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Integrated RNA-seq and snRNA-
seq analysis identifies PR10
tandem gene cluster governing
early defense against Fusarium
wilt in sea island cotton
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Fusarium wilt, caused by Fusarium oxysporum f. sp. vasinfectum 7 (FOV7), poses
a major threat to the production of elite Sea Island cotton (Gossypium
barbadense). To uncover the molecular basis of defense FOV7 in cotton, we
employed RNA sequencing to identify numerous differentially expressed genes
across various stages of infection. Subsequent K-means clustering and weighted
gene co-expression network analysis revealed a core module significantly
enriched in defense response and abscisic acid-activated signaling pathways. A
detailed examination of the gene distribution within these pathways identified 10
out of 50 genes as members of the Pathogenesis-Related 10 (PR10) gene family.
Evolutionary analysis of these PR10 genes uncovered a tandemly-expanded gene
cluster located on chromosome 10 of the D sub-genome. In addition, root cell
type maps constructed via single-nucleus RNA sequencing (snRNA-seq) enabled
pinpointing FOV7 response in the root epidermis, where GbD_PR10.11 was
identified as a specifically activated sentinel. Our work, by logically progressing
from genome-wide patterns to a single gene in a single cell type, not only
deciphers a key component of the cotton-pathogen arms race but also delivers a
high-confidence target for engineering frontline resistance.

KEYWORDS

Gossypium barbadense, FOV7, transcriptome, PR10, tandem duplication, single-nucleus
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1 Introduction

Sea Island cotton (Gossypium barbadense L.), renowned for producing the world’s most
valuable long-staple fibers, is a crop of immense economic significance (Rehman et al.,
2019). However, its production is severely threatened by Fusarium wilt, a devastating soil-
borne disease caused by Fusarium oxysporum f. sp. vasinfectum Race (FOV) (Bell et al,
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2019; Michielse and Rep, 2009; Sanogo and Zhang, 2015). As a
vascular wilt pathogen, FOV7 invades the root system, colonizes the
xylem vessels, and systemically spreads throughout the plant. This
colonization obstructs water transport, leading to characteristic
symptoms of stunting, wilting, vascular browning, and ultimately,
plant death, resulting in substantial economic losses (Dastmalchi
et al, 2019; Diaz et al, 2021). Despite progress in identifying
quantitative trait loci and defense-related genes, a fundamental
aspect of the host-pathogen interaction remains limited: the initial
molecular events occurring at the cellular level in the root, where
the infection begins (Abdelraheem et al, 2024; Liu et al, 2021;
Zhang et al., 2022).

Modern genomic technologies have provided valuable resource
of the transcriptome-wide response to FOV infection (Ning et al.,
2021; Ojeda-Rivera et al., 2023; Prasath et al., 2023).
Transcriptomics technologies have been extensively utilized in
investigating the defense mechanisms of cotton under stress
conditions, offering novel insights that significantly enhance our
understanding of cotton’s survival and adaptive strategies in
response to diverse stresses (Khan et al, 2023; Lugman et al,
2025). These studies have successfully identified numerous
defense-related genes, yet they suffer from an inherent limitation:
they measure the average expression across a heterogeneous mix of
root cell types. This averaging effect makes it impossible to
distinguish the unique responses of different cellular type (Tang
et al,, 2023). Recent advances in single-cell transcriptomics have
begun to resolve such complexity in other plant-stress contexts,
such as mapping the salt-stress response in diploid cotton roots (Li
et al., 2024) and dissecting cell-specific immunity in Arabidopsis
leaves infected by a fungal pathogen (Tang et al., 2023). However, a
cellular-level atlas of the pathogen response in the roots of
tetraploid cotton has been missing.

