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Spatiotemporal pattern analysis
of juglans leaf necrosis disease
occurrence and development
in southern Xinjiang, China,
based on UAV

Heyu Zhang®, Lei Guan®, Zhaokun Geng*, Xinglei Ma*,
Qiang Zhang?, Baoging Wang? and Cuifang Zhang™

!College of Forestry and Landscape Architecture, Xinjiang Agricultural University, Urumgi, China,
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Juglans leaf necrosis (JLN) is a physiological disease primarily associated with
abiotic stressors such as high temperatures, drought, and soil salinity, though
biotic factors may also exacerbate its severity. It is a global concern affecting
walnut production in multiple regions, including Xinjiang, China. In recent years,
climate change, shifting agricultural practices, and disease transmission have
increased its incidence, severely affecting tree growth, yield, and quality.
Traditional field-based monitoring is labor-intensive and often inaccurate,
underscoring the need for advanced remote sensing. To provide fast and
objective monitoring, we used hyperspectral and high-resolution RGB imagery
acquired by an unmanned aerial vehicle (UAV) to track JLN from June to
September 2024 in southern Xinjiang. Five survey rounds captured the
progression of disease severity. Among 17 vegetation indices, the modified red
edge simple ratio (MRESRI), carotenoid reflectance index 1 (CRI1), and
photochemical reflectance index (PRI) were the most informative for severity
mapping. A Random Forest classifier achieved 86% overall accuracy and a
Cohen’s kappa of 0.825. Spatial patterns showed persistent hotspots in low-
lying areas, near roads, and in dense stands. These findings provide an effective,
scalable approach for early detection and severity assessment, enabling timely,
targeted interventions. Adoption of UAV-based hyperspectral monitoring can
improve field surveillance, optimize resource allocation, and support sustainable
walnut production.
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1 Introduction

Juglans leaf necrosis (JLN) is a physiological disease primarily
caused by abiotic factors that affect walnut yield and quality. This
physiological disorder is caused, directly or indirectly, by unsuitable
physical or chemical environmental factors, particularly
environmental stressors such as high temperatures, water
shortage, and soil salinity (Gao, 2017; Bai, 2022; Xing et al,
2023). These factors disrupt the tree’s water transport system,
leading to characteristic symptoms such as browning, curling, and
drying of the leaves. Early-stage symptoms manifest as tan focal
spots on the leaf margins. As the disease progresses, these spots
expand along the main veins, eventually leading to complete
scorching of the leaf. In severe cases, nearly the entire canopy of a
walnut tree turns brown (Xing et al., 2023). If not prevented and
controlled, JLN will cause a decrease in leaf photosynthetic capacity,
a reduction in individual fruit weight, and an increase in the rate of
empty shells, ultimately leading to a significant decline in yield and
quality and posing severe challenges to local farmers’ income
growth and ecological economic development (Guo et al., 2024).
In Xinjiang, walnuts occupy the largest orchard area of all economic
tree crops, especially in the Aksu, Hotan, and Kashgar prefectures,
where they provide more than half of farmers’ cash income and
underpin local poverty-alleviation strategies (Zhang, 2011; Zhao
et al, 2011; Huang, 2014). Beyond their economic role, walnut
plantings help stabilize oasis ecosystems and combat desertification
(Bai, 2022). Since its first report in Luopu County, Hotan
Prefecture, in 2008, the disease has spread extensively across
major walnut-producing areas in southern Xinjiang, including
Aksu, Kashgar, and Hotan (Wu et al., 2021). Initially, because of
the small scale of the walnut industry, the area and severity of JLN
were relatively limited, and the impact on production was not
significant, so it did not attract sufficient attention. However, as the
scale of Xinjiang’s walnut industry has stabilized in recent years,
JLN continues to occur in the main production areas of southern
Xinjiang, and the area affected by JLN has shown an expanding
trend, while related pests and diseases have also become prominent
(Zhou, 2021). This disease has seriously hindered the healthy
development of Xinjiang’s walnut industry and has become a
major bottleneck. Research to date has centered on causal factors
(Zhang et al.,, 2012; Liu, 2014; Wang et al., 2015; Tang and Hu,
2019), while quantitative, orchard-scale monitoring—especially
using unmanned aerial vehicle (UAV) imagery—remains virtually
unexplored. Developing such assessments is now critical for timely
disease management and for safeguarding the economic and
ecological value of Xinjiang’s walnut industry.

