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Spatiotemporal pattern analysis
of juglans leaf necrosis disease
occurrence and development
in southern Xinjiang, China,
based on UAV
Heyu Zhang1, Lei Guan1, Zhaokun Geng1, Xinglei Ma1,
Qiang Zhang2, Baoqing Wang2 and Cuifang Zhang1*

1College of Forestry and Landscape Architecture, Xinjiang Agricultural University, Urumqi, China,
2Xinjiang Academy of Forestry Sciences, Urumqi, China
Juglans leaf necrosis (JLN) is a physiological disease primarily associated with

abiotic stressors such as high temperatures, drought, and soil salinity, though

biotic factors may also exacerbate its severity. It is a global concern affecting

walnut production in multiple regions, including Xinjiang, China. In recent years,

climate change, shifting agricultural practices, and disease transmission have

increased its incidence, severely affecting tree growth, yield, and quality.

Traditional field-based monitoring is labor-intensive and often inaccurate,

underscoring the need for advanced remote sensing. To provide fast and

objective monitoring, we used hyperspectral and high-resolution RGB imagery

acquired by an unmanned aerial vehicle (UAV) to track JLN from June to

September 2024 in southern Xinjiang. Five survey rounds captured the

progression of disease severity. Among 17 vegetation indices, the modified red

edge simple ratio (MRESRI), carotenoid reflectance index 1 (CRI1), and

photochemical reflectance index (PRI) were the most informative for severity

mapping. A Random Forest classifier achieved 86% overall accuracy and a

Cohen’s kappa of 0.825. Spatial patterns showed persistent hotspots in low-

lying areas, near roads, and in dense stands. These findings provide an effective,

scalable approach for early detection and severity assessment, enabling timely,

targeted interventions. Adoption of UAV-based hyperspectral monitoring can

improve field surveillance, optimize resource allocation, and support sustainable

walnut production.
KEYWORDS

juglans leaf necrosis disease, unmanned aerial vehicle remote sensing, hyperspectral
imagery, vegetation indices, disease severity classification, spatiotemporal analysis,
precision agriculture, orchard disease monitoring
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1 Introduction

Juglans leaf necrosis (JLN) is a physiological disease primarily

caused by abiotic factors that affect walnut yield and quality. This

physiological disorder is caused, directly or indirectly, by unsuitable

physical or chemical environmental factors, particularly

environmental stressors such as high temperatures, water

shortage, and soil salinity (Gao, 2017; Bai, 2022; Xing et al.,

2023). These factors disrupt the tree’s water transport system,

leading to characteristic symptoms such as browning, curling, and

drying of the leaves. Early-stage symptoms manifest as tan focal

spots on the leaf margins. As the disease progresses, these spots

expand along the main veins, eventually leading to complete

scorching of the leaf. In severe cases, nearly the entire canopy of a

walnut tree turns brown (Xing et al., 2023). If not prevented and

controlled, JLN will cause a decrease in leaf photosynthetic capacity,

a reduction in individual fruit weight, and an increase in the rate of

empty shells, ultimately leading to a significant decline in yield and

quality and posing severe challenges to local farmers’ income

growth and ecological economic development (Guo et al., 2024).

In Xinjiang, walnuts occupy the largest orchard area of all economic

tree crops, especially in the Aksu, Hotan, and Kashgar prefectures,

where they provide more than half of farmers’ cash income and

underpin local poverty-alleviation strategies (Zhang, 2011; Zhao

et al., 2011; Huang, 2014). Beyond their economic role, walnut

plantings help stabilize oasis ecosystems and combat desertification

(Bai, 2022). Since its first report in Luopu County, Hotan

Prefecture, in 2008, the disease has spread extensively across

major walnut-producing areas in southern Xinjiang, including

Aksu, Kashgar, and Hotan (Wu et al., 2021). Initially, because of

the small scale of the walnut industry, the area and severity of JLN

were relatively limited, and the impact on production was not

significant, so it did not attract sufficient attention. However, as the

scale of Xinjiang’s walnut industry has stabilized in recent years,

JLN continues to occur in the main production areas of southern

Xinjiang, and the area affected by JLN has shown an expanding

trend, while related pests and diseases have also become prominent

(Zhou, 2021). This disease has seriously hindered the healthy

development of Xinjiang’s walnut industry and has become a

major bottleneck. Research to date has centered on causal factors

(Zhang et al., 2012; Liu, 2014; Wang et al., 2015; Tang and Hu,

2019), while quantitative, orchard-scale monitoring—especially

using unmanned aerial vehicle (UAV) imagery—remains virtually

unexplored. Developing such assessments is now critical for timely

disease management and for safeguarding the economic and

ecological value of Xinjiang’s walnut industry.

Traditionally, to accurately describe the types, severity, and

symptoms of forest pests and diseases, time-consuming and labor-

intensive field surveys are required in small sample areas. However,

this method is limited and discontinuous in space; it is impossible to

grasp the spatial distribution of pests and diseases in real time,

which does not meet the needs of real-time monitoring, early

warning, and forecasting of pests and diseases on a large regional

scale. It has the disadvantages of being time-consuming and labor-

intensive, insufficiently timely, low in accuracy, and susceptible to
Frontiers in Plant Science 02
human errors (Mahanta et al., 2024). When pests and diseases occur

on a large scale, it is difficult to carry out effective prevention and

control due to subjective and untimely constraints (Saran et al.,

2025). Real-time and efficient monitoring of the occurrence and

dynamics of pests and diseases, along with timely and effective

prevention and control, are key issues that need to be addressed in

crop production to minimize the losses caused by pests and

diseases. Recently, UAV-based remote sensing has emerged as a

promising approach for detecting forest pests and diseases (Xiao

et al., 2022; Du et al., 2024). Compared with traditional field

monitoring, UAV remote sensing technology has the advantages

of rapid data collection, wide spatial coverage, and low cost (Li et al.,

2019; Zhao et al., 2023; Guo et al., 2023; Zhang and Zhu, 2023;

Demir et al., 2024). The integration of UAV-based remote sensing

in plant disease detection has garnered extensive acceptance,

surpassing conventional manual detection methods (Bagheri,

2020; Sangaiah et al., 2024; Shan et al., 2024). By acquiring high

temporal, spatial, and spectral resolution images, it can achieve

large-scale pest and disease monitoring as well as early warning and

forecasting (Backoulou et al., 2011; Duarte et al., 2022). The use of

drones has greatly improved the level of modernization in

agriculture and forestry and is of great significance to promoting

the development of modern agriculture and forestry.

