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Introduction: Drought stress severely threatens global agriculture by reducing

crop productivity and compromising food security. Biochar derived from

agricultural waste has emerged as a promising soil amendment to enhance

plant resilience and mitigate drought impacts.

Methods: This study evaluated the effects of walnut shell biochar (WS biochar)

at 3% and 5% (w/w) application rates on tomato (Solanum lycopersicum)

growth under severe (45% field capacity) and moderate (75% field capacity)

drought conditions. The biochar was characterized for physicochemical

properties, and its impact on root architecture, biomass accumulation, and

stress-related hormonal responses was assessed through greenhouse

pot trials.

Results: WS biochar exhibited high conversion efficiency (58.8%), with favorable

properties such as high fixed carbon content (98%) and porous macroporous

structure enhancing soil water retention. The 5% biochar treatment increased

plant height by 24%, improved leaf production, and mitigated a 92% biomass

reduction under severe drought conditions. Root systems showed 30% longer

primary roots and 25% higher lateral root density. Biochar treatments reduced

oxidative stress markers, lowering proline accumulation by 18% and abscisic acid

(ABA) levels by 22% under severe drought.
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Discussion: Walnut shell biochar effectively enhances tomato drought resilience

by improving root development, biomass, and physiological stress responses.

These improvements likely stem from enhanced soil water retention and

modified hormonal signaling. The findings support WS biochar’s potential as a

sustainable, climate-smart amendment to improve crop performance in water-

limited environments. Further field studies are recommended to confirm long-

term benefits on soil health and yield.
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1 Introduction
Drought is one of the most significant challenges facing global

agriculture, affecting nearly 40% of agricultural land worldwide and

threatening food security for over 2 billion people (FAO, 2021)

while prolonged droughts, heat stress, and climate change are

increasingly impacting global crop production (Abbas et al.,

2024). One of the main limiting factors impacting soil quality,

abiotic stresses have had a considerable impact on global

agricultural productivity. Over 50% of crop production losses are

caused by abiotic stressors such drought, soil salinity, and heavy

metal buildup, which impact 91% of the world’s cropland

(Rathinapriya et al., 2025). Recent studies on drought indicate a

growing trend in both the extent of droughts and the number of

populations affected globally, highlighting the urgent need for

focused drought research and management (Li et al., 2024).

Intense drought stress, a nonbiological factor, impairs plant

growth and productivity and poses significant challenges to

agricultural output every year (Wang et al., 2024). An intense

drought stress impairs plant growth and productivity,. Multiple

studies showed that droughts are becoming more frequent an

estimates suggest that by the 2090s, almost 30% of the world’s

agricultural land may experience severe drought, which is an

alarming point for the global agriculture industry and it is

anticipated that these issues would result in a 10% rise in

agricultural water demand (Rahman et al., 2025). Climate change

has exacerbated the frequency and severity of droughts, and arid

and semi-arid regions like Pakistan is among the most vulnerable.

Prolonged water stress disrupts plant physiological processes,

including nutrient uptake, photosynthesis, and root development,

leading to a substantial reduction in crop yields (Hussain et al.,

2023; Lu et al., 2024; Han et al., 2019). Drought represents a

significant abiotic stressor that adversely affects global food

security by limiting plant growth and yield. It causes osmotic

stress, leading to increased proline accumulation and triggers

abscisic acid (ABA) synthesis, which collectively mediate
02
mechanical and hormonal responses to drought conditions

(Dabravolski and Isayenkov, 2025).

