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Dominant drivers of
spatiotemporal variations in
carbon and water use efficiency
across the Yellow River Basin
revealed by interpretable
machine learning
Guangchao Li1, Wenjie Hao1, Liqin Han1*, Mengjia Feng1,
Yanjie Li1, Zhaoqin Yi2, Yayan Lu1 and Kangjia Zuo1

1College of Geography and Tourism, Henan Normal University, Xinxiang, China, 2College of Life
Sciences, Henan Normal University, Xinxiang, China
Precisely quantifying the spatiotemporal variation patterns of ecosystem water

use efficiency (WUE) (i.e., WUENPP and WUEGPP) and carbon use efficiency (CUE)

across diverse regions, as well as identifying the spatial heterogeneity of their

principal influencing factors, are crucial for elucidating the complex underlying

mechanisms governing carbon and water cycles in the Yellow River Basin (YRB).

In this study, we utilized multi-source remote sensing data, and employed

Ensemble Empirical Mode Decomposition (EEMD) to explore the nonlinear

spatiotemporal trends and patterns of WUENPP, WUEGPP, and CUE within the

YRB ecosystem. Additionally, we applied the optimally parameterized XGBoost

and SHAP models to discern the spatial heterogeneity of the key factors driving

their spatiotemporal variations. The results showed that: (1) The WUENPP,

WUEGPP, and CUE of the YRB ecosystem exhibited a spatial distribution pattern

characterized by higher values in the southeast and lower values in the

northwest, with these metrics were predominantly concentrated at elevations

ranging from 1000 to 1500 meters. (2) The interannual change rates of the yearly

average values of WUENPP, WUEGPP and CUE in the YRB ecosystem were 0.008

g C m−2 mm−1y−1 a−1, 0.005 g C m−2 mm−1y−1 a−1, and 0.001, respectively. The

predominant change patterns for WUENPP and WUEGPP were monotonic

increases, covering approximately 42.44% and 41.97% of the watershed area,

respectively. In contrast, the change pattern for CUE was primarily a decrease

followed by an increase, observed across 42.51% of the watershed area. (3) In the

YRB ecosystem, the leaf area index (LAI) emerged as the primary determinant of

WUENPP and WUEGPP. Specifically, WUENPP and WUEGPP both showed an upward

trend in tandemwith the increase in LAI. Furthermore, temperature was identified
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as the key driving factor for CUE within the YRB ecosystem. (4) In the YRB

ecosystem, LAI exhibited the highest importance index for both WUENPP and

WUEGPP. It played a dominant role in approximately 42.80% and 45.35% of the

study areas for WUENPP andWUEGPP, respectively. Conversely, temperature was a

crucial factor influencing the spatial variability of CUE in the YRB ecosystem,

exerting a predominant influence in 38.88% of the study areas.
KEYWORDS

water use efficiency, carbon use efficiency, Yellow River Basin, leaf area index,
spatiotemporal heterogeneity, temperature
1 Introduction

In the context of accelerating global warming, terrestrial

ecosystems are undergoing profound structural and functional

transformations, giving rise to complex environmental and

ecological challenges such as carbon cycle imbalances, water

scarcity, and biodiversity decline (Shao et al., 2024). To evaluate

the stability of ecosystems under climate change, increasing

attention has been directed toward carbon and water use

efficiency (CWUE), a critical indicator of coupled carbon–water

processes. CWUE reflects the ability of ecosystems to coordinate

carbon fixation and water consumption under changing

environmental conditions (Ding et al., 2021; Gao et al., 2016). It

primarily consists of carbon use efficiency (CUE) and water use

efficiency (WUE), the latter of which is further divided into WUE

based on net primary productivity (WUENPP) and WUE based on

gross primary productivity (WUEGPP) (Jin et al., 2023). Collectively,

these metrics characterize vegetation strategies in carbon

acquisition and allocation per unit of water consumption,

providing essential measures for assessing ecosystem adaptability

and functional resilience (Ganjurjav et al., 2022).

The development of remote sensing technology has enabled

large-scale, long-term monitoring of CWUE dynamics, making it a

fundamental approach for investigating ecosystem responses to

climate change (Cai et al., 2023; Liu et al., 2024b). CUE, a key

variable in evaluating carbon sequestration efficiency, indicates the

effectiveness of photosynthetic products being converted into

biomass (Chakraborty et al., 2023). WUE, in contrast, highlights

the trade-off between carbon uptake and water loss through

evapotranspiration, serving as a central metric for understanding

ecosystem functioning under global change (Kim et al., 2021).

Typically, WUEGPP is defined as the ratio of gross primary

production (GPP) to evapotranspiration (ET), while WUENPP is

defined as the ratio of net primary productivity (NPP) to ET (Ito

and Inatomi, 2012).

Globally, extensive research has examined the spatiotemporal

variability of CUE and WUE across diverse ecosystems. At the

global scale, terrestrial CUE displays spatial patterns strongly

associated with GPP and NPP, showing marked latitudinal
02
variation, particularly between 30°N and 30°S (Gang et al., 2022).

In contrast, WUEGPP generally decreases from lower to higher

latitudes in Central and East Asia (Kim et al., 2021; Wei et al., 2019).

Investigations in specific ecosystem types, such as temperate forests

and arid regions, further demonstrate coordinated variations

between WUE and productivity. For instance, in the coniferous

forests of Changbai Mountain, both WUENPP and NPP increased

with forest age from 2000 to 2014. Similarly, natural vegetation in

arid Northwest China experienced a shift from improvement to

degradation in WUENPP and NPP between 2001 and 2018 (Li et al.,

2019). Additional comprehensive assessments of CUE and

WUEGPP trends have been conducted in ecologically sensitive

areas such as the karst regions of China (Xiao et al., 2023).

The spatiotemporal heterogeneity of WUEGPP is shaped by

multiple climatic, biological, and environmental factors (Wang

et al., 2020) including drought (Liu et al., 2020a), aerosols (Lu

et al., 2017), and human activities (Li et al., 2021). For example, in

the mountainous areas of North China, leaf area index (LAI),

temperature, and precipitation collectively explain 79.43% of the

variation in WUENPP (Wang et al., 2023). On the Loess Plateau, the

dominant drivers of WUENPP exhibit a latitudinal zonation, with

precipitation and drought indices playing the primary roles,

suggesting that water availability, rather than temperature, is the

critical determinant in this region (Tian et al., 2020). Ecosystem

sensitivities to environmental drivers also vary. For example,

differences in respiration characteristics and GPP responses to

temperature and humidity between natural forests and urban

plantations indicate that CUE is primarily regulated by

temperature and soil moisture (Li et al., 2022; Niu et al., 2011).