Hyperspectral remote sensing, a major advancement since the

late 20th century, offers more spectral bands than multispectral

systems, enabling more accurate target measurement and improved

detection of forest pests and diseases (Liu et al., 2021; Feng et al.,

2021; Yu et al., 2021; Iordache et al., 2020; Li et al., 2020; Wijesingha

et al., 2021; Lin et al., 2021). Recent progress in unmanned aerial

vehicle (UAV) technology has broadened its use in environmental

monitoring and precision agriculture, with UAV-based image

processing supporting autonomous decision-making (Turan et al.,

2021) and photogrammetry enabling detailed surface models

(Varol, 2025). Structure-from-Motion (SfM) has been applied for

high-fidelity 3D reconstructions (Yakar and Dogan, 2018; Şasi and

Yakar, 2017), and accuracy assessments confirm UAV model

reliability with or without ground control points (Maras ̧ and
Nasery, 2023). Together, these advances provide a solid

foundation for UAV-based hyperspectral imaging in detecting

and monitoring juglans leaf necrosis (JLN), where high spatial

resolution and temporal flexibility are essential. This technology

has been widely used in precision agriculture, forestry,

environmental protection, disaster monitoring, and early warning,

and has broad potential for application (Kooistra et al., 2014). It has

been widely used in apple mosaic virus disease (Jiang et al., 2023),

wheat leaf rust (Terentev et al., 2023), and monitoring of rice leaf

beetle infestation (Liu et al., 2020), showing its high value and broad

application prospects in early disease monitoring. In recent years,

the rapid development and application of hyperspectral remote

sensing technology have provided unique spectral data for each

pixel in hyperspectral images, compared with traditional field

spectrometers, achieving the effect of “spectral-image fusion”

(Zhang et al., 2023). The high spatiotemporal resolution of UAV

hyperspectral imaging is a significant advantage, as it can be used to

analyze the occurrence and development of JLN in the study area
frontiersin.org
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without being influenced by production conditions, geographical

factors, or human subjectivity (Wang et al., 2023). This method can

effectively monitor large affected areas with low operating costs,

high efficiency, and good timeliness, greatly improving monitoring

efficiency, reducing costs, and minimizing adverse ecological

impacts. Monitoring of forest pests and diseases with UAV-borne

hyperspectral imaging has so far centered on single-date

acquisitions (Lausch et al., 2013; Li et al., 2020; Lin et al., 2021;

Yu et al., 2021). By comparison, multi-temporal applications

remain limited (Iordache et al., 2020; Einzmann et al., 2021; Bárta

et al., 2022), despite their capacity to portray the complete

infestation trajectory and pinpoint optimal detection windows.

In recent decades, climate change has emerged as a major driver

intensifying abiotic stress in crops, especially in arid and semi-arid

regions. Temperature extremes, altered precipitation patterns, and

heightened evapotranspiration increase the frequency and severity

of water scarcity events, directly impacting crop physiology.

According to the Intergovernmental Panel on Climate Change

(Shukla, 2019), these climatic changes have already reduced crop

yields in many parts of the world through shortened maturation

periods, reduced grain set during flowering, and increased water

stress. Such stressors exacerbate the environmental conditions

conducive to juglans leaf necrosis (JLN), leading to earlier

symptom onset and more rapid disease progression. In southern

Xinjiang, rising summer temperatures, reduced precipitation, and

increasingly variable irrigation availability create an environment

conducive to the development of JLN. In addition, shifts in

agricultural practices, such as intensified monoculture systems

and higher tree densities, can amplify microclimatic stress, further

increasing disease risk. Recognizing these interactions is critical for

designing adaptive disease monitoring and management strategies

under a changing climate. In view of this, this study focuses on the

main walnut variety “Zha 343” in Lop County, Hotan Prefecture. It

calculates vegetation indices based on UAV hyperspectral images,

identifies the most informative vegetation indices, evaluates plant

health, classifies disease severity, captures the dynamic progression

of JLN at different severity levels, and provides a preliminary

analysis of its causes. This study aims to provide a more efficient,

accurate, and real-time method to detect and map the spatial

distribution of JLN so that timely intervention measures can be

taken. By exploring the potential of UAV hyperspectral remote

sensing technology in large-scale disease monitoring and integrated

management strategies, it contributes to the sustainable

development of Xinjiang’s walnut industry and provides a model

for more effective agricultural disease management and ecological

protection in the region and globally.
2 Materials and methods

2.1 Study area

Luopu County, administered by Hotan Prefecture in the

Xinjiang Uygur Autonomous Region, lies along the northern

foothills of the Kunlun Mountains on the southern fringe of the
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Tarim Basin, where an extremely arid continental climate prevails,

marked by large diurnal temperature variations, low humidity,

annual evaporation of 2,226.2 mm, and frequent dust-laden

winds (Liang et al., 2005; Liu and Wei, 2005; Xu et al., 2009).

Mean annual temperature ranges from 7.8°C to 12°C (extremes: –

24.6°C to 40.1°C), while average annual precipitation is only

35.2 mm. The study was conducted in an 8-ha orchard in

Kuochaiker Aizik Village, Luopu County (Figure 1), planted

mainly with the ‘Zha 343’ walnut cultivar, with a smaller

proportion of ‘Xinfeng’. Approximately 70% of trees are 13 years

old, 20% are 7–13 years old, and 10% are younger than 7 years, at a

spacing of 6 m × 8 m.
2.2 Ground survey

To comprehensively investigate the progression of juglans leaf

necrosis (JLN) at different growth stages, a series of UAV data

acquisitions and ground surveys were conducted under clear, light-

wind conditions on five key dates: June 16, July 2, July 30, August

12, and August 30, 2024. These time points were selected to capture

critical changes during the growing season. Special emphasis was

placed on the peak disease period typically observed in early July,

thereby enabling a comprehensive assessment of JLN onset,

severity, and subsequent decline under field conditions.

During each survey, we selected five disease plots, with 40 trees

sampled from each plot (Figure 1D). To account for potential

spatial variability within the canopy, leaves were collected from

five canopy positions—east, south, west, north, and center—with

three leaves per position, totaling 15 leaves per tree. Subsequently,

the disease severity of these 15 leaves was evaluated to

comprehensively assess the prevalence and severity of the disease

across the entire canopy. The classification criteria for leaf-level

disease severity are detailed in Table 1. Photographs of diseased

leaves at different severity levels are shown in Figure 2. The

calculation formula for leaf disease severity is presented in

Equation 1.

Leaf severity( % ) =
Leaf spot area
Total leaf area

� 100 (1)
2.3 UAV data collection

2.3.1 Visible light high-resolution imaging
High-resolution visible imagery was acquired using the DJI

Mavic 3E (DJI, Shenzhen, China; https://www.dji.com) UAV

equipped with a standard RGB sensor. Missions were conducted

at an altitude of 80 m to achieve the best balance between area

coverage and spatial resolution. To minimize atmospheric and

illumination variability, all flights were performed between 10:00

and 12:00 local time under clear-sky or lightly clouded conditions,

avoiding strong wind events (>5 m/s). Data were collected on five

survey dates (June, July, August, early September, and late

September 2024) to capture disease progression. Forward overlap
frontiersin.org
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and side overlap were set at 80% and 70%, respectively, to ensure

accurate image stitching without gaps. High-resolution visible

imagery was processed and stitched using DJI Terra software

(DJI, Shenzhen, China; https://www.dji.com/dji-terra), applying

structure-from-motion principles to produce orthophotos with a

spatial resolution of approximately 2.2 cm.

