

redundancy through hybrid architectures and offers a deployable solution for

multi-variety fruit quality monitoring.
KEYWORDS

hyperspectral imaging, deep learning, non-destructive detection, apple quality
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1 Introduction

Apple (Malus domestica), a globally cultivated pome fruit, is

highly valued for its rich nutritional composition and distinctive

flavor profile, which makes it a crucial agricultural commodity (Hu Z.

et al., 2025). The nutritional quality and sensory characteristics of

apples are primarily determined by their soluble solids content (SSC),

ascorbic acid (vitamin C, VC), and soluble protein (SP) levels (Hu

et al., 2024). Conventional methods for quantifying these parameters

include refractometry for SSC (Vega-Castellote et al., 2024),

high-performance liquid chromatography (HPLC) or 2,6-

dichlorophenolindophenol (DCPIP) titration for VC (Hao et al.,

2025), and the Bradford colorimetric assay for SP (Chen et al.,

2025). However, these methods are destructive, labor-intensive, and

unsuitable for large-scale, continuous postharvest quality monitoring.

Hyperspectral imaging (HSI) is an intelligent non-destructive

detection method that has emerged as a promising technique in

recent years, with advantages of rapid, cost-effective, and non-

invasive analysis (Huang et al., 2025). The HSI technique

integrates spatial-spectral signatures with chemometric modeling

to facilitate simultaneous prediction of multiple quality metrics, and

it has been successfully applied to apples (Razavi et al., 2025b),

bananas (Sripaurya et al., 2021), citrus (Jiang et al., 2025), peaches

(Chen et al., 2024), and cherries (Zheng et al., 2025). Despite these

advantages, Bai et al. demonstrated that HSI models suffer from

generalization decay when applied across apple varieties,

geographical origins, or growing seasons due to environmental

heterogeneity (Bai et al., 2019).

Traditional HSI modeling relies on partial least squares

regression (PLSR) and support vector machines (SVM) (Zeng

et al., 2024; Günaydın et al., 2025; Razavi et al., 2025a), which

require extensive spectral preprocessing and manual feature

selection. These methods lack adaptive learning capabilities and

are inadequate for high-dimensional spectral-spatial data. Deep

learning (DL) architectures, particularly convolutional neural

networks (CNNs), have revolutionized chemometrics, as they

enable end-to-end extraction of hierarchical non-linear features

from raw hyperspectral cubes and eliminate dependency on manual

preprocessing (Mansuri et al., 2022; Yuan et al., 2025). Comparative

studies have confirmed that CNNs are superior to linear methods in

complex spectral-spatial decoding tasks (Kaur et al., 2024; Sun et al.,

2025; Wang et al., 2025).

However, CNNs primarily capture local features and are less

effective at modeling the sequential nature of spectral data, which

often exhibit long-range dependencies along the wavelength axis.

To address this, we further introduce Bidirectional Gated Recurrent

Units (BiGRUs) to enhance the model’s ability to learn contextual

spectral information in both forward and backward directions

(Feng et al., 2023). BiGRUs are particularly suitable for

hyperspectral applications because they effectively capture

temporal relationships across spectral bands while maintaining a
Abbreviations: BiGRU, Bidirectional gated recurrent units; CNN, Convolutional

neural network; TCN-BiGRU, Temporal convolutional network-BiGRU; HIS,

Hyperspectral imaging; SPA, Successive projections algorithm.
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lightweight structure. Compared with traditional recurrent

networks like LSTMs, BiGRUs have fewer parameters, faster

convergence, and are more computationally efficient, which

makes them advantageous for applications with limited sample

sizes and real-time processing requirements. These characteristics

make BiGRUs not just a convenient choice, but a functionally

appropriate one for modeling spectral sequences in agricultural

products. For instance, Jiao et al. reported a 97.54% accuracy in

maize moisture prediction using a temporal convolutional network-

BiGRU (TCN-BiGRU) hybrid model, which outperformed

standalone CNNs (Yang et al., 2025). Li et al. achieved a 99.21%

classification accuracy for Panax quinquefolius origin tracing (Li

et al., 2025), and Hu et al. improved rice yield prediction by

combining CNNs with spectral attention (Hu T. et al., 2025).

Although existing studies predominantly focused on single-origin

or single-variety predictions (Li et al., 2018; Fan et al., 2019; Guo

et al., 2023), integrated frameworks that address cultivar,

geographical, and seasonal variability remain underexplored.

Thus, robust, universally applicable models need to be developed

to advance the HSI technology in practical agricultural settings.

