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Conventional methods for quantifying soluble solids content (SSC), vitamin C
(VC), and soluble protein (SP) levels in apples are destructive and unsuitable for
large-scale postharvest quality monitoring. This study aimed to develop a
convolutional neural network-bidirectional gated recurrent unit-attention
(CNN-BiGRU-Attention) model based on hyperspectral imaging (HSI) to
achieve high-precision non-destructive quantification of VC, SSC, and SP in
apples. The model was established using six apple varieties from diverse
geographical origins, leveraging hyperspectral data spanning 400-1000 nm
with 512 spectral bands. The model framework demonstrated superior
performance with raw hyperspectral cube inputs. Optimal predictions for VC
and SSC were achieved using full-spectrum modeling (test set: R?,-=0.891,
R%csc=0.807, RPD yc=3.117, RPD 55c=2.337). For SP quantification, feature
wavelength selection (403, 430, 551, 617, and 846 nm) via successive
projections algorithm (SPA) yielded R?=0.848, RPD=2.642, which aligned with
the N-H/C-H vibrational overtones and aromatic amino acid absorption bands.
Cross-year validation of 2024 hyperspectral dataset confirmed the robustness of
the model, with R? values of 0.829, 0.779, and 0.835 (RPD>2.000) for VC, SSC,
and SP, respectively. Taken together, this study resolves high-dimensional data
redundancy through hybrid architectures and offers a deployable solution for
multi-variety fruit quality monitoring.

hyperspectral imaging, deep learning, non-destructive detection, apple quality
parameters, multi-attribute quantification
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1 Introduction

Apple (Malus domestica), a globally cultivated pome fruit, is
highly valued for its rich nutritional composition and distinctive
flavor profile, which makes it a crucial agricultural commodity (Hu Z.
et al,, 2025). The nutritional quality and sensory characteristics of
apples are primarily determined by their soluble solids content (SSC),
ascorbic acid (vitamin C, VC), and soluble protein (SP) levels (Hu
et al., 2024). Conventional methods for quantifying these parameters
include refractometry for SSC (Vega-Castellote et al., 2024),
high-performance liquid chromatography (HPLC) or 2,6-
dichlorophenolindophenol (DCPIP) titration for VC (Hao et al,
2025), and the Bradford colorimetric assay for SP (Chen et al,
2025). However, these methods are destructive, labor-intensive, and
unsuitable for large-scale, continuous postharvest quality monitoring.

Hyperspectral imaging (HSI) is an intelligent non-destructive
detection method that has emerged as a promising technique in
recent years, with advantages of rapid, cost-effective, and non-
invasive analysis (Huang et al., 2025). The HSI technique
integrates spatial-spectral signatures with chemometric modeling
to facilitate simultaneous prediction of multiple quality metrics, and
it has been successfully applied to apples (Razavi et al., 2025b),
bananas (Sripaurya et al., 2021), citrus (Jiang et al., 2025), peaches
(Chen et al., 2024), and cherries (Zheng et al., 2025). Despite these
advantages, Bai et al. demonstrated that HSI models suffer from
generalization decay when applied across apple varieties,
geographical origins, or growing seasons due to environmental
heterogeneity (Bai et al., 2019).

Traditional HSI modeling relies on partial least squares
regression (PLSR) and support vector machines (SVM) (Zeng
et al,, 2024; Giinaydin et al, 2025; Razavi et al, 2025a), which
require extensive spectral preprocessing and manual feature
selection. These methods lack adaptive learning capabilities and
are inadequate for high-dimensional spectral-spatial data. Deep
learning (DL) architectures, particularly convolutional neural
networks (CNNs), have revolutionized chemometrics, as they
enable end-to-end extraction of hierarchical non-linear features
from raw hyperspectral cubes and eliminate dependency on manual
preprocessing (Mansuri et al., 2022; Yuan et al,, 2025). Comparative
studies have confirmed that CNNs are superior to linear methods in
complex spectral-spatial decoding tasks (Kaur et al., 2024; Sun et al.,
2025; Wang et al., 2025).