Among the diverse arsenal of plant defense proteins, the
Pathogenesis-Related 10 (PR10) family emerges as a prime
candidate for orchestrating these rapid, localized responses (Chen
etal., 2024). These small, acidic intracellular proteins are defined by
a conserved Bet_v_1 domain, which confers a unique three-
dimensional structure capable of binding various ligands and, in
many cases, exhibiting ribonuclease (RNase) activity to directly
inhibit pathogen growth (Lebel et al., 2010). The role of PRI10 has
been explored in several crops, each showing different responses to
various pathogens. In soybean, the PRIO gene is induced during
infection with Phytophthora sojae (Xu et al., 2014). In grapes, the
PRI0 gene exhibits specific subcellular localization and function in
response to Plasmopara viticola infection (He et al., 2013). In roses,
the PR10 protein (RC4G0290000) inhibits pathogen expansion
through ribonuclease activity after grey mold infection and
coordinates defense responses through subcellular localization
regulation (Li et al., 2024). In rice, the expression of the OsPRI0
gene is regulated by jasmonic acid and ethylene signaling pathways,
while salicylic acid inhibits its expression (Yamamoto et al., 2018).
Additionally, resistance genes in cabbage indirectly enhance PRI10-
mediated systemic resistance by recruiting beneficial rhizosphere
microorganisms to regulate the expression of ethylene and JA
pathway genes (Ping et al, 2024). In cotton, GbPRI0-5DI can
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surprisingly increase susceptibility to Verticillium dahliae (Guo
et al., 2022). Despite extensive studies in other species, the
specific roles and cellular deployment of the PR10 family within
cotton roots during the initial confrontation with FOV7 are
entirely unknown.

In this study, we aimed to dissect the cellular and molecular
architecture of cotton’s early defense against FOV7. We
hypothesized that an integrated approach, combining the breadth
of bulk RNA-seq with the precision of single-nucleus RNA-seq
(snRNA-seq), could resolve this complex picture. Our multi-scale
analysis first identified a key module of rapidly induced PRI10 genes
through transcriptomic profiling. We then revealed that a tandemly
duplicated gene cluster on chromosome D10 is a genomic hotspot
for this response, suggesting an evolutionary adaptation for a robust
defense. Finally, by generating a single-nucleus atlas of the infected
root, we pinpointed the epidermis as a key defensive battleground
and identified GbD_PR10.11 as a sentinel gene specifically activated
in these frontline cells. This work provides an unprecedented high-
resolution view of cotton’s early immunity and offers precise targets
for future resistance breeding.

2 Materials and methods

2.1 Plant materials, growth conditions, and
pathogen inoculation

The Gossypium barbadense cultivar “Xinhai 14” was used
throughout this study. This cultivar was selected as it is a major,
elite commercial variety of Sea Island cotton and is known to be
susceptible to FOV7 (Han et al., 2022; Zu et al,, 2019), thus providing
a relevant and suitable model for investigating the molecular
mechanisms of the early host-pathogen interaction. The seeds were
surface-sterilized with 0.1% HgCl, and then placed in a constant-
temperature germination chamber (28 + 0.5°C) for germination.
When the primary root of the seedlings reached a length of 3 cm, the
seedlings were transplanted into a hydroponic system and cultured
using Hoagland’s solution (pH 6.0 + 0.2). The culture conditions were
set as follows: a photoperiod of 16 h light/8 h dark, a light intensity of
100 pmol-m>~>s~' (using full-spectrum LED light), a relative
humidity of 65 + 5%, and a constant temperature of 28 + 1°C.

The Fusarium oxysporum f. sp. vasinfectum race 7 (FOV7)
strain was cultured on PDA medium at 25°C for 5 days, followed by
culture in liquid PDB medium for 7-10 days at 25°C on a shaker
(180 rpm). The final spore concentration was adjusted to 1x10°
spores/mL with 0.01% Tween-20 as a surfactant, and the suspension
was used immediately for inoculation to ensure maximal viability.