This study leveraged HSI to acquire hyperspectral data from six

apple varieties cultivated across diverse geographical regions in

2023. We developed CNN, CNN-BiGRU, and CNN-BiGRU-

Attention models to predict VC, SSC, and SP levels using the

successive projections algorithm (SPA) for feature wavelength

selection. External validation using a 2024 dataset confirmed the

robustness of the model. The developed framework provides a

theoretical and technical foundation for rapid, nondestructive

apple quality assessment to address critical challenges in multi-

variety and cross-regional applications.
2 Materials and methods

2.1 Research procedures

Figure 1 illustrates the schematic workflow of the proposed deep

learning-based apple quality prediction system, which comprises

four core phases. First, in the data acquisition stage, hyperspectral

images of apples are collected using a hyperspectral imaging system,

followed by white reference correction. Regions of interest (ROIs)

are extracted through a series of image processing steps, including

image enhancement, binary segmentation, connected component

analysis, contour extraction, B-spline fitting, and smoothing, to

ensure accurate retrieval of spectral reflectance. Second, in the

feature selection phase, Savitzky–Golay (SG) preprocessing is

combined with the Successive Projections Algorithm (SPA) to

extract key spectral bands that are most informative for quality

prediction. Third, during model construction, three deep learning

models—CNN, CNN-BiGRU, and CNN-BiGRU-Attention—are

developed to predict VC SSC and SP based on spectral

reflectance. Finally, in the model training and validation phase,

data collected in 2023 is used for model training, while data from

2024 serves as an independent test set to evaluate model robustness

and generalization performance.
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2.2 Experimental materials

The apple sample library constructed in this study encompasses

three major Chinese production regions (Xinjiang; North China;

Jiaodong Peninsula) and comprises 144 samples from six

representative cultivars to integrate dual heterogeneity in

geographical origin and genetic resources. The spatiotemporally

stratified design included the following three geographical

indication cultivars: Xinjiang Aksu Red Fuji (AKS) (41.17°N,

80.26°E; n = 16), Hebei Shunping Red Fuji (SPFS) (38.85°N,

114.18°E; n = 16), and Shandong Yantai Red Fuji (YTFS) (37.47°

N, 121.45°E; n = 16), in addition to three non-GI cultivars—Cherry

Apple (YT), n = 16; Ralls Janet (GG), n = 16; and Huaniu Apple

(HN), n = 16. The samples were collected in the 2023–2024 growing

seasons, with 96 baseline samples collected in 2023 and 48

additional validation samples in 2024. This framework effectively

balanced cultivar genetic backgrounds, regional climatic

characteristics, and harvest timing variables to provide robust

data support for generalizable spectral modeling: the 2023 dataset

was partitioned into training and testing sets (7:3 ratio), and the

2024 dataset served as an external validation set.
2.3 Physiological parameter determination

2.3.1 VC quantification
A 1.0 g apple sample was homogenized in a mortar with 5 mL of

2% oxalic acid solution. The homogenate was quantitatively
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transferred to a 10 mL volumetric flask, diluted to the mark

volume with oxalic acid solution, and then filtered. A 10 mL

aliquot of ascorbic acid standard solution (0.1 mg/mL) was

titrated with standardized 2,6- DCPIP solution until it reached a

persistent rose-red endpoint (15-second stability), with dye

consumption recorded for titrant standardization. Thereafter, 5

mL of the sample filtrate was similarly titrated, and VC content

was calculated based on dye consumption (Hao et al., 2025).

2.3.2 SSC measurement
Following NY/T 2637-2014 (Fruit and Vegetable Products -

Determination of Soluble Solids by Refractometry), three 2-mm-

thick flesh slices were stacked (total thickness: 3 mm) and juiced

using a hydraulic press (5 kN). The filtered juice (80-mesh sieve)

was analyzed in triplicate using a PR-101a digital refractometer

(Atago Co., Japan), with mean values from triplicate measurements

(both sides of each slice) recorded as final SSC values (Vega-

Castellote et al., 2024).

2.3.3 SP assay
A 0.5 g sample was homogenized with 2.0 mL distilled water

and centrifuged (4,000 ×g, 10 min). The supernatant was diluted

(0.20 mL supernatant + 0.80 mL water) and allowed to react with

5.00 mL Coomassie Brilliant Blue G-250 staining solution for 2 min.

The absorbance at 595 nm was measured using a UV-1800

spectrophotometer (Shimadzu, China), with SP concentration

determined via a bovine serum albumin standard curve (Chen

et al., 2025).
FIGURE 1

Flowchart of the experimental process. (a): Diagram of the data acquisition setup and hyperspectral image processing, (b): Data preprocessing, (c):
Deep learning model, (d): Measurement indicators and data sources.
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2.4 Hyperspectral imaging acquisition and
spectral data processing

2.4.1 Hyperspectral imaging system
Hyperspectral data acquisition was conducted using a push-

broom hyperspectral imaging system (HG101, Nakagawa

Photonics, China), which covers a spectral range of 395–1008 nm

with a spectral resolution of 2.8 nm and acquires 360 contiguous

bands. The imaging system was equipped with dual light source

irradiation modules—two 150 W fiber-optic halogen lamps were

symmetrically positioned on both sides of the sample stage at a

height of 250 mm to form a 45° irradiation angle with the sample

plane to ensure over 95% surface illumination uniformity. A 30-

minute preheating procedure was strictly implemented prior to the

experiments to ensure that the detector reached thermal

equilibrium within the 395–1008 nm wavelength range and to

minimize dark current noise interference. To eliminate external

factors and instrument effects, raw hyperspectral images were

corrected using a white reference panel before spectral extraction.