Although elevated CO2 concentrations can enhance CUE (Liu et al.,

2019), such positive effects may be diminished or even offset by

climatic stressors such as drought and extreme heat (Mathias and

Trugman, 2022).

The study area, located within the Yellow River Basin (YRB),

spans multiple climate zones and vegetation types and is characterized

by complex terrain, fragile ecosystems, and intensive human influence.

In recent decades, the region has undergone substantial changes in

temperature and precipitation patterns, coupled with large-scale

afforestation, agricultural expansion, and urbanization. These factors
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jointly shape the carbon–water dynamics of local ecosystems, making

the basin an ideal setting for examining ecosystem responses under

combined natural and anthropogenic pressures.

Although previous studies have employed linear methods to

investigate the spatiotemporal variations of ecosystem CWUE in

the YRB and analyzed its relationships with climatic factors through

correlation and contribution analyses, these approaches remain

limited. For example, Li et al. (2025) applied linear regression and

demonstrated that approximately 70.39% of the YRB exhibited a

significant increasing trend in WUEGPP from 1982 to 2018. Partial

correlation analysis further indicated that precipitation (37.98%)

and soil moisture (10.30%) were the dominant climatic drivers.

Similarly, Tang et al. (2025) used linear regression to show that

WUENPP and CUE declined in about 70% and 60% of the YRB,

respectively, during 2001–2023, while relative contribution analysis

revealed that annual mean temperature was negatively correlated

with WUENPP in nearly 89% of the region and with CUE in about

74%. However, these studies largely rely on linear and correlative

approaches, which are insufficient for capturing the nonlinear

spatiotemporal patterns of CWUE, particularly regarding how its

heterogeneous dynamics respond to human activities, vegetation

changes, and climate variability.

In this context, the YRB were selected as the study area. Multi-

source remote sensing data were combined with advanced

analytical techniques, including ensemble empirical mode

decomposition (EEMD), the XGBoost model, 10-fold cross-

validation, stochastic search-based hyperparameter optimization,
Frontiers in Plant Science 03
and SHAP interpretation. The objective of this study is to

systematically characterize the nonlinear spatiotemporal dynamics

of CWUE and to determine its dominant driving factors. The

specific research objectives are as follows: (1) To uncover the

features of spatial distribution characteristics, nonlinear

spatiotemporal variation trends and patterns of CWUE in the

YRB, while exploring the stability and sustainability of each

variation pattern across different regions within the basin. (2) To

elucidate the influence of driving factors (including climate change,

vegetation change, and human activities) on the CWUE within the

YRB; (3) To analyze the spatiotemporal heterogeneity of these

driving factors across various regions of the YRB, with an

emphasis on identifying the predominant factors that influence

CWUE in different areas. This research aims to provide strategic

guidance for the protection and rational use of natural resources

within the YRB. It will also contribute to advancing the green

development goals of the YRB, thereby promoting ecological

conservation and sustainable development.
2 Study area

The YRB encompasses the geographic and ecological regions

traversed by the Yellow River, from its source to its estuary. The

YRB is situated in northern and northwestern China, located at 32°

N-42° N, 96° E-119° E (Figure 1a). Originating in the Bayan Har

Mountains of Qinghai Province, the Yellow River flows through 9
FIGURE 1

Study area. [(a) is the location of the Yellow River Basin in China, (b) is the spatial distribution of land use types in the Yellow River Basin, and (c) is
the spatial distribution of DEM in the Yellow River Basin)].
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provinces and 54 cities, including Qinghai, Sichuan, Gansu,

Ningxia, Inner Mongolia, Shaanxi, Shanxi, Henan, and Shandong,

before ultimately discharging into the Bohai Sea. The predominant

land-use types within the YRB include grassland, cropland,

woodland, and wasteland, which account for approximately

69.46%, 21.89%, 5.43%, and 3.22% of the total watershed area,

respectively. Grasslands are primarily found in the middle and

upper sections of the YRB, while woodlands are mainly

concentrated in the southeastern portion of the basin (Figure 1b).

Stretching from west to east, the YRB crosses four major

geomorphologic units, namely the Tibetan Plateau, the Inner

Mongolian Plateau, the Loess Plateau, and the Yellow-Huaihai

Plain. The region is characterized by a general west-high and

east-low topography (Figure 1c).
3 Research data and methods

3.1 Data

In the present study, the GPP data derived from a vortex-related

data-light utilization efficiency model, which is based on vortex-

related data-light utilization efficiency theory (Yuan et al., 2010,

2007). The latest version of the GPP product integrates components

such as the photosynthetically active radiation absorption ratio

(radiation) and atmospheric water vapor pressure, providing an

accurate estimate of GPP. Furthermore, the NPP data used in this

study exhibit a high level of accuracy (Li et al., 2023). Compared to

the LAI data from the Moderate Resolution Imaging

Spectroradiometer (MODIS), the LAI data from the GLASS

dataset contain a larger proportion of high-quality data and show

smoother temporal variations in their mapping (Jin et al., 2017).

The ET data are generated using a Bayesian method combined with

five latent heat flux algorithms. By incorporating MODIS and other

reanalysis data, high spatiotemporal resolution and high-precision

remote sensing data on heat fluxes are produced, covering the

continuous latent heat surface space across the global land area. The

radiometric data show no missing values. Even in areas with cloud
Frontiers in Plant Science 04
cover, they maintain high quality. These data present continuous,

consistent time-series curves, effectively reflecting the seasonal

fluctuations in vegetation. Moreover, they exhibit excellent

spatiotemporal consistency, thereby accurately capturing the

dynamic changes in the vegetation over time and across different

spatial locations. GLASS products undergo a rigorous spatial quality

validation procedure to ensure high data accuracy (Zhao

et al., 2013).

The sunlight data used in this study is based on observations

from 824 benchmark and basic meteorological stations across

mainland China. Spatial interpolation of these observations was

performed using the thin-plate spline method. The interpolated

data were then subjected to a threshold test against actual measured

data from the meteorological stations, ensuring high data accuracy.

A detailed description of all datasets used in this study is provided

in Table 1.

Data preprocessing in this study involved several steps. Initially,

raw GPP, NPP, and ET data were converted from HDF format to

raster format, followed by batch extraction and mosaicking. ArcPy

was then used to crop the raster images to the study area (YRB) and

resample them to a consistent spatial resolution. Next, ArcPy was

employed to calculate CWUE values at the pixel level across the

YRB. Finally, the vector-scale TIFF image of the YRB was cropped

and resampled using ArcPy to ensure spatial resolution consistency.
3.2 Methods

3.2.1 Carbon and water use efficiency
CWUE consists of three components: (i) CUE, which is defined

as the ratio of NPP to GPP, (ii) WUEGPP, calculated as the ratio of

GPP to ET (Yang et al., 2020), and (iii) WUENPP, determined as the

ratio of NPP to ET (Tian et al., 2010).