Traditionally, to accurately describe the types, severity, and
symptoms of forest pests and diseases, time-consuming and labor-
intensive field surveys are required in small sample areas. However,
this method is limited and discontinuous in space; it is impossible to
grasp the spatial distribution of pests and diseases in real time,
which does not meet the needs of real-time monitoring, early
warning, and forecasting of pests and diseases on a large regional
scale. It has the disadvantages of being time-consuming and labor-
intensive, insufficiently timely, low in accuracy, and susceptible to
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human errors (Mahanta et al., 2024). When pests and diseases occur
on a large scale, it is difficult to carry out effective prevention and
control due to subjective and untimely constraints (Saran et al.,
2025). Real-time and efficient monitoring of the occurrence and
dynamics of pests and diseases, along with timely and effective
prevention and control, are key issues that need to be addressed in
crop production to minimize the losses caused by pests and
diseases. Recently, UAV-based remote sensing has emerged as a
promising approach for detecting forest pests and diseases (Xiao
et al, 2022; Du et al, 2024). Compared with traditional field
monitoring, UAV remote sensing technology has the advantages
of rapid data collection, wide spatial coverage, and low cost (Li et al.,
2019; Zhao et al., 2023; Guo et al, 2023; Zhang and Zhu, 2023;
Demir et al., 2024). The integration of UAV-based remote sensing
in plant disease detection has garnered extensive acceptance,
surpassing conventional manual detection methods (Bagheri,
2020; Sangaiah et al, 2024; Shan et al., 2024). By acquiring high
temporal, spatial, and spectral resolution images, it can achieve
large-scale pest and disease monitoring as well as early warning and
forecasting (Backoulou et al,, 2011; Duarte et al., 2022). The use of
drones has greatly improved the level of modernization in
agriculture and forestry and is of great significance to promoting
the development of modern agriculture and forestry.
Hyperspectral remote sensing, a major advancement since the
late 20th century, offers more spectral bands than multispectral
systems, enabling more accurate target measurement and improved
detection of forest pests and diseases (Liu et al., 2021; Feng et al,,
2021; Yu et al., 2021; Iordache et al., 2020; Li et al., 2020; Wijesingha
et al., 2021; Lin et al., 2021). Recent progress in unmanned aerial
vehicle (UAV) technology has broadened its use in environmental
monitoring and precision agriculture, with UAV-based image
processing supporting autonomous decision-making (Turan et al,
2021) and photogrammetry enabling detailed surface models
(Varol, 2025). Structure-from-Motion (SfM) has been applied for
high-fidelity 3D reconstructions (Yakar and Dogan, 2018; Sasi and
Yakar, 2017), and accuracy assessments confirm UAV model
reliability with or without ground control points (Maras and
Nasery, 2023). Together, these advances provide a solid
foundation for UAV-based hyperspectral imaging in detecting
and monitoring juglans leaf necrosis (JLN), where high spatial
resolution and temporal flexibility are essential. This technology
has been widely used in precision agriculture, forestry,
environmental protection, disaster monitoring, and early warning,
and has broad potential for application (Kooistra et al., 2014). It has
been widely used in apple mosaic virus disease (Jiang et al., 2023),
wheat leaf rust (Terentev et al., 2023), and monitoring of rice leaf
beetle infestation (Liu et al., 2020), showing its high value and broad
application prospects in early disease monitoring. In recent years,
the rapid development and application of hyperspectral remote
sensing technology have provided unique spectral data for each
pixel in hyperspectral images, compared with traditional field
spectrometers, achieving the effect of “spectral-image fusion”
(Zhang et al., 2023). The high spatiotemporal resolution of UAV
hyperspectral imaging is a significant advantage, as it can be used to
analyze the occurrence and development of JLN in the study area
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without being influenced by production conditions, geographical
factors, or human subjectivity (Wang et al., 2023). This method can
effectively monitor large affected areas with low operating costs,
high efficiency, and good timeliness, greatly improving monitoring
efficiency, reducing costs, and minimizing adverse ecological
impacts. Monitoring of forest pests and diseases with UAV-borne
hyperspectral imaging has so far centered on single-date
acquisitions (Lausch et al., 2013; Li et al., 2020; Lin et al., 2021;
Yu et al, 2021). By comparison, multi-temporal applications
remain limited (Iordache et al., 2020; Einzmann et al.,, 2021; Barta
et al., 2022), despite their capacity to portray the complete
infestation trajectory and pinpoint optimal detection windows.

In recent decades, climate change has emerged as a major driver
intensifying abiotic stress in crops, especially in arid and semi-arid
regions. Temperature extremes, altered precipitation patterns, and
heightened evapotranspiration increase the frequency and severity
of water scarcity events, directly impacting crop physiology.
According to the Intergovernmental Panel on Climate Change
(Shukla, 2019), these climatic changes have already reduced crop
yields in many parts of the world through shortened maturation
periods, reduced grain set during flowering, and increased water
stress. Such stressors exacerbate the environmental conditions
conducive to juglans leaf necrosis (JLN), leading to earlier
symptom onset and more rapid disease progression. In southern
Xinjiang, rising summer temperatures, reduced precipitation, and
increasingly variable irrigation availability create an environment
conducive to the development of JLN. In addition, shifts in
agricultural practices, such as intensified monoculture systems
and higher tree densities, can amplify microclimatic stress, further
increasing disease risk. Recognizing these interactions is critical for
designing adaptive disease monitoring and management strategies
under a changing climate. In view of this, this study focuses on the
main walnut variety “Zha 343” in Lop County, Hotan Prefecture. It
calculates vegetation indices based on UAV hyperspectral images,
identifies the most informative vegetation indices, evaluates plant
health, classifies disease severity, captures the dynamic progression
of JLN at different severity levels, and provides a preliminary
analysis of its causes. This study aims to provide a more efficient,
accurate, and real-time method to detect and map the spatial
distribution of JLN so that timely intervention measures can be
taken. By exploring the potential of UAV hyperspectral remote
sensing technology in large-scale disease monitoring and integrated
management strategies, it contributes to the sustainable
development of Xinjiang’s walnut industry and provides a model
for more effective agricultural disease management and ecological
protection in the region and globally.

2 Materials and methods

2.1 Study area

Luopu County, administered by Hotan Prefecture in the
Xinjiang Uygur Autonomous Region, lies along the northern
foothills of the Kunlun Mountains on the southern fringe of the
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Tarim Basin, where an extremely arid continental climate prevails,
marked by large diurnal temperature variations, low humidity,
annual evaporation of 2,226.2 mm, and frequent dust-laden
winds (Liang et al, 2005; Liu and Wei, 2005; Xu et al.,, 2009).
Mean annual temperature ranges from 7.8°C to 12°C (extremes: —
24.6°C to 40.1°C), while average annual precipitation is only
352 mm. The study was conducted in an 8-ha orchard in
Kuochaiker Aizik Village, Luopu County (Figure 1), planted
mainly with the ‘“Zha 343’ walnut cultivar, with a smaller
proportion of Xinfeng'. Approximately 70% of trees are 13 years
old, 20% are 7-13 years old, and 10% are younger than 7 years, at a
spacing of 6 m x 8 m.

2.2 Ground survey

To comprehensively investigate the progression of juglans leaf
necrosis (JLN) at different growth stages, a series of UAV data
acquisitions and ground surveys were conducted under clear, light-
wind conditions on five key dates: June 16, July 2, July 30, August
12, and August 30, 2024. These time points were selected to capture
critical changes during the growing season. Special emphasis was
placed on the peak disease period typically observed in early July,
thereby enabling a comprehensive assessment of JLN onset,
severity, and subsequent decline under field conditions.

During each survey, we selected five disease plots, with 40 trees
sampled from each plot (Figure 1D). To account for potential
spatial variability within the canopy, leaves were collected from
five canopy positions—east, south, west, north, and center—with
three leaves per position, totaling 15 leaves per tree. Subsequently,
the disease severity of these 15 leaves was evaluated to
comprehensively assess the prevalence and severity of the disease
across the entire canopy. The classification criteria for leaf-level
disease severity are detailed in Table 1. Photographs of diseased
leaves at different severity levels are shown in Figure 2. The
calculation formula for leaf disease severity is presented in
Equation 1.