2.4.2 Spectral data extraction and preprocessing
As shown in (Figure 1a), after white reference correction,

individual apple regions were segmented using a thresholding-

based method to obtain complete hyperspectral images. Spectral

reflectance data across 360 bands were then extracted, and the

average reflectance within the selected ROIs was calculated as the

original spectral data for each sample, yielding corresponding

wavelength-reflectance curves. To improve the accuracy of region

extraction, a method was adopted that integrates spectral difference

information with B-spline-based contour modeling for precise

target segmentation and fitting in hyperspectral images. This

approach offers several advantages: it enhances target boundaries

by leveraging spectral contrast; it automatically selects the largest

connected component, ensuring high robustness; it improves the

geometric continuity and smoothness of contours using B-spline

fitting; and it provides clear and intuitive visual outputs for further

analysis. This preprocessing workflow enables accurate and

interpretable target extraction, providing high-quality input data

for subsequent feature selection and model construction.

2.4.3 Spectral data preprocessing
Spectral preprocessing, a critical data optimization method in

chemometrics, effectively removes interference signals that are

unrelated to target variables while enhancing valid spectral

features (Leoni et al., 2024; E et al., 2025). In this study, SG

smoothing was applied as the sole preprocessing method to

suppress random spectral noise and preserve local signal trends.

Unlike traditional chemometric models that heavily rely on spectral

correction techniques such as Standard Normal Variate and

Multiplicative Scatter Correction, the proposed deep learning

architectures (CNN, CNN-BiGRU, and CNN-BiGRU-Attention)

incorporate internal normalization mechanisms (e.g., batch

normalization and weight adjustment through backpropagation).

Therefore, additional scatter correction methods were not applied

to avoid redundant normalization and potential information loss.
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The SG convolution smoothing method, based on the principle of

locally weighted least squares, suppresses high-frequency noise by

constructing polynomial fitting models within sliding temporal

windows. This method adaptively eliminates random noise

interference in spectral data through parameterized adjustments

of window width and polynomial order while preserving original

signal waveform characteristics (Zhang et al., 2024).

2.4.4 Feature extraction
In spectral detection, the high dimensionality and complexity of

acquired data often lead to information redundancy or model

overfitting (Wang et al., 2020). To address this issue, the SPA was

introduced for feature wavelength selection. SPA is an efficient

feature wavelength screening method that helps to extract

informative and non-redundant spectral bands from high-

dimensional data. The algorithm employs an iterative strategy,

i.e., initial selection of wavelength with the highest variance in the

spectral matrix to prioritize the most informative regions, followed

by orthogonal projection calculations of the remaining wavelengths

in the selected band space to identify wavelengths with maximum

projection values for inclusion in the feature set (Yu et al., 2025). In

this study, SPA was chosen primarily based on its proven

effectiveness in similar hyperspectral modeling tasks, as well as its

computational efficiency and ability to produce compact,

interpretable feature subsets suitable for deep learning model

input (Zhao et al., 2022; Vallese et al., 2024).

Specifically, the SPA procedure in this study was executed in

three phases to ensure stability and reproducibility. In Phase 1, all

spectral variables were standardized to zero mean and unit variance.

Each variable was used as an initial projection point, and candidate

subsets were generated via orthogonal projections, with the number

of iterations ranging from a minimum of 5 to a maximum of 360

wavelengths. In Phase 2, all subsets were evaluated using the

Prediction Residual Error Sum of Squares (PRESS) criterion

based on an independent validation set. The optimal subset was

determined by the combination that yielded the lowest PRESS

value. In Phase 3, variables were ranked according to a relevance

index derived from regression coefficients and variable standard

deviations, and a final subset was selected using an F-test (a = 0.25)

to ensure that additional variables did not significantly increase

prediction error.
2.5 Model construction

This study employed the CNN, CNN+BiGRU, and CNN

+BiGRU+Attention models to predict apple VC, SSC, and SP

levels. Raw spectral and preprocessed data were used as input

parameters to establish quantitative prediction models. Full-

spectrum and feature-selected bands served as independent

variables, whereas VC, SSC, and SP served as dependent variables.

The CNN model effectively identifies local spatial-spectral

features through convolutional and pooling operations. The input

spectral vector is reshaped into a pseudo-image of size [n × 1 × 1],

where n is the number of selected wavelengths. The network
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consists of two convolutional layers with kernel sizes of [3×1] and

filter sizes of 8 and 32, each followed by batch normalization, ReLU

activation, and [2×1] max pooling. A dropout layer with a rate of 0.4

is applied for regularization. The output is then passed through two

fully connected layers (with 32 and 1 neurons) and a regression

layer for final prediction. This model enables autonomous feature

learning and captures local non-linear structures in the spectral

domain, as shown in (Figure 2a).

The CNN-BiGRU model enhances the CNN by incorporating a

BiGRU to capture global dependencies and sequential patterns in

the spectral data. The architecture includes two parallel branches: a

CNN stream with a convolutional layer (16 filters, [3×1] kernel),

batch normalization, ReLU, [3×3] max pooling, flattening, and a

fully connected layer with 25 neurons; and a BiGRU stream with

two GRU layers (35 hidden units each), processing both the original

and reversed sequences via a flip layer. Outputs from both branches

are concatenated and passed to a regression layer. The bidirectional

design enables simultaneous analysis of short-to-long and long-to-

short wavelength relationships, revealing interactions across

absorption peaks and baseline drift, as illustrated in (Figure 2b).