3.2.2 EEMD model
The EEMD model was employed to analyze the nonlinear

variation trends and patterns of CWUE in the YRB. This model

effectively captures nonlinear components within statistical trends
TABLE 1 Summary of data used in this study.

Dataset Unit Time period Spatial resolutions Temporal resolutions Data source

GPP gCm-2y-1 1982-2018 5km 8 days https://www.geodata.cn

NPP gCm-2y-1 1982-2018 5km 8 days https://www.geodata.cn

ET mmy-1 1982-2018 5km 8 days https://www.geodata.cn

LAI N/A 2000-2018 5km 8 days https://www.geodata.cn

Radiation N/A 2000-2018 1km 8 days https://www.geodata.cn/

Temperature °C 2000-2018 1km monthly scale https://data.tpdc.ac.cn/

Precipitation mm 2000-2018 1km monthly scale https://data.tpdc.ac.cn/

Sunlight h 2000-2018 1km annual scale https://www.geodata.cn/

GDP Million USD/km² 2000-2018 1km annual scale https://doi.org/10.6084/m9.figshare.17004523.v1

DEM m 2000 30m N/A https://www.gscloud.cn/
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without relying on prior assumptions. Its data decomposition is

based on local characteristics, resulting in enhanced time-frequency

resolution and clearer physical meaning (Yin et al., 2016).

Consequently, the EEMD model has been widely adopted in

studies involving long-time-series remote sensing data analysis

(Wen et al., 2017). The computational steps for applying EEMD

are presented as follows:

The new signal, X(t), to be decomposed, is obtained by adding

Gaussian white noise of varying amplitudes to the original signal,

x(t):

X(t) = x(t) + w(t) (1)

In Equation 1, w(t) represents the added Gaussian white noise.

Compute the average value of the upper and lower envelopes

j1(t) in Equation 2:

X1(t) = X(t) − j1(t) (2)

Based on the standard deviation (SD), assess whether the

process is capable of continuing:

SD =o
t

t=0
½❘Xi(t) − Xi−1(t) ❘

2 =X2
(i−1)(t)� (3)

In Equation 3 i represents the iteration count. If this value is

smaller than the preset threshold, halt the above calculation

procedure and compute the first iteration result for variable IMF1

in Equation 4:

IMF1 = Xj(t) = Xj−1(t) − jj(t) (4)

Calculate the residuals of the signal X1(t) and IMF1:

R(t) = X1(t) − IMF1 (5)

Repeat Equations 1 and 5 until Rn(t) turns into a monotonic

function in Equation 6:

Ri = Ri−1 − IMFi, i = 2, 3,…, n (6)

According to the steps described above, the number of residuals

and the value of IMFs separated by x(t) can be obtained as shown in

Equation 7:

x(t) =o
n

i=1
IMFi(t) + R(t) (7)

Based on the monotonicity of the eigenvalue trend and the

characterization of the extreme points, the change patterns were

classified into five categories: monotonically increasing,

monotonically decreasing, increasing followed by decreasing,

decreasing followed by increasing, and those that did not meet

the significance criteria for variation.

3.2.3 Hurst index
The Hurst index (H) was calculated using the rescaled range

(R=S) analysis to assess the inter-annual sustainability of the

CWUE. The specific formula for this calculation can be found in

the relevant literature (Khosroshahi et al., 2023). The H value

domain ranges from 0 to 1. When 0 <H< 0.5, it indicates inverse
Frontiers in Plant Science 05
persistence in the CWUE change, meaning that the future trend of

CWUE variation is opposite to its past trend. When H = 0.5, it

suggests that the time series of CWUE time series is random, with

the future trend of CWUE being difficult to predict. When 0.5 <H<

1, it indicates sustainability in CWUE changes implying that the

past trend of CWUE will persist, and the future trend will align with

the previous trend. The sustainability of different CWUE change

patterns in the YRB was assessed by combining the results of the

EEMD model and the Hurst exponent, with detailed information

provided in Table 2.

3.2.4 Coefficient of variation
The coefficient of variation (CV) was used to quantify the

magnitude of inter-annual fluctuations in CWUE. The detailed

calculation methodology is provided in a previous study (Zhang

et al., 2016). In this study, the values of the CV values were

categorized into three classes to represent the stability of different

CWUE variation patterns across the YRB. Specifically, high

volatility was defined as CV ≥ 0.3, medium volatility as 0.1 < CV

< 0.3, and low volatility as CV ≤ 0.1. This classification was

performed by integrating the EEMD model with the CV, allowing

for a comprehensive evaluation of CWUE stability. Further details

can be found in Table 3.

3.2.5 Optimal parameters XGBoost and SHAP
models
3.2.5.1 Optimal parameterized XGBoost model

The XGBoost (eXtreme Gradient Boosting) model is an

advanced implementation of the gradient boosting framework,

renowned for its execution speed and predictive performance

(Niazkar et al., 2024). It operates by constructing an ensemble of

weak learners (typically decision trees) in a sequential, additive

manner. Each new tree is trained to correct the residuals or errors of

the combined previous ensemble. This iterative process effectively

reduces bias and mitigates underfitting. The core principle of

XGBoost lies in its objective function, which incorporates a loss

function and a regularization term to control model complexity and

prevent overfitting as shown in Equation 8:
TABLE 2 Sustainability of different variation patterns of CWUE in the
YRB.

H
value

Variation
patterns of

CWUE

Sustainability of different
variation patterns of CWUE

>0.5 Monotonically
increasing

Sustainability and monotonically increasing

>0.5 Monotonically
decreasing

Sustainability and monotonically decreasing

>0.5 Increasing then
decreasing

Sustainability and increase then decrease

>0.5 Decreasing then
increasing

Sustainability and decrease then increase

<0.5 Failed to pass
significant change

Undetermined future variation trend
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Obj(q) =o
n

i=1
l(yi, ŷ i) +o

K

k=1

W(fk) (8)

Where yi and ŷ i are the observed and predicted values of the i-

th sample, respectively; l is a differentiable convex loss function (e.g.,

mean squared error for regression); W(fk) = g T + 1=2l ∥w ∥2 is the
regularization term for the k-th tree, with T being the number of

leaves, w being the leaf weights, and g and l being regularization

parameters that penalize the complexity of the tree. Model training,

validation, and hyperparameter optimization steps:
Fron
Step 1: Data preparation: The dataset containing CWUE

indicators and their potential driving factors was

partitioned into a training set (70%) and a testing set (30%).