Leaf spot area

Leaf severity(% ) = 100 (1)

Total leaf area

2.3 UAV data collection

2.3.1 Visible light high-resolution imaging
High-resolution visible imagery was acquired using the DJI
Mavic 3E (DJI, Shenzhen, China; https://www.dji.com) UAV
equipped with a standard RGB sensor. Missions were conducted
at an altitude of 80 m to achieve the best balance between area
coverage and spatial resolution. To minimize atmospheric and
illumination variability, all flights were performed between 10:00
and 12:00 local time under clear-sky or lightly clouded conditions,
avoiding strong wind events (>5 m/s). Data were collected on five
survey dates (June, July, August, early September, and late
September 2024) to capture disease progression. Forward overlap
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Geographical location map of the study area. (A) shows the location of Hotan Prefecture, (B) shows the location of Luopu County, Hotan Prefecture,
(C) is a satellite image of the location of the research area, and (D) shows the Drone image and survey area in the study area.

and side overlap were set at 80% and 70%, respectively, to ensure
accurate image stitching without gaps. High-resolution visible
imagery was processed and stitched using DJI Terra software
(DJI, Shenzhen, China; https://www.dji.com/dji-terra), applying
structure-from-motion principles to produce orthophotos with a
spatial resolution of approximately 2.2 cm.

2.3.2 Hyperspectral imaging

Hyperspectral data were acquired using a DJI M350 (DJI,
Shenzhen, China; https://www.dji.com) equipped with an FS-60c
hyperspectral sensor (Hangzhou CHNSpec Technology Co., Ltd,
Hangzhou, China; https://www.ceseyi.com/aboutus.html). Flights
were performed between 10:00 and 12:00 local time under clear-
sky or lightly clouded conditions, avoiding strong wind events
(>5 m/s), with a flight altitude of 120 m. Data were collected on

TABLE 1 Leaf disease rating criteria.

Disease Grade Description

Grade 0 No signs of browning or scorch on the leaf surface.
Grade 1 Browning/scorch affects < 25% of the leaf surface.
Grade 2 Browning/scorch affects 26%-50% of the leaf surface.
Grade 3 Browning/scorch affects 51% -75% of the leaf surface.
Grade 4 Browning/scorch affects 76% -100% of the leaf surface.
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five survey dates (June, July, August, early September, and late
September 2024). Forward overlap and side overlap were set to 80%
and 70%, respectively, to ensure full coverage. Prior to each flight, a
standardized white reference panel was used for radiometric
calibration. This acquisition protocol minimized environmental
variability and ensured comparability across temporal datasets.
The hyperspectral data from this sensor cover a spectral range of
400-1000 nm, with a spectral resolution of 2.17 nm and a spatial
resolution of 11 cm. Data stitching and processing were conducted
in FigSpec Studio software (Hangzhou CHNSpec Technology Co.,
Ltd, Hanzhou, China; https://www.ceseyi.com/aboutus.html),
specific to the FS-60c sensor.

2.3.3 Data preprocessing

Hyperspectral data preprocessing included stitching,
atmospheric correction, reflectance calibration, and noise
reduction. Stitching was used to combine multiple flight images
into a seamless multi-band dataset; atmospheric correction
minimized the impact of atmospheric interference; reflectance
calibration ensured the consistency of spectral values using gray
reference panels; and noise reduction eliminated irrelevant signals
and improved clarity. Stitching, atmospheric correction, and
reflectance calibration were performed in FigSpec Studio, while
noise reduction was conducted in ENVI. The preprocessed datasets
formed the basis for vegetation index calculations and dynamic
analysis of JLN. A supervised classification approach was employed

frontiersin.org
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FIGURE 2

juglans leaf necrosis disease occurrence in different periods. The image is from the author’'s photography of the extent of leaf disease in the

experimental field.

to identify the presence and severity of walnut juglans leaf necrosis
(JLN). The UAV data processing flow is shown in Figure 3.

2.4 Classification methodology

We use the random forest algorithm to classify the severity of
juglans leaf necrosis. The basic principle of this method was to extract

and analyze spectral features related to canopy plant stress (Tuominen
et al, 2008). Feature selection was first performed to identify
vegetation indices sensitive to plant health change. Then, a Random
Forest classifier was trained on labeled examples of JLN severity, and
its aggregated predictions produced a robust classification (Vanguri
et al, 2024; Yang et al, 2015). The RF classifier was implemented in
ENVI with 500 trees, a maximum tree depth of 20, bootstrap
sampling enabled, and Gini impurity as the splitting criterion. Class

DIJI Mavic 3E—" —
UAV RGB data » Panoramic mosaic 8
(Jun-Sep) L J
I
Orthophoto
Orthophoto 2,2 cm
j [ : Patrophoto
Georeferencing
DJI M350 Hyperspectral data
UAV-Based Image preprocessing W
Hyperspectral « Stitching
(HSI) Data + Atmospheric
(Jun-Sep) correction FS-60c
« Reflectance calibratio
« Noise reduction Spectral rang 400-1000 nm
J 300 bands
- - Spectral resolution 2,17 nm
FigSpec Studio Spatial 11¢cm

FIGURE 3

UAV data processing flow chart. Workflow for drone-acquired hyperspectral and RGB imagery processing used in this study. The process includes
image stitching to generate seamless orthomosaics, atmospheric correction to remove atmospheric effects, reflectance calibration using reference
panels to standardize spectral values, and noise reduction to improve data clarity. Preprocessed imagery is then used to calculate vegetation indices
(Vls), such as NDVI (Normalized Difference Vegetation Index), MRESRI (Modified Red-Edge Simple Ratio Index), CRI1 (Carotenoid Reflectance Index
1), and PRI (Photochemical Reflectance Index). These indices are integrated into a Random Forest (RF) model for disease severity classification.
Spatial analyses, including mapping and area statistics, are conducted using a Digital Elevation Model (DEM) and ArcGIS 10.8. Abbreviations: DEM,
Digital Elevation Model; NDVI, Normalized Difference Vegetation Index; VI, Vegetation Index; RF, Random Forest; MRESRI, Modified Red-Edge Simple
Ratio Index; CRI1, Carotenoid Reflectance Index 1; PRI, Photochemical Reflectance Index.
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boundaries for severity levels were not manually set; instead, they were
determined by the RF’s decision tree splits, ensuring a data-driven
thresholding process. The performance of the Random Forest model
was validated using a confusion matrix and a suite of evaluation
indicators—including accuracy, precision, and recall—based on a
sample of JLN severity data from ground surveys (Rissati et al,
2020). After classification, the results were refined to eliminate
obvious errors and exclude patches located outside the walnut
canopy. The severity of JLN was divided into five levels: Grade 0
(healthy) indicates no symptoms; Grade 1 (mild) indicates mild
damage; Grade 2 (moderate) indicates larger, more continuous
patches of leaf damage; Grade 3 (severe) indicates severe crown
damage; and Grade 4 (critical) indicates that most of the crown was
affected (Wang and Jin, 2023). The classification standards are shown
in Table 1. To validate UAV-based disease detection, we conducted
systematic ground surveys concurrent with UAV flights. A total of
1,000 georeferenced sampling points were established across the study
orchards, ensuring representation of all disease severity levels (Grade
0-4). At each point, three to five walnut trees were visually assessed
using the standardized juglans leaf necrosis (JLN) severity scale.
Symptomatic and asymptomatic trees were recorded, and severity
grades were assigned based on leaf chlorosis, necrosis percentage, and
canopy damage patterns. All ground samples were geotagged using a
sub-meter accuracy GNSS receiver and spatially matched to UAV-
derived hyperspectral and RGB orthomosaics. The 1,000 samples
were randomly split into a training set (80%) and validation set (20%)
for supervised classification. Spatial and statistical analyses were
conducted in ArcGIS 10.8 (Environmental Systems Research
Institute, Inc., Redlands, CA, USA; https://www.esri.com)