To further strengthen spectral feature representation, the CNN-

BiGRU-Attention model incorporates a self-attention mechanism

following the feature concatenation step. A single-head self-

attention layer (key and query dimensions = 50) is employed

using dot-product attention to dynamically assign weights to

spectral components. This integration of 1D convolution,

bidirectional temporal modeling, and adaptive attention enables

the network to focus on the most informative spectral regions while

suppressing noise, as shown in (Figure 2c).

All models were trained using the Adam optimizer. The CNN

model was trained for 500 epochs with an initial learning rate of

0.001 and an L2 regularization factor of 0.01. For the more complex

CNN-BiGRU and CNN-BiGRU-Attention models, training was
Frontiers in Plant Science 05
extended to 1000 epochs with a higher initial learning rate of

0.01. A learning rate decay strategy was applied, reducing the rate

by a factor of 0.1 after 600–800 epochs.

These training configurations were carefully tailored to each

model’s structural complexity and convergence behavior to achieve

optimal performance and generalization. For instance, the CNN

model, with its relatively shallow architecture and fewer parameters,

converged effectively under a moderate learning rate (0.001) and

shorter training duration (500 epochs). In contrast, the CNN-

BiGRU and CNN-BiGRU-Attention models, which introduce

sequential learning and attention mechanisms, possess deeper

structures and higher parameter counts. These models required a

larger initial learning rate (0.01) and longer training (1000 epochs)

to fully converge. A learning rate decay was introduced after epoch

600 to stabilize optimization and prevent overshooting in the fine-

tuning phase. These settings were determined through preliminary

trials and empirical adjustments, balancing training speed,

overfitting risk, and predictive accuracy.
2.6 Model evaluation metrics

Through the screening of spectral regression models for quantitative

prediction of apple VC, SSC, and SP, a multidimensional evaluation

framework was established to balance numerical accuracy and model

robustness (Cui et al., 2025). R² measures the proportion of variance in

the reference data explained by the model. A value closer to 1 indicates

better fit. The equation is as follows, as shown in (Equation 1):

R2 = 1 −
o
n

i=1
(yi − ŷ i)

2

o
n

i=1
(yi − �y)2

(1)
FIGURE 2

Structural diagrams of the three deep learning models. The input format is n × 1 × 1, where n denotes the number of input spectral bands, which
varies depending on whether full-spectrum data or SPA-selected features are used: (a) CNN, (b) CNN+BiGRU, and (c) CNN+BiGRU+Attention.
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where yi is the actual measured sample value, y
⌢
i is the predicted

sample value, �y is the mean actual measured sample value, and n is

the number of samples in the set.

The root mean squared error (RMSE) evaluates the average

magnitude of prediction errors. Lower RMSE indicates higher

accuracy. It is mathematically expressed as follows, as shown in

(Equation 2):

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
no

n

i=1
(yi − ŷ i)

2

s
(2)

where yi is the actual measured sample value, y
⌢
i is the predicted

sample value, and n is the number of samples in the set.

RPD is the ratio of the standard deviation of reference values to

the RMSE. It reflects the robustness and generalization of the

model. Generally, RPD > 2.0 indicates good predictive

performance, while RPD ≤ 1.4 implies weak prediction (Zhang

et al., 2025). RPD is expressed as shown in (Equation 3):

RPD =
SD

RMSE
(3)

where SD denotes the standard deviation of measured values.
2.7 Statistical analysis

One-way ANOVA was conducted using SPSS software (v23.0;

SPSS Inc., Chicago, USA), and significant differences between

treatments were assessed with Duncan’s multiple range test

(p< 0.05).
3 Results and discussion

3.1 Analysis

A systematic analysis of VC, SSC, and SP levels was conducted

across 96 apple samples collected in 2023 (Figure 3). The results

revealed significant varietal differences: YT had the highest VC

content (3.27 ± 0.67 mg/100 g, p< 0.05), whereas GG had the lowest

VC levels (1.08 ± 0.38 mg/100 g). No significant differences in SSC
Frontiers in Plant Science 06
levels were observed among most of the cultivars (p > 0.05), except

for YTHFS and SPHFS. Notably, HN apples demonstrated 27–40%

higher SP content (0.51 ± 0.08 mg/g, p< 0.05) than the

other varieties.

Geographical analysis indicated that AKS had significantly

higher levels of both VC (2.82 ± 0.39 mg/100 g) and SSC (11.92

± 1.34%) compared to YTHFS (VC: 2.00 ± 0.62 mg/100 g; SSC: 8.48

± 1.48%) and SPHFS (VC: 1.51 ± 0.44 mg/100 g; SSC: 9.80 ± 1.23%)

(p< 0.05). This could be likely attributable to distinct ecological

factors such as diurnal temperature variation and prolonged annual

sunshine duration in Aksu (Bai et al., 2019). No significant SP

differences were observed among the Red Fuji apples.

The broad distribution of chemical indices across four cultivars

and three agroecological zones established essential chemical

gradients and biological diversity for hyperspectral modeling, with

VC levels at 1.08–3.27 mg/100 g, SSC at 8.48–11.92%, and SP levels

at 0.32–0.51 mg/g.