When the seedlings had fully expanded their second true leaves
(14 days after sowing), the pathogen was inoculated using the root-
drench method, with an inoculum volume of 5 mL per plant. Root
tip tissue samples were collected at four key time points (0 hpi,
2 hpi, 12 hpi, and 48 hpi) after inoculation. Immediately
after sampling, the samples were flash-frozen in liquid
nitrogen and stored in a -80°C ultra-low-temperature freezer for
later use.
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2.2 Bulk RNA-seq library preparation and
data analysis

We followed the standard RNA-seq library construction
protocol, selecting four key time points (0 hpi, 2 hpi, 12 hpi, and
48 hpi), with three biological replicates for each time point (Chen
et al., 2024). Qualified libraries were constructed and sequenced on
an Illumina NovaSeq X Plus platform (PE150). After quality
control, clean reads were aligned to the G. barbadense reference
genome (H7124_ZJU, downloaded from the CottonMD database)
(Yang et al., 2023) using HISAT2 (v2.2.1) (Kim et al., 2015). Gene
expression was quantified as FPKM using StringTie (v2.2.0) (Pertea
et al, 2015). DEGs were identified using DESeq2 (v1.42.0) with
thresholds of |log, fold change| > 1 and FDR < 0.05 (Love et al,
2014). These widely-used and stringent thresholds ensure the
identification of genes with both statistically significant and
biologically meaningful changes in expression (Love et al., 2014).
GO and KEGG pathway enrichment analyses were performed using
the clusterProfiler R package (v4.10.1) (Wu et al., 2021).

2.3 Expression pattern clustering and
WGCNA

K-means clustering was performed on all DEGs using the
ClusterGVis R package (v0.1.2) (Kumar and E Futschik, 2007).
WGCNA was conducted using the WGCNA R package (v1.71)
(Langfelder and Horvath, 2008) with a soft-thresholding power of
10, a minimum module size of 30, and a merge cut height of 0.20.

2.4 Bioinformatic analysis of the PR10 gene
family

To identify the PRI0O gene family, the genome sequence and
annotation data of Gossypium barbadense and Gossypium arboreum
(A2 genome) were obtained from CottonMD (https://
yanglab.hzau.edu.cn/CottonMD/), Gossypium raimondii (D5
genome) were downloaded from NGDC (https://ngdc.cncb.ac.cn/
gwh/Assembly/84056/show), and the Arabidopsis thaliana from
TAIR (https://www.arabidopsis.org/). PRI0 genes were initially
screened in the genome using HMMER 3.0 (Finn et al, 2011).
The search was guided by the hidden Markov model (HMM)
corresponding to the Bet_v_1 domain (PF000407), which was
obtained from the PFAM database. A candidate PRI0O gene was
defined as one that contained the Bet_v_1 domain, with an e-value
threshold set to < 1e-10. To ensure accuracy, the conserved domains
of these candidate PRI0 genes were further validated using the
SMART database (https://smart.embl.de/) and the NCBI-CDD
platform (https://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml).
The PRIO gene families in other species were identified using the
same method.

To elucidate the evolutionary relationships of PR10 proteins,
the complete PR10 protein sequences from the four species were
aligned using MAFFT v7.4.1 (Katoh and Toh, 2008). An unrooted
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phylogenetic tree was constructed by the maximum likelihood (ML)
method in MEGA 11 (Kumar et al.,, 2018), with statistical support
assessed via 1,000 bootstrap replicates. The resulting phylogenetic
tree was subsequently visualized using Evolview v3 (Subramanian
et al,, 2019).

The chromosomal positions of PR10 genes were determined from
the annotation files of the three cotton genomes and visualized using
TBtools-II (Chen et al.,, 2023). Gene synteny analysis was performed
using MCScanX (Wang et al, 2012), and gene duplication events
were classified using the duplicate_gene_classifier tool. Furthermore,
Ka and Ks values for the PRI0O genes were calculated with
KaKs_Calculator 3.0 (Wang et al,, 2010), and the Ka/Ks ratio was
computed to evaluate the selection pressure acting on these genes.

