AUTHOR=Akhtar Muhammad , Liuge Wu , Jian Chen , Yuxiao Su , Yuntan Zheng , Yulun Lu , Shanchao Zheng , Aixing Deng , Zhenwei Song , Chengyan Zheng , Weijian Zhang TITLE=One-time double-layer placement of controlled-release urea enhances wheat yield, nitrogen use efficiency and mitigates N2O emissions JOURNAL=Frontiers in Plant Science VOLUME=Volume 16 - 2025 YEAR=2025 URL=https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2025.1634174 DOI=10.3389/fpls.2025.1634174 ISSN=1664-462X ABSTRACT=Simultaneously enhancing the crop yield and reducing nitrous oxide (N2O) emissions presents a critical challenge in sustainable agriculture. The application of nitrogen (N) fertilizer is a key strategy to enhance crop yield. However, conventional N application practices often lead to excessive soil N accumulation, insufficient crop N uptake and elevated greenhouse gas (GHG) emissions. To address these issues, this study evaluated the effectiveness of one-time double-layer fertilization of controlled-release urea (CRU) in improving wheat yield, nitrogen use efficiency (NUE) and mitigating N2O emissions compared to single-layer fertilization. A two-year field experiment (2021-2023) was conducted with five treatments: zero N fertilizer (T0), one-time single-layer fertilization of urea at 8–10 cm soil depth (T1), one-time single-layer fertilization of CRU at 8–10 cm soil depth (T2), one-time double-layer fertilization of urea at 8–10 cm & 18–20 cm soil depth (T3), one-time double-layer fertilization of CRU at 8–10 cm & 18–20 cm soil depth (T4). The two-year average results indicated that one-time double-layer fertilization of CRU (T4) achieved the highest wheat yield (10.20 t ha-1) and NUE (19.13 kg kg-1), as well as the lowest N2O emissions (0.66 kg ha-1). Compared to single-layer CRU fertilization (T2), T4 increased wheat yield and NUE by 5.94% and 11.26%, respectively, while reducing N2O emissions by 22.50%. Furthermore, T4 optimized the soil microenvironment by lowering soil temperature and NO3−-N content at 0–10 cm depth, while enhancing soil moisture and NH4+-N availability at 10–20 cm, thereby promoting plant N uptake and utilization. These findings suggest that the one-time double-layer fertilization of CRU synchronizes N release with crop demand and regulates soil N dynamics, offering a promising strategy to boost wheat productivity and minimize environmental impacts.