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Introduction

Nanoparticle-based elicitation represents an emerging technical advance in plant

biotechnology that enables selective modulation of secondary metabolite pathways and

induces mild stress, mainly due to its ability to influence plant growth, increase nutrient

content, and improve both photosynthetic activity and metabolic processes (Wang et al.,

2023b). The application of nanoparticles, such as TiO2, Fe3O4, or Ag-NPs, has been shown

to be an effective way to stimulate the biosynthetic pathways of flavonoids, alkaloids, or

phenolic acids in various medicinal plants (Gohari et al., 2020; Salih et al., 2022; Ahmed

et al., 2023; Muhammad et al., 2025). As a result, they represent a promising tool for

sustainable and economically advantageous production of plant extracts, which is

important for phytotherapeutics with high demands on quality and consistency

of composition.

This opinion highlights the need for a broader evaluation of nanoparticle-mediated

enhancements in Silybum marianum beyond silybin, particularly focusing on the

overlooked compound taxifolin and other flavonolignans. We seek to stimulate

discussion on whether the observed therapeutic effects may result from a more complex

phytochemical shift than currently appreciated, given that the biological activity of

silymarin is influenced not only by silybin, but also by other constituents such as

silychristin, isosilybin, silydianin, and taxifolin, some of which have demonstrated even

stronger pharmacological effects in specific contexts.
Changes in silymarin composition after
nanoparticle treatment

Zinc oxide nanoparticles (ZnO-NPs) are attracting increasing attention for their

potential to enhance the production of specialized plant metabolites (Garcıá-López et al.,

2018; Wang et al., 2023a). In a recent study, Fahad Almulhim et al. (2025) investigated the

use of ZnO-NPs to enhance silybin accumulation in Silybum marianum fruits and

evaluated the osteoprotective potential of the resulting extracts (Fahad Almulhim et al.,
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2025). The foliar application of ZnO-NPs led to an almost eightfold

rise in silybin (A+B) content compared to untreated controls, as

determined by HPLC. The results are consistent with the previous

work Jafari et al. (2023), who monitored the increase in silybins

after treatment with titanium dioxide nanoparticles (TiO2-NPs).

Foliar application of TiO2-NPs and chitosan significantly increased

the accumulation of silybin A and B in milk thistle seeds. This effect

was associated with the downregulation of specific microRNAs,

leading to increased expression of key biosynthetic genes (Jafari

et al., 2023). This highlights that nanoparticle treatment actively

modulates regulatory pathways involved in secondary metabolism.

This outcome points to a practical way of enhancing phytochemical

yields without the need for major genetic engineering or intensive

breeding efforts.

In both of the studies mentioned above, the presence of silybins

was monitored. Silybin is considered as the key active compound of

silymarin, an extract from the seeds of milk thistle, valued for its

liver-protective, anticancer, antioxidant, and bone-preserving

properties (Ray et al., 2024). Approximately 40-60% of silymarin

is silybin, consisting of two isomers (silybin A and silybin B in a 1:1

ratio). Furthermore, silymarin contains other major flavonolignans

such as silychristin, isosilybin A, isosilybin B, silydianin, 2,3-

dehydrosilybin, isosilychristin, and the flavonoid taxifolin

(Figure 1A). Understanding the broader shifts in silymarin
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composition after nanoparticle exposure is crucial not only for

optimizing extract yield but also for ensuring reproducible and

effective therapeutic outcomes.
Discussion

Although the observed increase in silybin is promising, it raises

some questions about the broader metabolic impacts of ZnO-NPs

or TiO2-NPs treatment. Specifically, what exactly increased in the

phytochemical profile after nanoparticle stimulation? (Figure 1B).

There are two main possibilities to consider:
1. Uniform enhancement of all flavonoids/flavonolignans.

Nanoparticles treatment boosted the production of all

flavonoids and flavonolignans across the board,

representing a significant advantage. More bioactive

compounds per biomass unit would mean smaller

cultivation areas, reduced production costs, and more

sustainable extraction process.

2. Selective enhancement or alteration of flavonoid/

flavonolignan profiles. Nanoparticles may have selectively

stimulated particular branches of the flavonoid biosynthetic

pathway. This could have shifted the balance between
FIGURE 1

(A) Major components of silymarin, including their quantitative abundance. Silymarin consists of approximately 40-60% silybins, 15-25% silychristin,
15% isosilybins, 5-10% silydianin, less than 5% 2,3-dehydrosilybin or taxifolin, and less than 3% isosilychristin (Fenclova et al., 2019). (B) Hypothetical
representation showing the unknown effect of nanoparticle treatment on individual flavonolignan and flavonoid content, emphasizing the need for
detailed phytochemical profiling.
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different flavonoids and flavonolignans, creating an extract

with evermore potent properties than the natural extract

and potentially changing the biological properties of

the extract.
Unfortunately, without a detailed comparison to extracts from

untreated plants, it remains uncertain whether the profile of

flavonoids/flavonolignans remained consistent.

Recent studies have shown that ZnO-NPs treatment leads to

non-uniform changes in flavonoid synthesis. Wang et al. (2023a)

reported that ZnO-NPs treatment in Ginkgo biloba caused an

increase in the levels of kaempferol and isorhamnetin, while the

content of quercetin remained largely unchanged (Wang et al.,

2023a). This non-uniform shift suggests that nanoparticle

treatment may not simply boost all flavonoid production equally.