However, CNNs primarily capture local features and are less
effective at modeling the sequential nature of spectral data, which
often exhibit long-range dependencies along the wavelength axis.
To address this, we further introduce Bidirectional Gated Recurrent
Units (BiGRUs) to enhance the model’s ability to learn contextual
spectral information in both forward and backward directions
(Feng et al., 2023). BiGRUs are particularly suitable for
hyperspectral applications because they effectively capture
temporal relationships across spectral bands while maintaining a

Abbreviations: BiGRU, Bidirectional gated recurrent units; CNN, Convolutional
neural network; TCN-BiGRU, Temporal convolutional network-BiGRU; HIS,

Hyperspectral imaging; SPA, Successive projections algorithm.
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lightweight structure. Compared with traditional recurrent
networks like LSTMs, BiGRUs have fewer parameters, faster
convergence, and are more computationally efficient, which
makes them advantageous for applications with limited sample
sizes and real-time processing requirements. These characteristics
make BiGRUs not just a convenient choice, but a functionally
appropriate one for modeling spectral sequences in agricultural
products. For instance, Jiao et al. reported a 97.54% accuracy in
maize moisture prediction using a temporal convolutional network-
BiGRU (TCN-BiGRU) hybrid model, which outperformed
standalone CNNs (Yang et al.,, 2025). Li et al. achieved a 99.21%
classification accuracy for Panax quinquefolius origin tracing (Li
et al, 2025), and Hu et al. improved rice yield prediction by
combining CNNs with spectral attention (Hu T. et al,, 2025).
Although existing studies predominantly focused on single-origin
or single-variety predictions (Li et al., 2018; Fan et al., 2019; Guo
et al., 2023), integrated frameworks that address cultivar,
geographical, and seasonal variability remain underexplored.
Thus, robust, universally applicable models need to be developed
to advance the HSI technology in practical agricultural settings.

This study leveraged HSI to acquire hyperspectral data from six
apple varieties cultivated across diverse geographical regions in
2023. We developed CNN, CNN-BiGRU, and CNN-BiGRU-
Attention models to predict VC, SSC, and SP levels using the
successive projections algorithm (SPA) for feature wavelength
selection. External validation using a 2024 dataset confirmed the
robustness of the model. The developed framework provides a
theoretical and technical foundation for rapid, nondestructive
apple quality assessment to address critical challenges in multi-
variety and cross-regional applications.

2 Materials and methods
2.1 Research procedures

Figure 1 illustrates the schematic workflow of the proposed deep
learning-based apple quality prediction system, which comprises
four core phases. First, in the data acquisition stage, hyperspectral
images of apples are collected using a hyperspectral imaging system,
followed by white reference correction. Regions of interest (ROIs)
are extracted through a series of image processing steps, including
image enhancement, binary segmentation, connected component
analysis, contour extraction, B-spline fitting, and smoothing, to
ensure accurate retrieval of spectral reflectance. Second, in the
feature selection phase, Savitzky-Golay (SG) preprocessing is
combined with the Successive Projections Algorithm (SPA) to
extract key spectral bands that are most informative for quality
prediction. Third, during model construction, three deep learning
models—CNN, CNN-BiGRU, and CNN-BiGRU-Attention—are
developed to predict VC SSC and SP based on spectral
reflectance. Finally, in the model training and validation phase,
data collected in 2023 is used for model training, while data from
2024 serves as an independent test set to evaluate model robustness
and generalization performance.
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FIGURE 1

Flowchart of the experimental process. (a): Diagram of the data acquisition setup and hyperspectral image processing, (b): Data preprocessing, (c):

Deep learning model, (d): Measurement indicators and data sources.

2.2 Experimental materials

The apple sample library constructed in this study encompasses
three major Chinese production regions (Xinjiang; North China;
Jiaodong Peninsula) and comprises 144 samples from six
representative cultivars to integrate dual heterogeneity in
geographical origin and genetic resources. The spatiotemporally
stratified design included the following three geographical
indication cultivars: Xinjiang Aksu Red Fuji (AKS) (41.17°N,
80.26°E; n = 16), Hebei Shunping Red Fuji (SPFS) (38.85°N,
114.18°E; n = 16), and Shandong Yantai Red Fuji (YTFS) (37.47°
N, 121.45°E; n = 16), in addition to three non-GI cultivars—Cherry
Apple (YT), n = 16; Ralls Janet (GG), n = 16; and Huaniu Apple
(HN), n = 16. The samples were collected in the 2023-2024 growing
seasons, with 96 baseline samples collected in 2023 and 48
additional validation samples in 2024. This framework effectively
balanced cultivar genetic backgrounds, regional climatic
characteristics, and harvest timing variables to provide robust
data support for generalizable spectral modeling: the 2023 dataset
was partitioned into training and testing sets (7:3 ratio), and the
2024 dataset served as an external validation set.