2.5 Single-nucleus RNA-seq library
preparation and analysis

We utilized the same samples from bulk RNA-seq to conduct
single-cell RNA sequencing using normal cotton root tips and those
inoculated by FOV7 at 2 hours. A high-quality single-cell
suspension was successfully prepared and carefully loaded onto
the MobiNova-100 high-throughput single-cell controller
(MobiDrop, Zhejiang, China). The single-cell RNA sequencing
library was meticulously constructed using the MobiCube RNA-
seq single-cell kit (MobiDrop, Zhejiang, China). Subsequently, these
libraries were sequenced on the MobiNova-100 single-cell
sequencing platform (MobiDrop, Zhejiang, China) using the
Ilumina NovaSeq 6000 sequencing strategy. To ensure the
reliability and reproducibility of the data, each sample was
sequenced in duplicate biological replicates.

We first removed low-quality reads, poly-A tails, and adapter
sequences and obtained clean reads. Subsequently, we processed the
clean data using the professional Mobivision software (https://
www.mobidrop.com/bioinformatics/mobivision2) to construct an
accurate expression matrix and then employed the Seurat package
4.4.0 (Hao et al,, 2021)for downstream analysis. To ensure high-
quality data, we applied stringent filtering criteria. Specifically, cells
with fewer than 500 or more than 6,000 UMI counts were
discarded, and genes detected in fewer than three cells were
excluded. Additionally, only cells with less than 10%
mitochondrial gene alignment transcripts were retained for
further analysis. In the DoubletFinder (McGinnis et al., 2019)
workflow, we retained only the cells annotated as “Singlets” in
each library to ensure the accuracy of the single-cell data.

For data integration, we used the CCA (Canonical Correlation
Analysis) algorithm (Hao et al., 2021). Dimensionality reduction was
performed with the RunUMAP function, and clustering analysis was
conducted with the RunPCA function using npc=30. We then
accurately identified cell clusters using the “FindNeighbors”
function (with parameters kpparam=10 and dims=1:30) and the
“FindClusters” function (with a resolution of 0.6). To identify
DEGs in each cluster, we employed the “FindAllMarkers” function
with the Wilcoxon rank-sum test. This allowed us to define DEGs
between each cluster and all other cells. We annotated cell types using
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the PCMDB database (Jin et al., 2022). We used the “FindMarkers”
function with parameters logfc.threshold = 1, min.pct = 0.25, and
min.diff.pct = 0.1 for differential expression analysis between normal
and FOV7 infection samples.

2.6 Real-time quantitative PCR validation

Total RNA was extracted and the integrity of the nucleic acids was
confirmed by agarose gel electrophoresis, while the concentration and
purity were assessed using ND5000 NanoDrop UV-Vis
Spectrophotometer (Thermo Fisher Scientific Inc., USA). cDNA was
synthesized from 200 ng of RNA using a reverse transcription kit
(Hifair ™" TII 1st Strand cDNA Synthesis SuperMix for qPCR,
YEASEN). The primers were designed using Primer 5.0s and are
listed in Supplementary Table S16. Following the standard protocol,
the Quantitative PCR was performed using on Bioer Line Gene 9600
Plus Real Time Thermalcycler (FQD-96A, Hangzhou Bori
Technology Co., Ltd). Relative expression levels were calculated
using the 2-AACT method (Rao et al,, 2013) using the housekeeping
gene GAPDH, and the data were visualized using GraphPad Prism
version 10.1.2 (https://www.graphpad.com). The experiment
included three technical replicates and three biological replicates.

