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1 Introduction

Ardisia Sw. 1788 is one of 55 genera of Primulaceae and contains 739 accepted species

that distribute in subtropical and tropical areas (Plants of the World Online, 2025). Ardisia

species contains different phytochemical constituents such as coumarins, ardisiaquinones,

and alkylphenols and was used as traditional medicine for fever, inflammation, and cancer

(Kobayashi and de Mejıá, 2005; de Mejıá and Ramıŕez-Mares, 2011; Liu et al., 2022; Tian-

Liang et al., 2024). Specifically, a benzoquinonoid compound was extracted from Ardisia

crispa and exhibited antimetastatic and antitumor features (Kang et al., 2001). The

combination of Ardisia gigantifolia leaf extract and silver nanoparticles indicated an

anti-cancer activity (Le et al., 2023). Ardisia silvestris is native to Vietnam and Hainan

(China) and its ethanol extract possessed the characteristics of antiphotoaging and skin-

protective activities (Huang et al., 2023; Plant of the World Online, 2025). Additionally, a

previous study revealed a notable anti-inflammatory characteristic of A. silvestris ethyl

acetate extract (Thanh et al., 2025). Also, the antioxidant and antibacterial properties of A.

silvestris leaf extract (Huynh, 2020). These previous results demonstrated the medicinal

values of A. silvestris and related species in Ardisia genus. However, genomic data,

including nuclear, mitochondrial, and chloroplast genomes, of A. silvestris are limited

and need further investigations.

Chloroplast genome is an essential component in autotrophic plants because it encodes

genes responsible for performing photosynthesis (Dobrogojski et al., 2020). The chloroplast

genome had a quadripartite structure including a large single copy, a small single copy, and

two inverted repeat regions, which could be altered in both autotrophic and heterotrophic

plants (Daniell et al., 2016). Additionally, the genomic information of chloroplast genomes

reflected the evolutionary history, which was used to explore a billion years of plant

evolution (Gitzendanner et al., 2018). Previously, chloroplast genomes of Primulaceae

species have been reported (Xu et al., 2020; Xie et al., 2023; Li et al., 2024). The complete
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chloroplast genomes of various Ardisia species such as A. crispa, A.

gigantifolia, A. crenata, A. villosa, A. mamillata, A. brunnescents, A.

pusilla, A. squamulosa, A. brevicaulis, and A. crenata were also

published (Xie et al., 2021; Ye et al., 2024; Yuan et al., 2024). In the

current study, we report the complete chloroplast genome of

Ardisia silvestris, collected it Vietnam, using the Illumina

sequencing flatform. The result of our study enriches the

chloroplast genome data of Ardisia genus and provides initial

chloroplast genomic data for further genomic studies examining

phylogeny and molecular markers of A. silvestris and related taxa

in Primulaceae.
2 Materials and methods

2.1 Plant sampling, DNA extraction, and
next-generation sequencing

The healthy leaves of Ardisia silvestris were collected from living

collection of medicinal plants at Tra Vinh University, Vinh Long
Frontiers in Plant Science 02
Province, Vietnam (9°55’25.0”N 106°20’52.4”E). Then, the leaves

were stored at −80°C in a deep freezer for further experiments. The

total genomic DNA was extracted from the frozen leaves of A.

silvestris using DNeasy Plant Pro Kit (Qiagen, USA) following the

manufacturer’s instructions. The quality of DNA sample was

checked using NanoDrop One Microvolume UV-Vis

Spectrophotometer (Thermo Fisher Scientific, USA) and 1%

agarose gel electrophoresis. The DNA sample selected for

Nextseq550 sequencing (Illumina, USA) should have a

concentration of 100 ng/µL and show a clear band on the agarose

gel. The TruSeq DNANano kit (Illumina, USA) was used to prepare

sequencing library to generate paired-end reads of 150 bp following

the manufacturer’s instructions.
2.2 Assembly and annotation of chloroplast
genome

The raw reads were qualified and filtered using fastp v0.24.1 to

remove the adapter sequences and eliminate the reads possessing a
FIGURE 1

The chloroplast genome map of Ardisia silvestris. The arrows indicated the translation directions of inner and outer genes. The inner circle with grey
color illustrates GC content. The inner circle indicates four regions of the chloroplast genome. LSC, large single copy; SSC, small single copy; IRA
and IRB, inverted repeat regions.
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Qscore under 20, having length shorter than 100 bp, and containing

more than five N bases (Chen et al., 2018). The remaining high-

quality reads were then assembled to complete chloroplast genome

using NOVOPlasty v4.3.5 with the reference sequence of Ardisia

fordii (NCBI accession number NC_060707) and other default

settings (Dierckxsens et al., 2016). Consequently, the newly

completed chloroplast genome of A. silvestris was annotated using

Geseq through online interface at https://chlorobox.mpimp-

golm.mpg.de/geseq.html with default settings (Tillich et al., 2017).

To verify the annotation of Geseq, the annotation of protein-coding

region was rechecked the start and stop codon of each gene using

Geneious Prime v2024.0.1 (https://www.geneious.com/) whereas

the structural formation of tRNA regions were tested using

tRNAscan-SE 2.0 available at https://lowelab.ucsc.edu/tRNAscan-

SE/index.html with default settings (Chan and Lowe, 2019).