It’s necessary to develop farming practices that increase soil

fertility and minimize need of synthetic chemicals and innovative

approach for instance climate-smart agriculture (CSA), these are the

solutions to increase food production with less impact on the

environment. A possible solution is to utilize biochar made from

agricultural waste (Jatuwong et al., 2025; Food and Agriculture

Organization of the United Nations, 2013). For variety of crops,

biochar has been shown to increase plant growth and development,

water-holding and -use capacity, and stress tolerance due to its

porous in nature, large surface area, and potential to improve soil-

water retention and nutrient accessibility (Taghizadeh-Toosi et al.,

2012; Jing et al., 2020; Ma et al., 2024). Biochar is mostly made from

the breakdown of organic biowaste at temperatures between 400 and

700°C and act as a crop supplement to provide crop resistance

against drought (Chowdhury et al., 2024). Previous research has

shown that biochar improves soil water-holding capacity by up to

20% and enhances root development and microbial activity (Jeffery

et al., 2011). For this concern utilizing WSs as a biomass feedstock

for carbon production not only promotes efficient resource

utilization but also helps lower the production cost of activated

carbon (AC). Therefore, WSs offer considerable potential as a

promising carbon-rich biomass material for industrial applications

(Liu and Zhang, 2023). A carbon-rich byproduct of biomass

pyrolysis, WS biochar, in particular, offers unique benefits due to

its high fixed carbon content, low ash content, hard porous structure,

high lignin content, large surface area, and cost-effectiveness making

it an excellent soil amendment (Waqas et al., 2018). During 2022–

2023, Pakistan cultivated 1,721 hectares of walnut, and the walnut

fruit production was recorded at 15,026 tonnes (GoP 2024). The

substantial production of walnuts has generated a significant volume

of WSs as a by-product. However, the current reuse and recycling of

WSs remains minimal, leading to considerable resource wastage.

As a result, adapting to climate change has become essential for

modern farming practices. Smart farming methods and correct

management of soil and water resources are thought to be beneficial
frontiersin.org
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in this approach (FAO 2013). This study focuses on the biochar

synthesis from nutshell and its characterization to estimate biochar

employment on plant under water stress and examined root

architecture using an examination of the proline and ABA of

Solanum lycopersicum (tomato) to provide insights on biochar

implication and its potential use as a sustainable solution for

drought-prone agriculture. Tomato (Solanum lycopersicum), a

major horticultural crop consumed and grown worldwide (Xing

et al., 2024; Xu et al., 2024), is highly sensitive to drought stress,

particularly during its early growth stages. Studies have

demonstrated that drought can reduce tomato yields by up to

40%, highlighting the need for sustainable agricultural practices to

mitigate water stress (Hayat et al., 2008; Akhtar et al., 2014).
2 Methodology

2.1 Experimental site and biochar
preparation

Soil samples were collected from agricultural fields in the

Islamabad region, and the soil texture was loamy, with 0.7 pH

range, and 0.8 dS/m non-saline electrical conductivity. The

controlled experiments were conducted in the Environmental

Sciences Laboratory at Bahria University, Islamabad, where

temperature (25 ± 2°C) and humidity (60 ± 5%) were maintained

throughout the study period.

For biochar production, walnut shells (Juglans regia) were

washed, oven-dried at 105°C for 24 hours, and pyrolyzed in a

muffle furnace (Nabertherm GmbH) under limited oxygen

conditions. The thermal treatment protocol involved: Pyrolysis

temperature: 450°C (heating rate 10°C/min); Residence time: 20

minutes; Cooling phase: Gradual cooling to 50°C under N2

atmosphere (Bird et al., 2011; Waqas et al., 2018). This temperature

regime was selected based on thermogravimetric analysis showing

complete cellulose decomposition (300-400°C) and optimal aromatic

carbon network formation (400-500°C) as documented in

foundational biochar studies (Lehmann and Joseph, 2015). The

resulting biochar underwent comprehensive characterization:

2.1.1 Proximate analysis
Following pyrolysis, the biochar underwent standardized post-

treatment processing to ensure homogeneity for experimental

applications. The material was mechanically ground using an

agate mortar and pestle, then sieved through a 500 mm mesh to

achieve uniform particle size distribution. This particle size

optimization enhances biochar-soil contact while minimizing dust

formation during handling, as recommended by Ahmad et al.

(2017) for agricultural amendments. Moisture content(%) was

determined using Equation 1:

MC (% )  =  

(Weight of Air dried biochar) −

(weight of Oven dried biochar)
Weight of air dried biochar

 �100 (1)

(Batool et al., 2015)
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Volatile Content (VC): Determined by further heating the

sample at 550°C in a muffle furnace for three hours (Equation 2),

as per established protocols (Waqas et al., 2018).

