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Precisely quantifying the spatiotemporal variation patterns of ecosystem water
use efficiency (WUE) (i.e., WUEnpp and WUEgpp) and carbon use efficiency (CUE)
across diverse regions, as well as identifying the spatial heterogeneity of their
principal influencing factors, are crucial for elucidating the complex underlying
mechanisms governing carbon and water cycles in the Yellow River Basin (YRB).
In this study, we utilized multi-source remote sensing data, and employed
Ensemble Empirical Mode Decomposition (EEMD) to explore the nonlinear
spatiotemporal trends and patterns of WUEypp, WUEgpp, and CUE within the
YRB ecosystem. Additionally, we applied the optimally parameterized XGBoost
and SHAP models to discern the spatial heterogeneity of the key factors driving
their spatiotemporal variations. The results showed that: (1) The WUEnpp,
WUEgpp, and CUE of the YRB ecosystem exhibited a spatial distribution pattern
characterized by higher values in the southeast and lower values in the
northwest, with these metrics were predominantly concentrated at elevations
ranging from 1000 to 1500 meters. (2) The interannual change rates of the yearly
average values of WUEwpp, WUEgpp and CUE in the YRB ecosystem were 0.008
gCm?mmy?tal 0.005gCm?mmtyta? and 0.001, respectively. The
predominant change patterns for WUEwpp and WUEgpp were monotonic
increases, covering approximately 42.44% and 41.97% of the watershed area,
respectively. In contrast, the change pattern for CUE was primarily a decrease
followed by an increase, observed across 42.51% of the watershed area. (3) In the
YRB ecosystem, the leaf area index (LAI) emerged as the primary determinant of
WUENpp and WUEgpp. Specifically, WUEypp and WUEgpp both showed an upward
trend in tandem with the increase in LAI. Furthermore, temperature was identified

01 frontiersin.org


https://www.frontiersin.org/articles/10.3389/fpls.2025.1632172/full
https://www.frontiersin.org/articles/10.3389/fpls.2025.1632172/full
https://www.frontiersin.org/articles/10.3389/fpls.2025.1632172/full
https://www.frontiersin.org/articles/10.3389/fpls.2025.1632172/full
https://www.frontiersin.org/articles/10.3389/fpls.2025.1632172/full
https://www.frontiersin.org/articles/10.3389/fpls.2025.1632172/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2025.1632172&domain=pdf&date_stamp=2025-12-03
mailto:hanliqin@htu.edu.cn
https://doi.org/10.3389/fpls.2025.1632172
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2025.1632172
https://www.frontiersin.org/journals/plant-science

Li et al.

10.3389/fpls.2025.1632172

as the key driving factor for CUE within the YRB ecosystem. (4) In the YRB
ecosystem, LAl exhibited the highest importance index for both WUE\pp and
WUEgpp. It played a dominant role in approximately 42.80% and 45.35% of the
study areas for WUE\pp and WUEgpp, respectively. Conversely, temperature was a
crucial factor influencing the spatial variability of CUE in the YRB ecosystem,
exerting a predominant influence in 38.88% of the study areas.

KEYWORDS

water use efficiency, carbon use efficiency, Yellow River Basin, leaf area index,
spatiotemporal heterogeneity, temperature

1 Introduction

In the context of accelerating global warming, terrestrial
ecosystems are undergoing profound structural and functional
transformations, giving rise to complex environmental and
ecological challenges such as carbon cycle imbalances, water
scarcity, and biodiversity decline (Shao et al., 2024). To evaluate
the stability of ecosystems under climate change, increasing
attention has been directed toward carbon and water use
efficiency (CWUE), a critical indicator of coupled carbon-water
processes. CWUE reflects the ability of ecosystems to coordinate
carbon fixation and water consumption under changing
environmental conditions (Ding et al., 2021; Gao et al.,, 2016). It
primarily consists of carbon use efficiency (CUE) and water use
efficiency (WUE), the latter of which is further divided into WUE
based on net primary productivity (WUEypp) and WUE based on
gross primary productivity (WUEgpp) (Jin et al., 2023). Collectively,
these metrics characterize vegetation strategies in carbon
acquisition and allocation per unit of water consumption,
providing essential measures for assessing ecosystem adaptability
and functional resilience (Ganjurjav et al., 2022).

The development of remote sensing technology has enabled
large-scale, long-term monitoring of CWUE dynamics, making it a
fundamental approach for investigating ecosystem responses to
climate change (Cai et al,, 2023; Liu et al, 2024b). CUE, a key
variable in evaluating carbon sequestration efficiency, indicates the
effectiveness of photosynthetic products being converted into
biomass (Chakraborty et al, 2023). WUE, in contrast, highlights
the trade-off between carbon uptake and water loss through
evapotranspiration, serving as a central metric for understanding
ecosystem functioning under global change (Kim et al, 2021).
Typically, WUEgpp is defined as the ratio of gross primary
production (GPP) to evapotranspiration (ET), while WUEypp is
defined as the ratio of net primary productivity (NPP) to ET (Ito
and Inatomi, 2012).

Globally, extensive research has examined the spatiotemporal
variability of CUE and WUE across diverse ecosystems. At the
global scale, terrestrial CUE displays spatial patterns strongly
associated with GPP and NPP, showing marked latitudinal
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variation, particularly between 30°N and 30°S (Gang et al.,, 2022).
In contrast, WUEgpp generally decreases from lower to higher
latitudes in Central and East Asia (Kim et al., 2021; Wei et al., 2019).
Investigations in specific ecosystem types, such as temperate forests
and arid regions, further demonstrate coordinated variations
between WUE and productivity. For instance, in the coniferous
forests of Changbai Mountain, both WUEypp and NPP increased
with forest age from 2000 to 2014. Similarly, natural vegetation in
arid Northwest China experienced a shift from improvement to
degradation in WUEypp and NPP between 2001 and 2018 (Li et al.,
2019). Additional comprehensive assessments of CUE and
WUEGpp trends have been conducted in ecologically sensitive
areas such as the karst regions of China (Xiao et al., 2023).

The spatiotemporal heterogeneity of WUEgpp is shaped by
multiple climatic, biological, and environmental factors (Wang
et al, 2020) including drought (Liu et al, 2020a), aerosols (Lu
et al,, 2017), and human activities (Li et al., 2021). For example, in
the mountainous areas of North China, leaf area index (LAI),
temperature, and precipitation collectively explain 79.43% of the
variation in WUEypp (Wang et al,, 2023). On the Loess Plateau, the
dominant drivers of WUEypp exhibit a latitudinal zonation, with
precipitation and drought indices playing the primary roles,
suggesting that water availability, rather than temperature, is the
critical determinant in this region (Tian et al., 2020). Ecosystem
sensitivities to environmental drivers also vary. For example,
differences in respiration characteristics and GPP responses to
temperature and humidity between natural forests and urban
plantations indicate that CUE is primarily regulated by
temperature and soil moisture (Li et al., 2022; Niu et al,, 2011).
Although elevated CO, concentrations can enhance CUE (Liu et al.,
2019), such positive effects may be diminished or even offset by
climatic stressors such as drought and extreme heat (Mathias and
Trugman, 2022).