2.5 Accuracy assessment

To evaluate classification performance, we used a confusion
matrix along with Overall Accuracy (OA), accuracy, precision,
recall, and Cohen’s kappa coefficient (k). Cohen’s kappa provides
a chance-corrected measure of agreement between the classified
map and reference data. It is calculated as:

_ Po ~ Pe
1-p,
where p, is the observed agreement and p, is the expected
agreement by chance. The interpretation of k follows Landis and
Koch (1977): values <0.00 = poor; 0.00-0.20 = slight; 0.21-0.40 =
fair; 0.41-0.60 = moderate; 0.61-0.80 = substantial; and 0.81-1.00 =
almost perfect agreement.

2.6 Vegetation indices

Hyperspectral data were processed in ENVI software (Exelis
Visual Information Solutions, USA; https://envi.geoscene.cn/), and
three types of indices were derived: greenness indices, pigment
indices, and canopy water/photochemical efficiency indices. The
greenness indices primarily reflect vegetation vigor by detecting
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variations in reflectance between red and near-infrared (NIR)
bands, with healthy vegetation typically exhibiting higher values;
we calculated nine such greenness indices, including NDVI, EV],
and various red-edge indices, as listed in Table 2 (Galvao et al,
2013; Liu et al., 2007). The leaf pigment indices, which depends on
reflectance in the green and red bands, estimates leaf pigment
content (especially chlorophyll) closely linked to photosynthetic
performance and overall plant vitality; this study determined four
pigment-related indices to provide insights into the nutritional
status and health of walnut trees, also shown in Table 2 (Ahmad
et al., 2020; Velichkova and Krezhova, 2018). Meanwhile, the
canopy water or photosynthetic efficiency indices characterize
vegetation water content and photosynthetic capacity, offering
critical understanding of plant resilience under stress; here, four
such indices were computed to assess potential water deficits and
photosynthetic function decline in the orchards, as indicated in
Table 2 (Oliveira et al., 2019; Lu et al., 2015).

3 Results

3.1 Visible light high-resolution imaging
analysis

When analyzing five stages of high-resolution UAV images of
juglans leaf necrosis (JLN) in the experimental orchard, the
dynamic changes in its occurrence and evolution could be clearly
observed (Figure 4). In the first and second stages, JLN had just
occurred, and symptoms were not obvious. From locally magnified
UAV images, the lesions did not exhibit obvious color or texture
changes and appeared mainly healthy green (Figures 4A, B). This
may be because the leaf damage area was still small in the early
stage, and spectral reflectance characteristics had not yet changed
significantly. As time passed to the third experimental stage,
symptoms were significantly aggravated, and affected leaves
showed large damaged area. High-resolution images revealed
marked changes in the walnut crowns, manifested as dry leaves
and decreased reflectivity in diseased parts, especially in the visible
band. From the locally enlarged image at Stage 3 (Figure 4C),
crowns displayed a grayish-white appearance, which contrasted
with Stages 1 and 2. This change in texture and color provided a
reliable remote sensing indicator for JLN.

In the fourth and fifth stages, the degree of juglans leaf necrosis
was further aggravated. Large areas of leaves showed scorch
characteristics, and the diseased area expanded features. During
this period, the spatial distribution of disease features became
clearer. In addition, some walnut trees were observed to have
begun to sprout new leaves. This may be due to the recovery
growth after infection. As a result, images displayed the coexistence
of new and dead leaves, creating complex spectral mixing in
multispectral imagery (Figures 4D, E).

From the analysis results, we found that the complexity of
detecting JLN increases as the disease progresses. Specifically, in the
early stage of the disease, symptoms were subtle and difficult to
distinguish from healthy crowns in RGB UAV imagery. In later
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TABLE 2 The Vegetation indices calculated in the article.

10.3389/fpls.2025.1633206

Index Name Formula Reference
Normalized Difference Vegetation Index (NDVI) NDVI = Psoo ~ Peso. Rouse et al., 1973
Psoo * Peso
Plant Senescence Reflectance Index (PSRI) PSRI = Peso ~ Psoo Merzlyak et al., 1999
50
NIR - Red

Enhanced Vegetation Index (EVI) EVI=25.

Huete et al., 2002

NIR +6-Red - 7.5 Blue + 1

Kaufman and Tanre, 1992

Atmospherically Resistant Vegetation Index (ARVI)

ARVI = P00 = [Psso = 7 (Paso = Peso)]

Psoo + [Psso = Y(Paso — Peso)]