2.3 Physiological parameter determination

2.3.1 VC quantification
A 1.0 gapple sample was homogenized in a mortar with 5 mL of
2% oxalic acid solution. The homogenate was quantitatively
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transferred to a 10 mL volumetric flask, diluted to the mark
volume with oxalic acid solution, and then filtered. A 10 mL
aliquot of ascorbic acid standard solution (0.1 mg/mL) was
titrated with standardized 2,6- DCPIP solution until it reached a
persistent rose-red endpoint (15-second stability), with dye
consumption recorded for titrant standardization. Thereafter, 5
mL of the sample filtrate was similarly titrated, and VC content
was calculated based on dye consumption (Hao et al., 2025).

2.3.2 SSC measurement

Following NY/T 2637-2014 (Fruit and Vegetable Products -
Determination of Soluble Solids by Refractometry), three 2-mm-
thick flesh slices were stacked (total thickness: 3 mm) and juiced
using a hydraulic press (5 kN). The filtered juice (80-mesh sieve)
was analyzed in triplicate using a PR-101c: digital refractometer
(Atago Co., Japan), with mean values from triplicate measurements
(both sides of each slice) recorded as final SSC values (Vega-
Castellote et al., 2024).

2.3.3 SP assay

A 0.5 g sample was homogenized with 2.0 mL distilled water
and centrifuged (4,000 xg, 10 min). The supernatant was diluted
(0.20 mL supernatant + 0.80 mL water) and allowed to react with
5.00 mL Coomassie Brilliant Blue G-250 staining solution for 2 min.
The absorbance at 595 nm was measured using a UV-1800
spectrophotometer (Shimadzu, China), with SP concentration
determined via a bovine serum albumin standard curve (Chen
et al., 2025).
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2.4 Hyperspectral imaging acquisition and
spectral data processing

2.4.1 Hyperspectral imaging system

Hyperspectral data acquisition was conducted using a push-
broom hyperspectral imaging system (HG101, Nakagawa
Photonics, China), which covers a spectral range of 395-1008 nm
with a spectral resolution of 2.8 nm and acquires 360 contiguous
bands. The imaging system was equipped with dual light source
irradiation modules—two 150 W fiber-optic halogen lamps were
symmetrically positioned on both sides of the sample stage at a
height of 250 mm to form a 45° irradiation angle with the sample
plane to ensure over 95% surface illumination uniformity. A 30-
minute preheating procedure was strictly implemented prior to the
experiments to ensure that the detector reached thermal
equilibrium within the 395-1008 nm wavelength range and to
minimize dark current noise interference. To eliminate external
factors and instrument effects, raw hyperspectral images were
corrected using a white reference panel before spectral extraction.

2.4.2 Spectral data extraction and preprocessing

As shown in (Figure la), after white reference correction,
individual apple regions were segmented using a thresholding-
based method to obtain complete hyperspectral images. Spectral
reflectance data across 360 bands were then extracted, and the
average reflectance within the selected ROIs was calculated as the
original spectral data for each sample, yielding corresponding
wavelength-reflectance curves. To improve the accuracy of region
extraction, a method was adopted that integrates spectral difference
information with B-spline-based contour modeling for precise
target segmentation and fitting in hyperspectral images. This
approach offers several advantages: it enhances target boundaries
by leveraging spectral contrast; it automatically selects the largest
connected component, ensuring high robustness; it improves the
geometric continuity and smoothness of contours using B-spline
fitting; and it provides clear and intuitive visual outputs for further
analysis. This preprocessing workflow enables accurate and
interpretable target extraction, providing high-quality input data
for subsequent feature selection and model construction.