Step 2: Model validation-10-fold Cross-Validation (CV): To

ensure robustness and avoid overfitting, the training set was

further subjected to 10-fold CV. The dataset was randomly

split into 10 equal-sized subsets. The model was trained 10

times, each time using 9 subsets for training and the

remaining 1 subset for validation. The average

performance across all 10 folds was computed to evaluate

the model’s generalizability.

Step 3: Hyperparameter tuning via random search: To enhance

predictive accuracy, a random search strategy was

employed for hyperparameter optimization. This method

randomly samples a predefined number of combinations

from a wide hyperparameter space, which is more efficient

than grid search for high-dimensional spaces. The key

hyperparameters tuned included: n_estimators: The

number of boosting rounds (trees). Learning_rate: The

step size shrinkage used to prevent overfitting.

Max_depth: The maximum depth of a tree, controlling

model complexity. Subsample: The fraction of samples used

for fitting individual trees. Colsample_bytree: The fraction

of features used for fitting individual trees. Reg_lambda (l)
tiers in Plant Science 06
and reg_alpha (a): L2 and L1 regularization terms

on weights.

Step 4: Iterative training and evaluation: The XGBoost model

underwent 10,000 training iterations with randomly

sampled hyperparameter combinations. The performance

of each model was evaluated using the Root Mean Square

Error (RMSE) and the Coefficient of Determination (R²) on

the validation sets from the CV process.

Step 5: Final model selection: The hyperparameter set that

yielded the lowest average RMSE (or highest R²) across the

CV folds was selected to train the final model on the entire

training set. The framework of this optimization process is

illustrated in Figure 2. GPU acceleration and parallel

processing were leveraged to expedite this computationally

intensive process.
Table 4 presents the optimal hyperparameters for the three

CWUE indicators in the YRB derived from this research. All models

achieved a R2 exceeding 0.87, demonstrating high goodness of fit.

These results validate the optimal parameter XGBoost model

effectively and reliably captures the spatiotemporal heterogeneity

of the key drivers influencing CWUE dynamics in the YRB.

3.2.5.2 SHAP explanatory model

The SHAP method, grounded in game-theoretic principles,

offers a systematic approach to quantify the individual

contributions of features to a model’s prediction. Characterized by

properties such as local accuracy, tolerance to missing values, and

consistency, SHAP values are computed using the following

procedure:

xi =os∈Si

(n − ❘ s ❘ ) ! ( ❘ s ❘−1) !
n !

½v(s) − v(s=i)� (9)

In Equation 9, xi is the set containing all subsets of member i, s

is some set case of Si, ❘ s ❘ indicates the amount of elements of the
TABLE 3 Stability of different variation patterns of CWUE in the YRB.

CVCWUE Variation patterns of CWUE Stability of different patterns of change in CWUE Grade

CVCWUE ≥ 0:3

Monotonically increasing High fluctuation and monotonically increasing XLI

Monotonically decreasing High fluctuation and monotonically decreasing XXXI

Increasing then decreasing High fluctuation and increasing then decreasing XXI

Decreasing then increasing High fluctuation and decreasing then increasing XI

0:1 < CVCWUE < 0:3

Monotonically increasing Medium fluctuation and monotonically increasing XLIII

Monotonically decreasing Medium fluctuation and monotonically decreasing XXXIII

Increasing then decreasing Medium fluctuation with increasing and then decreasing XIII

Decreasing then increasing Medium fluctuation, decreasing then increasing XXIII

CVCWUE ≤ 0:1

Monotonically increasing Low fluctuation and monotonically increasing XLII

Monotonically decreasing Low fluctuation and monotonically decreasing XXXII

Increasing then decreasing Low fluctuation and increasing then decreasing XII

Decreasing then increasing Low fluctuation and decreasing then increasing XXII
fron
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subset s, n refers to the number of collaborators, v(s) is the gain of

the set s. v(s=i) signifies the gain of the set excluding member i.

The SHAP value offers a reliable metric for quantifying the

individual contributions of each driver to the final predicted

outcome of the model.

yi = ybase + f (xi,1) + f (xi,2) +… + f (xi,j) +… + f (xi,k) (10)

In Equation 10, yi is the predicted value of the ith sample, ybase is

the predicted mean value of all samples, xi is the ith sample, f (xi,j) is

the SHAP value of the ith sample, jth feature, and k is the number of

input features.

In this study, the SHAP explanatory model was applied to

quantify the contributions of the following driving factors to the

spatiotemporal variations of CWUE in the YRB: temperature,

precipitation, sunlight, radiation, LAI, and GDP. These factors

represent key climatic, biological, and anthropogenic influences

on ecosystem CWUE.
4 Results

4.1 Spatial and vertical distribution of
CWUE

4.1.1 Spatial distribution characteristics of CWUE
The spatial distribution of CWUE in the YRB from 1982 to 2018

and its relationship with latitude and longitude are shown in

Figure 3. WUENPP and WUEGPP in the YRB exhibit a spatial

pattern characterized by higher values in the southeast and lower

values in the northwest, with relatively elevated WUENPP and

WUEGPP observed at the junction of Qinghai and Gansu
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provinces. The spatial distributions of WUENPP and WUEGPP
closely resemble those of NPP and GPP, respectively, while GPP,

NPP, and ET generally increase from the northwest to the

southeast. In contrast, CUE shows a gradually increasing trend

from west to east, with pronounced regional differences. In the

southwestern part of the basin (the upper reaches in the southwest),

the long-term averages of CWUE, ET, NPP, and GPP are

comparatively low, whereas these indicators are relatively high in

the middle and lower reaches of the basin. In terms of longitude,

WUENPP and WUEGPP in the YRB initially increase, then decrease,

and subsequently follow a similar alternating pattern with further

increases and decreases as longitude increases, while CUE first

increases and then decreases with increasing longitude. Both exhibit

a sharp decline around 115°E. In terms of latitude, WUENPP and

WUEGPP show a decreasing trend with increasing latitude, whereas

CUE increases with latitude. The variation patterns of WUEGPP and

GPP with latitude in the YRB largely correspond to those of

WUENPP and NPP, with both reaching their minimum values at

41.66°N and their maximum values occur at 31.03°N and 32.81°

N, respectively.

4.1.2 The variation of CWUE at different
elevations

The distribution of CWUE at different elevations in the YRB

from 1982 to 2018 is illustrated in Figure 4. WUENPP and WUEGPP
in the YRB exhibit a trend of initially decreasing, then increasing,

and subsequently decreasing with elevation, with their turning

points coinciding with those of NPP and GPP at approximately

3000–4000 m. In contrast, CUE decreases with increasing elevation.