The study area, located within the Yellow River Basin (YRB),
spans multiple climate zones and vegetation types and is characterized
by complex terrain, fragile ecosystems, and intensive human influence.
In recent decades, the region has undergone substantial changes in
temperature and precipitation patterns, coupled with large-scale
afforestation, agricultural expansion, and urbanization. These factors
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jointly shape the carbon-water dynamics of local ecosystems, making
the basin an ideal setting for examining ecosystem responses under
combined natural and anthropogenic pressures.

Although previous studies have employed linear methods to
investigate the spatiotemporal variations of ecosystem CWUE in
the YRB and analyzed its relationships with climatic factors through
correlation and contribution analyses, these approaches remain
limited. For example, Li et al. (2025) applied linear regression and
demonstrated that approximately 70.39% of the YRB exhibited a
significant increasing trend in WUEgpp from 1982 to 2018. Partial
correlation analysis further indicated that precipitation (37.98%)
and soil moisture (10.30%) were the dominant climatic drivers.
Similarly, Tang et al. (2025) used linear regression to show that
WUEywpp and CUE declined in about 70% and 60% of the YRB,
respectively, during 2001-2023, while relative contribution analysis
revealed that annual mean temperature was negatively correlated
with WUEypp in nearly 89% of the region and with CUE in about
74%. However, these studies largely rely on linear and correlative
approaches, which are insufficient for capturing the nonlinear
spatiotemporal patterns of CWUE, particularly regarding how its
heterogeneous dynamics respond to human activities, vegetation
changes, and climate variability.

In this context, the YRB were selected as the study area. Multi-
source remote sensing data were combined with advanced
analytical techniques, including ensemble empirical mode
decomposition (EEMD), the XGBoost model, 10-fold cross-
validation, stochastic search-based hyperparameter optimization,

10.3389/fpls.2025.1632172

and SHAP interpretation. The objective of this study is to
systematically characterize the nonlinear spatiotemporal dynamics
of CWUE and to determine its dominant driving factors. The
specific research objectives are as follows: (1) To uncover the
features of spatial distribution characteristics, nonlinear
spatiotemporal variation trends and patterns of CWUE in the
YRB, while exploring the stability and sustainability of each
variation pattern across different regions within the basin. (2) To
elucidate the influence of driving factors (including climate change,
vegetation change, and human activities) on the CWUE within the
YRB; (3) To analyze the spatiotemporal heterogeneity of these
driving factors across various regions of the YRB, with an
emphasis on identifying the predominant factors that influence
CWUE in different areas. This research aims to provide strategic
guidance for the protection and rational use of natural resources
within the YRB. It will also contribute to advancing the green
development goals of the YRB, thereby promoting ecological
conservation and sustainable development.

2 Study area

The YRB encompasses the geographic and ecological regions
traversed by the Yellow River, from its source to its estuary. The
YRB is situated in northern and northwestern China, located at 32°
N-42° N, 96° E-119° E (Figure la). Originating in the Bayan Har
Mountains of Qinghai Province, the Yellow River flows through 9
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FIGURE 1
Study area. [(a) is the location of the Yellow River Basin in China, (b) is the spatial distribution of land use types in the Yellow River Basin, and (c) is

the spatial distribution of DEM in the Yellow River Basin)].
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provinces and 54 cities, including Qinghai, Sichuan, Gansu,
Ningxia, Inner Mongolia, Shaanxi, Shanxi, Henan, and Shandong,
before ultimately discharging into the Bohai Sea. The predominant
land-use types within the YRB include grassland, cropland,
woodland, and wasteland, which account for approximately
69.46%, 21.89%, 5.43%, and 3.22% of the total watershed area,
respectively. Grasslands are primarily found in the middle and
upper sections of the YRB, while woodlands are mainly
concentrated in the southeastern portion of the basin (Figure 1b).
Stretching from west to east, the YRB crosses four major
geomorphologic units, namely the Tibetan Plateau, the Inner
Mongolian Plateau, the Loess Plateau, and the Yellow-Huaihai
Plain. The region is characterized by a general west-high and
east-low topography (Figure 1c¢).

3 Research data and methods

3.1 Data

In the present study, the GPP data derived from a vortex-related
data-light utilization efficiency model, which is based on vortex-
related data-light utilization efficiency theory (Yuan et al., 2010,
2007). The latest version of the GPP product integrates components
such as the photosynthetically active radiation absorption ratio
(radiation) and atmospheric water vapor pressure, providing an
accurate estimate of GPP. Furthermore, the NPP data used in this
study exhibit a high level of accuracy (Li et al., 2023). Compared to
the LAI data from the Moderate Resolution Imaging
Spectroradiometer (MODIS), the LAI data from the GLASS
dataset contain a larger proportion of high-quality data and show
smoother temporal variations in their mapping (Jin et al., 2017).
The ET data are generated using a Bayesian method combined with
five latent heat flux algorithms. By incorporating MODIS and other
reanalysis data, high spatiotemporal resolution and high-precision
remote sensing data on heat fluxes are produced, covering the
continuous latent heat surface space across the global land area. The
radiometric data show no missing values. Even in areas with cloud

TABLE 1 Summary of data used in this study.

Dataset Unit Time period = Spatial resolutions
GPP gCm2y! 1982-2018 5km
NPP gCm7y! 1982-2018 5km

ET mmy" 1982-2018 5km

LAI N/A 2000-2018 5km
Radiation N/A 2000-2018 1km
Temperature °C 2000-2018 1km
Precipitation mm 2000-2018 1km
Sunlight h 2000-2018 1km
GDP Million USD/km? 2000-2018 1km
DEM m 2000 30m
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cover, they maintain high quality. These data present continuous,
consistent time-series curves, effectively reflecting the seasonal
fluctuations in vegetation. Moreover, they exhibit excellent
spatiotemporal consistency, thereby accurately capturing the
dynamic changes in the vegetation over time and across different
spatial locations. GLASS products undergo a rigorous spatial quality
validation procedure to ensure high data accuracy (Zhao
et al,, 2013).

The sunlight data used in this study is based on observations
from 824 benchmark and basic meteorological stations across
mainland China. Spatial interpolation of these observations was
performed using the thin-plate spline method. The interpolated
data were then subjected to a threshold test against actual measured
data from the meteorological stations, ensuring high data accuracy.
A detailed description of all datasets used in this study is provided
in Table 1.