2.4.3 Spectral data preprocessing

Spectral preprocessing, a critical data optimization method in
chemometrics, effectively removes interference signals that are
unrelated to target variables while enhancing valid spectral
features (Leoni et al, 2024; E et al, 2025). In this study, SG
smoothing was applied as the sole preprocessing method to
suppress random spectral noise and preserve local signal trends.
Unlike traditional chemometric models that heavily rely on spectral
correction techniques such as Standard Normal Variate and
Multiplicative Scatter Correction, the proposed deep learning
architectures (CNN, CNN-BiGRU, and CNN-BiGRU-Attention)
incorporate internal normalization mechanisms (e.g., batch
normalization and weight adjustment through backpropagation).
Therefore, additional scatter correction methods were not applied
to avoid redundant normalization and potential information loss.
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The SG convolution smoothing method, based on the principle of
locally weighted least squares, suppresses high-frequency noise by
constructing polynomial fitting models within sliding temporal
windows. This method adaptively eliminates random noise
interference in spectral data through parameterized adjustments
of window width and polynomial order while preserving original
signal waveform characteristics (Zhang et al., 2024).

2.4.4 Feature extraction

In spectral detection, the high dimensionality and complexity of
acquired data often lead to information redundancy or model
overfitting (Wang et al., 2020). To address this issue, the SPA was
introduced for feature wavelength selection. SPA is an efficient
feature wavelength screening method that helps to extract
informative and non-redundant spectral bands from high-
dimensional data. The algorithm employs an iterative strategy,
i.e., initial selection of wavelength with the highest variance in the
spectral matrix to prioritize the most informative regions, followed
by orthogonal projection calculations of the remaining wavelengths
in the selected band space to identify wavelengths with maximum
projection values for inclusion in the feature set (Yu et al., 2025). In
this study, SPA was chosen primarily based on its proven
effectiveness in similar hyperspectral modeling tasks, as well as its
computational efficiency and ability to produce compact,
interpretable feature subsets suitable for deep learning model
input (Zhao et al., 2022; Vallese et al., 2024).

Specifically, the SPA procedure in this study was executed in
three phases to ensure stability and reproducibility. In Phase 1, all
spectral variables were standardized to zero mean and unit variance.
Each variable was used as an initial projection point, and candidate
subsets were generated via orthogonal projections, with the number
of iterations ranging from a minimum of 5 to a maximum of 360
wavelengths. In Phase 2, all subsets were evaluated using the
Prediction Residual Error Sum of Squares (PRESS) criterion
based on an independent validation set. The optimal subset was
determined by the combination that yielded the lowest PRESS
value. In Phase 3, variables were ranked according to a relevance
index derived from regression coefficients and variable standard
deviations, and a final subset was selected using an F-test (ot = 0.25)
to ensure that additional variables did not significantly increase
prediction error.

2.5 Model construction

This study employed the CNN, CNN+BiGRU, and CNN
+BiGRU+Attention models to predict apple VC, SSC, and SP
levels. Raw spectral and preprocessed data were used as input
parameters to establish quantitative prediction models. Full-
spectrum and feature-selected bands served as independent
variables, whereas VC, SSC, and SP served as dependent variables.

The CNN model effectively identifies local spatial-spectral
features through convolutional and pooling operations. The input
spectral vector is reshaped into a pseudo-image of size [n x 1 x 1],
where n is the number of selected wavelengths. The network
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consists of two convolutional layers with kernel sizes of [3x1] and
filter sizes of 8 and 32, each followed by batch normalization, ReLU
activation, and [2x1] max pooling. A dropout layer with a rate of 0.4
is applied for regularization. The output is then passed through two
fully connected layers (with 32 and 1 neurons) and a regression
layer for final prediction. This model enables autonomous feature
learning and captures local non-linear structures in the spectral
domain, as shown in (Figure 2a).

The CNN-BiGRU model enhances the CNN by incorporating a
BiGRU to capture global dependencies and sequential patterns in
the spectral data. The architecture includes two parallel branches: a
CNN stream with a convolutional layer (16 filters, [3x1] kernel),
batch normalization, ReLU, [3x3] max pooling, flattening, and a
fully connected layer with 25 neurons; and a BiGRU stream with
two GRU layers (35 hidden units each), processing both the original
and reversed sequences via a flip layer. Outputs from both branches
are concatenated and passed to a regression layer. The bidirectional
design enables simultaneous analysis of short-to-long and long-to-
short wavelength relationships, revealing interactions across
absorption peaks and baseline drift, as illustrated in (Figure 2b).