CWUE in the basin is primarily concentrated at elevations between

1000 and 1500 m, andWUENPP within this elevation range spans 0-
FIGURE 2

Working principle of the optimal parameter XGBoost model.
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FIGURE 3

Spatial distribution of CWUE and its relationship with latitude and longitude in the YRB from 1982 to 2018. Specifically, (a–f) show the spatial
distributions of the multi-year mean from 1982 to 2018 for NPP, GPP, ET, CUE, WUENPP, and WUEGPP, respectively.
TABLE 4 Optimal hyperparameter details for optimal parameter XGBoost.

CWUE N estimators Learning rate Max depth Subsample R2 RMSE

CUE 294 0.1399 9 0.8973 0.8781 0.0735

WUENPP 423 0.1206 9 0.7243 0.9510 0.0728

WUEGPP 423 0.1206 9 0.7243 0.9813 0.0787
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1.5 g C m−2 mm−1. The values of WUENPP, WUEGPP, and CUE are

mainly within the ranges of 0.18-0.24 g C m−2 mm−1, 0.36-0.42

g C m−2 mm−1, and 0.55-0.59, respectively. The elevation-

dependent variation trends of GPP and NPP with elevation are

similar to those of WUENPP andWUEGPP. Additionally, the median

values of WUEGPP and GPP within each elevation interval exceed

those of WUENPP and NPP. The elevational trend of ET is similar to

that of CUE, with ET values not falling below 400 mmy−1 within the

0–1000 m elevation range.
4.2 Spatiotemporal dynamics of CWUE

4.2.1 Interannual variation trend of CWUE
The interannual variation of the annual mean CWUE in the

YRB from 1982 to 2018 is illustrated in Figure 5. Over this period,
Frontiers in Plant Science 09
the annual mean CWUE in the YRB exhibited an increasing trend.

The interannual variation rates for the annual mean WUENPP,

WUEGPP, and CUE were 0.008 g C m−2 mm−1 a−1, 0.005 g C m−2

 mm−1 a−1, and 0.001, respectively, with their long-term averages

being 0.52 g C m−2 mm−1, 1.03 g C m−2 mm−1, and 0.50. The

average values over the long-term for NPP, GPP, and ET were

271.40 g C m−2 y−1, 518.73 g C m−2 y−1, and 463.59 mm y−1,

respectively. Each of these variables demonstrated an upward

trend over the period from 1982 to 2018.

4.2.2 Spatial variation trends and patterns of
CWUE

Figure 6 illustrates the variation trends and patterns of the

annual mean CWUE in the YRB from 1982 to 2018. The variation

patterns of WUENPP and WUEGPP are closely aligned. The

monotonically increasing variation pattern accounts for about
FIGURE 4

Distribution of CWUE at different elevations in the YRB from 1982 to 2018 [(a is the distribution of NPP at different altitudes, b is the distribution of
WUENPP at different altitudes, c is the distribution of GPP at different altitudes, d is the distribution of WUEGPP at different altitudes, e is the
distribution of ET at different altitudes, and f is the distribution of CUE at different altitudes).
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42.44% and 41.97% of the total area within the basin, respectively,

while the “decrease then increase” pattern represents approximately

36.20% and 31.40%, respectively. These patterns are primarily

concentrated in the middle section of the YRB’s reaches. In the

central and lower reaches of the YRB, the monotonically increasing

variation pattern of CUE is dominant, covering approximately

34.22% of the basin area. In contrast, approximately 42.51% of

the upstream region exhibits a distinct “decrease then increase”

pattern, primarily distributed in eastern Qinghai, northern Sichuan,

and southwestern Gansu provinces. The significant increasing trend

of CUE indicates that carbon sequestration efficiency is gradually

improving across most areas of the YRB. Moreover, pixels showing

monotonically decreasing trends in WUENPP, WUEGPP, and CUE
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account for the smallest proportions of the basin, at 3.67%, 4.62%,

and 6.18%, respectively, and are sparsely distributed in space. The

variation patterns of NPP, GPP, WUENPP, and WUEGPP are largely

consistent, with a predominant increasing trend. The

monotonically increasing patterns of NPP and GPP cover about

51.55% and 51.53% of the overall area of the basin, respectively.

NPP and GPP in the central region of YRB follow a pattern of

“decrease then increase” in larger areas. ET in the YRB is

predominantly characterized by a monotonically increasing trend,

covering approximately 69.48% of the basin and widely distributed

across regions except for the southwestern part. In fact, areas

exhibiting an increasing ET trend account for as much as 96.52%

of the basin, indicating that the rise in ET is nearly basin-wide.
FIGURE 5

Interannual variation of the annual mean CWUE in the YRB from 1982 to 2018 [(a) is the interannual variation of annual average CUE, (b) is the
interannual variation of annual average ET, (c) is the interannual variation of annual average GPP, (d) is the interannual variation of annual average
NPP, (e) is the interannual variation of annual average WUEGPP, and (f) is the interannual variation of annual average WUENPP)].
frontiersin.org

https://doi.org/10.3389/fpls.2025.1632172
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Li et al. 10.3389/fpls.2025.1632172
Overall, except for WUENPP and WUEGPP, other indicators show a

relatively pronounced increasing trend in the middle and lower

reaches of the basin, particularly in the lower reaches, whereas

WUENPP and WUEGPP exhibit minor decreasing trends in parts of

the middle reaches.

4.2.3 Sustainability and stability of CWUE
The spatial distribution of the sustainability and stability of

CWUE in the YRB from 1982 to 2018 is illustrated in Figure 7. The

sustainable spatial patterns of WUEGPP and WUENPP in the YRB

exhibit remarkable similarity, both predominantly showing

sustainable and monotonically increasing trends, accounting for

approximately 41.40% and 41.68% of the basin area, respectively,

with more pronounced patterns in the lower reaches. In the middle

reaches, both indicators mainly display sustainable trends of

init ia l ly increas ing fol lowed by decreasing, covering

approximately 30.46% and 35.03% of the area, respectively. CUE

in the basin predominantly exhibits a sustainable pattern of initially

increasing followed by decreasing, accounting for about 40.98% of

the area, and is mainly distributed in the southwestern (upper

reaches in the southwest) and eastern parts of the basin. Overall,
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CWUE in the YRB demonstrates considerable sustainability. Both

WUENPP and WUEGPP primarily show moderate fluctuations,

accounting for approximately 52.88% and 73.41%, respectively.