2.3.2 Hyperspectral imaging
Hyperspectral data were acquired using a DJI M350 (DJI,

Shenzhen, China; https://www.dji.com) equipped with an FS-60c

hyperspectral sensor (Hangzhou CHNSpec Technology Co., Ltd,

Hangzhou, China; https://www.ceseyi.com/aboutus.html). Flights

were performed between 10:00 and 12:00 local time under clear-

sky or lightly clouded conditions, avoiding strong wind events

(>5 m/s), with a flight altitude of 120 m. Data were collected on
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five survey dates (June, July, August, early September, and late

September 2024). Forward overlap and side overlap were set to 80%

and 70%, respectively, to ensure full coverage. Prior to each flight, a

standardized white reference panel was used for radiometric

calibration. This acquisition protocol minimized environmental

variability and ensured comparability across temporal datasets.

The hyperspectral data from this sensor cover a spectral range of

400–1000 nm, with a spectral resolution of 2.17 nm and a spatial

resolution of 11 cm. Data stitching and processing were conducted

in FigSpec Studio software (Hangzhou CHNSpec Technology Co.,

Ltd, Hanzhou, China; https://www.ceseyi.com/aboutus.html),

specific to the FS-60c sensor.
2.3.3 Data preprocessing
Hyperspectral data preprocessing included stitching,

atmospheric correction, reflectance calibration, and noise

reduction. Stitching was used to combine multiple flight images

into a seamless multi-band dataset; atmospheric correction

minimized the impact of atmospheric interference; reflectance

calibration ensured the consistency of spectral values using gray

reference panels; and noise reduction eliminated irrelevant signals

and improved clarity. Stitching, atmospheric correction, and

reflectance calibration were performed in FigSpec Studio, while

noise reduction was conducted in ENVI. The preprocessed datasets

formed the basis for vegetation index calculations and dynamic

analysis of JLN. A supervised classification approach was employed
TABLE 1 Leaf disease rating criteria.

Disease Grade Description

Grade 0 No signs of browning or scorch on the leaf surface.

Grade 1 Browning/scorch affects ≤ 25% of the leaf surface.

Grade 2 Browning/scorch affects 26%-50% of the leaf surface.

Grade 3 Browning/scorch affects 51% -75% of the leaf surface.

Grade 4 Browning/scorch affects 76% -100% of the leaf surface.
FIGURE 1

Geographical location map of the study area. (A) shows the location of Hotan Prefecture, (B) shows the location of Luopu County, Hotan Prefecture,
(C) is a satellite image of the location of the research area, and (D) shows the Drone image and survey area in the study area.
frontiersin.org

https://www.dji.com/dji-terra
https://www.dji.com
https://www.ceseyi.com/aboutus.html
https://www.ceseyi.com/aboutus.html
https://doi.org/10.3389/fpls.2025.1633206
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhang et al. 10.3389/fpls.2025.1633206
to identify the presence and severity of walnut juglans leaf necrosis

(JLN). The UAV data processing flow is shown in Figure 3.
2.4 Classification methodology

We use the random forest algorithm to classify the severity of

juglans leaf necrosis. The basic principle of this method was to extract
Frontiers in Plant Science 05
and analyze spectral features related to canopy plant stress (Tuominen

et al., 2008). Feature selection was first performed to identify

vegetation indices sensitive to plant health change. Then, a Random

Forest classifier was trained on labeled examples of JLN severity, and

its aggregated predictions produced a robust classification (Vanguri

et al., 2024; Yang et al., 2015). The RF classifier was implemented in

ENVI with 500 trees, a maximum tree depth of 20, bootstrap

sampling enabled, and Gini impurity as the splitting criterion. Class
FIGURE 2

juglans leaf necrosis disease occurrence in different periods. The image is from the author’s photography of the extent of leaf disease in the
experimental field.
FIGURE 3

UAV data processing flow chart. Workflow for drone-acquired hyperspectral and RGB imagery processing used in this study. The process includes
image stitching to generate seamless orthomosaics, atmospheric correction to remove atmospheric effects, reflectance calibration using reference
panels to standardize spectral values, and noise reduction to improve data clarity. Preprocessed imagery is then used to calculate vegetation indices
(VIs), such as NDVI (Normalized Difference Vegetation Index), MRESRI (Modified Red-Edge Simple Ratio Index), CRI1 (Carotenoid Reflectance Index
1), and PRI (Photochemical Reflectance Index). These indices are integrated into a Random Forest (RF) model for disease severity classification.
Spatial analyses, including mapping and area statistics, are conducted using a Digital Elevation Model (DEM) and ArcGIS 10.8. Abbreviations: DEM,
Digital Elevation Model; NDVI, Normalized Difference Vegetation Index; VI, Vegetation Index; RF, Random Forest; MRESRI, Modified Red-Edge Simple
Ratio Index; CRI1, Carotenoid Reflectance Index 1; PRI, Photochemical Reflectance Index.
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boundaries for severity levels were not manually set; instead, they were

determined by the RF’s decision tree splits, ensuring a data-driven

thresholding process. The performance of the Random Forest model

was validated using a confusion matrix and a suite of evaluation

indicators—including accuracy, precision, and recall—based on a

sample of JLN severity data from ground surveys (Rissati et al.,

2020). After classification, the results were refined to eliminate

obvious errors and exclude patches located outside the walnut

canopy. The severity of JLN was divided into five levels: Grade 0

(healthy) indicates no symptoms; Grade 1 (mild) indicates mild

damage; Grade 2 (moderate) indicates larger, more continuous

patches of leaf damage.; Grade 3 (severe) indicates severe crown

damage; and Grade 4 (critical) indicates that most of the crown was

affected (Wang and Jin, 2023). The classification standards are shown

in Table 1. To validate UAV-based disease detection, we conducted

systematic ground surveys concurrent with UAV flights. A total of

1,000 georeferenced sampling points were established across the study

orchards, ensuring representation of all disease severity levels (Grade

0–4). At each point, three to five walnut trees were visually assessed

using the standardized juglans leaf necrosis (JLN) severity scale.