Red Edge Normalized Difference Vegetation Index (RENNDI) RENNDI = Prs0 — Pros Sims and Gamon, 2002
P750 + Pros
Modified Red Edge Simple Ratio (MRESR) MRESR = Prs0 = Pass Sims and Gamon, 2002
P705 ~ Paas
Modified Red Edge N lized Diffe Vegetation Ind _
odified Re ge orr;;l 1Iz£e ; 1Ierence egetation Index MRENDVI = Prs0 = Pros Sims and Gamon, 2002
(MRENDVI) Pr50 = Pr0s = 2% Paas
Vogelmann Red Edge Index 1 (VREI1) VREIL = Prao Vogelmann et al., 1993
P720
Vogelmann Red Edge Index 2 (VREI2) VREL2 = Pr3a — Pra7 Vogelmann et al., 1993
P75 * P76
Carotenoid Reflectance Index 1 (CRI1) CRI1 = L _L Gitelson et al., 2002
Ps10 Psso
Carotenoid Reflectance Index 2 (CRI2) CRI2 = L _ L Gitelson et al., 2002
Psio Proo
Anthocyanin Reflectance Index 1 (ARI1) ARI1 = L _ L Gitelson et al., 2001
Psso  P700
Anthocyanin Reflectance Index 2 (ARI2) ARI2 = pygo( 11 Gitelson et al., 2001
Psso  P770
Water Band Index (WBI) WBI = Poro Pefiuelas et al., 1993
Pooo
Photochemical Reflectance Index (PRI) PIR = Ps3 = Psro Gamon et al., 1997
Ps31 + Pszo

Structure Insensitive Pigment Index (SIPI)

Red Green Ratio Index (RGRI)

stage, due to the recovery of the walnut itself, newly grown leaves
may mask the infection characteristics, making field-based
assessments and traditional RGB remote sensing increasingly
unreliable. Therefore, more advanced technologies are needed to
more accurately detect and diagnose the occurrence and
development of juglans leaf necrosis.

3.2 Hyperspectral imagery classification
results

To rigorously validate UAV-derived hyperspectral classification
of juglans leaf necrosis (JLN) severity, we conducted five dedicated
field campaigns contemporaneous with flight missions. A stratified
sampling design yielded 1000 Geo-referenced crown centers, where
visual assessments followed the national JLN severity standard
(grade 0-4). For every sample point reflectances corresponding to
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SIPI = Psoo ~ Pass

699
RGRI = Ei:6()0Ri

Penuelas et al., 1995
Psoo + Paas

Gamon and Surfus, 1999
599
j=500 Rj

the 17 pre-selected vegetation indices (VIs) were extracted from the
atmospherically and radiometrically corrected hyperspectral
orthomosaic. The random forest algorithm was used to calculate
the importance of each VI for JLN severity (Figure 5). As can be
seen from Figure 5, MRESRI, CRI1 and PRI clearly dominated the
feature-importance ranking, indicating strong sensitivity of red-
edge and carotenoid-related metrics to JLN stress. In contrast,
indices such as MRENDVI, WBI and VREIl contribute
marginally, suggesting limited additional discriminatory power
once these indices are included.

The confusion matrix (Figure 6) demonstrated an overall
accuracy (OA) of 86% (172/200) and a Cohen’s k of 0.825,
denoting substantial agreement between RF predictions and
ground observations. Table 3 details class-wise statistics. Grades 0
and 4 achieved both high precision (< 6% false alarm) and high
recall (> 85%), indicating that healthy and severely stressed crowns
were rarely confused with other. Most of the 28 errors occurred
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FIGURE 4

High-resolution visible light imaging results of experimental plots from UAVs. (A) shows the first stage of the experiment, (B) shows the second stage
of the experiment, (C) shows the third stage of the experiment, (D) shows the fourth stage of the experiment, and (E) shows the fifth stage of the
experiment. The right side of the picture is a partially enlarged image of the drone image.

between adjacent intermediate grades (1, 2 < <, 3), which is
expected given overlapping visual and spectral cues. Among them,
Grade 1 had the lowest classification accuracy. Importantly, no
misjudgments across more than two grades (such as 0—3 or 1—4),
confirming reasonable decision boundaries. From the overall
indicators (Table 4), balanced/macro average recall was 0.86,
macro precision was 0.865, and Macro Fl-score was 0.861,
further confirm the balanced performance of the model across all
severity stages. The high OA, robust k statistic and biologically
coherent error structure indicated that the VI-based RF model was
well suited for operational mapping of JLN severity. In particular,
the dominance of red-edge and pigment-related indices highlighted
their value as early-warning proxies for canopy stress.

The classification results are shown in Figure 7. From a temporal
and spatial perspective, the classification results showed a clear trend
in the occurrence and development of juglans leaf necrosis (JLN) in
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the experimental orchard, on which more detailed studies can be
conducted to better understand the dynamics of the disease. The
results also showed that it was feasible to calculate vegetation indices
based on drone hyperspectral remote sensing data and used the
random forest method to classify the severity of juglans leaf necrosis.
The classification results of this method can fully help to understand
the law of JLN spread and aggravation over time, as well as its spatial
distribution evolution in different areas of the orchard.

3.3 Spatio-temporal dynamics of juglans
leaf necrosis

Figure 7 shows the hyperspectral classification maps, while

Figure 8 provides class-area statistics. Together, they show a clear
escalation of JLN across the five monitoring stages.
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Random Forest Feature Importance for WLS Severity Classification
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FIGURE 5

Random Forest feature importance for JLN severity classification. Relative importance of 17 vegetation indices (VIs) for differentiating juglans leaf
necrosis (JLN) severity levels based on UAV hyperspectral imagery. Higher values indicate stronger predictive contribution to model decision-

making. The specific meanings of the abbreviations are shown in Table 2.

0.15 0.2 0.25

3.3.1 Stage 1

JLN was largely absent: 79.03 % of canopy pixels were healthy
(grade 0) and 20.97 % showed only mild symptoms (grade 1). Diseased
trees appeared as a few, randomly distributed patches, and no spatial
pattern could yet be linked to topography or management factors.

3.3.2 Stage 2

Two weeks later, grade 2 (moderate) pixels appeared (5.19 %),
although grades 0 and 1 still dominated (72.97 % and 21.84 %,
respectively). New foci were still small and scattered, indicating an
incipient but spatially unconstrained spread.

3.3.3Stage 3

Disease intensity and aggregation increased markedly.
Moderate damage (grade 2) expanded to 22.76 % of the orchard,
and severe damage (grade 3) emerged (9 %). Most grade 2 and 3
pixels clustered in the southern sector, adjacent to the He-Luo
Expressway and areas of high tree density—suggesting that road
proximity and stand structure facilitate disease transmission.

3.3.4 Stage 4

JLN reached its first peak. Although nearly half of the canopy
remained healthy (46.67 %), grades 2—4 together accounted for 33.29
% (grade 2 = 19.43 %, grade 3 = 6.29 %, grade 4 = 7.57 %). Large,
contiguous blocks of brown, desiccated foliage were evident in both
the hyperspectral maps and the corroborating RGB—drone imagery,
with severity highest where airflow and drainage are poorest.