To further strengthen spectral feature representation, the CNN-
BiGRU-Attention model incorporates a self-attention mechanism
following the feature concatenation step. A single-head self-
attention layer (key and query dimensions = 50) is employed
using dot-product attention to dynamically assign weights to
spectral components. This integration of 1D convolution,
bidirectional temporal modeling, and adaptive attention enables
the network to focus on the most informative spectral regions while
suppressing noise, as shown in (Figure 2c).

All models were trained using the Adam optimizer. The CNN
model was trained for 500 epochs with an initial learning rate of
0.001 and an L2 regularization factor of 0.01. For the more complex
CNN-BiGRU and CNN-BiGRU-Attention models, training was

RegressionLincar

FCI(2

BN(20*4)
Conv(3*1,20)
Inputs(n*1*1)

FIGURE 2

10.3389/fpls.2025.1634785

extended to 1000 epochs with a higher initial learning rate of
0.01. A learning rate decay strategy was applied, reducing the rate
by a factor of 0.1 after 600-800 epochs.

These training configurations were carefully tailored to each
model’s structural complexity and convergence behavior to achieve
optimal performance and generalization. For instance, the CNN
model, with its relatively shallow architecture and fewer parameters,
converged effectively under a moderate learning rate (0.001) and
shorter training duration (500 epochs). In contrast, the CNN-
BiGRU and CNN-BiGRU-Attention models, which introduce
sequential learning and attention mechanisms, possess deeper
structures and higher parameter counts. These models required a
larger initial learning rate (0.01) and longer training (1000 epochs)
to fully converge. A learning rate decay was introduced after epoch
600 to stabilize optimization and prevent overshooting in the fine-
tuning phase. These settings were determined through preliminary
trials and empirical adjustments, balancing training speed,
overfitting risk, and predictive accuracy.

2.6 Model evaluation metrics

Through the screening of spectral regression models for quantitative
prediction of apple VC, SSC, and SP, a multidimensional evaluation
framework was established to balance numerical accuracy and model
robustness (Cui et al., 2025). R* measures the proportion of variance in
the reference data explained by the model. A value closer to 1 indicates
better fit. The equation is as follows, as shown in (Equation 1):

S0i-5.7
RP=1-"1— (1)
>i-7)

Structural diagrams of the three deep learning models. The input format is n x 1 X 1, where n denotes the number of input spectral bands, which
varies depending on whether full-spectrum data or SPA-selected features are used: (@) CNN, (b) CNN+BiGRU, and (c) CNN+BiGRU+Attention.
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where y; is the actual measured sample value, ;’,- is the predicted
sample value, y is the mean actual measured sample value, and n is
the number of samples in the set.

The root mean squared error (RMSE) evaluates the average
magnitude of prediction errors. Lower RMSE indicates higher
accuracy. It is mathematically expressed as follows, as shown in

12 N
RMSE = ;2()/1 —yi)z
i=1

where y; is the actual measured sample value, J; is the predicted

(Equation 2):

2

sample value, and n is the number of samples in the set.

RPD is the ratio of the standard deviation of reference values to
the RMSE. It reflects the robustness and generalization of the
model. Generally, RPD > 2.0 indicates good predictive
performance, while RPD < 1.4 implies weak prediction (Zhang
et al., 2025). RPD is expressed as shown in (Equation 3):

SD

RPD = ——

RMSE 3)

where SD denotes the standard deviation of measured values.

2.7 Statistical analysis

One-way ANOVA was conducted using SPSS software (v23.0;
SPSS Inc., Chicago, USA), and significant differences between
treatments were assessed with Duncan’s multiple range test
(p< 0.05).