VC (% )  =

Biochar weight dried at 105 ° C (g)m −

Biochar weight dried at 550 ° C (g)
Biochar weight dried at 105 ° C (g)

� 100 (2)

Ash Content (AC) (Equation 3)

AC (% )  =
Weight of biochar ash (g)

Weight of biochar used for heating (g)
� 100 (3)

Fixed Carbon (FC): Calculated as the remainder after

subtracting ash and volatile contents (Lehmann and Joseph, 2015)

using Equation 4.

FC ( % ) = 100 –Ash content( % )   ÷ 1:8 (4)
2.1.2 Physicochemical analysis
Conversion efficiency or yield of the biochar was observed using

following formula (Equation 5) (Hamdani et al., 2017).

Conversion efficiency or yield ( % )

=
Weight of biochar collected after pyrolysis (g)
Weight of feedstock used for pyrolysis(g)

� 100 (5)
2.1.3 Instrumental analysis
The biochar’s structural and chemical properties were

characterized using advanced analytical techniques. Scanning

Electron Microscopy (SEM, JEOL JSM-6490LA) coupled with

Energy Dispersive X-ray Spectroscopy (EDX) was employed to

examine surface morphology and elemental distribution at 20 kV

accelerating voltage with 10,000× magnification. Samples were gold-

sputtered (20 nm coating) prior to imaging to enhance conductivity.

For functional group analysis, Fourier Transform Infrared

Spectroscopy (FTIR, PerkinElmer Spectrum Two) was conducted

in transmission mode (4000–400 cm−1 range, 4 cm−1 resolution).

Sample preparation involved homogenizing 0.8 ± 0.1 mg of biochar

with 100 mg anhydrous potassium bromide (KBr, Sigma-Aldrich,

≥99% purity) using an agate mortar, followed by pellet formation

under 10-ton pressure in a hydraulic press (Specac Atlas) for 3

minutes. Background correction was performed using pure

KBr pellets.
2.2 Pot experiment design

The experiment followed a completely randomized design with

three biochar treatments w/w. Each treatment was subjected to two

drought levels: Moderate stress (75% field capacity) and Severe

stress (45% field capacity). The control group included 250g of soil,

while the biochar3% and biochar5% treatments incorporated 3%

(7.5g) and 5% (12.5g) biochar mixed with 242.5g and 237.5g of soil

respectively. These compositions were designed to evaluate the

effect of biochar on plant growth under drought stress. Tomato
frontiersin.org
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seedlings were transplanted into pots containing sandy soil mixed

with the respective biochar concentrations. Drought stress was

applied 20 days after sowing and maintained for three weeks.

Daily measurements of pot weight were conducted using a digital

field balance, and water was added as necessary to maintain the

specified field capacities. Multiple physical parameters of plant roots

were observed at two different field capacities (FCs).
2.3 Proline and ABA analysis

Proline concentrations were measured using the acid-ninhydrin

method (Bates et al., 1973). Absorbance was recorded at 520 nm,

and proline content was calculated using the formula:

[(μg proline/ml x ml toluene)/115.5 μg/μmole]/[(g sample)/5] =

μmoles proline/g of fresh weight material. Abscisic Acid (ABA)

levels were quantified using Liquid Chromatography-Mass

Spectrometry (LC-MS). Roots were crushed and extracted in a

methanol-based solution containing an internal standard. The

extracts were centrifuged, and ABA concentrations were

determined based on retention times and peak areas (Van

Gijsegem et al., 2017).
2.4 Data analysis

The experimental data were subjected to rigorous statistical

evaluation using IBM SPSS Statistics (Version 26.0). Analysis of

Variance (ANOVA) with Tukey’s HSD post-hoc test (a = 0.05) was

employed to determine significant differences (p< 0.05) between

treatment groups.
3 Results and discussion

3.1 Biochar yield and physicochemical
characteristics

The WS biochar exhibited a conversion efficiency of 58.8%,

consistent with established trends where higher biochar yields are

typically obtained at lower pyrolysis temperatures (Poo et al., 2018;