3.3.5 Stage 5

The final survey confirmed further intensification: grade 4 rose to
14.01 % and grade 3 to 10.18 %, while grades 1 and 2 declined to 14.29
% and 14.57 %, respectively. Despite widespread damage, pockets of
regreening appeared, implying that micro—site factors (better
ventilation, soil moisture, or nutrient status) confer partial resilience.

Overall, JLN advanced from isolated, mild lesions to extensive
crown scorch within roughly six weeks. Spatial progression was initially
random but became strongly clustered near highways and in dense
stands, pointing to anthropogenic vectors and canopy microclimate as
key drivers. The combined spatial and temporal evidence highlights the

TABLE 3 Precision analysis of severity of juglans leaf necrosis in various categories.

Severity class Precision Recall F-score Main confusions (>1)
0 (healthy) 35 5 2 0.946 0.875 0.909 3x —1,2x =2
1 (mild) 35 5 10 0.778 0.875 0.824 3% 0,3 x —0,2 x —2
2 (moderate) 34 6 7 0.829 0.850 0.840 3x —=3,2x 1
3 (heavy) 34 6 6 0.829 0.850 0.840 3x 2,2 x —4
4 (severe) 34 6 2 0.944 0.850 0.895 4 X 3,2 % 2

TP, True Positive; FP, False Positive; FN, False Negative
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FIGURE 6

0

Confusion matrix heat map. Rows represent ground-truth classes and columns represent predicted classes. Values along the diagonal indicate
correct classifications (true positives); off-diagonal values represent misclassifications. OA, Overall Accuracy; k, Cohen'’s kappa coefficient

narrow window for effective intervention—between the first detectable
grade 2 patches (Stage 2) and the rapid coalescence of severe foci (Stage
3)—before irreversible canopy loss ensues.

3.4 Transfer analysis between different
severity levels

To investigate the progression of juglans leaf necrosis (JLN)
across different severity levels and to characterize the transition
from mild to severe infection, we constructed transition matrices
between disease severity levels at different time points. These matrices

TABLE 4 Overall metrics of the model.

Measure Value

Overall accuracy 86% (172/200)

Balanced/macro-average recall 0.86
Macro precision 0.865
Macro Fl-score 0.861

Cohen’s k¥ 0.825 (substantial agreement)
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were derived from the statistical analysis of 3.2 classification results in
ArcGIS 10.8 and are used to quantify the dynamic changes in disease
severity during the monitoring period. To illustrate the transitions
between different severity classes visually, Sankey diagrams were
employed. As shown in Figure 9, the diagrams clearly depict the
flow of infected walnut trees between severity levels over time,
providing intuitive insight into the development trajectory of JLN.
This approach enables a better understanding of disease dynamics,
highlighting the rates and directions of progression, persistence, or
potential remission under field conditions.

From stage 1 to stage 2, 66.13% of the trees originally classified
as severity grade 0 (healthy) remained stable, while 12.16% of those
at grade 1 also maintained their status. Notably, 9.55% of trees
transitioned from grade 0 to grade 1, and 3.64% advanced to grade
2. Additionally, 1.5% of trees at grade 1 progressed to grade 2. These
findings indicate that the predominant trend during this stage was
the early development of disease symptoms, primarily characterized
by the progression from grade 0 to grade 1 and 2.

Between stage 2 and stage 3, the transition became more
pronounced. Only 33.82% of grade 0 trees remained healthy,
whereas the retention rates for grades 1 and 2 dropped
significantly to 4.79% and 1.68%, respectively. Meanwhile, 17.41%
of grade 0 trees progressed to grade 1, 15.67% to grade 2, and 6.37%
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FIGURE 7
Classification results of UAV hyperspectral images of the experimental plot. (A, E) are the hyperspectral color composite images and classification
results of the first stage of the experiment, (B, F) are the hyperspectral color composite images and classification results of the second stage of the
experiment, (C, G) are the hyperspectral color composite images and classification results of the third stage of the experiment, (D, H) are the
hyperspectral color composite images and classification results of the fourth stage of the experiment, and (E, 1) are the hyperspectral color
composite images and classification results of the fifth stage of the experiment.

to grade 3. Furthermore, 5.60% of grade 1 trees advanced to grades 2 From stage 3 to stage 4, the proportion of trees maintaining
and 3, while 0.54% of grade 2 trees transitioned to grade 3. This  their original severity level continued to decline. Only 27.59% of
stage marked a rapid escalation in disease severity, with widespread ~ grade 0 trees remained unchanged, followed by 6.58%, 9.15%, and
movement toward higher severity levels. 0.79% retention for grades 1, 2, and 3, respectively. Transitions from
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Statistical results of the severity of juglans leaf necrosis in different time periods. The X-axis shows monitoring stages (T1-T5), and the Y-axis shows
the percentage of canopy pixels in each severity grade (Grade 0—4). Grades are color-coded: Grade O = healthy; Grade 1 = mild; Grade 2 =
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grade 0 to higher severity grades were observed at 7.02% (to grade
1), 3.79% (to grade 2), 2.88% (to grade 3), and 3.35% (to grade 4).
Similarly, trees at grade 1 transitioned to grades 2 (4.55%), 3
(1.17%), and 4 (1.31%). Trees at grade 2 continued to progress,
with 1.49% and 1.97% moving to grades 3 and 4, respectively, while

0.98% of grade 3 trees advanced to the most severe grade (grade 4).
This stage reflected an acceleration in disease progression toward
the advanced stages.

Between stage 4 and stage 5, disease advancement persisted,
though at a slightly reduced rate. The stability rates for grades 0

FIGURE 9

Grade 0-4 severity classification as defined in Methods.

Analysis results of transfer between different severity grades in different periods. T1, T2, T3, T4, T5 represent stage 1, stage 2, stage 3, stage 4, and
stage 5 respectively. Sankey diagram illustrating the flow of walnut trees between disease severity grades from T1 to T5. Node width is proportional
to the proportion of trees in each grade; link width is proportional to the percentage transitioning between grades. T1-T5 = Stage 1 to Stage 5;
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through 4 were 26.31%, 6.57%, 9.15%, 0.79%, and 0.97%,
respectively. Trees at grade 0 continued to show signs of
infection, with 6.59%, 4.31%, 4.18%, and 5.13% transitioning to
grades 1 through 4, respectively. Grade 1 trees progressed to grade 2
(3.47%), grade 3 (2.16%), and grade 4 (2.19%). Transitions from
grade 2 to 3 (2.17%) and 4 (2.31%) were also observed, along with
1.25% of grade 3 trees reaching grade 4. These results indicate a
steady but ongoing upward shift in disease severity, with increasing
proportions of trees reaching moderate to severe grades in
later stages.