Data preprocessing in this study involved several steps. Initially,
raw GPP, NPP, and ET data were converted from HDF format to
raster format, followed by batch extraction and mosaicking. ArcPy
was then used to crop the raster images to the study area (YRB) and
resample them to a consistent spatial resolution. Next, ArcPy was
employed to calculate CWUE values at the pixel level across the
YRB. Finally, the vector-scale TIFF image of the YRB was cropped
and resampled using ArcPy to ensure spatial resolution consistency.

3.2 Methods

3.2.1 Carbon and water use efficiency

CWUE consists of three components: (i) CUE, which is defined
as the ratio of NPP to GPP, (ii) WUEgpp, calculated as the ratio of
GPP to ET (Yang et al., 2020), and (iii) WUEypp, determined as the
ratio of NPP to ET (Tian et al., 2010).

3.2.2 EEMD model

The EEMD model was employed to analyze the nonlinear
variation trends and patterns of CWUE in the YRB. This model
effectively captures nonlinear components within statistical trends

Temporal resolutions Data source

8 days https://www.geodata.cn
8 days https://www.geodata.cn
8 days https://www.geodata.cn
8 days https://www.geodata.cn
8 days https://www.geodata.cn/
monthly scale https://data.tpdc.ac.cn/
monthly scale https://data.tpdc.ac.cn/
annual scale https://www.geodata.cn/
annual scale https://doi.org/10.6084/m9.figshare.17004523.v1

N/A https://www.gscloud.cn/
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without relying on prior assumptions. Its data decomposition is
based on local characteristics, resulting in enhanced time-frequency
resolution and clearer physical meaning (Yin et al., 2016).
Consequently, the EEMD model has been widely adopted in
studies involving long-time-series remote sensing data analysis
(Wen et al, 2017). The computational steps for applying EEMD
are presented as follows:

The new signal, X(t), to be decomposed, is obtained by adding
Gaussian white noise of varying amplitudes to the original signal,
x(t):

X(t) = x(t) + w(t) (1)

In Equation 1, w(t) represents the added Gaussian white noise.
Compute the average value of the upper and lower envelopes
¢, (t) in Equation 2:

X, (1) = X(1) — ¢ (1) 2

Based on the standard deviation (SD), assess whether the

process is capable of continuing:

t
SD = S Xi(t) - Xy (O F /XG (0)] (3)
=0
In Equation 3 i represents the iteration count. If this value is
smaller than the preset threshold, halt the above calculation
procedure and compute the first iteration result for variable IMF1
in Equation 4:

IMF1 = /() = X1 (1) - () (4)
Calculate the residuals of the signal X, (t) and IMF1:
R(t) = X, (t) - IMF1 (5)

Repeat Equations 1 and 5 until R, (¢) turns into a monotonic
function in Equation 6:

R, =Ry, —IMF,i=2,3,...,n (6)

According to the steps described above, the number of residuals
and the value of IMFs separated by x(¢) can be obtained as shown in
Equation 7:

x(t) = iIMFi(t) +R(1) (7)
i=1

Based on the monotonicity of the eigenvalue trend and the
characterization of the extreme points, the change patterns were
classified into five categories: monotonically increasing,
monotonically decreasing, increasing followed by decreasing,
decreasing followed by increasing, and those that did not meet

the significance criteria for variation.

3.2.3 Hurst index

The Hurst index (H) was calculated using the rescaled range
(R/S) analysis to assess the inter-annual sustainability of the
CWUE. The specific formula for this calculation can be found in
the relevant literature (Khosroshahi et al., 2023). The H value
domain ranges from 0 to 1. When 0 <H< 0.5, it indicates inverse
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persistence in the CWUE change, meaning that the future trend of
CWUE variation is opposite to its past trend. When H = 0.5, it
suggests that the time series of CWUE time series is random, with
the future trend of CWUE being difficult to predict. When 0.5 <H<
1, it indicates sustainability in CWUE changes implying that the
past trend of CWUE will persist, and the future trend will align with
the previous trend. The sustainability of different CWUE change
patterns in the YRB was assessed by combining the results of the
EEMD model and the Hurst exponent, with detailed information
provided in Table 2.

3.2.4 Coefficient of variation

The coefficient of variation (CV) was used to quantify the
magnitude of inter-annual fluctuations in CWUE. The detailed
calculation methodology is provided in a previous study (Zhang
et al, 2016). In this study, the values of the CV values were
categorized into three classes to represent the stability of different
CWUE variation patterns across the YRB. Specifically, high
volatility was defined as CV = 0.3, medium volatility as 0.1 < CV
< 0.3, and low volatility as CV < 0.1. This classification was
performed by integrating the EEMD model with the CV, allowing
for a comprehensive evaluation of CWUE stability. Further details
can be found in Table 3.

3.2.5 Optimal parameters XGBoost and SHAP
models
3.2.5.1 Optimal parameterized XGBoost model

The XGBoost (eXtreme Gradient Boosting) model is an
advanced implementation of the gradient boosting framework,
renowned for its execution speed and predictive performance
(Niazkar et al., 2024). Tt operates by constructing an ensemble of
weak learners (typically decision trees) in a sequential, additive
manner. Each new tree is trained to correct the residuals or errors of
the combined previous ensemble. This iterative process effectively
reduces bias and mitigates underfitting. The core principle of
XGBoost lies in its objective function, which incorporates a loss
function and a regularization term to control model complexity and
prevent overfitting as shown in Equation 8:

TABLE 2 Sustainability of different variation patterns of CWUE in the
YRB.

Variation Sustainability of different

variation patterns of CWUE

patterns of
CWUE

>0.5 Monotonically Sustainability and monotonically increasing
increasing

>0.5 Monotonically Sustainability and monotonically decreasing
decreasing

>0.5 Increasing then Sustainability and increase then decrease
decreasing

>0.5 Decreasing then Sustainability and decrease then increase
increasing

<0.5 Failed to pass Undetermined future variation trend

significant change
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TABLE 3 Stability of different variation patterns of CWUE in the YRB.