Symptomatic and asymptomatic trees were recorded, and severity

grades were assigned based on leaf chlorosis, necrosis percentage, and

canopy damage patterns. All ground samples were geotagged using a

sub-meter accuracy GNSS receiver and spatially matched to UAV-

derived hyperspectral and RGB orthomosaics. The 1,000 samples

were randomly split into a training set (80%) and validation set (20%)

for supervised classification. Spatial and statistical analyses were

conducted in ArcGIS 10.8 (Environmental Systems Research

Institute, Inc., Redlands, CA, USA; https://www.esri.com)
2.5 Accuracy assessment

To evaluate classification performance, we used a confusion

matrix along with Overall Accuracy (OA), accuracy, precision,

recall, and Cohen’s kappa coefficient (k). Cohen’s kappa provides

a chance-corrected measure of agreement between the classified

map and reference data. It is calculated as:

k =
ro − re
1 − re

where ro    is the observed agreement and re is the expected

agreement by chance. The interpretation of k follows Landis and

Koch (1977): values <0.00 = poor; 0.00–0.20 = slight; 0.21–0.40 =

fair; 0.41–0.60 = moderate; 0.61–0.80 = substantial; and 0.81–1.00 =

almost perfect agreement.
2.6 Vegetation indices

Hyperspectral data were processed in ENVI software (Exelis

Visual Information Solutions, USA; https://envi.geoscene.cn/), and

three types of indices were derived: greenness indices, pigment

indices, and canopy water/photochemical efficiency indices. The

greenness indices primarily reflect vegetation vigor by detecting
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variations in reflectance between red and near-infrared (NIR)

bands, with healthy vegetation typically exhibiting higher values;

we calculated nine such greenness indices, including NDVI, EVI,

and various red-edge indices, as listed in Table 2 (Galvão et al.,

2013; Liu et al., 2007). The leaf pigment indices, which depends on

reflectance in the green and red bands, estimates leaf pigment

content (especially chlorophyll) closely linked to photosynthetic

performance and overall plant vitality; this study determined four

pigment-related indices to provide insights into the nutritional

status and health of walnut trees, also shown in Table 2 (Ahmad

et al., 2020; Velichkova and Krezhova, 2018). Meanwhile, the

canopy water or photosynthetic efficiency indices characterize

vegetation water content and photosynthetic capacity, offering

critical understanding of plant resilience under stress; here, four

such indices were computed to assess potential water deficits and

photosynthetic function decline in the orchards, as indicated in

Table 2 (Oliveira et al., 2019; Lu et al., 2015).
3 Results

3.1 Visible light high-resolution imaging
analysis

When analyzing five stages of high-resolution UAV images of

juglans leaf necrosis (JLN) in the experimental orchard, the

dynamic changes in its occurrence and evolution could be clearly

observed (Figure 4). In the first and second stages, JLN had just

occurred, and symptoms were not obvious. From locally magnified

UAV images, the lesions did not exhibit obvious color or texture

changes and appeared mainly healthy green (Figures 4A, B). This

may be because the leaf damage area was still small in the early

stage, and spectral reflectance characteristics had not yet changed

significantly. As time passed to the third experimental stage,

symptoms were significantly aggravated, and affected leaves

showed large damaged area. High-resolution images revealed

marked changes in the walnut crowns, manifested as dry leaves

and decreased reflectivity in diseased parts, especially in the visible

band. From the locally enlarged image at Stage 3 (Figure 4C),

crowns displayed a grayish-white appearance, which contrasted

with Stages 1 and 2. This change in texture and color provided a

reliable remote sensing indicator for JLN.

In the fourth and fifth stages, the degree of juglans leaf necrosis

was further aggravated. Large areas of leaves showed scorch

characteristics, and the diseased area expanded features. During

this period, the spatial distribution of disease features became

clearer. In addition, some walnut trees were observed to have

begun to sprout new leaves. This may be due to the recovery

growth after infection. As a result, images displayed the coexistence

of new and dead leaves, creating complex spectral mixing in

multispectral imagery (Figures 4D, E).

From the analysis results, we found that the complexity of

detecting JLN increases as the disease progresses. Specifically, in the

early stage of the disease, symptoms were subtle and difficult to

distinguish from healthy crowns in RGB UAV imagery. In later
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stage, due to the recovery of the walnut itself, newly grown leaves

may mask the infection characteristics, making field-based

assessments and traditional RGB remote sensing increasingly

unreliable. Therefore, more advanced technologies are needed to

more accurately detect and diagnose the occurrence and

development of juglans leaf necrosis.
3.2 Hyperspectral imagery classification
results

To rigorously validate UAV-derived hyperspectral classification

of juglans leaf necrosis (JLN) severity, we conducted five dedicated

field campaigns contemporaneous with flight missions. A stratified

sampling design yielded 1000 Geo-referenced crown centers, where

visual assessments followed the national JLN severity standard

(grade 0–4). For every sample point reflectances corresponding to
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the 17 pre-selected vegetation indices (VIs) were extracted from the

atmospherically and radiometrically corrected hyperspectral

orthomosaic. The random forest algorithm was used to calculate

the importance of each VI for JLN severity (Figure 5). As can be

seen from Figure 5, MRESRI, CRI1 and PRI clearly dominated the

feature-importance ranking, indicating strong sensitivity of red-

edge and carotenoid-related metrics to JLN stress. In contrast,

indices such as MRENDVI, WBI and VREI1 contribute

marginally, suggesting limited additional discriminatory power

once these indices are included.

The confusion matrix (Figure 6) demonstrated an overall

accuracy (OA) of 86% (172/200) and a Cohen’s k of 0.825,

denoting substantial agreement between RF predictions and

ground observations. Table 3 details class-wise statistics. Grades 0

and 4 achieved both high precision (≤ 6% false alarm) and high

recall (≥ 85%), indicating that healthy and severely stressed crowns

were rarely confused with other. Most of the 28 errors occurred
TABLE 2 The Vegetation indices calculated in the article.

Index Name Formula Reference

Normalized Difference Vegetation Index (NDVI) NDVI =
r800 − r680
r800 + r680

Rouse et al., 1973

Plant Senescence Reflectance Index (PSRI) PSRI =
r680 − r500

r750
Merzlyak et al., 1999

Enhanced Vegetation Index (EVI) EVI = 2:5 ·
NIR − Red

NIR + 6 · Re d − 7:5 · Blue + 1
Huete et al., 2002

Atmospherically Resistant Vegetation Index (ARVI) ARVI =
r800 − ½r680 − g (r450 − r680)�
r800 + ½r680 − g (r450 − r680)�

Kaufman and Tanre, 1992

Red Edge Normalized Difference Vegetation Index (RENNDI) RENNDI =
r750 �r705
r750 + r705