4 Discussion

4.1 Vegetation indices and their role in
disease detection

The use of vegetation indices based on hyperspectral data
proved essential and effective in assessing the severity of JLN. In
this study, greenness indices, leaf pigment indices, and canopy
moisture or photosynthetic efficiency indices were calculated to
capture different physiological aspects of plant health. Among them,
greenness indices such as NDVI, EVI, and RENDVI effectively
detected changes in overall canopy health. This is consistent with a
study on chlorosis in the Shulayar Reserve Forest in Kerala, which
showed that such indices are sensitive to vegetation vigor and
chlorophyll content and can be used to monitor forest canopy
health (Ahmad et al., 2020). Leaf pigment indices such as CRI1 and
ARII can be used to identify early signs of stress related to
chlorophyll degradation and carotenoid accumulation, which can
indicate the presence of JLN. This aligns with findings that the
chlorophyll-to-carotenoid ratio is a key indicator of physiological
stress and that hyperspectral indices effectively track pigment
changes during plant development (Song and Wang, 2022).
Canopy moisture indices such as PRI and WBI were particularly
valuable for assessing water stress commonly associated with JLN,
providing additional insights into the underlying causes of the
disease. Similar results were obtained in studies on Scots pine and
sorghum, where PRI and red-edge-based indices reliably captured
carotenoid activity and water stress dynamics (Miettinen et al,
2025; Song et al., 2023).

In addition, studies on strawberry and sweet corn also showed
that chlorophyll fluorescence indices and red-edge-based vegetation
indices (e.g., CIREDEDGE, REIP) are very eftective in detecting the
early stages of heat, water, and nitrogen stress, which strengthens
the role of using hyperspectral indices to distinguish different types
of physiological stress (Poobalasubramanian et al., 2022; Sellami
et al., 2022). These findings also validate that combining multiple
vegetation indices targeting chlorophyll, carotenoids, and water
content can provide a comprehensive and early assessment of
JLN. Future work could further refine this approach, as
demonstrated in studies using deep learning and hyperspectral
signatures to monitor tree and crop stress (Moley et al., 2024;
Deng et al., 2023; Bai et al.,, 2024; Otone et al., 2024).
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Our classification analysis showed that the combination of
MRESRI, CRI1, and PRI achieved the highest performance across
various metrics (classification accuracy, precision, recall, and Kappa
coefficient). This highlights the synergistic value of integrating
indices targeting different physiological traits. Studies on squash
and tomato diseases using UAV hyperspectral imaging also
supported the advantages of combined metrics for early disease
stage classification, achieving more than 90% accuracy even under
field conditions (Abdulridha et al., 2020a, Abdulridha et al., 2020b).

However, we found that misclassification occurred mainly
between the “healthy” (0) and “mild” (1) categories, likely due to
overlapping spectral signatures. This challenge was echoed in
studies of wheat rust and rubber tree disease, where the early
stages of the disease are the most difficult to distinguish, even
with advanced models (Zeng et al., 2024; Abdulridha et al., 2023).
We also found that the winds in the Hotan area are strong, and the
leaves of walnut trees often have dust attached and accumulated,
which can affect the accuracy of classification and also increases the
difficulty of early disease monitoring. Despite these problems, the
high accuracy in classifying “healthy” (0) and “severe” (3)
categories, as well as strong overall performance, demonstrates
that UAV hyperspectral imaging, especially when combined with
field validation, remains a powerful and reliable method for disease
monitoring in walnut orchards and other areas.

4.2 Disease progression and spatial—
temporal dynamics

High-resolution UAV imagery and hyperspectral classification
showed clear spatio-temporal progression of JLN. In the early stages
(stages 1 and 2), visual symptoms of JLN were mild and difficult to
detect with traditional remote sensing methods, including high-
resolution RGB imagery. Slight textural changes in the canopy
observed in RGB imagery indicate early stress, but symptoms
were not obvious. This limitation is echoed by other studies that
highlight the lack of spectral sensitivity of RGB imaging to detect
physiological stress before it becomes apparent (Kouadio
et al., 2023).

As the disease progresses to stage 3, visible symptoms such as
browning and curling and scorching of canopy leaves became more
evident. At this point, hyperspectral imaging became increasingly
effective in capturing disease-related changes. A combination of
vegetation indices (MRESRI, CRIl, and PRI) provided the best
choice for classification, consistent with other studies in which
hyperspectral imagery outperformed traditional methods in
detecting disease progression. For example, hyperspectral sensors
with neural networks achieved accurate classification of
Huanglongbing in citrus by detecting early canopy reflectance
anomalies (Deng et al., 2020). This further proves that
hyperspectral remote sensing combined with physiological
indicators can reliably detect and quantify the disease in early and
intermediate stages, even before visible symptoms fully appear
(Kuswidiyanto et al., 2022).
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The study found that the spatial distribution of JLN in the study
area also showed different patterns. The results showed that
hotspots of JLN occurrence occurred more frequently near roads
and low-lying areas. These areas may be affected by microclimatic
conditions such as increased temperature, altered airflow, or poor
drainage. Similar spatial patterns have been found in remote
sensing studies of citrus and palm diseases, where the disease was
found to be more severe near human infrastructure or waterlogged
areas (Alsadik et al., 2024). This further validates the role of local
environmental variables in driving disease onset and highlights the
importance of drone data for spatially targeted monitoring.

In-depth analysis of the temporal dynamics of JLN (Section 3.4)
showed that disease severity had a significant and rapid progression
between early and late monitoring stages. Initially, more than 70%
of trees were healthy or only slightly affected with indistinct
symptoms (grades 0-1), but by stage 3, moderate symptoms
(grade 2) became common and severe infections (grade 3) rose to
nearly 9%, with affected walnut trees showing obvious symptoms
and concentrated in patches. By stages 4 and 5, the proportion of
trees showing severe to critical symptoms increased dramatically,
indicating that JLN has the ability to intensify in a short period of
time. Similar time series drone studies have revealed similar trends,
with scholars using continuous hyperspectral monitoring and
tracking of biotic stress in vineyards and wheat fields, finding that
biotic stress in the study area also expanded rapidly in a short period
of time (Nguyen et al, 2021; Zhang et al., 2025). Interestingly,
during the development of JLN, new leaves will grow, and some tree
crowns will show temporary recovery, which will mask the disease
signal and reduce the detection accuracy. This phenomenon has
also been observed in related studies when using chlorophyll
fluorescence and solar-induced fluorescence index for stress
monitoring. This physiological improvement may produce false
negatives in automatic models (Chang et al., 2020). These findings
emphasize the importance of continuous and high-frequency
monitoring using drone hyperspectral, which can not only
capture the trend of disease escalation but also potential
mitigation or recovery trends.