(Figure 4a) presents the visible-near infrared (Vis-NIR) spectral

reflectance characteristics of six apple cultivars from different

geographical origins, with the horizontal axis representing the

wavelength range (395–1008 nm) and vertical axis indicating the

reflectance intensity. Spectral analysis revealed that HN apples

exhibited significantly lower reflectance in the 400–600 nm visible

range than the other cultivars, probably due to their deeper epidermal

pigment deposition. Although the reflectance values of other cultivars

showed minor fluctuations, their overall spectral curves maintained

similar morphological trends, which is consistent with the findings

reported by Wang et al (Wang et al., 2024).

The observed spectral variations among different cultivars were

closely associated with their intrinsic physiological properties.

Distinct reflectance differences in the 400–700 nm range were

particularly noticeable across geographical origins and cultivars,

probably due to the variations in pigment composition, especially

anthocyanin and chlorophyll contents. As demonstrated by Mark

et al (Merzlyak et al., 2003), anthocyanins exhibit maximum

sensitivity in the 400–675 nm spectral region, with elevated

concentrations corresponding to reduced reflectance; our

experimental data corroborated this finding. The reflectance

variation at approximately 680 nm primarily originated from

chlorophyll content differences, whereas the spectral fluctuation at
FIGURE 3

Internal quality parameters of apple samples: (a) VC; (b) SSC; (c) SP. SSC, soluble solids content; VC, ascorbic acid (vitamin C); SP, soluble protein.
Significance analysis: Different letters (a, b, c, d, e) indicate statistically significant differences between groups (p < 0.05).
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970 nm was associated with moisture variations in apple tissues,

which correspond to the third overtone absorption band of O-H

stretching vibrations.

(Figure 4b) displays the SG-smoothed spectra after pretreatment

and show significantly enhanced spectral smoothness compared to

the original data. This observation aligns with the results of Hu et al

(Hu Z. et al., 2025).
3.2 Feature wavelength extraction

The narrow intervals between adjacent bands in raw spectral

data typically cause substantial data redundancy (Zhu et al., 2025).

To address this issue, the SPA was employed for feature wavelength

extraction. As summarized in Table 1, the selected feature

wavelengths spanned the entire wave number range. Specifically,

the SPA identified 5, 33, and 5 spectral variables as characteristic
Frontiers in Plant Science 07
wavelengths for VC, SSC, and SP parameters in raw data, but 13, 11,

and 5 variables were selected for the corresponding parameters in

pretreated data. This feature extraction approach not only retains

critical spectral information but also effectively mitigates inter-

variable correlations.

Based on previous spectral studies, many of the selected

wavelengths (e.g., 679, 700, 757 nm) correspond to known absorption

features of O–H and C–H groups (Magwaza et al., 2012), which are

associated with the presence of sugars, organic acids, and polyphenols in

apples (Shao and He, 2007). In particular, regions near 700–950 nm

have been widely reported to correlate with SSC and vitamin C content,

as they reflect the third overtone of O–H stretching and water

absorption characteristics (Abbas et al., 2017). Many of the selected

wavelengths for SP prediction (e.g., 403, 430, 617, 846, 974, and 994 nm)

correspond to characteristic absorption bands of O–H, C–H, and N–H

bonds, which are commonly found in soluble proteins and their

constituent amino acids (Zhang et al., 2019; Fu et al., 2022). The

visible bands (400–430 nm) may reflect the interaction of proteins with

chromophores or pigments (Fan et al., 2020; Zhang et al., 2023). The red

region (550–660 nm) has been associated with amino acid signatures,

while the near-infrared bands around 846 nm and especially 974 and

994 nm are related to overtone absorptions of O–H andN–H stretching

vibrations, which are typical in protein structures (Luo et al., 2022).

In this study, the SPA was selected for feature wavelength

extraction due to its efficiency in reducing multicollinearity and

its low computational cost. While SPA has proven effective for

selecting a compact subset of informative variables, alternative

approaches such as Genetic Algorithms (Zhang et al., 2023),

Random Forest (Shi et al., 2025)-based importance ranking, or

Competitive Adaptive Reweighted Sampling (Huang et al., 2025)

have also shown promise in hyperspectral feature selection tasks.

These methods offer potential advantages in capturing global or

nonlinear relationships but may require extensive parameter tuning

or computational resources. Future research could investigate the

comparative effectiveness of these approaches or explore hybrid

strategies to enhance model performance and interpretability.
TABLE 1 Extraction results of feature-selected parameters.