Similarly, other types of foliar spraying, including salicylic acid,

spermine, and brassinosteroid, have revealed that the percentage

changes across individual flavonolignans and flavonoid in silymarin

are highly non-uniform. Some treatments led to a several-fold

increase in one compound while simultaneously decreasing others,

and vice versa in other cases, suggesting a highly selective and

potentially competitive regulation within the silymarin biosynthetic

pathway (Fanai et al., 2024). This supports the idea that nanoparticle

treatment can induce localized or selective metabolic responses rather

than a uniform boost in secondarymetabolite content throughout the

plant. These differences in flavonoid content are critical, as the

biological activity of silymarin extracts depends not only on the

amount of silybin but also on the presence and ratios of other

flavonolignans (e.g., silychristin, isosilybin, silydianin) and

flavonoid like taxifolin, which possess better medical properties

than silybin. For example, isosilybin A and isosilybin B have shown

superior and selective anticancer properties compared to silybin,

particularly in hepatic and prostate cancer cell models (Deep et al.,

2007; Polyak et al., 2010). Similarly, 2,3-dehydrosilybin and

silychristin have demonstrated stronger antioxidant effects than

silybin, especially in reducing intracellular ROS levels under

oxidative stress (Jurčacková et al., 2025). Taxifolin and silydianin

have also demonstrated more potent antioxidant and

hepatoprotective activities than silybin, further supporting the idea

that multiple constituents of silymarin may contribute significantly to

its therapeutic profile (Anthony and Saleh, 2013; Kim et al., 2024).

Importantly, after the treatment with ZnO-NPs, or TiO2-NPs,

increased expression of chalcone synthase (CHS), a key enzyme

responsible for flavonoid biosynthesis pathway, was observed in

milk thistle (Jafari et al., 2023; Fahad Almulhim et al., 2025). This

upregulation is consistent with the general pattern of stress-related

gene expression observed under nanoparticle exposure, likely

mediated by ROS signaling and hormonal modulation. However,

increased CHS expression alone does not indicate which

downstream flavonoids or flavonolignans are preferentially

synthetized, likely mediated by ROS signaling and hormonal

modulation (Tripathi et al., 2022). In Silybum marianum, three
tiers in Plant Science 03
CHS genes (SmCHS1, SmCHS2, and SmCHS3) with different

expression patterns have been identified. SmCHS1 and SmCHS3

are highly expressed in petals during the early flowering stage and in

stems and upper leaves at mid-flowering, and are most likely

responsible for silymarin biosynthesis (Sanjari et al., 2015).

SmCHS2 is weakly expressed across plant tissues. This is

consistent with the observation that ZnO-NPs treatment the most

significantly increased SmCHS3 expression, followed by SmCHS1

and lastly SmCHS2 (Fahad Almulhim et al., 2025).

Nevertheless, whether higher expression of CHS led predominantly

to increased silybin, taxifolin, or a general rise in flavonoid flux remains

unknown. The potential increase in taxifolin or other flavonoids would

be noteworthy. Taxifolin is a flavonoid precursor in silymarin

biosynthesis (AbouZid et al., 2017) with well-documented anti-

osteoporotic effects. Satué et al. (2013) show that taxifolin promotes

osteoblast differentiation and inhibits osteoclastogenesis, contributing

to bone formation and preservation (Satué et al., 2013). These findings

have been further confirmed by later studies, demonstrating that

taxifolin promotes osteogenic differentiation of human bone marrow

mesenchymal stem cells by enhancing the expression of osteogenic

markers and inhibiting TNF-a-induced NF-kB signaling (Wang et al.,

2017), and inhibits RANKL-induced osteoclastogenesis by modulating

NF-kB signaling pathways (Zhang et al., 2019). Therefore, if ZnO-NPs

treatment disproportionately upregulated taxifolin levels, the observed

osteoprotective effects in the rat model might be partly or

predominantly due to taxifolin rather than silybin (Fahad Almulhim

et al., 2025).

Without a comprehensive phytochemical profile comparing

nanoparticles-treated and untreated plant extracts, it is challenging

to conclude which compounds are responsible for enhanced biological

activity. However, what is certain is that monitoring only silybin levels

is insufficient. Future studies should thus profile the full range of major

flavonoids and flavonolignans and assess their relative abundances

before and after nanoparticle treatment. In conclusion, published

studies have made a valuable contribution to the field by

demonstrating the potential of nanoparticles to enhance secondary

metabolite accumulation in plants with therapeutical potential.

Nevertheless, further investigations including more complex view

are needed. Future research should focus on the follow:
1. Comparison of full flavonoid and flavonolignan profiles

between treated and untreated plants.

2. Determination of disproportionality of taxifolin and/or

other flavonoids increment.

3. Clarification of the observed therapeutical effects origin –

its derivation from silybin or other components.
These findings represent an important step forward, and

we hope that the insights presented here will guide future

research. Our comments are intended to complement important

findings and to support further advances in nanoparticle-assisted

phytochemical enhancement.
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