10.3389/fpls.2025.1632172

(T Variation patterns of CWUE Stability of different patterns of change in CWUE Grade

Monotonically increasing High fluctuation and monotonically increasing XLI
Monotonically decreasing High fluctuation and monotonically decreasing XXXI

CVewye 2 0.3
Increasing then decreasing High fluctuation and increasing then decreasing XXI
Decreasing then increasing High fluctuation and decreasing then increasing XI
Monotonically increasing Medium fluctuation and monotonically increasing XLIIT
Monotonically decreasing Medium fluctuation and monotonically decreasing XXXIII

0.1 < CVepue < 0.3

Increasing then decreasing Medium fluctuation with increasing and then decreasing XIII
Decreasing then increasing Medium fluctuation, decreasing then increasing XXIII
Monotonically increasing Low fluctuation and monotonically increasing XLIT
Monotonically decreasing Low fluctuation and monotonically decreasing XXXII

CVewue < 0.1
Increasing then decreasing Low fluctuation and increasing then decreasing XII
Decreasing then increasing Low fluctuation and decreasing then increasing XXII

Obi(o n - K o g and reg_alpha (o): L2 and L1 regularization terms
= sVi)+ .
j(6) g i3 g 2 ®) on weights.

Where y; and y; are the observed and predicted values of the i-
th sample, respectively; / is a differentiable convex loss function (e.g.,
mean squared error for regression); Q(f;) = yT + 1/24 || w ||? is the
regularization term for the k-th tree, with T being the number of
leaves, w being the leaf weights, and y and A being regularization
parameters that penalize the complexity of the tree. Model training,
validation, and hyperparameter optimization steps:

Step 1: Data preparation: The dataset containing CWUE
indicators and their potential driving factors was
partitioned into a training set (70%) and a testing set (30%).

Step 2: Model validation-10-fold Cross-Validation (CV): To
ensure robustness and avoid overfitting, the training set was
further subjected to 10-fold CV. The dataset was randomly
split into 10 equal-sized subsets. The model was trained 10
times, each time using 9 subsets for training and the
remaining 1 subset for validation. The average
performance across all 10 folds was computed to evaluate
the model’s generalizability.

Step 3: Hyperparameter tuning via random search: To enhance
predictive accuracy, a random search strategy was
employed for hyperparameter optimization. This method
randomly samples a predefined number of combinations
from a wide hyperparameter space, which is more efficient
than grid search for high-dimensional spaces. The key
hyperparameters tuned included: n_estimators: The
number of boosting rounds (trees). Learning rate: The
step size shrinkage used to prevent overfitting.
Max_depth: The maximum depth of a tree, controlling
model complexity. Subsample: The fraction of samples used
for fitting individual trees. Colsample_bytree: The fraction
of features used for fitting individual trees. Reg_lambda (1)

Frontiers in Plant Science

Step 4: Iterative training and evaluation: The XGBoost model
underwent 10,000 training iterations with randomly
sampled hyperparameter combinations. The performance
of each model was evaluated using the Root Mean Square
Error (RMSE) and the Coefficient of Determination (R?) on
the validation sets from the CV process.

Step 5: Final model selection: The hyperparameter set that
yielded the lowest average RMSE (or highest R?) across the
CV folds was selected to train the final model on the entire
training set. The framework of this optimization process is
illustrated in Figure 2. GPU acceleration and parallel
processing were leveraged to expedite this computationally

intensive process.

Table 4 presents the optimal hyperparameters for the three
CWUE indicators in the YRB derived from this research. All models
achieved a R? exceeding 0.87, demonstrating high goodness of fit.
These results validate the optimal parameter XGBoost model
effectively and reliably captures the spatiotemporal heterogeneity
of the key drivers influencing CWUE dynamics in the YRB.

3.2.5.2 SHAP explanatory model

The SHAP method, grounded in game-theoretic principles,
offers a systematic approach to quantify the individual
contributions of features to a model’s prediction. Characterized by
properties such as local accuracy, tolerance to missing values, and
consistency, SHAP values are computed using the following
procedure:

. Eses,. (n—lsl)nll(lsl—l)!

In Equation 9, x; is the set containing all subsets of member i, s

[v(s) = v(s/1)] 9)

is some set case of S, Isl indicates the amount of elements of the
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Step 1 Data Preparation

Step 3 Hyperparameter Tuning via
Random Search

Step 4 Iterative Training and
Evaluation

oo oo o o o o o
oo oo o o] o o o]

n_estimators: The number of boosting
rounds (trees).

&

Hyperparametric Optimization
Algorithm for Randomized Search

I O 0 Y S 2

learning_rate: The step size shrinkage
used to prevent overfitting.

10000 times L
p ) (WIS, SR

R*max /

O

max_depth: The maximum depth of a
tree, controlling model complexity.

Step 2 Model Validation

Step S Final Model Selection

10-fold Cross-Validation (CV)

subsample: The fraction of samples
used for fitting individual trees.

Selecting the optimal parameters
to train the XGBoost model

o1 o2 [ [ [ [ [ ] ]

colsample bytree: The fraction of
features used for fitting individual trees.

v
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and L1 regularization terms on weights.

v

Optimal Parameter XGBoost
Model Prediction Results

FIGURE 2
Working principle of the optimal parameter XGBoost model.

subset s, n refers to the number of collaborators, v(s) is the gain of
the set s. v(s/i) signifies the gain of the set excluding member i.

The SHAP value offers a reliable metric for quantifying the
individual contributions of each driver to the final predicted
outcome of the model.

Vi = Yoase T (xi0) + f Q) + oo+ f(x55) + oo+ f(xig) (10)

In Equation 10, y; is the predicted value of the iy, sample, y;,,. is
the predicted mean value of all samples, x; is the iy, sample, f(x;;) is
the SHAP value of the iy, sample, j,, feature, and k is the number of
input features.

In this study, the SHAP explanatory model was applied to
quantify the contributions of the following driving factors to the
spatiotemporal variations of CWUE in the YRB: temperature,
precipitation, sunlight, radiation, LAI, and GDP. These factors
represent key climatic, biological, and anthropogenic influences
on ecosystem CWUE.

4 Results

4.1 Spatial and vertical distribution of
CWUE

4.1.1 Spatial distribution characteristics of CWUE
The spatial distribution of CWUE in the YRB from 1982 to 2018
and its relationship with latitude and longitude are shown in
Figure 3. WUENpp and WUEgpp in the YRB exhibit a spatial
pattern characterized by higher values in the southeast and lower
values in the northwest, with relatively elevated WUEypp and
WUEgpp observed at the junction of Qinghai and Gansu
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provinces. The spatial distributions of WUEypp and WUEgpp
closely resemble those of NPP and GPP, respectively, while GPP,
NPP, and ET generally increase from the northwest to the
southeast. In contrast, CUE shows a gradually increasing trend
from west to east, with pronounced regional differences. In the
southwestern part of the basin (the upper reaches in the southwest),
the long-term averages of CWUE, ET, NPP, and GPP are
comparatively low, whereas these indicators are relatively high in
the middle and lower reaches of the basin. In terms of longitude,
WUEypp and WUEGpp in the YRB initially increase, then decrease,
and subsequently follow a similar alternating pattern with further
increases and decreases as longitude increases, while CUE first
increases and then decreases with increasing longitude. Both exhibit
a sharp decline around 115°E. In terms of latitude, WUEypp and
WUEGpp show a decreasing trend with increasing latitude, whereas
CUE increases with latitude. The variation patterns of WUEgpp and
GPP with latitude in the YRB largely correspond to those of
WUEypp and NPP, with both reaching their minimum values at
41.66°N and their maximum values occur at 31.03°N and 32.81°
N, respectively.