Additionally, both exhibit a “moderate fluctuation and

monotonically increasing” variation pattern (XXXIII), accounting

for about 25.47% and 29.80%, respectively. Moreover, WUEGPP
exhibits relatively high fluctuation in the southwestern part of the

YRB (upper reaches in the southwest), whereas moderate

fluctuation dominates in the middle and lower reaches, and low

fluctuation is mainly concentrated in the northwest. For WUENPP,

low fluctuation is primarily observed in the northern regions of the

basin, with the middle and lower reaches particularly the lower

reaches also showing pronounced low fluctuation. CUE in the YRB

is predominantly characterized by low fluctuation, accounting for

approximately 97.91% of the total basin area. Among these, areas

with low fluctuation and an initially decreasing followed by

increasing pattern (XXII) cover about 41.44%, mainly distributed

in the upper southwestern region, while areas with low fluctuation

and monotonically increasing trends (XLII) account for

approximately 33.37%, indicating that CUE has exhibited very

high stability across the basin from 1982 to 2018.
FIGURE 6

Variation trend and pattern of the annual mean CWUE in the YRB from 1982 to 2018. Specifically, (a1, b1, c1, d1, e1, f1) show the spatiotemporal
variation trends from 1982 to 2018 for NPP, CUE, GPP, WUENPP, ET, and WUEGPP, respectively; (a2, b2, c2, d2, e2, f2) show the spatiotemporal
variation patterns from 1982 to 2018 for NPP, CUE, GPP, WUENPP, ET, and WUEGPP, respectively.
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FIGURE 7

Spatial distribution of the sustainability and stability of CWUE in the YRB from 1982 to 2018. Specifically, (a, c, e) show the spatial distributions of
stability for CUE, WUENPP, and WUEGPP, respectively. (b, d, f) show the spatial distributions of sustainability for CUE, WUENPP, and WUEGPP,
respectively.
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4.3 Identification of driving factors for
CWUE

4.3.1 Trends and patterns of driving factors
Figure 8 illustrates the trends and patterns of driving factors in

the YRB from 2000 to 2018. Sunlight in the YRB exhibits a

significant decreasing trend (75.90%), while other driving factors

show notable increasing trends. The proportion of areas exhibiting

these trends, from largest to smallest, is as follows: GDP (99.85%),

radiation (97.04%), LAI (79.02%), precipitation (70.60%), and

temperature (57.39%). In most areas of the middle reaches of the

YRB, temperature exhibits a decreasing trend, with the “increase

then decrease” pattern accounting for approximately 39.29% of the

basin, whereas temperature in the lower reaches predominantly

shows an increasing trend. The rate of change in radiation displays a

west-to-east increasing pattern (i.e., progressively increasing from

the upper to the middle and then to the lower reaches), with the

monotonically increasing pattern being dominant, covering about

75.40% of the basin. In the upper reaches of the YRB, the rate of

precipitation change is relatively high, particularly in the
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southwestern part of the basin, while the “decrease then increase”

pattern predominates in most areas of the middle reaches,

accounting for approximately 39.71% of the basin. The rate of

change in sunlight is relatively high in the northern regions, with

the northwest primarily exhibiting an “increase then decrease”

pattern, whereas the lower reaches mainly show a “decrease then

increase” pattern. LAI is primarily characterized by the “decrease

then increase” and “monotonically increasing” patterns, accounting

for about 73.46%. GDP predominantly follows a “monotonically

increasing” variation pattern, covering approximately 95.91% of the

area. The increasing trends of both variables are widely distributed

across the basin.

4.3.2 Importance of CWUE driving factors
Figure 9 illustrates the spatial pattern of driving factors and

SHAP values of CWUE in the YRB from 2000 to 2018. Temperature

and sunlight have a positive impact on the spatial variation of

WUENPP, accounting for 73.56% and 60.90% of the region,

respectively. accounting for 73.56% and 60.90% of the region,

respectively. This effect was mainly concentrated in the
FIGURE 8

Trends and patterns of driving factors in the YRB from 2000 to 2018. Specifically, (a1, b1, c1, d1, e1, f1) show the spatiotemporal variation trends
from 2000 to 2018 for Temperature, Sunlight, Radiation, LAI, Precipitation, and GDP, respectively; (a2, b2, c2, d2, e2, f2) show the spatiotemporal
variation patterns from 2000 to 2018 for Temperature, Sunlight, Radiation, LAI, Precipitation, and GDP, respectively.
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northwestern part of the YRB, whereas the negative influence of

precipitation on WUENPP increased from north to south. The

spatial distributions of the effects of radiation and LAI on

WUENPP are relatively similar, with predominantly positive effects
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in the southeastern part of the YRB (middle and lower reaches) and

predominantly negative effects in the northwest (northeastern part

of the upper reaches). The negative effect of GDP on WUENPP
covers most of the basin (67.22%), particularly in the upper reaches.
FIGURE 9

The spatial pattern of driving factors and SHAP values of CWUE in the YRB from 2000 to 2018. (a1–6) respectively shows the spatial pattern and
SHAP value of WUENPP and driving factors (temperature, radiation, precipitation, sunlight, LAI, and GDP). (b1–6) respectively shows the spatial
pattern and SHAP value of WUEGPP and driving factors (temperature, radiation, precipitation, sunlight, LAI, and GDP). (c1–6) respectively shows the
spatial pattern and SHAP value of CUE and driving factors (temperature, radiation, precipitation, sunlight, LAI, and GDP).
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In the northern part of the YRB, the driving factors primarily exert

negative effects on WUEGPP. The negative impacts of temperature

and precipitation on WUEGPP were particularly prominent,

accounting for approximately 62.50% and 60.73% of the YRB,

respectively, with their effects being most evident in the mid-

reaches of the YRB. Moreover, the negative effect of temperature

on WUEGPP is also relatively pronounced in the lower reaches.

Radiation, LAI, and sunlight showed significant negative impacts on

WUEGPP in the northwestern part of the YRB (the northeastern

part of the upper reaches) were relatively significant, while the

positive effects were more dominant in the southern part. The

absolute SHAP values of LAI were relatively large. In the mid-upper

sections of the YRB, GDP predominantly exerted a positive

influence on WUEGPP. This positive correlation is observed across

about 59.40% of the basin’s area. The positive effects of temperature,

radiation, and LAI on CUE are relatively pronounced, accounting

for 67.23%, 53.26%, and 53.82% of the YRB, respectively, and are

particularly prominent in the southeastern part of the basin (middle

and lower reaches, especially the lower reaches). In contrast,

precipitation, radiation, and GDP mainly exert negative effects on

CUE, accounting for approximately 55.24%, 52.83%, and 60.29%,

respectively. Among these, the negative effects of precipitation and

radiation are more pronounced in the southern part of the basin

(the southwestern upper reaches and the middle and lower reaches).

The negative effect of GDP on CUE is more significant in the upper

reaches of the basin, whereas in the lower reaches (southwestern

part of the basin), GDP predominantly exerts a positive effect

on CUE.

Figure 10 presents the summarized SHAP values of the driving

factors and their relative importance to ecosystem CWUE in the

YRB during the period from 2000 to 2018. In the YRB, LAI was

identified as the primary driver of WUENPP and WUEGPP. As LAI

increased, both WUENPP and WUEGPP showed an upward trend.

