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1 Introduction

Ardisia Sw. 1788 is one of 55 genera of Primulaceae and contains 739 accepted species
that distribute in subtropical and tropical areas (Plants of the World Online, 2025). Ardisia
species contains different phytochemical constituents such as coumarins, ardisiaquinones,
and alkylphenols and was used as traditional medicine for fever, inflammation, and cancer
(Kobayashi and de Mejia, 2005; de Mejia and Ramirez-Mares, 2011; Liu et al., 2022; Tian-
Liang et al., 2024). Specifically, a benzoquinonoid compound was extracted from Ardisia
crispa and exhibited antimetastatic and antitumor features (Kang et al, 2001). The
combination of Ardisia gigantifolia leaf extract and silver nanoparticles indicated an
anti-cancer activity (Le et al., 2023). Ardisia silvestris is native to Vietnam and Hainan
(China) and its ethanol extract possessed the characteristics of antiphotoaging and skin-
protective activities (Huang et al., 2023; Plant of the World Online, 2025). Additionally, a
previous study revealed a notable anti-inflammatory characteristic of A. silvestris ethyl
acetate extract (Thanh et al., 2025). Also, the antioxidant and antibacterial properties of A.
silvestris leaf extract (Huynh, 2020). These previous results demonstrated the medicinal
values of A. silvestris and related species in Ardisia genus. However, genomic data,
including nuclear, mitochondrial, and chloroplast genomes, of A. silvestris are limited
and need further investigations.

Chloroplast genome is an essential component in autotrophic plants because it encodes
genes responsible for performing photosynthesis (Dobrogojski et al., 2020). The chloroplast
genome had a quadripartite structure including a large single copy, a small single copy, and
two inverted repeat regions, which could be altered in both autotrophic and heterotrophic
plants (Daniell et al., 2016). Additionally, the genomic information of chloroplast genomes
reflected the evolutionary history, which was used to explore a billion years of plant
evolution (Gitzendanner et al, 2018). Previously, chloroplast genomes of Primulaceae
species have been reported (Xu et al., 2020; Xie et al., 2023; Li et al,, 2024). The complete
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The chloroplast genome map of Ardisia silvestris. The arrows indicated the translation directions of inner and outer genes. The inner circle with grey
color illustrates GC content. The inner circle indicates four regions of the chloroplast genome. LSC, large single copy; SSC, small single copy; IRA

and IRB, inverted repeat regions.

chloroplast genomes of various Ardisia species such as A. crispa, A.
gigantifolia, A. crenata, A. villosa, A. mamillata, A. brunnescents, A.
pusilla, A. squamulosa, A. brevicaulis, and A. crenata were also
published (Xie et al., 2021; Ye et al., 2024; Yuan et al., 2024). In the
current study, we report the complete chloroplast genome of
Ardisia silvestris, collected it Vietnam, using the Illumina
sequencing flatform. The result of our study enriches the
chloroplast genome data of Ardisia genus and provides initial
chloroplast genomic data for further genomic studies examining
phylogeny and molecular markers of A. silvestris and related taxa
in Primulaceae.

2 Materials and methods

2.1 Plant sampling, DNA extraction, and
next-generation sequencing

The healthy leaves of Ardisia silvestris were collected from living
collection of medicinal plants at Tra Vinh University, Vinh Long
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Province, Vietnam (9°55°25.0”N 106°20°52.4”E). Then, the leaves
were stored at —80°C in a deep freezer for further experiments. The
total genomic DNA was extracted from the frozen leaves of A.
silvestris using DNeasy Plant Pro Kit (Qiagen, USA) following the
manufacturer’s instructions. The quality of DNA sample was
checked using NanoDrop One Microvolume UV-Vis
Spectrophotometer (Thermo Fisher Scientific, USA) and 1%
agarose gel electrophoresis. The DNA sample selected for
Nextseq550 sequencing (Illumina, USA) should have a
concentration of 100 ng/uL and show a clear band on the agarose
gel. The TruSeq DNA Nano kit (Illumina, USA) was used to prepare
sequencing library to generate paired-end reads of 150 bp following
the manufacturer’s instructions.

2.2 Assembly and annotation of chloroplast
genome

The raw reads were qualified and filtered using fastp v0.24.1 to
remove the adapter sequences and eliminate the reads possessing a
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TABLE 1 Gene composition of Ardisia silvestris chloroplast genome.