3 Results

3.1 Transcriptome profiling reveals a rapid
and robust early defense response to FOV7

To capture the temporal dynamics of the defense response in G.
barbadense roots following FOV7 infection, we performed bulk
RNA-seq at 0, 2, 12, and 48 hpi. We generated a total of 286,236,783
high-quality reads with an average mapping rate of 89.84% to the
reference genome (Supplementary Table S1). Differential
expression analysis revealed a massive transcriptional
reprogramming. At the early infection stage of 2 hpi, we
identified 9,478 DEGs, comprising 4,789 upregulated and 4,689
downregulated genes, indicating a swift and extensive cellular
reaction (Figure la; Supplementary Table S2). The number of
DEGs remained high at 12 hpi (5,270 up, 9,837 down) and 48 hpi
(5,804 up, 9,108 down) (Figures 1b, ¢; Supplementary Tables S3,
54). GO enrichment analysis of the upregulated genes at all time
points consistently highlighted multiple stress-related biological
processes, including response to abscisic acid (GO:0009737),
response to osmotic stress (GO:0006970), and response to water
deprivation (GO:0009414), indicating a sustained and multifaceted
defense activation (Figures 1d-f; Supplementary Figure SI).

3.2 Convergent analyses pinpoint a key
PR10 gene module in the early response

To identify genes involved in the critical initial defense phase,
we first employed K-means clustering on all DEGs, yielding six
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distinct expression clusters (Figure 2; Supplementary Table S5).
Notably, genes in Cluster C4 exhibited a sharp and significant
upregulation specifically at 2 hpi, followed by a gradual decline. GO
analysis of this cluster revealed strong enrichment in terms like
defense response (GO:0006952) and response to wounding
(GO:0009611), suggesting its central role in the immediate
immune reaction (Figure 2; Supplementary Table S6).

To further refine this finding from a network perspective, we
conducted Weighted Gene Co-expression Network Analysis
(WGCNA), which grouped the DEGs into eight co-expression
modules (Figures 3a, b). Correlating these modules with the
infection time points, we identified the orange module (1,701
genes) as being highly and positively correlated with the 2 hpi
stage (Figure 3c). GO enrichment of the orange module genes
confirmed their involvement in processes such as response to
wounding (GO:0009611), regulation jasmonic acid biosynthetic
process (GO:2000022), and regulation of defense response
(GO:2000022) (Figure 3d; Supplementary Table S7).

By intersecting the early-response genes from Cluster C4 and the
orange module, we identified a high-confidence set of 1,241 genes that
represent the core of the immediate transcriptional defense (Figure 4a).
GO analysis of these shared genes was significantly enriched in defense
response and abscisic acid-activated signaling pathway (Figure 4b;
Supplementary Table S8). Upon closer examination of the gene
distribution within these pathways, we found that 10 out of 50 genes
belong to the PRIO gene family, including GbA_PR10.32,
GbA_PR10.34, GbA_PR10.37, GbD_PRI10.11, GbD_PR10.37,
GbD_PR10.38, GbD_PR10.39, GbD_PR10.40, GbD_PR10.41 and
GbD_PR10.42. All genes showed strong and rapid induction at 2 hpi,
marking them as key players in the initial defense against FOV7
(Figures 4c, d; Supplementary Table S9).

3.3 Evolutionary analysis reveals tandem
duplication as the engine of PR10
expansion

Having established the functional importance of PRI0 genes in the
early defense response, we next investigated the evolutionary origins of
this family in cotton. We performed a genome-wide identification and
found 92, 48, and 61 PRIO genes in G. barbadense (Gb), Gossypium
arboreum (A2), and Gossypium raimondii (D5), respectively
(Supplementary Table S9). A phylogenetic analysis including 26
PRI0 genes from Arabidopsis thaliana revealed four major clades,
including Clades L, IL, III, and IV (Figure 5). Among them, Clade I has
the most, with a total of 116 members, Clade II has 77 members, Clade
IIT has 30 members, and Clade IV has the fewest members with only
four cotton members (GbA_PRI10.25, GaPR10.25, GbD_PR10.29,
GrPRI10.38). Notably, PRI0 genes from all three cotton species are
distributed across the four clades, while the AfPRI0 genes from A.
thaliana are clustered exclusively in Clade II. This indicates that
Clades 1, III, and IV may be unique to cotton.