4.1.2 The variation of CWUE at different
elevations

The distribution of CWUE at different elevations in the YRB
from 1982 to 2018 is illustrated in Figure 4. WUEypp and WUEgpp
in the YRB exhibit a trend of initially decreasing, then increasing,
and subsequently decreasing with elevation, with their turning
points coinciding with those of NPP and GPP at approximately
3000-4000 m. In contrast, CUE decreases with increasing elevation.
CWUE in the basin is primarily concentrated at elevations between
1000 and 1500 m, and WUEypp within this elevation range spans 0-
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TABLE 4 Optimal hyperparameter details for optimal parameter XGBoost.

10.3389/fpls.2025.1632172

CWUE N estimators Learning rate Max depth Subsample R? RMSE
CUE 294 0.1399 0.8973 0.8781 0.0735
WUExpp 423 0.1206 0.7243 0.9510 0.0728
WUEGpp 423 0.1206 0.7243 0.9813 0.0787
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FIGURE 3

Spatial distribution of CWUE and its relationship with latitude and longitude in the YRB from 1982 to 2018. Specifically, (a—f) show the spatial
distributions of the multi-year mean from 1982 to 2018 for NPP, GPP, ET, CUE, WUE\pp, and WUEgpp, respectively.
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Distribution of CWUE at different elevations in the YRB from 1982 to 2018 [(a is the distribution of NPP at different altitudes, b is the distribution of
WUEwpp at different altitudes, c is the distribution of GPP at different altitudes, d is the distribution of WUEgpp at different altitudes, e is the
distribution of ET at different altitudes, and f is the distribution of CUE at different altitudes).

1.5 gCm™? mm. The values of WUEypp, WUEpp, and CUE are
mainly within the ranges of 0.18-0.24 gCm™ mm™’, 0.36-0.42
gCm?mm™’, and 0.55-0.59, respectively. The elevation-
dependent variation trends of GPP and NPP with elevation are
similar to those of WUEypp and WUEgpp. Additionally, the median
values of WUEgpp and GPP within each elevation interval exceed
those of WUEypp and NPP. The elevational trend of ET is similar to
that of CUE, with ET values not falling below 400 mmy ' within the
0-1000 m elevation range.

4.2 Spatiotemporal dynamics of CWUE
4.2.1 Interannual variation trend of CWUE

The interannual variation of the annual mean CWUE in the
YRB from 1982 to 2018 is illustrated in Figure 5. Over this period,
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the annual mean CWUE in the YRB exhibited an increasing trend.
The interannual variation rates for the annual mean WUEypp,
WUEGpp, and CUE were 0.008 gC m~2mm™'a’!, 0.005 gC m™2
mm™" a”!, and 0.001, respectively, with their long-term averages
being 0.52 gCm2?mm!, 1.03 gCm?mm', and 0.50. The
average values over the long-term for NPP, GPP, and ET were
271.40 gCm2y’!, 518.73 gCm 2y, and 463.59 mmy ',
respectively. Each of these variables demonstrated an upward
trend over the period from 1982 to 2018.

4.2.2 Spatial variation trends and patterns of
CWUE

Figure 6 illustrates the variation trends and patterns of the
annual mean CWUE in the YRB from 1982 to 2018. The variation
patterns of WUEypp and WUEgpp are closely aligned. The
monotonically increasing variation pattern accounts for about
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FIGURE 5

Interannual variation of the annual mean CWUE in the YRB from 1982 to 2018 [(a) is the interannual variation of annual average CUE, (b) is the
interannual variation of annual average ET, (c) is the interannual variation of annual average GPP, (d) is the interannual variation of annual average
NPP, (e) is the interannual variation of annual average WUEgpp, and (f) is the interannual variation of annual average WUEpp)].

42.44% and 41.97% of the total area within the basin, respectively,
while the “decrease then increase” pattern represents approximately
36.20% and 31.40%, respectively. These patterns are primarily
concentrated in the middle section of the YRB’s reaches. In the
central and lower reaches of the YRB, the monotonically increasing
variation pattern of CUE is dominant, covering approximately
34.22% of the basin area. In contrast, approximately 42.51% of
the upstream region exhibits a distinct “decrease then increase”
pattern, primarily distributed in eastern Qinghai, northern Sichuan,
and southwestern Gansu provinces. The significant increasing trend
of CUE indicates that carbon sequestration efficiency is gradually
improving across most areas of the YRB. Moreover, pixels showing
monotonically decreasing trends in WUEypp, WUEgpp, and CUE
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account for the smallest proportions of the basin, at 3.67%, 4.62%,
and 6.18%, respectively, and are sparsely distributed in space. The
variation patterns of NPP, GPP, WUEypp, and WUEgpp are largely
consistent, with a predominant increasing trend. The
monotonically increasing patterns of NPP and GPP cover about
51.55% and 51.53% of the overall area of the basin, respectively.
NPP and GPP in the central region of YRB follow a pattern of
“decrease then increase” in larger areas. ET in the YRB is
predominantly characterized by a monotonically increasing trend,
covering approximately 69.48% of the basin and widely distributed
across regions except for the southwestern part. In fact, areas
exhibiting an increasing ET trend account for as much as 96.52%
of the basin, indicating that the rise in ET is nearly basin-wide.
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FIGURE 6

Variation trend and pattern of the annual mean CWUE in the YRB from 1982 to 2018. Specifically, (a1, b1, c1, d1, el, f1) show the spatiotemporal
variation trends from 1982 to 2018 for NPP, CUE, GPP, WUEypp, ET, and WUEgpp, respectively; (a2, b2, c2, d2, e2, f2) show the spatiotemporal
variation patterns from 1982 to 2018 for NPP, CUE, GPP, WUEypp, ET, and WUEgpp, respectively.

Opverall, except for WUEypp and WUEgpp, other indicators show a
relatively pronounced increasing trend in the middle and lower
reaches of the basin, particularly in the lower reaches, whereas
WUEyNpp and WUEgpp exhibit minor decreasing trends in parts of
the middle reaches.