Sims and Gamon, 2002

Modified Red Edge Simple Ratio (MRESR) MRESR =
r750 − r445
r705 − r445

Sims and Gamon, 2002

Modified Red Edge Normalized Difference Vegetation Index
(MRENDVI) MRENDVI =

r750 − r705
r750 − r705 − 2 ∗ r445

Sims and Gamon, 2002

Vogelmann Red Edge Index 1 (VREI1) VREI1 =
r740
r720

Vogelmann et al., 1993

Vogelmann Red Edge Index 2 (VREI2) VREI2 =
r734 � r747
r715 + r726

Vogelmann et al., 1993

Carotenoid Reflectance Index 1 (CRI1) CRI1 =
1

r510
−

1
r550

Gitelson et al., 2002

Carotenoid Reflectance Index 2 (CRI2) CRI2 =
1

r510
−

1
r700

Gitelson et al., 2002

Anthocyanin Reflectance Index 1 (ARI1) ARI1 =
1

r550
−

1
r700

Gitelson et al., 2001

Anthocyanin Reflectance Index 2 (ARI2) ARI2 = r800(
1

r550
−

1
r770

) Gitelson et al., 2001

Water Band Index (WBI) WBI =
r970
r900

Peñuelas et al., 1993

Photochemical Reflectance Index (PRI) PIR =
r531 − r570
r531 + r570

Gamon et al., 1997

Structure Insensitive Pigment Index (SIPI) SIPI =
r800 − r445
r800 + r445

Penuelas et al., 1995

Red Green Ratio Index (RGRI) RGRI = o
699
i=600Ri

o599
j=500Rj

Gamon and Surfus, 1999
frontiersin.org

https://doi.org/10.3389/fpls.2025.1633206
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhang et al. 10.3389/fpls.2025.1633206
between adjacent intermediate grades (1, 2 ↔ ↔, 3), which is

expected given overlapping visual and spectral cues. Among them,

Grade 1 had the lowest classification accuracy. Importantly, no

misjudgments across more than two grades (such as 0→3 or 1→4),

confirming reasonable decision boundaries. From the overall

indicators (Table 4), balanced/macro average recall was 0.86,

macro precision was 0.865, and Macro F1-score was 0.861,

further confirm the balanced performance of the model across all

severity stages. The high OA, robust k statistic and biologically

coherent error structure indicated that the VI-based RF model was

well suited for operational mapping of JLN severity. In particular,

the dominance of red-edge and pigment-related indices highlighted

their value as early-warning proxies for canopy stress.

The classification results are shown in Figure 7. From a temporal

and spatial perspective, the classification results showed a clear trend

in the occurrence and development of juglans leaf necrosis (JLN) in
Frontiers in Plant Science
 08
the experimental orchard, on which more detailed studies can be

conducted to better understand the dynamics of the disease. The

results also showed that it was feasible to calculate vegetation indices

based on drone hyperspectral remote sensing data and used the

random forest method to classify the severity of juglans leaf necrosis.

The classification results of this method can fully help to understand

the law of JLN spread and aggravation over time, as well as its spatial

distribution evolution in different areas of the orchard.
3.3 Spatio-temporal dynamics of juglans
leaf necrosis

Figure 7 shows the hyperspectral classification maps, while

Figure 8 provides class-area statistics. Together, they show a clear

escalation of JLN across the five monitoring stages.
FIGURE 4

High-resolution visible light imaging results of experimental plots from UAVs. (A) shows the first stage of the experiment, (B) shows the second stage
of the experiment, (C) shows the third stage of the experiment, (D) shows the fourth stage of the experiment, and (E) shows the fifth stage of the
experiment. The right side of the picture is a partially enlarged image of the drone image.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1633206
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhang et al. 10.3389/fpls.2025.1633206
3.3.1 Stage 1
JLN was largely absent: 79.03 % of canopy pixels were healthy

(grade 0) and 20.97 % showed only mild symptoms (grade 1). Diseased

trees appeared as a few, randomly distributed patches, and no spatial

pattern could yet be linked to topography or management factors.

3.3.2 Stage 2
Two weeks later, grade 2 (moderate) pixels appeared (5.19 %),

although grades 0 and 1 still dominated (72.97 % and 21.84 %,

respectively). New foci were still small and scattered, indicating an

incipient but spatially unconstrained spread.

3.3.3 Stage 3
Disease intensity and aggregation increased markedly.

Moderate damage (grade 2) expanded to 22.76 % of the orchard,

and severe damage (grade 3) emerged (9 %). Most grade 2 and 3

pixels clustered in the southern sector, adjacent to the He–Luo

Expressway and areas of high tree density—suggesting that road

proximity and stand structure facilitate disease transmission.
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3.3.4 Stage 4
JLN reached its first peak. Although nearly half of the canopy

remained healthy (46.67 %), grades 2–4 together accounted for 33.29

% (grade 2 = 19.43 %, grade 3 = 6.29 %, grade 4 = 7.57 %). Large,

contiguous blocks of brown, desiccated foliage were evident in both

the hyperspectral maps and the corroborating RGB−drone imagery,

with severity highest where airflow and drainage are poorest.

3.3.5 Stage 5
The final survey confirmed further intensification: grade 4 rose to

14.01 % and grade 3 to 10.18 %, while grades 1 and 2 declined to 14.29

% and 14.57 %, respectively. Despite widespread damage, pockets of

regreening appeared, implying that micro−site factors (better

ventilation, soil moisture, or nutrient status) confer partial resilience.

Overall, JLN advanced from isolated, mild lesions to extensive

crown scorch within roughly six weeks. Spatial progression was initially

random but became strongly clustered near highways and in dense

stands, pointing to anthropogenic vectors and canopy microclimate as

key drivers. The combined spatial and temporal evidence highlights the
TABLE 3 Precision analysis of severity of juglans leaf necrosis in various categories.

Severity class TP FN FP Precision Recall F-score Main confusions (>1)

0 (healthy) 35 5 2 0.946 0.875 0.909 3 × →1, 2 × →2

1 (mild) 35 5 10 0.778 0.875 0.824 3 × ←0, 3 × →0, 2 × →2

2 (moderate) 34 6 7 0.829 0.850 0.840 3 × →3, 2 × ←1

3 (heavy) 34 6 6 0.829 0.850 0.840 3 × ←2, 2 × →4

4 (severe) 34 6 2 0.944 0.850 0.895 4 × ←3, 2 × ←2
TP, True Positive; FP, False Positive; FN, False Negative
FIGURE 5

Random Forest feature importance for JLN severity classification. Relative importance of 17 vegetation indices (VIs) for differentiating juglans leaf
necrosis (JLN) severity levels based on UAV hyperspectral imagery. Higher values indicate stronger predictive contribution to model decision-
making. The specific meanings of the abbreviations are shown in Table 2.
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narrow window for effective intervention—between the first detectable

grade 2 patches (Stage 2) and the rapid coalescence of severe foci (Stage

3)—before irreversible canopy loss ensues.
3.4 Transfer analysis between different
severity levels

To investigate the progression of juglans leaf necrosis (JLN)

across different severity levels and to characterize the transition

from mild to severe infection, we constructed transition matrices

between disease severity levels at different time points. These matrices
Frontiers in Plant Science 10
were derived from the statistical analysis of 3.2 classification results in

ArcGIS 10.8 and are used to quantify the dynamic changes in disease

severity during the monitoring period. To illustrate the transitions

between different severity classes visually, Sankey diagrams were

employed. As shown in Figure 9, the diagrams clearly depict the

flow of infected walnut trees between severity levels over time,

providing intuitive insight into the development trajectory of JLN.