Chromosomal mapping in G. barbadense showed a highly non-
uniform distribution of the 92 Gb_PRI0 genes. We identified four
major gene clusters located at the ends of chromosomes A02, A10,
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D02, and D10, which together accounted for 58.7% of all Gb_PRI0
genes (Figure 6). Gene synteny and collinearity analysis revealed
that tandem duplication was the primary driving force behind the
expansion of these clusters, with 56.5% of genes in the A sub-
genome and 39.1% in the D sub-genome being tandem duplicates
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(Figures 7a, b; Supplementary Table S9; Supplementary Figure S2).
The identification of large syntenic blocks between chromosomes
A02/A10 and D02/D10 suggests these clusters arose from an
ancient whole-genome duplication (WGD) event, a known
feature of the Gossypium lineage (Paterson et al., 2012).
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Furthermore, Ka/Ks analysis of these tandem pairs indicated that
they are under strong purifying selection (Ka/Ks < 1), suggesting
their functional importance (Supplementary Table S10).

3.4 The tandemly duplicated PR10 cluster
on chromosome D10 is a hub for the FOV7
response

We then integrated our evolutionary and expression analyses to
ask whether these expanded gene clusters were linked to the defense
response. By mapping the expression data of all 92 Gb_PR10 genes,
we made a striking observation: the genes that were significantly
upregulated at 2 hpi were overwhelmingly located within the
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tandem gene cluster on chromosome D10 (Figure 8;
Supplementary Table S11). Twelve of the thirteen significantly
upregulated genes belonged to this cluster, including the highly
expressed GbD_PR10.38, GbD_PRI10.11, and GbD_PRI10.37. This
directly links the evolutionary expansion of a specific genomic
region to a critical functional role in pathogen defense.

3.5 Single-nucleus transcriptomics
localizes the early defense response to the
root epidermis

While our bulk RNA-seq analysis identified the key defense
genes, it could not resolve which cell types were responsible for this

frontiersin.org


https://doi.org/10.3389/fpls.2025.1622223
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Liu et al.

10.3389/fpls.2025.1622223

Cluster Dendrogram

Height

response to wounding -
regulation of jasmonic acid |

mediated signaling p....

regulation of defense response -
jasmonic acid biosynthetic |

process

response to water deprivation +

orange Biological_Process

e

Count
@
[ B
[ R

a .
- Sample clustering
8
8
8
8
3
=
8
-
o
8
K ,_
. P] M Irl1r
N = b ,
e - o~ - -~
S s = £ | | | | | | |
< S glﬁ 5 5l glgl § & o
5 ¥ F oY OO 0¥ oY oYTOLs
= £ < T ¥ 3 @ T © b (N
£ £ £ ic T T e P © © |
3 X %X &£ € £ £ £ £ <€ £ ¢
X £ £ X X X £ £ %
X x xX X £
£
x
Cc
Module-trait relationships
MEorange -
MEcyan
[ v
o
MEgreen
MEdarkturquoise
e
MElightcyan1
MEdarkolivegreen s B e 0
o
O
MEroyalblue o & oo [
MEgrey || ‘ o bt -
Ny i N &

FIGURE 3

. . qvalue
glutamine metabolic process - [ ]

oxylipin biosynthetic process{ @ 0.0015

cytokinin metabolic process1 @ 0.0010
cellular response to | PY

phosphate starvation
fatty acid beta—oxidation

using acyl-CoA oxidase |

0.0005

0.010 0.015 0.020 0.025
GeneRatio

WGCNA analysis of cotton root responses to FOV7 Infection. (a) Sample clustering. (b) Cluster dendrogram of 20,163 DEGs with assigned module
colors. (c) Heatmap of module-trait associations. (d) Gene Ontology biological process enrichment analysis of genes in the orange module.

rapid response. To address this, we performed single-nucleus RNA-
seq (snRNA-seq) on root tips from control and 2 hpi samples. After
stringent quality control, we obtained a total of 7,843 high-quality
cells, comprising 4,723 cells from the control group and 3,120 cells
from the 2-hour treatment group. These cells were subsequently
grouped into 13 distinct cell clusters (Figure 9a; Supplementary
Table S13). Based on known marker gene expression (Denyer et al.,
2019; Huang et al, 1996; Li et al., 2024; Shahan et al, 2022;
Zhu et al, 2023), we successfully annotated various root cell
types, with epidermal cells being the most abundant population
(Figure 9b; Supplementary Figures S3; S4; Supplementary
Table S14).