3 Results and discussion
3.1 Analysis

A systematic analysis of VC, SSC, and SP levels was conducted
across 96 apple samples collected in 2023 (Figure 3). The results
revealed significant varietal differences: YT had the highest VC
content (3.27 + 0.67 mg/100 g, p< 0.05), whereas GG had the lowest
VC levels (1.08 + 0.38 mg/100 g). No significant differences in SSC

(@)

b
[

VC content (mg/100g)
wn w

HN

GG

YT SPFS YTFS AKS

FIGURE 3

HN GG YT SPFS YTFS AKS

10.3389/fpls.2025.1634785

levels were observed among most of the cultivars (p > 0.05), except
for YTHFS and SPHES. Notably, HN apples demonstrated 27-40%
higher SP content (0.51 *+ 0.08 mg/g, p< 0.05) than the
other varieties.

+

Geographical analysis indicated that AKS had significantly
higher levels of both VC (2.82 + 0.39 mg/100 g) and SSC (11.92
+ 1.34%) compared to YTHES (VC: 2.00 + 0.62 mg/100 g; SSC: 8.48
+ 1.48%) and SPHFS (VC: 1.51 + 0.44 mg/100 g; SSC: 9.80 + 1.23%)
(p< 0.05). This could be likely attributable to distinct ecological
factors such as diurnal temperature variation and prolonged annual
sunshine duration in Aksu (Bai et al, 2019). No significant SP
differences were observed among the Red Fuji apples.

The broad distribution of chemical indices across four cultivars
and three agroecological zones established essential chemical
gradients and biological diversity for hyperspectral modeling, with
VC levels at 1.08-3.27 mg/100 g, SSC at 8.48-11.92%, and SP levels
at 0.32-0.51 mg/g.

(Figure 4a) presents the visible-near infrared (Vis-NIR) spectral
reflectance characteristics of six apple cultivars from different
geographical origins, with the horizontal axis representing the
wavelength range (395-1008 nm) and vertical axis indicating the
reflectance intensity. Spectral analysis revealed that HN apples
exhibited significantly lower reflectance in the 400-600 nm visible
range than the other cultivars, probably due to their deeper epidermal
pigment deposition. Although the reflectance values of other cultivars
showed minor fluctuations, their overall spectral curves maintained
similar morphological trends, which is consistent with the findings
reported by Wang et al (Wang et al., 2024).

The observed spectral variations among different cultivars were
closely associated with their intrinsic physiological properties.
Distinct reflectance differences in the 400-700 nm range were
particularly noticeable across geographical origins and cultivars,
probably due to the variations in pigment composition, especially
anthocyanin and chlorophyll contents. As demonstrated by Mark
et al (Merzlyak et al,, 2003), anthocyanins exhibit maximum
sensitivity in the 400-675 nm spectral region, with elevated
concentrations corresponding to reduced reflectance; our
experimental data corroborated this finding. The reflectance
variation at approximately 680 nm primarily originated from
chlorophyll content differences, whereas the spectral fluctuation at

HN

GG YT SPFS YTFS AKS

Internal quality parameters of apple samples: (a) VC; (b) SSC; (c) SP. SSC, soluble solids content; VC, ascorbic acid (vitamin C); SP, soluble protein.
Significance analysis: Different letters (a, b, ¢, d, e) indicate statistically significant differences between groups (p < 0.05).
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970 nm was associated with moisture variations in apple tissues,
which correspond to the third overtone absorption band of O-H
stretching vibrations.

(Figure 4b) displays the SG-smoothed spectra after pretreatment
and show significantly enhanced spectral smoothness compared to
the original data. This observation aligns with the results of Hu et al
(Hu Z. et al., 2025).

3.2 Feature wavelength extraction

The narrow intervals between adjacent bands in raw spectral
data typically cause substantial data redundancy (Zhu et al., 2025).
To address this issue, the SPA was employed for feature wavelength
extraction. As summarized in Table 1, the selected feature
wavelengths spanned the entire wave number range. Specifically,
the SPA identified 5, 33, and 5 spectral variables as characteristic

TABLE 1 Extraction results of feature-selected parameters.