Temperature was the secondary driver, while a rise in temperature

resulted in an increase in WUENPP, it simultaneously caused a

decrease in WUEGPP. In contrast, sunlight had the least impact on

WUENPP, and GDP had the smallest effect on WUEGPP in the YRB.

In contrast, sunlight and GDP respectively had the most marginal

influence onWUENPP andWUEGPP in the YRB. The driving factors

influencing CUE, listed in descending order of their weights, were

temperature, LAI, precipitation, sunlight, GDP, and radiation. LAI

and temperature were determined to be the most influential driving

factors for CWUE within the YRB ecosystem.

Figure 11 illustrates the spatial distribution of the dominant

factors contributing to the spatiotemporal variations in CWUE

within the ecosystem of the YRB ecosystem from 2000 to 2018,

along with their rankings based on importance indices. Among

these factors, LAI exhibits the highest importance indices for

WUENPP and WUEGPP, at approximately 0.24 gCm−2mm−1yr−1

and 0.40 gCm−2mm−1yr−1, respectively. It plays a dominant role in

approximately 42.80% of the study area for WUENPP and 45.35%

for WUEGPP. These areas primarily cover the southern region of the

YRB, the southeastern part (the middle and lower reaches), as well
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as the junction between Qinghai and Gansu Provinces respectively.

In the northwestern part of the YRB (the northeastern part of the

upper reaches), precipitation holds the highest importance index for

WUENPP, while GDP shows the highest importance index for

WUEGPP, dominating approximately 27.44% and 21.52% of the

study areas respectively. Temperature significantly influences the

spatial variation of CUE, with an importance index of

approximately 0.05. It is the dominant factor in 38.88% of the

study area, particularly pronounced in the lower reaches of the

basin. LAI also significantly influences the spatial variation of CUE,

with a dominant effect in 31.92% of the study area, particularly

pronounced in the southern part of the YRB. Overall, temperature

and LAI are the dominant factors in over 61.19% of the study areas,

particularly in the mid-lower sections of the YRB. In contrast,

radiation has a relatively minor impact on the spatial variation

of CWUE.
5 Discussion

5.1 Spatial distribution of CWUE in the YRB

The spatial distribution of the multi-year average CWUE in the

YRB exhibited distinct patterns across latitude, longitude, and

elevation. The findings revealed that WUEGPP tended to be higher

in the eastern and southern parts of the YRB while it was lower in

the western and northern parts. These results largely correspond to

the findings of prior studies (Fan et al., 2023; Sun et al., 2022). In the

YRB, WUEGPP at the junction of Qinghai and Gansu Provinces is

higher than in the surrounding areas (Liu et al., 2024a). The spatial

distributions of WUENPP and WUEGPP in the YRB are similar.

Additionally, as demonstrated by Liu et al. (2015), the spatial

distributions of NPP and ET exhibit an upward trend from the

northwest region to the southeast region. The annual mean ET in

the YRB is lower in the western and northern areas, which are

characterized by sparse vegetation, and higher within the eastern

and southern regions, where vegetation is more abundant. This

pattern is in line with the dispersion in space of evapotranspiration

in China as studied by previous researchers (Li et al., 2017). CUE is

higher in the Loess Plateau, as noted by Liu et al. (2022). Its overall

distribution exhibits lower values in the northwestern region, and

this spatial pattern corresponds to the southeast-northwest

hydrothermal gradient across the YRB (Chakraborty et al., 2023).

Between 1982 and 2018, spatial heterogeneity in CWUE was

observed across different latitudes and longitudes in the YRB. The

trends of WUEGPP, WUENPP, GPP, and NPP across these regions

were generally consistent, with a decrease observed as latitude

increased. This aligns with the findings of Wei et al. (2019) and

Kim et al. (2021), who reported that WUEGPP showed a downward

trend from south to north in the Central Asian and East Asian

regions. A similar decreasing trend with increasing latitude was

observed for ET, which corresponds to the gradient distribution of

precipitation and vegetation cover, as described by Zhang et al.
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(2016). In contrast, CUE increased with latitude. Additionally,

between 1982 and 2018 in the YRB, WUENPP and WUEGPP in

the YRB followed a pattern of increase, decrease, subsequent

increase, and decrease with increasing longitude. CUE exhibited a

characteristic pattern of increasing initially and then decreasing as

longitude increased. As reported by Liang et al. (2015), NPP in the

YRB exhibited a distinct increasing trend from west to east. This

spatial pattern was primarily driven by climatic gradients, while

variations in WUE and CUE indicated a trade-off between water
Frontiers in Plant Science 16
availability limiting productivity and carbon allocation strategies

adapted to regional temperature conditions.
5.2 Spatiotemporal variation of CWUE in
the YRB

From 1982 to 2018, the CWUE indicators in the YRB generally

exhibited a fluctuating upward trend. Specifically, WUENPP
FIGURE 10

Summary of SHAP values of driving factors in the YRB (WUEGPP: (a2) WUENPP: (b2) CUE: (c2)) and their relative importance to ecosystem CWUE
(WUEGPP: (a1) WUENPP: (b1) CUE: (c1)), 2000-2018. The magnitude of the eigenvalue is denoted by the color, while the density is represented by the
vertical distribution.
FIGURE 11

Spatial distribution of dominant factors and their importance index ranking of spatiotemporal changes of CWUE in the YRB ecosystem from 2000 to
2018. (a1-3) show the statistics of absolute SHAP values of influencing factors’ contribution to CWUE, with white circles indicating the mean values
and pink lines connecting the magnitude of factor importance. Box plots show the statistics of the absolute values of SHAP for each factor, where
(a1-3) exclude extreme values. (b1-3) show the main driving factors for the same image element that dominate the CWUE at each 0.05° × 0.05°
point, and the histograms show what percentage each factor accounts for as a main driving force across the whole study area.
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increased by a factor of 0.005 g C m–2 mm–1 a–1, which aligns well

with the findings of Zhang et al. (2016). In the YRB, WUEGPP grew

at a rate of 0.008 g C m–2 mm–1 a–1, with an average multi-year

value of 1.03g C m–2 mm–1, largely consistent with previous studies.

For instance, Li et al. (2021) reported that the multi-year average of

China’s WUEGPP in China from 2001 to 2017 was 1.08gCm–2mm–1,

with an annual increment of 0.003gCm–2mm–1a–1. The

spatiotemporal variations in WUEGPP are directly influenced by

changes in ET and GPP. This finding aligns with previous research,

such as by Liu et al. (2020b), which suggests that significant

increases in global GPP and ET have a direct impact on

WUEGPP. From 1982 to 2018, vegetation WUEGPP increased

significantly across most regions globally, as reported by Ji et al.