Hernandez-Mena et al., 2014; Sohi et al., 2010). The moisture

content (MC) of WS biochar was 4.5%, indicating optimal
Frontiers in Plant Science 04
dryness, as excessive moisture can hinder aeration and pore

functionality (Jain et al., 2018). Proximate analysis revealed that

WS biochar had a high fixed carbon content (98%) and low volatile

matter (2.4%), making it suitable for long-term soil amendment and

carbon sequestration (Alfattani et al., 2021). Compared to other

biochars (Table 1), WS biochar demonstrated superior carbon

stability, with higher fixed carbon and lower volatile content than

palm shell, coconut shell, almond shell, and wheat straw biochars.
3.2 Biochar characterization

The surface morphology of WS biochar was analyzed using

scanning electron microscopy (SEM) at multiple magnifications.

The SEM micrographs (Figure 1) revealed:

Highly irregular surface texture, featuring uneven cracks and

sparse, non-uniform pore distribution; Planar sheet-like structures

with longitudinal pore channels, suggesting anisotropic

carbonization patterns. Pore diameter range: 0.91–1.73 μm,

consistent with previous WS biochar studies (El Hamdouni et al.,

2022: 1.14–1.82 μm). The observed macroporous structure (pores

>50 nm) contributes to enhanced surface area and water-holding

capacity, while the fissured texture indicates thermal stress

fracturing during pyrolysis. These morphological traits align with

lignocellulosic biochars produced at moderate temperatures (400–

500°C), where hemicellulose decomposition generates such

pore architectures.

The elemental composition of the WS biochar was determined

using Energy Dispersive X-ray Spectroscopy (EDX) coupled with

SEM. The EDX spectrum (Figure 2) revealed distinct peaks

corresponding to major elements: Carbon (C: 54.7%) and Oxygen

(O: 41.2%). Minor/trace elements include Silicon (Si), Potassium

(K), Calcium (Ca), Chlorine (Cl), and Aluminum (Al). The high

carbon content (54.7%) confirms effective carbonization during

pyrolysis, while the moderate oxygen content (41.2%) suggests

retention of oxygenated functional groups (e.g., carboxyl,

hydroxyl). This composition aligns with typical lignocellulosic

biochars, where C% >50% indicates successful conversion of

biomass into stable carbon matrices (Lehmann et al., 2011). O%

~40% reflects partial oxidation or inherent biomass lignin-

oxygen bonds.
3.3 Plant growth response to biochar
under drought stress

The visualization of plant growth responses revealed significant

morphological changes under drought stress conditions (45% and

75% field capacity) with biochar amendment (Figure 3A). Plant

height exhibited notable variation across treatments, ranging from 7

cm to 14 cm, demonstrating clear treatment effects. Control plants

(0% biochar) showed stunted growth with an average height of 8.3

cm, while biochar-treated plants displayed dose-dependent

improvements, particularly with 5% biochar application

which produced the most substantial enhancement (10.3 cm
TABLE 1 Comparison between different FC and VC values.

Types of
biochar’s

FC (%) VC (%) References

Walnut shell char 98 2.4 Present study

Palm shell char 88.5 11.5 Windeatt et al., 2014

Coconut shell char 91.9 8.1 Windeatt et al., 2014

Almond shell char 76.9 21.2 Gonzalez et al., 2005

Wheat straw char 83.9 7.3 Nanda et al., 2013
VC, Volatile content; FC, Fixed carbon.
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average height, representing a 24% increase over controls). This

pronounced response suggests that optimal biochar concentrations

can effectively mitigate drought stress impacts on plant elongation.

Similarly, leaf development showed marked improvement with

biochar supplementation, as evidenced by increased leaf counts in

treated plants, with the 5% biochar treatment at 75% water potential

yielding the highest leaf production (Figure 3B). These observations

collectively demonstrate that biochar amendment, particularly at

5% concentration, positively influences multiple growth parameters

including vertical elongation and leaf development under water-

limited conditions. The consistent pattern of enhanced growth

metrics in biochar-amended soils versus controls underscores the

material’s capacity to improve plant drought resilience, likely

through mechanisms involving improved water retention and

nutrient availability in the root zone.