Preprocessing Parameters
Characteristic
wavelengths (nm)

RAW VC 409, 577, 679, 700, 757

SG VC
395, 398, 409, 423, 481, 506, 585,
617, 651, 700, 751, 777, 1008

RAW SSC

397, 398, 400, 403, 405, 406, 411,
412, 416, 419, 422, 430, 468, 504,
519, 585, 615, 679, 690, 702, 719,
793, 846, 860, 874, 928, 949, 965,
974, 994, 1001, 1003, 1008

SG SSC
395, 400, 423, 539, 591, 632, 679,
828, 846, 925, 1008

RAW SP 403, 430, 551, 617, 846

SG SP 400, 641, 662, 974, 994
SSC, soluble solids content; VC, ascorbic acid (vitamin C); SP, soluble protein; SG,
Savitzky-Golay.
FIGURE 4

Spectral reflectance and preprocessing reflectance. (a) The raw reflectance (b) SG smoothing preprocessing.
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3.3 Analysis of modeling results

A systematic evaluation was conducted to assess the predictive

performance of CNN, CNN+BiGRU, and CNN+BiGRU+Attention

across four spectral input configurations (RAW, SG, SPA + RAW, SPA

+ SG) for apple VC, SSC, and SP parameters, as comprehensively

illustrated in Figure 5. The hybrid CNN+BiGRU+Attention

architecture demonstrated superior modeling capabilities compared

to the CNN alone. For vitamin C prediction, it achieved training and

testing set R² values of 0.899 and 0.891, respectively, with RPD values

consistently exceeding 3.100. In SSC quantification, reliable

performance was maintained (testing set R² = 0.807, RPD = 2.337).

Notably, the model attained enhanced prediction accuracy for soluble

protein (testing set R² = 0.848, RPD = 2.673) through effective spectral

feature integration. This performance enhancement was due to its

multimodal feature extraction mechanism—the BiGRU establishes

long-range contextual dependencies along forward-reverse

wavelength dimensions, whereas the attention mechanism

dynamically amplifies feature wavelengths critical to quality

parameters through trainable weight matrices, ultimately forming

biochemically interpretable feature representations (Zhao et al., 2025).

Distinct sensitivity patterns for spectral input configurations

were observed among quality parameters. Optimal models for VC

and SSC predictions utilized raw spectral inputs (RAW+CNN

+BiGRU+Attention), confirming the autonomous feature

extraction capability of deep networks through hierarchical

nonlinear transformations (Pan et al., 2024). In contrast, SP

prediction required SPA feature selection (SPA+RAW+CNN

+BiGRU+Attention), wherein optimized input dimensionality

facilitates focused modeling on characteristic absorption bands at

403, 430, 551, 617, and 846 nm to effectively mitigate noise

interference in high-dimensional data, which is consistent with

the findings of Xu et al (Xu et al., 2020). Raw spectral inputs

systematically outperformed SG counterparts across all optimal

models, contrasting conventional spectral analysis paradigms.

This phenomenon suggests that deep neural networks preserve

intricate non-linear correlations in raw data through adaptive
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feature learning, whereas excessive smoothing may disrupt

dynamic coupling relationships between spectral responses and

protein contents (Merzlyak et al., 2003).
3.4 External validation

To evaluate the generalization robustness of optimal models,

a cross-year and cross-cultivar external validation protocol was

implemented. The CNN+BiGRU+Attention architecture, initially

trained on the 2023 dataset, was validated using an independent

2024 sample set (n = 48) comprising four cultivars (YT, GG, HN,

and Red Fuji) and three geographical origins (Red Fuji apples

from Shunping County, Hebei Province; Yantai, Shandong

Province; and Aksu, Xinjiang Uygur Autonomous Region, n = 8

each). As shown in Figure 6, the external validation yielded robust

performance metrics: VC (R²= 0.829, RPD = 2.447), SSC (R²=

0.779, RPD = 2.150), and SP (R²= 0.835, RPD = 2.490).

Comparative analysis revealed minor reduction in performance

compared to previous test set performance: VC exhibited a 6.95%

reduction in R² and 21.49% reduction in RPD, SSC showed 3.46%

R² and 8.00% RPD reductions, and SP demonstrated minimal

degradation (1.53% R² and 5.75% RPD reductions). Notably, all

the RPD values exceeded the benchmark threshold of 2.00

(Figure 6), confirming that the model retained stable spectral-

component mapping relationships across different years and its

cross-year industrial applicability.

The CNN-BiGRU-Attention model proposed in this study

provides an innovative framework for non-destructive detection

of apple quality. Future research can deepen its industrial

applications from multiple dimensions. First, interpretable deep

learning frameworks (e.g., SHAP and LIME) should be introduced

to quantitatively analyze the contribution rates of different spectral

bands to predict VC, SSC, and SP, and characteristic absorption

peaks that are directly related to chemical components should be

identified. This will enhance the transparency of model decisions

and provide spectral band optimization guidance for portable
FIGURE 5

Comparative evaluation metrics of CNN, CNN-BiGRU, and CNN-BiGRU-Attention models with varied input modalities: (a) VC, (b) SSC, and (c) SP.
SSC, soluble solids content; VC, ascorbic acid (vitamin C); SP, soluble protein.
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sensor design. Second, multimodal data on apple growth

environments should be integrated by combining spectral data

with temperature, humidity, light, and soil nutrient parameters to

establish “environment-quality” relationships, and align

environmental temporal features with spectral responses through

cross-modal attention mechanisms. Third, a lightweight apple

quality grading system should be developed by compressing

model scale through neural network pruning and quantization-

aware training techniques.
4 Conclusions

This study established a CNN-BiGRU-Attention deep learning

framework based on Vis-NIR spectroscopy to achieve high-

accuracy prediction of apple quality parameters (VC, SSC, and

SP) across six cultivars and geographical origins. By synergistically

integrating the local feature extraction capability of CNN, long-

range wavelength dependency modeling via BiGRU, and dynamic
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enhancement of critical spectral regions through attention

mechanisms, the model demonstrated exceptional performance

with raw spectral inputs. Optimal full-spectrum predictions were

achieved for VC and SSC, but SP quantification required

supplementary SPA to focus on chemically informative bands

(403, 430, 551, 617, and 846 nm). A comparative analysis

revealed that direct modeling of raw spectra significantly

improved non-linear pattern recognition efficiency compared to

that of SG data, suggesting the autonomous feature optimization

capacity of deep architectures.