(2021). The spatiotemporal variations observed in the YRB study

area in our study generally corroborate these prior findings.

Furthermore, the overall CUE in the YRB increased at a rate of

0.001, potentially linked to the impacts of climate change and

anthropogenic vegetation restoration efforts. As shown in the

study by Du et al. (2021), anthropogenic vegetation restoration

not only boosts the capacity of ecosystems to sequester carbon but

also heightens their carbon emission capacity. Taken together, the

widespread increases in CWUEmetrics indicate an improvement in

ecosystem carbon sequestration efficiency in the YRB, driven by

climate change and ecological engineering. This trend reflects a shift

toward more water-efficient carbon assimilation by vegetation,

particularly in restored areas.

Our research indicates that, from 1982 to 2018, the CWUE in

the YRB demonstrated high sustainability, following a clear and

sustainable growth pattern. This suggests that the current CWUE in

the YRB is on a favorable developmental trajectory, with promising

prospects for the future. Within the YRB, theWUEGPP exhibits high

stability in the northwestern part of the research area, whereas it

shows substantial fluctuations in the southwestern region (Xu et al.,

2023). Throughout the study period, bothWUENPP andWUEGPP in

the YRB were characterized primarily by moderate fluctuations,

while CUE exhibited low fluctuations. This indicates that the overall

stability of CWUE in the YRB from 1982 to 2018 was favorable.

This spatial pattern is shaped by distinct environmental drivers:

precipitation dominance in the arid northwest results in higher

stability, whereas multi-factor regulation in the southwest leads to

greater variability. The widespread occurrence of high stability

highlights the resilience of the basin ecosystem (Tian et al., 2020).
5.3 Impact of driving factors on CWUE

From 1979 to 2020, global precipitation exhibited a significant

upward tendency. Additionally, the spatiotemporal variations of

precipitation in the YRB consistent with the findings of this study

(Gu and Adler, 2023), precipitation exerts a relatively strong

negative effect on both WUENPP and WUEGPP. Between 2000 and

2018, LAI in the YRB showed a clear upward trend, aligning with

the spatiotemporal trends of LAI in the Loess Plateau of China from

1985 to 2015, as reported in previous studies (Cao et al., 2020). In

most parts of the YRB, WUEGPP increased with the rise in LAI, in
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agreement with prior findings (Dou et al., 2024). LAI is the most

crucial factor influencing WUEGPP (Luo et al., 2022), and it is also

the most significant factor for WUENPP (Li et al., 2016). Further

analysis of regional differences reveals that in the southeastern part

of the basin (lower reaches), radiation and LAI predominantly exert

positive effects on WUENPP, whereas in the northwest, the effects

are mainly negative. Notably, the positive influence of LAI on CUE

is particularly pronounced across the entire YRB. Temperature and

precipitation have considerable impacts on WUENPP, affecting

vegetation growth in distinct ways depending on vegetation types

and environmental conditions (Wang et al., 2023). Variations in

climatic factors influence the carbon and water cycling processes

within terrestrial ecosystems. These fluctuations lead to changes in

GPP and ET, directly causing substantial alterations in WUEGPP (Li

et al., 2021). Temperature exerts a relatively strong negative effect

on WUEGPP in the YRB, while its positive effects on WUENPP and

CUE are comparatively pronounced. In the YRB, the dynamics of

WUENPP are more strongly influenced by precipitation than by

temperature, a finding that is generally consistent with the research

conducted by Gang et al. (2016). Consequently, anthropogenic

vegetation restoration is likely to enhance ecosystem water use

efficiency (Du et al., 2021). Temperature and precipitation were

identified as the dominant drivers of the spatiotemporal variations

in CUE. CUE decreased linearly with increased precipitation,

consistent with the results of the study by Chen and Yu (2019).

Higher temperatures may lead to an increase in CUE, with the

impact of temperature varying across different ecosystems (Zeng

et al., 2023).
5.4 Practical implications and limitations of
the findings

The findings of this research explored the nonlinear spatiotemporal

variation trends and patterns of CWUE changes in the YRB ecosystem.

By combining the EEMD model, the optimized XGBoost model, and

the SHAP model, the spatial heterogeneity of the key factors driving its

spatiotemporal variation was revealed. The results of this study

contribute to a deeper understanding of the carbon-water coupling

process within the YRB ecosystem and provide a novel theoretical basis

for ecological restoration, water resource management, and the

achievement of the “double-carbon” goal, particularly in relation to

the carbon-water use efficiency of the YRB ecosystem. However, several

limitations exist in this study. Firstly, the GLASS data products used in

this research still contain uncertainties and accuracy limitations,

meaning that the processing results may be affected by some degree

of error. Secondly, this study found that from 1982 to 2018, the CWUE

in the YRB exhibited fluctuating growth. During this period, WUENPP
and WUEGPP primarily demonstrated monotonically increasing

trends, while CUE mainly showed a pattern of first decreasing and

then increasing, indicating relatively stable and sustainable behavior.

However, this study does not provide predictions for the future

spatiotemporal variation of CWUE in the YRB. Future work will aim

to forecast the spatiotemporal variation of CWUE in the YRB over the

coming decades, providing a stronger scientific foundation for the
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management of water resource management and ecological

conservation within the basin, and helping the region achieve

sustainable development.
6 Conclusions

This study analyzes the spatial distribution, nonlinear

spatiotemporal dynamics, and variation patterns of CWUE in the

YRB from 1982 to 2018, leveraging multi-source remote sensing

data. Additionally, an optimized XGBoost model was employed to

explore of the driving mechanism of CWUE. The findings of the

study are as follows: (1) In the YRB, the spatial distribution of

CWUE shows higher values in the southeast and lower values in the

northwest, with considerable spatial heterogeneity across different

latitudes and longitudes. CWUE is mainly concentrated at altitudes

between 1000 and 1500 meters. (2) Monotonically increasing

variat ion patterns of WUENPP and WUEGPP show a

predominantly monotonic increase over a large portion of the

basin, covering approximately 42.44% and 41.97% of the total

basin area respectively. In contrast, the dominant pattern for

CUE is a decline followed by an increase, covering 42.51% of the

total basin area. (3) In the YRB ecosystem, the leaf area index (LAI)

emerged as the primary determinant of WUENPP and WUEGPP.

Specifically, WUENPP and WUEGPP both showed an upward trend

in tandem with the increase in LAI. Furthermore, temperature was

identified as the key driving factor for CUE within the YRB

ecosystem. (4) The spatial variations of WUENPP and WUEGPP
are highly dependent on LAI, which LAI plays a dominant role in

approximately 42.80% and 45.35% of the study area, particularly in

the southern part of the YRB. However, for CUE, temperature is the

primary contributing factor.
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