This approach enables a better understanding of disease dynamics,

highlighting the rates and directions of progression, persistence, or

potential remission under field conditions.

From stage 1 to stage 2, 66.13% of the trees originally classified

as severity grade 0 (healthy) remained stable, while 12.16% of those

at grade 1 also maintained their status. Notably, 9.55% of trees

transitioned from grade 0 to grade 1, and 3.64% advanced to grade

2. Additionally, 1.5% of trees at grade 1 progressed to grade 2. These

findings indicate that the predominant trend during this stage was

the early development of disease symptoms, primarily characterized

by the progression from grade 0 to grade 1 and 2.

Between stage 2 and stage 3, the transition became more

pronounced. Only 33.82% of grade 0 trees remained healthy,

whereas the retention rates for grades 1 and 2 dropped

significantly to 4.79% and 1.68%, respectively. Meanwhile, 17.41%

of grade 0 trees progressed to grade 1, 15.67% to grade 2, and 6.37%
FIGURE 6

Confusion matrix heat map. Rows represent ground-truth classes and columns represent predicted classes. Values along the diagonal indicate
correct classifications (true positives); off-diagonal values represent misclassifications. OA, Overall Accuracy; k, Cohen’s kappa coefficient.
TABLE 4 Overall metrics of the model.

Measure Value

Overall accuracy 86% (172/200)

Balanced/macro-average recall 0.86

Macro precision 0.865

Macro F1-score 0.861

Cohen’s k 0.825 (substantial agreement)
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to grade 3. Furthermore, 5.60% of grade 1 trees advanced to grades 2

and 3, while 0.54% of grade 2 trees transitioned to grade 3. This

stage marked a rapid escalation in disease severity, with widespread

movement toward higher severity levels.
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From stage 3 to stage 4, the proportion of trees maintaining

their original severity level continued to decline. Only 27.59% of

grade 0 trees remained unchanged, followed by 6.58%, 9.15%, and

0.79% retention for grades 1, 2, and 3, respectively. Transitions from
FIGURE 7

Classification results of UAV hyperspectral images of the experimental plot. (A, E) are the hyperspectral color composite images and classification
results of the first stage of the experiment, (B, F) are the hyperspectral color composite images and classification results of the second stage of the
experiment, (C, G) are the hyperspectral color composite images and classification results of the third stage of the experiment, (D, H) are the
hyperspectral color composite images and classification results of the fourth stage of the experiment, and (E, I) are the hyperspectral color
composite images and classification results of the fifth stage of the experiment.
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grade 0 to higher severity grades were observed at 7.02% (to grade

1), 3.79% (to grade 2), 2.88% (to grade 3), and 3.35% (to grade 4).

Similarly, trees at grade 1 transitioned to grades 2 (4.55%), 3

(1.17%), and 4 (1.31%). Trees at grade 2 continued to progress,

with 1.49% and 1.97% moving to grades 3 and 4, respectively, while
Frontiers in Plant Science 12
0.98% of grade 3 trees advanced to the most severe grade (grade 4).

This stage reflected an acceleration in disease progression toward

the advanced stages.

Between stage 4 and stage 5, disease advancement persisted,

though at a slightly reduced rate. The stability rates for grades 0
FIGURE 8

Statistical results of the severity of juglans leaf necrosis in different time periods. The X-axis shows monitoring stages (T1–T5), and the Y-axis shows
the percentage of canopy pixels in each severity grade (Grade 0–4). Grades are color-coded: Grade 0 = healthy; Grade 1 = mild; Grade 2 =
moderate; Grade 3 = severe; Grade 4 = critical.
FIGURE 9

Analysis results of transfer between different severity grades in different periods. T1, T2, T3, T4, T5 represent stage 1, stage 2, stage 3, stage 4, and
stage 5 respectively. Sankey diagram illustrating the flow of walnut trees between disease severity grades from T1 to T5. Node width is proportional
to the proportion of trees in each grade; link width is proportional to the percentage transitioning between grades. T1–T5 = Stage 1 to Stage 5;
Grade 0–4 severity classification as defined in Methods.
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through 4 were 26.31%, 6.57%, 9.15%, 0.79%, and 0.97%,

respectively. Trees at grade 0 continued to show signs of

infection, with 6.59%, 4.31%, 4.18%, and 5.13% transitioning to

grades 1 through 4, respectively. Grade 1 trees progressed to grade 2

(3.47%), grade 3 (2.16%), and grade 4 (2.19%). Transitions from

grade 2 to 3 (2.17%) and 4 (2.31%) were also observed, along with

1.25% of grade 3 trees reaching grade 4. These results indicate a

steady but ongoing upward shift in disease severity, with increasing

proportions of trees reaching moderate to severe grades in

later stages.
4 Discussion

4.1 Vegetation indices and their role in
disease detection

The use of vegetation indices based on hyperspectral data

proved essential and effective in assessing the severity of JLN. In

this study, greenness indices, leaf pigment indices, and canopy

moisture or photosynthetic efficiency indices were calculated to

capture different physiological aspects of plant health. Among them,

greenness indices such as NDVI, EVI, and RENDVI effectively

detected changes in overall canopy health. This is consistent with a

study on chlorosis in the Shulayar Reserve Forest in Kerala, which

showed that such indices are sensitive to vegetation vigor and

chlorophyll content and can be used to monitor forest canopy

health (Ahmad et al., 2020). Leaf pigment indices such as CRI1 and

ARI1 can be used to identify early signs of stress related to

chlorophyll degradation and carotenoid accumulation, which can

indicate the presence of JLN. This aligns with findings that the

chlorophyll-to-carotenoid ratio is a key indicator of physiological

stress and that hyperspectral indices effectively track pigment

changes during plant development (Song and Wang, 2022).

Canopy moisture indices such as PRI and WBI were particularly

valuable for assessing water stress commonly associated with JLN,

providing additional insights into the underlying causes of the

disease. Similar results were obtained in studies on Scots pine and

sorghum, where PRI and red-edge-based indices reliably captured

carotenoid activity and water stress dynamics (Miettinen et al.,

2025; Song et al., 2023).