Cross-year external validation using an independent 2024

dataset (n = 48) confirmed model robustness, with VC, SSC, and

SP achieving R² values of 0.829, 0.779, and 0.835, respectively, while

maintaining RPD values consistently above 2.0. These results

validate the reliability of spectral-component mapping across

temporal and spatial variations. The proposed framework

provides a scalable deep learning solution for non-destructive

fruit quality evaluation, demonstrating significant potential for

industrial applications in multi-cultivar and cross-regional
FIGURE 6

Results obtained with the external validation set: (a) VC, (b) SSC, and (c) SP. VC and SSC: RAW+CNN+BiGRU+Attention; SP: SPA+RAW+CNN+BiGRU
+Attention.
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scenarios. Future studies should expand the sample size and

incorporate additional cultivars to further enhance prediction

robustness across diverse agricultural conditions.
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Günaydın, S., Çetin, N., Sağlam, C., Sacilik, K., and Jahanbakhshi, A. (2025).
Comparative analysis of visible and near-infrared (Vis-NIR) spectroscopy and
prediction of moisture ratio using machine learning algorithms for jujube dried
under different conditions. Appl. Food Res. 5, 100699. doi: 10.1016/j.afres.2025.100699

Guo, Z., Zhang, Y., Wang, J., Liu, Y., Jayan, H., El-Seedi, H. R., et al. (2023).
Detection model transfer of apple soluble solids content based on NIR spectroscopy
and deep learning. Comput. Electron. Agric. 212, 108127. doi: 10.1016/
j.compag.2023.108127

Hao, K., Zhang, W., Zhu, S., Peng, Y., Zhong, Y., Jie, F., et al. (2025). Alternate partial
root-zone irrigation combined with nitrogen fertilizer: An adaptive surge root
irrigation and nitrogen strategy to improve apple yield, water-nitrogen use efficiency
and fruit quality. Agric. Water Manage. 308, 109296. doi: 10.1016/j.agwat.2025.109296

Hu, D., Guo, T., Sun, X., Lian, K., Tian, K., Wang, A., et al. (2024). Internal quality
evaluation of ‘Fuji’ apples during storage based on bulk optical properties or diffuse
reflection and transmission spectra. LWT 200, 116202. doi: 10.1016/j.lwt.2024.116202
frontiersin.org

http://www.editage.cn
https://doi.org/10.1016/j.vibspec.2017.05.008
https://doi.org/10.1016/j.postharvbio.2019.110943
https://doi.org/10.1016/j.foodres.2025.116105
https://doi.org/10.1016/j.lwt.2024.116772
https://doi.org/10.3390/agronomy15040788
https://doi.org/10.3390/foods14081379
https://doi.org/10.1016/j.postharvbio.2019.02.001
https://doi.org/10.1016/j.biosystemseng.2020.02.017
https://doi.org/10.1016/j.compag.2023.108227
https://doi.org/10.1016/j.infrared.2022.104231
https://doi.org/10.1016/j.afres.2025.100699
https://doi.org/10.1016/j.compag.2023.108127
https://doi.org/10.1016/j.compag.2023.108127
https://doi.org/10.1016/j.agwat.2025.109296
https://doi.org/10.1016/j.lwt.2024.116202
https://doi.org/10.3389/fpls.2025.1634785
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhai et al. 10.3389/fpls.2025.1634785
Hu, T., Liu, Z., Hu, R., Zeng, L., Deng, K., Dong, H., et al. (2025). Yield prediction
method for regenerated rice based on hyperspectral image and attention mechanisms.
Smart Agric. Technol. 10, 100804. doi: 10.1016/j.atech.2025.100804

Hu, Z., Pu, Y., Wu, W., Pan, L., Yang, Y., and Zhao, J. (2025). Online detection of
moldy apple core based on diameter and SSC features. Food Control 168, 110879.
doi: 10.1016/j.foodcont.2024.110879

Huang, Y., Zheng, Y., Liu, P., Xie, L., and Ying, Y. (2025). Enhanced prediction of
soluble solids content and vitamin C content in citrus using visible and near-infrared
spectroscopy combined with one-dimensional convolutional neural network. J. Food
Compos. Anal. 139, 107131. doi: 10.1016/j.jfca.2024.107131

Jiang, T., Zuo, W., Ding, J., Yuan, S., Qian, H., Cheng, Y., et al. (2025). Machine
learning driven benchtop Vis/NIR spectroscopy for online detection of hybrid citrus
quality. Food Res. Int. 201, 115617. doi: 10.1016/j.foodres.2024.115617