4.3 Severity-level transitions and
management implications

We used Sankey diagrams in Section 3.5 to illustrate the dynamic
path of JLN from one severity level to another in the study area.
During the early monitoring intervals (e.g., stage 1 to stage 2), most
healthy trees (grade 0) remained in the same state, while only a small
number of trees transitioned to grade 1 or 2. In contrast, in the mid-
to-late intervals (stage 3 to stage 4 and stage 4 to stage 5), the severity
accelerated significantly, with a considerable number of grade 1 and 2
trees progressing to grades 3-4. This pattern not only highlights the
nonlinear progression of JLN but also indicates the importance of
early management, where timely intervention management can
prevent mild infection from evolving into large areas of burnt
areas. Similar nonlinear disease progression patterns were observed
in a drone-based maize study, where researchers used hyperspectral
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and wavelet features to capture disease transitions across time
intervals. It was found that disease transitions at different levels in
different periods were not linear, and the transitions were
significantly accelerated in the later stages (Bai et al., 2024).

Notably, a small number of trees either remained stable in the
mild category or transitioned downward from the moderately severe
category to the mild category, a reversal that was often associated with
new leaf growth. This reflects the heterogeneity of host responses, and
some specific factors, such as genetic resilience or microclimate
buffering, may attenuate or delay disease progression. This finding
is consistent with the results of a time series study of Fusarium solani
in cotton, which used deep learning and temporal modeling to
explain changes in disease trajectories. The study found that some
plants showed partial recovery or delayed symptom escalation during
disease development (Abdalla et al., 2024).

For orchard managers, these findings imply that a one-size-fits-all
approach to disease control may not be sufficient in orchard
management and that more precise management, focused on
“hotspots” or severely affected areas, is needed to produce cost-
effective and timely results. This is consistent with recommendations
from precision disease management studies that advocate the use of
drones for spatial analysis and severity modeling, followed by site-
specific precision interventions (Heidarian Dehkordi et al., 2020;
Kouadio et al., 2023).

4.4 Limitations and challenges of UAV-
based remote sensing

While drone-based hyperspectral imaging offers significant
advantages for JLN monitoring, several limitations and challenges
must be considered. A major limitation is the difficulty in accurately
detecting early JLN due to subtle spectral differences between healthy
and mildly infected trees. Even with optimized vegetation indices,
distinguishing early symptoms from healthy canopies remains a
challenge. This issue has also been noted in studies detecting early
root rot effects on grapevines, where asymptomatic and diseased
plants showed only slight spectral differences, and although machine
learning approaches can improve classification accuracy, reflectance
overlap between healthy states can lead to early misclassifications
(Calamita et al., 2021).

Canopy complexity has also been found to complicate disease
detection further. Heterogeneous canopies caused by mixed leaf ages,
new sprouts, or overlapping branches can significantly distort spectral
readings and increase classification errors. These challenges have been
demonstrated in studies of oil palm diseases, where mixed classes
within a single canopy often led to false positives, especially under
shaded or partially obscured foliage (Anuar et al,, 2021). Similarly, in
apple orchards, studies have found that shadow pixels significantly
reduce the accuracy of leaf area index (LAI) and chlorophyll content
detection. Therefore, when using hyperspectral data for leaf area index
(LAT) and chlorophyll content detection, shadow correction is required
to reduce the error caused by it (Zhang et al., 2024).

Environmental conditions during drone flight (such as wind,
light changes, and altitude changes) will also introduce noise into

frontiersin.org


https://doi.org/10.3389/fpls.2025.1633206
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Zhang et al.

hyperspectral data sets, especially changes in light, which will affect
the quality of hyperspectral data collection. Although the collected
data requires further atmospheric correction and radiation
calibration to reduce the errors caused by environmental
conditions, the quality of the data may be limited by the
constraints of on-site environmental conditions. This was also
found in the citrus mold detection study, which showed that
changing light conditions reduced the accuracy of the model
during daytime flights, while the night vision-enhanced model
provided more consistent results (Apacionado and Ahamed, 2023).

Although drones provide valuable insights, not all growers have
access to this technology, especially those with limited financial
resources or technical expertise. Similar concerns arise in a variety
of crop systems, including viticulture and grassland management,
where high-end sensors significantly outperform low-cost options
but remain out of reach for most users (Hall and Lara, 2022).
Therefore, reducing the cost and complexity of drone monitoring
systems is critical for their wider adoption in precision agriculture.

5 Conclusion

In this study, we used UAV hyperspectral imaging and high-
resolution visible light images combined with ground surveys to
monitor juglans leaf necrosis (JLN) in walnut orchards in southern
Xinjiang. We classified the different severities of JLN at different
stages and analyzed its spatiotemporal distribution pattern
characteristics to explore the occurrence and development of JLN.
The main conclusions are as follows: The use of UAV high-
resolution visible light images to study the occurrence and
development of JLN provided limited by the limited bands and
the complexity of the changes in JLN. Using hyperspectral images to
calculate a variety of vegetation indices (especially MRESRI, CRI1
and PRI) with Random Forest achieved achieve fast and high-
precision classification of JLN of different severity, which is an
effective research method. Through the analysis of the development
process of JLN, it was found that the process from mild to severe
was rapid, highlighting the need for repeated, high-resolution
monitoring. Spatial analysis further showed that juglans leaf
necrosis (JLN) forms concentrated hotspots in low-lying areas,
near roads, and areas with high tree density during its
development, indicating that environmental factors affect disease
distribution, and targeted management in these “hotspot” areas
may help slow JLN progression. Our results highlight the
practicality and scalability of drone-based remote sensing
technology for large-scale orchard monitoring, providing orchard
managers with timely insights to implement precise interventions.
Future research should integrate other data sources to improve
classification performance and develop predictive models to more
proactively manage the development of JLN. By adopting and
improving these remote sensing technologies, growers can reduce
yield losses, improve resource allocation, carry out ecological
protection, and ultimately promote the sustainable development
of Xinjiang’s walnut industry.
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