Groups of

Name of genes Quantity
genes
i 1
Ribosoma rrnd.5%, rrn5%, rrnl6%, rrm23° 8
RNAs
trnA_UGC*", trnC_GCA, trnD_GUC,
trnE_UUG, trnF_GAA, trnG_UCC",
trnG_GCG, trnH_GUG, trnl_GAU™",
trnK_UUU, trnl_CAA®, trnl,_UAA®,
Transfer trnl_UAG, trnfM_CAU, trnl_CAU", 3
RNAs trnM_CAU, truN_GUU", trnP_UGG,
trnQ_UUG, trnR_ACG", trnR_UCU,
trnS_GCU, trnS_GGA, trnS_UGA, trnT_GGU,
trnT_UGU, trnV_GAC®, trnV_UAC",
trnW_CCA, trnY_GUA
Large units of | rpl2®", rpl14, rpl16", rpl20, rpl22, rpl23 °, rpl32, 1
ribosome rpl33, rpl36
Small units of rps2, rps3, rpsd, rps7°, rps8, rpsll, rps12°, 15
ribosome rpsl4, rpsl5, rpsl6 b rps18, rps19”
RNA
rpoA, rpoB, rpoCl b, rpoC2 4
polymerase
Translational
initiation infA 1
factor
Subunit of
ph(lyltolsl;lslte(x)n | psaA, psaB, psaC, psal, psa], pafl’, pafll 7
Subunit of psbA, psbB, psbC, psbD, psbE, psbF, psbH, psbl, 15
photosystem 1T psb], psbK, psbL, pbfl, psbM, psbT, psbZ
Subunit of b ,
tA, petB’, petD’, petG, petL, petN 6
cytochrome petsd, pethys petlys petls, pett, pe
Subunit of
tpA, atpB, atpE, atpF’, atpH, atpl 6
ATP synthases @IpA, alpl, aipt, alpl’ alpti, aip
Large unit of
bel 1
Rubisco e
Subunit of
NADH ndhA", ndhB"", ndhC, ndhD, ndhE, ndhF, b
ndhG, ndhH, ndhl, ndh], ndhK
dehydrogenase
Maturase matK 1
Envelope
membrane cemA 1
protein
Subuni
ubunit of accD .
acetyl-CoA
C-type
cytochrome ccsA 1
synthesis gene
ATP-
dependent
epencen cpP1 ¢ 1
protease
subunit P
Hypothetical
proteins and " .
17, ycf2 4
conserved yefl % yefs
reading frames

*duplicated gene in IR region; "genes containing single intron, “genes containing two introns.
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Qscore under 20, having length shorter than 100 bp, and containing
more than five N bases (Chen et al., 2018). The remaining high-
quality reads were then assembled to complete chloroplast genome
using NOVOPlasty v4.3.5 with the reference sequence of Ardisia
fordii (NCBI accession number NC_060707) and other default
settings (Dierckxsens et al., 2016). Consequently, the newly
completed chloroplast genome of A. silvestris was annotated using
Geseq through online interface at https://chlorobox.mpimp-
golm.mpg.de/geseq.html with default settings (Tillich et al., 2017).
To verify the annotation of Geseq, the annotation of protein-coding
region was rechecked the start and stop codon of each gene using
Geneious Prime v2024.0.1 (https://www.geneious.com/) whereas
the structural formation of tRNA regions were tested using
tRNAscan-SE 2.0 available at https://lowelab.ucsc.edu/tRNAscan-
SE/index.html with default settings (Chan and Lowe, 2019).
Additionally, the quadripartite structure of chloroplast genome,
including a large single copy, a small single copy, and two inverted
repeat regions, was investigated using the “Find repeat” function
with the setting of minimum repeat length of 10,000 bp of Geneious
Prime v0.2024.1 to locate two inverted repeat regions that flanked
the large single copy and the small single copy regions. The map of
chloroplast genome was illustrated using OGDRAW v1.3.1
available at https://chlorobox.mpimp-golm.mpg.de/OGDraw.html
with default settings for plastid sequences (Greiner et al., 2019). The
complete chloroplast genome of A. silvestris was deposited to
GenBank under accession number PV608499.

3 Results

The assembly process resulted in a quadripartite chloroplast
genome of A. silvestris with a mean coverage of 1642x (Figure 1).
This genome was 156,640 bp in length and had 37.3% GC content.
Additionally, the complete chloroplast genome of A. silvestris
consisted of a large single copy (LSC) region of 85, 812 bp (35.2%
GC content), a small single copy (SSC) region of 18,388 bp (30.4%
GC content), and two inverted repeat (IR) regions of 26,220 bp
(43.2% GC content) each. Further observation revealed that the
junction between LSC and IR regions located within rpsI19 coding
region whereas that of SSC and IR regions was in the coding region
of ycfl. The complete chloroplast genome of A. silvestris encoded 79
unique protein-coding genes, 30 unique transfer RNA genes, and
four unique ribosomal RNA genes (Table 1). Among 113 unique
coding genes, 19 regions were duplicated in IR region including
rps19, rpl2, rpl23, trnl_CAU, ycf2, trnl_CAA, ndhB, rps7, rpsl2,
trnV_GAC, rrnl6, trnl_GAU, trnA_UGC, rrn23, rrn4.5, rrn5,
trnR_ACG, trnN_GUU, and ycfl. Notably, ycfl and rpsi9
exhibited incomplete duplication due to expansion of IR regions.
Additionally, there were nine protein genes (including rps16, atpF,
rpoCl, petB, petD, rpll6, rpl2, ndhB, and ndhA) and six tRNAs
(including trnK_UUU, trnl_GAU, trnA_UGC, trnG_UCC,
trnlL_UAA, and trnV_UAC) contained one intron. Meanwhile,
pafl and clpP1 had two introns. The rpsi2 gene was trans-spliced
of which the exon 2 and exon 3 located in IR regions.
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