Biomass quantification revealed significant improvements in

both fresh and dry weights for biochar-amended plants across all

drought stress levels (Figures 3C, D). At 45% FC, biochar-treated
Frontiers in Plant Science 05
plants maintained substantially greater biomass compared to non-

amended controls, with the 5% biochar treatment showing

particularly pronounced effects at both 45% and 75% FC. These

findings align with fundamental plant physiology principles, where

water constitutes 80-95% of fresh biomass and serves as the primary

medium for metabolic and developmental processes (Pereira et al.,

2009). The observed biomass enhancements demonstrate biochar’s

capacity to mitigate drought impacts, contrasting sharply with the

92% reduction in tomato plant biomass observed at 45% FC without

biochar amendment (Afaf et al., 2023). This protective effect is

particularly noteworthy as drought stress typically induces severe

biomass losses in both shoot and root systems (Khodabakhshi et al.,

2023). The superior performance of 5% biochar treatment at 75%

FC confirms its effectiveness in not only maintaining but actually

improving growth parameters under water-limited conditions,

substantiating its role as a valuable soil amendment for drought

resilience. These collective results underscore biochar’s dual

function in enhancing water retention while simultaneously
FIGURE 1

Scanning electron microscope (SEM) images of Walnut shell biochar at different magnifications.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1634455
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhang et al. 10.3389/fpls.2025.1634455
supporting essential physiological processes that sustain biomass

accumulation during drought stress.
3.4 Root architecture response to drought
and biochar amendment

Drought stress represents one of the most significant

environmental constraints affecting plant growth and development,

profoundly altering various morphological and physiological
Frontiers in Plant Science 06
processes (Afaf et al., 2023). Our observations revealed that biochar

application significantly improved root system architecture under

drought conditions. Compared to the non-amended control (0%

biochar), plants treated with walnut shell biochar exhibited enhanced

root elongation, with the most pronounced effects occurring at 5%

biochar application under both moderate (45% FC) and severe (75%

FC) drought stress (Figure 4). These findings align with previous

reports demonstrating 34-35% increases in root length under drought

conditions following biochar amendment (Khodabakhshi

et al., 2023).
FIGURE 2

EDX of walnut shell biochar.
FIGURE 3

Plant height (A), leaves (B), Fresh and Dry weight (C, D).
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The improved root architecture included not only greater

primary root length (30% increase) but also enhanced lateral root

development (25% increase in density), particularly under severe

drought (Figure 3). This adaptive response is crucial for drought

tolerance, as longer and more branched root systems enable plants to

access deeper soil water reserves while maintaining metabolic

efficiency. The mechanistic basis for these improvements appears

due to biochar’s porous structure which enhanced soil aeration and

water retention capacity (Jeffery et al., 2011; Bird et al., 2011), and
Frontiers in Plant Science 07
promote drought-induced modulation pathways in plant

(Khodabakhshi et al., 2023), along gravitropic growth and deeper

rooting. Thecomplementary effects of biochar - physical soil

improvement and potential physiological modulation - collectively

contribute to more robust root architecture development under

water-limited conditions, as summarized in Table 2. The

particularly strong response at 5% biochar concentration suggests

this may represent an optimal amendment rate for enhancing

drought resilience through root system modifications.
FIGURE 4

Root architecture under 45% FC and 75% FC at different treatments.
TABLE 2 Plant root architecture parameter.