In addition, studies on strawberry and sweet corn also showed

that chlorophyll fluorescence indices and red-edge-based vegetation

indices (e.g., CIREDEDGE, REIP) are very effective in detecting the

early stages of heat, water, and nitrogen stress, which strengthens

the role of using hyperspectral indices to distinguish different types

of physiological stress (Poobalasubramanian et al., 2022; Sellami

et al., 2022). These findings also validate that combining multiple

vegetation indices targeting chlorophyll, carotenoids, and water

content can provide a comprehensive and early assessment of

JLN. Future work could further refine this approach, as

demonstrated in studies using deep learning and hyperspectral

signatures to monitor tree and crop stress (Moley et al., 2024;

Deng et al., 2023; Bai et al., 2024; Otone et al., 2024).
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Our classification analysis showed that the combination of

MRESRI, CRI1, and PRI achieved the highest performance across

various metrics (classification accuracy, precision, recall, and Kappa

coefficient). This highlights the synergistic value of integrating

indices targeting different physiological traits. Studies on squash

and tomato diseases using UAV hyperspectral imaging also

supported the advantages of combined metrics for early disease

stage classification, achieving more than 90% accuracy even under

field conditions (Abdulridha et al., 2020a, Abdulridha et al., 2020b).

However, we found that misclassification occurred mainly

between the “healthy” (0) and “mild” (1) categories, likely due to

overlapping spectral signatures. This challenge was echoed in

studies of wheat rust and rubber tree disease, where the early

stages of the disease are the most difficult to distinguish, even

with advanced models (Zeng et al., 2024; Abdulridha et al., 2023).

We also found that the winds in the Hotan area are strong, and the

leaves of walnut trees often have dust attached and accumulated,

which can affect the accuracy of classification and also increases the

difficulty of early disease monitoring. Despite these problems, the

high accuracy in classifying “healthy” (0) and “severe” (3)

categories, as well as strong overall performance, demonstrates

that UAV hyperspectral imaging, especially when combined with

field validation, remains a powerful and reliable method for disease

monitoring in walnut orchards and other areas.
4.2 Disease progression and spatial–
temporal dynamics

High-resolution UAV imagery and hyperspectral classification

showed clear spatio-temporal progression of JLN. In the early stages

(stages 1 and 2), visual symptoms of JLN were mild and difficult to

detect with traditional remote sensing methods, including high-

resolution RGB imagery. Slight textural changes in the canopy

observed in RGB imagery indicate early stress, but symptoms

were not obvious. This limitation is echoed by other studies that

highlight the lack of spectral sensitivity of RGB imaging to detect

physiological stress before it becomes apparent (Kouadio

et al., 2023).

As the disease progresses to stage 3, visible symptoms such as

browning and curling and scorching of canopy leaves became more

evident. At this point, hyperspectral imaging became increasingly

effective in capturing disease-related changes. A combination of

vegetation indices (MRESRI, CRI1, and PRI) provided the best

choice for classification, consistent with other studies in which

hyperspectral imagery outperformed traditional methods in

detecting disease progression. For example, hyperspectral sensors

with neural networks achieved accurate classification of

Huanglongbing in citrus by detecting early canopy reflectance

anomalies (Deng et al., 2020). This further proves that

hyperspectral remote sensing combined with physiological

indicators can reliably detect and quantify the disease in early and

intermediate stages, even before visible symptoms fully appear

(Kuswidiyanto et al., 2022).
frontiersin.org

https://doi.org/10.3389/fpls.2025.1633206
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhang et al. 10.3389/fpls.2025.1633206
The study found that the spatial distribution of JLN in the study

area also showed different patterns. The results showed that

hotspots of JLN occurrence occurred more frequently near roads

and low-lying areas. These areas may be affected by microclimatic

conditions such as increased temperature, altered airflow, or poor

drainage. Similar spatial patterns have been found in remote

sensing studies of citrus and palm diseases, where the disease was

found to be more severe near human infrastructure or waterlogged

areas (Alsadik et al., 2024). This further validates the role of local

environmental variables in driving disease onset and highlights the

importance of drone data for spatially targeted monitoring.

In-depth analysis of the temporal dynamics of JLN (Section 3.4)

showed that disease severity had a significant and rapid progression

between early and late monitoring stages. Initially, more than 70%

of trees were healthy or only slightly affected with indistinct

symptoms (grades 0-1), but by stage 3, moderate symptoms

(grade 2) became common and severe infections (grade 3) rose to

nearly 9%, with affected walnut trees showing obvious symptoms

and concentrated in patches. By stages 4 and 5, the proportion of

trees showing severe to critical symptoms increased dramatically,

indicating that JLN has the ability to intensify in a short period of

time. Similar time series drone studies have revealed similar trends,

with scholars using continuous hyperspectral monitoring and

tracking of biotic stress in vineyards and wheat fields, finding that

biotic stress in the study area also expanded rapidly in a short period

of time (Nguyen et al., 2021; Zhang et al., 2025). Interestingly,

during the development of JLN, new leaves will grow, and some tree

crowns will show temporary recovery, which will mask the disease

signal and reduce the detection accuracy. This phenomenon has

also been observed in related studies when using chlorophyll

fluorescence and solar-induced fluorescence index for stress

monitoring. This physiological improvement may produce false

negatives in automatic models (Chang et al., 2020). These findings

emphasize the importance of continuous and high-frequency

monitoring using drone hyperspectral, which can not only

capture the trend of disease escalation but also potential

mitigation or recovery trends.
4.3 Severity-level transitions and
management implications

We used Sankey diagrams in Section 3.5 to illustrate the dynamic

path of JLN from one severity level to another in the study area.

During the early monitoring intervals (e.g., stage 1 to stage 2), most

healthy trees (grade 0) remained in the same state, while only a small

number of trees transitioned to grade 1 or 2. In contrast, in the mid-

to-late intervals (stage 3 to stage 4 and stage 4 to stage 5), the severity

accelerated significantly, with a considerable number of grade 1 and 2

trees progressing to grades 3-4. This pattern not only highlights the

nonlinear progression of JLN but also indicates the importance of

early management, where timely intervention management can

prevent mild infection from evolving into large areas of burnt

areas. Similar nonlinear disease progression patterns were observed

in a drone-based maize study, where researchers used hyperspectral
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and wavelet features to capture disease transitions across time

intervals. It was found that disease transitions at different levels in

different periods were not linear, and the transitions were

significantly accelerated in the later stages (Bai et al., 2024).

Notably, a small number of trees either remained stable in the

mild category or transitioned downward from the moderately severe

category to the mild category, a reversal that was often associated with

new leaf growth. This reflects the heterogeneity of host responses, and

some specific factors, such as genetic resilience or microclimate

buffering, may attenuate or delay disease progression. This finding

is consistent with the results of a time series study of Fusarium solani

in cotton, which used deep learning and temporal modeling to

explain changes in disease trajectories. The study found that some

plants showed partial recovery or delayed symptom escalation during

disease development (Abdalla et al., 2024).