4.2.3 Sustainability and stability of CWUE

The spatial distribution of the sustainability and stability of
CWUE in the YRB from 1982 to 2018 is illustrated in Figure 7. The
sustainable spatial patterns of WUEgpp and WUEypp in the YRB
exhibit remarkable similarity, both predominantly showing
sustainable and monotonically increasing trends, accounting for
approximately 41.40% and 41.68% of the basin area, respectively,
with more pronounced patterns in the lower reaches. In the middle
reaches, both indicators mainly display sustainable trends of
initially increasing followed by decreasing, covering
approximately 30.46% and 35.03% of the area, respectively. CUE
in the basin predominantly exhibits a sustainable pattern of initially
increasing followed by decreasing, accounting for about 40.98% of
the area, and is mainly distributed in the southwestern (upper
reaches in the southwest) and eastern parts of the basin. Overall,
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CWUE in the YRB demonstrates considerable sustainability. Both
WUENpp and WUEgpp primarily show moderate fluctuations,
accounting for approximately 52.88% and 73.41%, respectively.
Additionally, both exhibit a “moderate fluctuation and
monotonically increasing” variation pattern (XXXIII), accounting
for about 25.47% and 29.80%, respectively. Moreover, WUEgpp
exhibits relatively high fluctuation in the southwestern part of the
YRB (upper reaches in the southwest), whereas moderate
fluctuation dominates in the middle and lower reaches, and low
fluctuation is mainly concentrated in the northwest. For WUEypp,
low fluctuation is primarily observed in the northern regions of the
basin, with the middle and lower reaches particularly the lower
reaches also showing pronounced low fluctuation. CUE in the YRB
is predominantly characterized by low fluctuation, accounting for
approximately 97.91% of the total basin area. Among these, areas
with low fluctuation and an initially decreasing followed by
increasing pattern (XXII) cover about 41.44%, mainly distributed
in the upper southwestern region, while areas with low fluctuation
and monotonically increasing trends (XLII) account for
approximately 33.37%, indicating that CUE has exhibited very
high stability across the basin from 1982 to 2018.
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FIGURE 7

Spatial distribution of the sustainability and stability of CWUE in the YRB from 1982 to 2018. Specifically, (a, ¢, €) show the spatial distributions of

stability for CUE, WUEpp, and WUEgpp, respectively. (b, d, f) show the spatial distributions of sustainability for CUE, WUEpp, and WUEgpp,

respectively.
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4.3 |dentification of driving factors for

CWUE

4.3.1 Trends and patterns of driving factors

Figure 8 illustrates the trends and patterns of driving factors in
the YRB from 2000 to 2018. Sunlight in the YRB exhibits a
significant decreasing trend (75.90%), while other driving factors

show notable increasing trends. The proportion of areas exhibiting
these trends, from largest to smallest, is as follows: GDP (99.85%),
radiation (97.04%), LAI (79.02%), precipitation (70.60%), and
temperature (57.39%). In most areas of the middle reaches of the

YRB, temperature exhibits a decreasing trend, with the “increase

then decrease” pattern accounting for approximately 39.29% of the

basin, whereas temperature in the lower reaches predominantly

shows an increasing trend. The rate of change in radiation displays a

west-to-east increasing pattern (i.e., progressively increasing from

the upper to the middle and then to the lower reaches), with the

monotonically increasing pattern being dominant, covering about
75.40% of the basin. In the upper reaches of the YRB, the rate of
precipitation change is relatively high, particularly in the

southwestern part of the basin, while the “decrease then increase”
pattern predominates in most areas of the middle reaches,
accounting for approximately 39.71% of the basin. The rate of
change in sunlight is relatively high in the northern regions, with
the northwest primarily exhibiting an “increase then decrease”
pattern, whereas the lower reaches mainly show a “decrease then
increase” pattern. LAI is primarily characterized by the “decrease
then increase” and “monotonically increasing” patterns, accounting
for about 73.46%. GDP predominantly follows a “monotonically
increasing” variation pattern, covering approximately 95.91% of the
area. The increasing trends of both variables are widely distributed

across the basin.

10.3389/fpls.2025.1632172

4.3.2 Importance of CWUE driving factors

respectively. This effect was mainly concentrated in the

Figure 9 illustrates the spatial pattern of driving factors and
SHAP values of CWUE in the YRB from 2000 to 2018. Temperature
and sunlight have a positive impact on the spatial variation of
WUENpp, accounting for 73.56% and 60.90% of the region,
respectively. accounting for 73.56% and 60.90% of the region,
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Trends and patterns of driving factors in the YRB from 2000 to 2018. Specifically, (a1, bl, c1, d1, el, f1) show the spatiotemporal variation trends
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The spatial pattern of driving factors and SHAP values of CWUE in the YRB from 2000 to 2018. (a1-6) respectively shows the spatial pattern and
SHAP value of WUEypp and driving factors (temperature, radiation, precipitation, sunlight, LAl, and GDP). (b1-6) respectively shows the spatial
pattern and SHAP value of WUEgpp and driving factors (temperature, radiation, precipitation, sunlight, LAl, and GDP). (c1-6) respectively shows the
spatial pattern and SHAP value of CUE and driving factors (temperature, radiation, precipitation, sunlight, LAl, and GDP).

northwestern part of the YRB, whereas the negative influence of
precipitation on WUEypp increased from north to south. The
spatial distributions of the effects of radiation and LAI on
WUEypp are relatively similar, with predominantly positive effects
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in the southeastern part of the YRB (middle and lower reaches) and
predominantly negative effects in the northwest (northeastern part
of the upper reaches). The negative effect of GDP on WUEypp
covers most of the basin (67.22%), particularly in the upper reaches.
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In the northern part of the YRB, the driving factors primarily exert
negative effects on WUEgpp. The negative impacts of temperature
and precipitation on WUEgpp were particularly prominent,
accounting for approximately 62.50% and 60.73% of the YRB,
respectively, with their effects being most evident in the mid-
reaches of the YRB. Moreover, the negative effect of temperature
on WUEGpp is also relatively pronounced in the lower reaches.
Radiation, LAI, and sunlight showed significant negative impacts on
WUEgpp in the northwestern part of the YRB (the northeastern
part of the upper reaches) were relatively significant, while the
positive effects were more dominant in the southern part. The
absolute SHAP values of LAI were relatively large. In the mid-upper
sections of the YRB, GDP predominantly exerted a positive
influence on WUEgpp. This positive correlation is observed across
about 59.40% of the basin’s area. The positive effects of temperature,
radiation, and LAI on CUE are relatively pronounced, accounting
for 67.23%, 53.26%, and 53.82% of the YRB, respectively, and are
particularly prominent in the southeastern part of the basin (middle
and lower reaches, especially the lower reaches). In contrast,
precipitation, radiation, and GDP mainly exert negative effects on
CUE, accounting for approximately 55.24%, 52.83%, and 60.29%,
respectively. Among these, the negative effects of precipitation and
radiation are more pronounced in the southern part of the basin
(the southwestern upper reaches and the middle and lower reaches).
The negative effect of GDP on CUE is more significant in the upper
reaches of the basin, whereas in the lower reaches (southwestern
part of the basin), GDP predominantly exerts a positive effect
on CUE.