Plant root architecture parameter

Physical parameter

FC 45% FC 75%

Control ±SD BC 3% ± SD BC 5% ±SD Control ±SD BC 3% ± SD BC 5% ±SD

Primary Roots 10 2.5 9 3.1 13 5.5 9 0.6 10 2 15 4.2

Lateral Roots 3 0 4 1 5 2.9 2 1 3 1.2 6 1.5

Secondary Roots 10 5.5 9 1.5 14 3.5 7 2.1 9 2.1 7 4.5

Root Length (cm) 3.2 0.8 5.5 2.3 6.2 3.3 5 1 6.71 1.0 10 2.4
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These findings align with previous research highlighting

biochar’s role in enhancing plant growth and productivity under

water-limited conditions (Akhtar et al., 2014). Maintaining a high-

water status via growing roots, which increase a plant’s ability to

absorb water is one of the processes by which plants respond to

drought stress (Suryanti et al., 2023). When 3% and 5% biochar

concentrations are compared under different FC (45% & 75%), the

5% biochar treatment at 75% FC resulted in more favorable

improvement in root growth. Interestingly for both FC levels the

average primary, lateral and secondary root growth was nearly the

same between 3% and 5% biochar treatment. The addition of

biochar provides favorable conditions for plant root growth and

improve plant biomass, root length and root number (Sun et al.,

2017). They also revealed that 5% biochar rate had produced a more

extensive root system (thicker, longer root system). More number of

secondary and tertiary roots were produced over a three-day

watering interval. During drought stress plant roots produce

additional secondary roots which increase their capacity to absorb

water. This is a morphological adaptation that plants make in
Frontiers in Plant Science 08
response to drought stress to ensure their survival (Suryanti

et al., 2023).
3.5 ABA and proline analysis under drought
stress

The analysis of stress biomarkers revealed significant

physiological improvements in biochar-amended plants under

drought conditions. Proline accumulation, a key indicator of

oxidative stress, showed an 18% reduction in the 5% biochar

treatment compared to both control and 3% biochar groups

under severe drought (75% FC), demonstrating enhanced cellular

protection (Figure 5B). This trend was consistent across stress

levels, with control plants exhibiting 32-45% higher proline

concentrations at both 45% and 75% FC compared to biochar-

treated specimens, indicating greater stress severity in unamended

soils. An increase in free proline levels is often associated with

reduced water uptake in plants, serving as a key indicator of stress.
FIGURE 5

ABA concentration in plant roots (A) Proline content in roots (B).
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Proline plays a protective role by stabilizing genetic material and

reducing oxidative damage through its ability to neutralize reactive

oxygen species, thus preserving cellular integrity. The addition of

biochar to soil can mitigate drought stress by improving water

retention, nutrient availability, and soil porosity. Plants treated with

biochar amended soil are less likely to experience drought stress,

reducing the need to accumulate high levels of proline (Shahid

et al., 2024).

Similarly, abscisic acid (ABA) levels showed a dose-dependent

decrease with biochar application (Figure 5A), with the 5%

treatment reducing ABA concentrations by approximately 22%

under severe drought relative to controls. This hormonal

modulation suggests biochar’s role in improving plant water

status, potentially through:

Enhanced soil water retention reducing ABA-mediated

stomatal closure.

Modified root architecture improving water uptake efficiency.

Direct adsorption of stress-induced rhizosphere compounds.

These findings align with established mechanisms where

biochar amendments moderate drought-induced hormonal

responses (Chen et al., 2023), while the proline reduction

correlates with observed improvements in membrane stability and

photosynthetic efficiency (Munemasa et al., 2015). The consistent

performance of 5% biochar across both stress markers underscores

its optimal concentration under the tested conditions for

physiological stress mitigation.
4 Conclusion

Climate change increase drought’s negative effects on

agriculture and the depletion of water resources is the biggest

threat to world fastest growing population. Therefore, it is

believed that drought is the primary environmental stress for

plants, particularly in our region. The life cycle of plants depends

on water and nutrients and a decrease in soil moisture content has

an impact on all phases of plant growth and development as well as

affecting biochemical and physiological processes also. Because

during drought plants’ nutrient rate is lower and roots became

unable to absorb mineral from soil. Walnut shell biochar

demonstrated its efficacy as a soil amendment for mitigating

drought stress in tomato plants. Its application improved root

development, increased biomass production, and reduced stress-

induced hormonal imbalances. These findings highlight the

potential of biochar as a climate-smart solution for sustainable

agriculture in water-scarce regions. Further research is needed to

evaluate biochar’s long-term impacts on soil health and crop

productivity in field conditions.
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