Characteristic

PRI wavelengths (nm)

Preprocessing

RAW vC 409, 577, 679, 700, 757
395, 398, 409, 423, 481, 506, 585,
56 ve 617, 651, 700, 751, 777, 1008
397, 398, 400, 403, 405, 406, 411,
412, 416, 419, 422, 430, 468, 504,
RAW SSC 519, 585, 615, 679, 690, 702, 719,
793, 846, 860, 874, 928, 949, 965,
974, 994, 1001, 1003, 1008
395, 400, 423, 539, 591, 632, 679,
SG SSC
828, 846, 925, 1008
RAW SP 403, 430, 551, 617, 846
SG SP 400, 641, 662, 974, 994

SSC, soluble solids content; VC, ascorbic acid (vitamin C); SP, soluble protein; SG,
Savitzky-Golay.
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wavelengths for VC, SSC, and SP parameters in raw data, but 13, 11,
and 5 variables were selected for the corresponding parameters in
pretreated data. This feature extraction approach not only retains
critical spectral information but also effectively mitigates inter-
variable correlations.

Based on previous spectral studies, many of the selected
wavelengths (e.g., 679, 700, 757 nm) correspond to known absorption
features of O-H and C-H groups (Magwaza et al,, 2012), which are
associated with the presence of sugars, organic acids, and polyphenols in
apples (Shao and He, 2007). In particular, regions near 700-950 nm
have been widely reported to correlate with SSC and vitamin C content,
as they reflect the third overtone of O-H stretching and water
absorption characteristics (Abbas et al, 2017). Many of the selected
wavelengths for SP prediction (e.g., 403, 430, 617, 846, 974, and 994 nm)
correspond to characteristic absorption bands of O-H, C-H, and N-H
bonds, which are commonly found in soluble proteins and their
constituent amino acids (Zhang et al, 2019; Fu et al, 2022). The
visible bands (400-430 nm) may reflect the interaction of proteins with
chromophores or pigments (Fan et al., 2020; Zhang et al., 2023). The red
region (550-660 nm) has been associated with amino acid signatures,
while the near-infrared bands around 846 nm and especially 974 and
994 nm are related to overtone absorptions of O-H and N-H stretching
vibrations, which are typical in protein structures (Luo et al.,, 2022).

In this study, the SPA was selected for feature wavelength
extraction due to its efficiency in reducing multicollinearity and
its low computational cost. While SPA has proven effective for
selecting a compact subset of informative variables, alternative
approaches such as Genetic Algorithms (Zhang et al, 2023),
Random Forest (Shi et al, 2025)-based importance ranking, or
Competitive Adaptive Reweighted Sampling (Huang et al., 2025)
have also shown promise in hyperspectral feature selection tasks.
These methods offer potential advantages in capturing global or
nonlinear relationships but may require extensive parameter tuning
or computational resources. Future research could investigate the
comparative effectiveness of these approaches or explore hybrid
strategies to enhance model performance and interpretability.
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3.3 Analysis of modeling results

A systematic evaluation was conducted to assess the predictive
performance of CNN, CNN+BiGRU, and CNN+BiGRU+Attention
across four spectral input configurations (RAW, SG, SPA + RAW, SPA
+ SG) for apple VC, SSC, and SP parameters, as comprehensively
. The hybrid CNN+BiGRU+Attention
architecture demonstrated superior modeling capabilities compared

5

illustrated in Figure
to the CNN alone. For vitamin C prediction, it achieved training and
testing set R* values of 0.899 and 0.891, respectively, with RPD values
consistently exceeding 3.100. In SSC quantification, reliable
performance was maintained (testing set R* = 0.807, RPD = 2.337).
Notably, the model attained enhanced prediction accuracy for soluble
protein (testing set R* = 0.848, RPD = 2.673) through effective spectral
feature integration. This performance enhancement was due to its
multimodal feature extraction mechanism—the BiGRU establishes
long-range contextual dependencies along forward-reverse
wavelength dimensions, whereas the attention mechanism
dynamically amplifies feature wavelengths critical to quality
parameters through trainable weight matrices, ultimately forming
biochemically interpretable feature representations (Zhao et al., 2025).