Additionally, the quadripartite structure of chloroplast genome,

including a large single copy, a small single copy, and two inverted

repeat regions, was investigated using the “Find repeat” function

with the setting of minimum repeat length of 10,000 bp of Geneious

Prime v0.2024.1 to locate two inverted repeat regions that flanked

the large single copy and the small single copy regions. The map of

chloroplast genome was illustrated using OGDRAW v1.3.1

available at https://chlorobox.mpimp-golm.mpg.de/OGDraw.html

with default settings for plastid sequences (Greiner et al., 2019). The

complete chloroplast genome of A. silvestris was deposited to

GenBank under accession number PV608499.
3 Results

The assembly process resulted in a quadripartite chloroplast

genome of A. silvestris with a mean coverage of 1642x (Figure 1).

This genome was 156,640 bp in length and had 37.3% GC content.

Additionally, the complete chloroplast genome of A. silvestris

consisted of a large single copy (LSC) region of 85, 812 bp (35.2%

GC content), a small single copy (SSC) region of 18,388 bp (30.4%

GC content), and two inverted repeat (IR) regions of 26,220 bp

(43.2% GC content) each. Further observation revealed that the

junction between LSC and IR regions located within rps19 coding

region whereas that of SSC and IR regions was in the coding region

of ycf1. The complete chloroplast genome of A. silvestris encoded 79

unique protein-coding genes, 30 unique transfer RNA genes, and

four unique ribosomal RNA genes (Table 1). Among 113 unique

coding genes, 19 regions were duplicated in IR region including

rps19, rpl2, rpl23, trnI_CAU, ycf2, trnL_CAA, ndhB, rps7, rps12,

trnV_GAC, rrn16, trnI_GAU, trnA_UGC, rrn23, rrn4.5, rrn5,

trnR_ACG, trnN_GUU, and ycf1. Notably, ycf1 and rps19

exhibited incomplete duplication due to expansion of IR regions.

Additionally, there were nine protein genes (including rps16, atpF,

rpoC1, petB, petD, rpl16, rpl2, ndhB, and ndhA) and six tRNAs

(including trnK_UUU, trnI_GAU, trnA_UGC, trnG_UCC,

trnL_UAA, and trnV_UAC) contained one intron. Meanwhile,

pafI and clpP1 had two introns. The rps12 gene was trans-spliced

of which the exon 2 and exon 3 located in IR regions.
TABLE 1 Gene composition of Ardisia silvestris chloroplast genome.

Groups of
genes

Name of genes Quantity

Ribosomal
RNAs

rrn4.5a, rrn5a, rrn16a, rrn23a 8

Transfer
RNAs

trnA_UGCa,b, trnC_GCA, trnD_GUC,
trnE_UUC, trnF_GAA, trnG_UCCb,
trnG_GCC, trnH_GUG, trnI_GAUa,b,
trnK_UUUb, trnL_CAAa, trnL_UAAb,
trnL_UAG, trnfM_CAU, trnI_CAUa,
trnM_CAU, trnN_GUUa, trnP_UGG,
trnQ_UUG, trnR_ACGa, trnR_UCU,

trnS_GCU, trnS_GGA, trnS_UGA, trnT_GGU,
trnT_UGU, trnV_GACa, trnV_UACb,

trnW_CCA, trnY_GUA

37

Large units of
ribosome

rpl2a,b, rpl14, rpl16b, rpl20, rpl22, rpl23 a, rpl32,
rpl33, rpl36

11

Small units of
ribosome

rps2, rps3, rps4, rps7a, rps8, rps11, rps12a,
rps14, rps15, rps16 b, rps18, rps19a

15

RNA
polymerase

rpoA, rpoB, rpoC1b, rpoC2 4

Translational
initiation
factor

infA 1

Subunit of
photosystem I

psaA, psaB, psaC, psaI, psaJ, pafIc, pafII 7

Subunit of
photosystem II

psbA, psbB, psbC, psbD, psbE, psbF, psbH, psbI,
psbJ, psbK, psbL, pbfI, psbM, psbT, psbZ

15

Subunit of
cytochrome

petA, petBb, petDb, petG, petL, petN 6

Subunit of
ATP synthases

atpA, atpB, atpE, atpFb, atpH, atpI 6

Large unit of
Rubisco

rbcL 1

Subunit of
NADH

dehydrogenase

ndhAb, ndhBa,b, ndhC, ndhD, ndhE, ndhF,
ndhG, ndhH, ndhI, ndhJ, ndhK

12

Maturase matK 1

Envelope
membrane
protein

cemA 1

Subunit of
acetyl-CoA

accD 1

C-type
cytochrome

synthesis gene
ccsA 1

ATP-
dependent
protease
subunit P

clpP1 c 1

Hypothetical
proteins and
conserved

reading frames

ycf1 a, ycf2a 4
aduplicated gene in IR region; bgenes containing single intron, cgenes containing two introns.
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