Figure 10 presents the summarized SHAP values of the driving
factors and their relative importance to ecosystem CWUE in the
YRB during the period from 2000 to 2018. In the YRB, LAI was
identified as the primary driver of WUExpp and WUEgpp. As LAI
increased, both WUEypp and WUEgpp showed an upward trend.
Temperature was the secondary driver, while a rise in temperature
resulted in an increase in WUEypp, it simultaneously caused a
decrease in WUEGpp. In contrast, sunlight had the least impact on
WUEypp, and GDP had the smallest effect on WUEpp in the YRB.
In contrast, sunlight and GDP respectively had the most marginal
influence on WUEypp and WUEgpp in the YRB. The driving factors
influencing CUE, listed in descending order of their weights, were
temperature, LAI, precipitation, sunlight, GDP, and radiation. LAI
and temperature were determined to be the most influential driving
factors for CWUE within the YRB ecosystem.

Figure 11 illustrates the spatial distribution of the dominant
factors contributing to the spatiotemporal variations in CWUE
within the ecosystem of the YRB ecosystem from 2000 to 2018,
along with their rankings based on importance indices. Among
these factors, LAI exhibits the highest importance indices for
WUEnpp and WUEgpp, at approximately 0.24 gCm ?mm 'yr!
and 0.40 gCm>mm 'yr™!, respectively. It plays a dominant role in
approximately 42.80% of the study area for WUEypp and 45.35%
for WUEGpp. These areas primarily cover the southern region of the
YRB, the southeastern part (the middle and lower reaches), as well
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as the junction between Qinghai and Gansu Provinces respectively.
In the northwestern part of the YRB (the northeastern part of the
upper reaches), precipitation holds the highest importance index for
WUEypp, while GDP shows the highest importance index for
WUEGpp, dominating approximately 27.44% and 21.52% of the
study areas respectively. Temperature significantly influences the
spatial variation of CUE, with an importance index of
approximately 0.05. It is the dominant factor in 38.88% of the
study area, particularly pronounced in the lower reaches of the
basin. LAI also significantly influences the spatial variation of CUE,
with a dominant effect in 31.92% of the study area, particularly
pronounced in the southern part of the YRB. Overall, temperature
and LAT are the dominant factors in over 61.19% of the study areas,
particularly in the mid-lower sections of the YRB. In contrast,
radiation has a relatively minor impact on the spatial variation
of CWUE.

5 Discussion

5.1 Spatial distribution of CWUE in the YRB

The spatial distribution of the multi-year average CWUE in the
YRB exhibited distinct patterns across latitude, longitude, and
elevation. The findings revealed that WUEgpp tended to be higher
in the eastern and southern parts of the YRB while it was lower in
the western and northern parts. These results largely correspond to
the findings of prior studies (Fan et al., 2023; Sun et al., 2022). In the
YRB, WUEGpp at the junction of Qinghai and Gansu Provinces is
higher than in the surrounding areas (Liu et al., 2024a). The spatial
distributions of WUEypp and WUEgpp in the YRB are similar.
Additionally, as demonstrated by Liu et al. (2015), the spatial
distributions of NPP and ET exhibit an upward trend from the
northwest region to the southeast region. The annual mean ET in
the YRB is lower in the western and northern areas, which are
characterized by sparse vegetation, and higher within the eastern
and southern regions, where vegetation is more abundant. This
pattern is in line with the dispersion in space of evapotranspiration
in China as studied by previous researchers (Li et al., 2017). CUE is
higher in the Loess Plateau, as noted by Liu et al. (2022). Its overall
distribution exhibits lower values in the northwestern region, and
this spatial pattern corresponds to the southeast-northwest
hydrothermal gradient across the YRB (Chakraborty et al., 2023).

Between 1982 and 2018, spatial heterogeneity in CWUE was
observed across different latitudes and longitudes in the YRB. The
trends of WUEgpp, WUEpp, GPP, and NPP across these regions
were generally consistent, with a decrease observed as latitude
increased. This aligns with the findings of Wei et al. (2019) and
Kim et al. (2021), who reported that WUEgpp showed a downward
trend from south to north in the Central Asian and East Asian
regions. A similar decreasing trend with increasing latitude was
observed for ET, which corresponds to the gradient distribution of
precipitation and vegetation cover, as described by Zhang et al.
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(2016). In contrast, CUE increased with latitude. Additionally,
between 1982 and 2018 in the YRB, WUEyNpp and WUEgpp in
the YRB followed a pattern of increase, decrease, subsequent
increase, and decrease with increasing longitude. CUE exhibited a
characteristic pattern of increasing initially and then decreasing as
longitude increased. As reported by Liang et al. (2015), NPP in the
YRB exhibited a distinct increasing trend from west to east. This
spatial pattern was primarily driven by climatic gradients, while
variations in WUE and CUE indicated a trade-off between water

availability limiting productivity and carbon allocation strategies
adapted to regional temperature conditions.

5.2 Spatiotemporal variation of CWUE in
the YRB

From 1982 to 2018, the CWUE indicators in the YRB generally
exhibited a fluctuating upward trend. Specifically, WUEypp
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Spatial distribution of dominant factors and their importance index ranking of spatiotemporal changes of CWUE in the YRB ecosystem from 2000 to
2018. (a1-3) show the statistics of absolute SHAP values of influencing factors’ contribution to CWUE, with white circles indicating the mean values
and pink lines connecting the magnitude of factor importance. Box plots show the statistics of the absolute values of SHAP for each factor, where
(a1-3) exclude extreme values. (b1-3) show the main driving factors for the same image element that dominate the CWUE at each 0.05° x 0.05°
point, and the histograms show what percentage each factor accounts for as a main driving force across the whole study area.
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increased by a factor of 0.005 g C m™ mm™" a™, which aligns well
with the findings of Zhang et al. (2016). In the YRB, WUEgpp grew
at a rate of 0.008 ¢ C m™> mm™ a™', with an average multi-year
value of 1.03g C m™> mm™", largely consistent with previous studies.
For instance, Li et al. (2021) reported that the multi-year average of
China’s WUEgpp in China from 2001 to 2017 was l.OSng’me’l,
'. The
spatiotemporal variations in WUEgpp are directly influenced by

with an annual increment of 0.003gCm>mm 'a”

changes in ET and GPP. This finding aligns with previous research,
such as by Liu et al. (2020b), which suggests that significant
increases in global GPP and ET have a direct impact on
WUEgpp. From 1982 to 2018, vegetation WUEgpp increased
significantly across most regions globally, as reported by Ji et al.
(2021). The spatiotemporal variations observed in the YRB study
area in our study generally corroborate these prior findings.
Furthermore, the overall CUE in the YRB increased at a rate of
0.001, potentially linked to the impacts of climate change and
anthropogenic vegetation restoration efforts. As shown in the
study by Du et al. (2021), anthropogenic vegetation restoration
not only boosts the capacity of ecosystems to sequester carbon but
also heightens their carbon emission capacity. Taken together, the
widespread increases in CWUE metrics indicate an improvement in
ecosystem carbon sequestration efficiency in the YRB, driven by
climate change and ecological engineering. This trend reflects a shift
toward more water-efficient carbon assimilation by vegetation,
particularly in restored areas.