Kaur, S., Singh, N., Dagar, P., Kumar, A., Jaiswal, S., Singh, B. K., et al. (2024).
Comparative analysis of modified partial least squares regression and hybrid deep
learning models for predicting protein content in perilla (Perilla frutescens L.) seed
meal using NIR spectroscopy. Food Biosci. 61, 104821. doi: 10.1016/j.fbio.2024.104821

Leoni, E., Mancini, M., Picchi, G., and Toscano, G. (2024). Performance evaluation of
NIR spectrophotometer simulating in-line acquisition for moisture content prediction
of woodchips and comparison with Hand-Held NIR spectrophotometer. Fuel 357,
130015. doi: 10.1016/j.fuel.2023.130015

Li, X., Huang, J., Xiong, Y., Zhou, J., Tan, X., and Zhang, B. (2018). Determination of
soluble solid content in multi-origin ‘Fuji’ apples by using FT-NIR spectroscopy and an
origin discriminant strategy. Comput. Electron. Agric. 155, 23–31. doi: 10.1016/
j.compag.2018.10.003

Li, P., Wang, S., Yu, L., Liu, A., Zhai, D., Yang, Z., et al. (2025). Non-destructive
origin and ginsenoside analysis of American ginseng via NIR and deep learning.
Spectrochim. Acta A Mol. Biomol. Spectrosc. 334, 125913. doi: 10.1016/
j.saa.2025.125913

Luo, W., Tian, P., Fan, G., Dong, W., Zhang, H., and Liu, X. (2022). Non-destructive
determination of four tea polyphenols in fresh tea using visible and near-infrared
spectroscopy. Infrared Phys. Technol. 123, 104037. doi: 10.1016/j.infrared.2022.104037

Magwaza, L. S., Opara, U. L., Nieuwoudt, H., Cronje, P. J. R., Saeys, W., and Nicolaï, B.
(2012). NIR spectroscopy applications for internal and external quality analysis of citrus
fruit—A review. Food Bioprocess Technol. 5, 425–444. doi: 10.1007/s11947-011-0697-1

Mansuri, S. M., Chakraborty, S. K., Mahanti, N. K., and Pandiselvam, R. (2022).
Effect of germ orientation during Vis-NIR hyperspectral imaging for the detection of
fungal contamination in maize kernel using PLS-DA, ANN and 1D-CNN modelling.
Food Control 139, 109077. doi: 10.1016/j.foodcont.2022.109077

Merzlyak, M. N., Solovchenko, A. E., and Gitelson, A. A. (2003). Reflectance spectral
features and non-destructive estimation of chlorophyll, carotenoid and anthocyanin
content in apple fruit. Postharvest Biol. Technol. 27, 197–211. doi: 10.1016/S0925-5214
(02)00066-2

Pan, X., Yu, Z., and Yang, Z. A. (2024). multi-scale convolutional neural network
combined with a portable near-infrared spectrometer for the rapid, non-destructive
identification of wood species. Forests 15 (3), 556. doi: 10.3390/f15030556

Razavi, M. S., Rasooli Sharabiani, V., Tahmasebi, M., and Szymanek, M. (2025a).
Unveiling the fingerprint of apple browning: A Vis/NIR-metaheuristic approach for
rapid polyphenol oxidase and peroxidases activities detection in red delicious apples. J.
Food Compos. Anal. 142, 107499. doi: 10.1016/j.jfca.2025.107499

Razavi, M. S., Sharabiani, V. R., Tahmasebi, M., Grassi, S., and Szymanek, M.
(2025b). Chemometric and meta-heuristic algorithms to find optimal wavelengths and
predict ‘red delicious’ apples traits using Vis-NIR. Appl. Food Res. 5, 100853.
doi: 10.1016/j.afres.2025.100853

Shao, Y., and He, Y. (2007). Nondestructive measurement of the internal quality of
bayberry juice using vis/NIR spectroscopy. J. Food Eng. 79, 1015–1019. doi: 10.1016/
j.jfoodeng.2006.04.006

Shi, J., Yang, K., Yuan, N., Li, Y., Ma, L., Liu, Y., et al. (2025). UAV-based rice
aboveground biomass estimation using a random forest model with multi-organ
feature selection. Eur. J. Agron. 164, 127529. doi: 10.1016/j.eja.2025.127529

Sripaurya, T., Sengchuai, K., Booranawong, A., and Chetpattananondh, K. (2021).
Gros Michel banana soluble solids content evaluation and maturity classification using
a developed Portable 6 channel NIR device measurement. Measurement 173, 108615.
doi: 10.1016/j.measurement.2020.108615

Sun, Z., Yang, J., Yao, Y., Hu, D., Ying, Y., Guo, J., et al. (2025). Knowledge-guided
temperature correction method for soluble solids content detection of watermelon
Frontiers in Plant Science 11
based on Vis/NIR spectroscopy. Artif. Intell. Agric. 15, 88–97. doi: 10.1016/
j.aiia.2025.01.004

Vallese, F. D., Paoloni, S. G., Springer, V., Fernandes, D. D. de S., Diniz, P. H. G. D.,
and Pistonesi, M. F. (2024). Exploiting the successive projections algorithm to improve
the quantification of chemical constituents and discrimination of botanical origin of
argentinean bee-pollen. J. Food Compos. Anal. 126, 105925. doi: 10.1016/
j.jfca.2023.105925
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