For orchardmanagers, these findings imply that a one-size-fits-all

approach to disease control may not be sufficient in orchard

management and that more precise management, focused on

“hotspots” or severely affected areas, is needed to produce cost-

effective and timely results. This is consistent with recommendations

from precision disease management studies that advocate the use of

drones for spatial analysis and severity modeling, followed by site-

specific precision interventions (Heidarian Dehkordi et al., 2020;

Kouadio et al., 2023).
4.4 Limitations and challenges of UAV-
based remote sensing

While drone-based hyperspectral imaging offers significant

advantages for JLN monitoring, several limitations and challenges

must be considered. A major limitation is the difficulty in accurately

detecting early JLN due to subtle spectral differences between healthy

and mildly infected trees. Even with optimized vegetation indices,

distinguishing early symptoms from healthy canopies remains a

challenge. This issue has also been noted in studies detecting early

root rot effects on grapevines, where asymptomatic and diseased

plants showed only slight spectral differences, and although machine

learning approaches can improve classification accuracy, reflectance

overlap between healthy states can lead to early misclassifications

(Calamita et al., 2021).

Canopy complexity has also been found to complicate disease

detection further. Heterogeneous canopies caused by mixed leaf ages,

new sprouts, or overlapping branches can significantly distort spectral

readings and increase classification errors. These challenges have been

demonstrated in studies of oil palm diseases, where mixed classes

within a single canopy often led to false positives, especially under

shaded or partially obscured foliage (Anuar et al., 2021). Similarly, in

apple orchards, studies have found that shadow pixels significantly

reduce the accuracy of leaf area index (LAI) and chlorophyll content

detection. Therefore, when using hyperspectral data for leaf area index

(LAI) and chlorophyll content detection, shadow correction is required

to reduce the error caused by it (Zhang et al., 2024).

Environmental conditions during drone flight (such as wind,

light changes, and altitude changes) will also introduce noise into
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hyperspectral data sets, especially changes in light, which will affect

the quality of hyperspectral data collection. Although the collected

data requires further atmospheric correction and radiation

calibration to reduce the errors caused by environmental

conditions, the quality of the data may be limited by the

constraints of on-site environmental conditions. This was also

found in the citrus mold detection study, which showed that

changing light conditions reduced the accuracy of the model

during daytime flights, while the night vision-enhanced model

provided more consistent results (Apacionado and Ahamed, 2023).

Although drones provide valuable insights, not all growers have

access to this technology, especially those with limited financial

resources or technical expertise. Similar concerns arise in a variety

of crop systems, including viticulture and grassland management,

where high-end sensors significantly outperform low-cost options

but remain out of reach for most users (Hall and Lara, 2022).

Therefore, reducing the cost and complexity of drone monitoring

systems is critical for their wider adoption in precision agriculture.
5 Conclusion

In this study, we used UAV hyperspectral imaging and high-

resolution visible light images combined with ground surveys to

monitor juglans leaf necrosis (JLN) in walnut orchards in southern

Xinjiang. We classified the different severities of JLN at different

stages and analyzed its spatiotemporal distribution pattern

characteristics to explore the occurrence and development of JLN.

The main conclusions are as follows: The use of UAV high-

resolution visible light images to study the occurrence and

development of JLN provided limited by the limited bands and

the complexity of the changes in JLN. Using hyperspectral images to

calculate a variety of vegetation indices (especially MRESRI, CRI1

and PRI) with Random Forest achieved achieve fast and high-

precision classification of JLN of different severity, which is an

effective research method. Through the analysis of the development

process of JLN, it was found that the process from mild to severe

was rapid, highlighting the need for repeated, high-resolution

monitoring. Spatial analysis further showed that juglans leaf

necrosis (JLN) forms concentrated hotspots in low-lying areas,

near roads, and areas with high tree density during its

development, indicating that environmental factors affect disease

distribution, and targeted management in these “hotspot” areas

may help slow JLN progression. Our results highlight the

practicality and scalability of drone-based remote sensing

technology for large-scale orchard monitoring, providing orchard

managers with timely insights to implement precise interventions.

Future research should integrate other data sources to improve

classification performance and develop predictive models to more

proactively manage the development of JLN. By adopting and

improving these remote sensing technologies, growers can reduce

yield losses, improve resource allocation, carry out ecological

protection, and ultimately promote the sustainable development

of Xinjiang’s walnut industry.
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Grebe, S., et al. (2025). Hyperspectral imaging reveals differential carotenoid and
chlorophyll temporal dynamics and spatial patterns in scots pine under water stress.
Plant Cell Environ. 48, 1535–1554.

Moley, L. M., Goodin, D. G., and Winslow, W. P. III (2024). Detection of emerging
stress in trees using hyperspectral indices as classification features. Environments 11, 85.

Nguyen, C., Sagan, V., Maimaitiyiming, M., Maimaitijiang, M., Bhadra, S., and
Kwasniewski, M. T. (2021). Early detection of plant viral disease using hyperspectral
imaging and deep learning. Sensors 21, 742.

Oliveira, L. M., Galvão, L. S., and Ponzoni, F. J. (2019). Topographic effects on the
determination of hyperspectral vegetation indices: A case study in southeastern Brazil.
Geocarto Int. 36, 2186–2203.

Otone, J. D., Theodoro, G. D. F., Santana, D. C., Teodoro, L. P. R., de Oliveira, J. T.,
de Oliveira, I. C., et al. (2024). Hyperspectral response of the soybean crop as a function
of target spot (Corynespora cassiicola) using machine learning to classify severity levels.
AgriEngineering 6, 330–343.

Penuelas, J., Baret, F., and Filella, I. (1995). Semi-empirical indices to assess
carotenoids/chlorophyll a ratio from leaf spectral reflectance. Photosynthetica 31,
221–230.

Peñuelas, J., Filella, I., Biel, C., Serrano, L., and Save, R. (1993). The reflectance at the 950–
970 nm region as an indicator of plant water status. Int. J. Remote Sens. 14, 1887–1905.

Poobalasubramanian, M., Park, E. S., Faqeerzada, M. A., Kim, T., Kim, M. S., Baek, I.,
et al. (2022). Identification of early heat and water stress in strawberry plants using
chlorophyll-fluorescence indices extracted via hyperspectral images. Sensors 22, 8706.

Rissati, J. V., Molina, P. C., and Anjos, C. S. (2020). Hyperspectral image
classification using random forest and deep learning algorithms. 2020 IEEE Latin
Am. GRSS ISPRS Remote Sens. Conf. (LAGIRS), 132–132.

Rouse, J. W.Jr., Haas, R. H., Schell, J. A., and Deering, D. W. (1973). Monitoring the
vernal advancement and retrogradation (green wave effect) of natural vegetation (No.
NASA-CR-132982).
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