Our research indicates that, from 1982 to 2018, the CWUE in
the YRB demonstrated high sustainability, following a clear and
sustainable growth pattern. This suggests that the current CWUE in
the YRB is on a favorable developmental trajectory, with promising
prospects for the future. Within the YRB, the WUEgpp exhibits high
stability in the northwestern part of the research area, whereas it
shows substantial fluctuations in the southwestern region (Xu et al.,
2023). Throughout the study period, both WUEypp and WUEgpp in
the YRB were characterized primarily by moderate fluctuations,
while CUE exhibited low fluctuations. This indicates that the overall
stability of CWUE in the YRB from 1982 to 2018 was favorable.
This spatial pattern is shaped by distinct environmental drivers:
precipitation dominance in the arid northwest results in higher
stability, whereas multi-factor regulation in the southwest leads to
greater variability. The widespread occurrence of high stability
highlights the resilience of the basin ecosystem (Tian et al., 2020).

5.3 Impact of driving factors on CWUE

From 1979 to 2020, global precipitation exhibited a significant
upward tendency. Additionally, the spatiotemporal variations of
precipitation in the YRB consistent with the findings of this study
(Gu and Adler, 2023), precipitation exerts a relatively strong
negative effect on both WUEypp and WUEgpp. Between 2000 and
2018, LAI in the YRB showed a clear upward trend, aligning with
the spatiotemporal trends of LAI in the Loess Plateau of China from
1985 to 2015, as reported in previous studies (Cao et al., 2020). In
most parts of the YRB, WUEgpp increased with the rise in LAL in
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agreement with prior findings (Dou et al., 2024). LAI is the most
crucial factor influencing WUEgpp (Luo et al., 2022), and it is also
the most significant factor for WUEypp (Li et al., 2016). Further
analysis of regional differences reveals that in the southeastern part
of the basin (lower reaches), radiation and LAI predominantly exert
positive effects on WUEypp, whereas in the northwest, the effects
are mainly negative. Notably, the positive influence of LAI on CUE
is particularly pronounced across the entire YRB. Temperature and
precipitation have considerable impacts on WUEypp, affecting
vegetation growth in distinct ways depending on vegetation types
and environmental conditions (Wang et al., 2023). Variations in
climatic factors influence the carbon and water cycling processes
within terrestrial ecosystems. These fluctuations lead to changes in
GPP and ET, directly causing substantial alterations in WUEgpp (Li
et al,, 2021). Temperature exerts a relatively strong negative effect
on WUEgpp in the YRB, while its positive effects on WUEypp and
CUE are comparatively pronounced. In the YRB, the dynamics of
WUEypp are more strongly influenced by precipitation than by
temperature, a finding that is generally consistent with the research
conducted by Gang et al. (2016). Consequently, anthropogenic
vegetation restoration is likely to enhance ecosystem water use
efficiency (Du et al., 2021). Temperature and precipitation were
identified as the dominant drivers of the spatiotemporal variations
in CUE. CUE decreased linearly with increased precipitation,
consistent with the results of the study by Chen and Yu (2019).
Higher temperatures may lead to an increase in CUE, with the
impact of temperature varying across different ecosystems (Zeng
et al., 2023).

5.4 Practical implications and limitations of
the findings

The findings of this research explored the nonlinear spatiotemporal
variation trends and patterns of CWUE changes in the YRB ecosystem.
By combining the EEMD model, the optimized XGBoost model, and
the SHAP model, the spatial heterogeneity of the key factors driving its
spatiotemporal variation was revealed. The results of this study
contribute to a deeper understanding of the carbon-water coupling
process within the YRB ecosystem and provide a novel theoretical basis
for ecological restoration, water resource management, and the
achievement of the “double-carbon” goal, particularly in relation to
the carbon-water use efficiency of the YRB ecosystem. However, several
limitations exist in this study. Firstly, the GLASS data products used in
this research still contain uncertainties and accuracy limitations,
meaning that the processing results may be affected by some degree
of error. Secondly, this study found that from 1982 to 2018, the CWUE
in the YRB exhibited fluctuating growth. During this period, WUEypp
and WUEgpp primarily demonstrated monotonically increasing
trends, while CUE mainly showed a pattern of first decreasing and
then increasing, indicating relatively stable and sustainable behavior.
However, this study does not provide predictions for the future
spatiotemporal variation of CWUE in the YRB. Future work will aim
to forecast the spatiotemporal variation of CWUE in the YRB over the
coming decades, providing a stronger scientific foundation for the
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management of water resource management and ecological
conservation within the basin, and helping the region achieve
sustainable development.

6 Conclusions

This study analyzes the spatial distribution, nonlinear
spatiotemporal dynamics, and variation patterns of CWUE in the
YRB from 1982 to 2018, leveraging multi-source remote sensing
data. Additionally, an optimized XGBoost model was employed to
explore of the driving mechanism of CWUE. The findings of the
study are as follows: (1) In the YRB, the spatial distribution of
CWUE shows higher values in the southeast and lower values in the
northwest, with considerable spatial heterogeneity across different
latitudes and longitudes. CWUE is mainly concentrated at altitudes
between 1000 and 1500 meters. (2) Monotonically increasing
variation patterns of WUEypp and WUEgpp show a
predominantly monotonic increase over a large portion of the
basin, covering approximately 42.44% and 41.97% of the total
basin area respectively. In contrast, the dominant pattern for
CUE is a decline followed by an increase, covering 42.51% of the
total basin area. (3) In the YRB ecosystem, the leaf area index (LAI)
emerged as the primary determinant of WUEypp and WUEgpp.
Specifically, WUEypp and WUEgpp both showed an upward trend
in tandem with the increase in LAI. Furthermore, temperature was
identified as the key driving factor for CUE within the YRB
ecosystem. (4) The spatial variations of WUEypp and WUEgpp
are highly dependent on LAIL which LAI plays a dominant role in
approximately 42.80% and 45.35% of the study area, particularly in
the southern part of the YRB. However, for CUE, temperature is the
primary contributing factor.
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