Distinct sensitivity patterns for spectral input configurations
were observed among quality parameters. Optimal models for VC
and SSC predictions utilized raw spectral inputs (RAW+CNN
+BiGRU+Attention), confirming the autonomous feature
extraction capability of deep networks through hierarchical
nonlinear transformations (Pan et al., 2024). In contrast, SP
prediction required SPA feature selection (SPA+RAW+CNN
+BiGRU+Attention), wherein optimized input dimensionality
facilitates focused modeling on characteristic absorption bands at
403, 430, 551, 617, and 846 nm to effectively mitigate noise
interference in high-dimensional data, which is consistent with
the findings of Xu et al (Xu et al, 2020). Raw spectral inputs
systematically outperformed SG counterparts across all optimal
models, contrasting conventional spectral analysis paradigms.
This phenomenon suggests that deep neural networks preserve
intricate non-linear correlations in raw data through adaptive

10.3389/fpls.2025.1634785

feature learning, whereas excessive smoothing may disrupt
dynamic coupling relationships between spectral responses and
protein contents (Merzlyak et al., 2003).

3.4 External validation

To evaluate the generalization robustness of optimal models,
a cross-year and cross-cultivar external validation protocol was
implemented. The CNN+BiGRU+Attention architecture, initially
trained on the 2023 dataset, was validated using an independent
2024 sample set (n = 48) comprising four cultivars (YT, GG, HN,
and Red Fuji) and three geographical origins (Red Fuji apples
from Shunping County, Hebei Province; Yantai, Shandong
Province; and Aksu, Xinjiang Uygur Autonomous Region, n = 8
each). As shown in Figure 6, the external validation yielded robust
performance metrics: VC (R*= 0.829, RPD = 2.447), SSC (R*=
0.779, RPD 2.150), and SP (R’= 0.835, RPD 2.490).
Comparative analysis revealed minor reduction in performance

compared to previous test set performance: VC exhibited a 6.95%
reduction in R? and 21.49% reduction in RPD, SSC showed 3.46%
R? and 8.00% RPD reductions, and SP demonstrated minimal
degradation (1.53% R* and 5.75% RPD reductions). Notably, all
the RPD values exceeded the benchmark threshold of 2.00
(Figure 6), confirming that the model retained stable spectral-
component mapping relationships across different years and its
cross-year industrial applicability.

The CNN-BiGRU-Attention model proposed in this study
provides an innovative framework for non-destructive detection
of apple quality. Future research can deepen its industrial
applications from multiple dimensions. First, interpretable deep
learning frameworks (e.g., SHAP and LIME) should be introduced
to quantitatively analyze the contribution rates of different spectral
bands to predict VC, SSC, and SP, and characteristic absorption
peaks that are directly related to chemical components should be
identified. This will enhance the transparency of model decisions
and provide spectral band optimization guidance for portable
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sensor design. Second, multimodal data on apple growth
environments should be integrated by combining spectral data
with temperature, humidity, light, and soil nutrient parameters to

»

establish “environment-quality” relationships, and align
environmental temporal features with spectral responses through
cross-modal attention mechanisms. Third, a lightweight apple
quality grading system should be developed by compressing
model scale through neural network pruning and quantization-

aware training techniques.

4 Conclusions

This study established a CNN-BiGRU-Attention deep learning
framework based on Vis-NIR spectroscopy to achieve high-
accuracy prediction of apple quality parameters (VC, SSC, and
SP) across six cultivars and geographical origins. By synergistically
integrating the local feature extraction capability of CNN, long-
range wavelength dependency modeling via BIGRU, and dynamic
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enhancement of critical spectral regions through attention
mechanisms, the model demonstrated exceptional performance
with raw spectral inputs. Optimal full-spectrum predictions were
achieved for VC and SSC, but SP quantification required
supplementary SPA to focus on chemically informative bands
(403, 430, 551, 617, and 846 nm). A comparative analysis
revealed that direct modeling of raw spectra significantly
improved non-linear pattern recognition efficiency compared to
that of SG data, suggesting the autonomous feature optimization
capacity of deep architectures.

Cross-year external validation using an independent 2024
dataset (n = 48) confirmed model robustness, with VC, SSC, and
SP achieving R* values of 0.829, 0.779, and 0.835, respectively, while
maintaining RPD values consistently above 2.0. These results
validate the reliability of spectral-component mapping across
temporal and spatial variations. The proposed framework
provides a scalable deep learning solution for non-destructive
fruit quality evaluation, demonstrating significant potential for
industrial applications in multi-cultivar and cross-regional
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scenarios. Future studies should expand the sample size and
incorporate additional cultivars to further enhance prediction
robustness across diverse agricultural conditions.
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