Upon comparing the transcriptomes of infected versus control
samples at the cellular level, we observed cell-type-specific
responses to FOV7 (Figure 9¢; Supplementary Table S15).
Critically, when we examined the expression of the PRI0 gene
family, we found that GbD_PR10.11—one of the highly induced
genes from the chromosome D10—was specifically and significantly
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upregulated in three epidermal sub-clusters (Clusters 0, 10, and 11)
at 2 hpi. This finding pinpoints the epidermis as a primary defensive
frontier and identifies GhD_PR10.11 as a key sentinel gene activated
in these frontline cells, demonstrating pronounced cellular
heterogeneity in the immune response.

3.6 RT-gPCR confirms the expression
patterns of key candidate PR10 genes

To validate our sequencing results, we selected four candidate
PRI10 genes representing different aspects of our findings and
performed RT-qPCR analysis. The selected genes included
GbA_PRI10.34 (identified by both K-means and WGCNA),
GbD_PRI10.11 (the key gene specifically expressed in the
epidermis), and two other highly expressed genes from the
tandem clusters (GbA_PR10.14 and GbD_PR10.37). Consistent
with our RNA-seq data, all four genes showed significant
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upregulation at 2 hpi, confirming their crucial involvement in the
early defense response against FOV7 (Figure 10).

4 Discussion

Despite the substantial economic impact of FOV7 on cotton
(Diaz et al., 2021), the intricacies of the defense mechanisms for
FOV7 infection remain largely unexplored. In this study, we
dissected the early host-pathogen arms race between G.
barbadense and FOV7 at a multi-scale resolution. By integrating
transcriptomics from bulk tissue down to the single nucleus, we
moved beyond a simple catalog of defense genes to uncover an
elegant defense strategy. Our findings connect a specific
evolutionary mechanism—tandem duplication of PRI0 genes—to
a functional genomic hotspot on chromosome D10, and ultimately
pinpoint the root epidermis as the primary cellular battleground
where a key sentinel gene, GbD_PRI0.11, is deployed. This research
successfully demystifies the intricate, cell-specific immune
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responses that occur at the very onset in cotton roots. Further
evolutionary analysis PRI0 genes in cottons revealed that the
chromosome D10 acts as a genomic hotspot for adaptation
(Figures 5-7). The concentration of responsive PRI0 genes in this
tandem cluster (Figure 8) suggests it may function as a co-regulated
genomic cassette, where shared regulatory elements could enable a
swift, synchronized, and high-magnitude transcriptional response
upon pathogen recognition. This architecture provides a potent
gene dosage effect, which is a classic evolutionary strategy to
counter pathogen pressure (Khanfir et al., 2024; Xu et al,
2024).The multiple gene copies within this cluster may not be
merely redundant. It is plausible that they have undergone sub- or
neofunctionalization, evolving slightly different expression patterns,
enzymatic activities, or affinities for pathogen effectors, thus
providing a more versatile and robust “defensive toolkit”. From a
breeding perspective, such a functionally significant gene cluster
represents a prime target for marker-assisted selection or even for
transfer as a complete unit to enhance resistance in susceptible elite
varieties (Chen LiJun et al., 2013).
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A key breakthrough of our study is the precise localization of
this early defense to the epidermis. This finding positions the root
epidermis not as a passive barrier, but as an active immune frontier
(Figure 9). As the first point of contact, a rapid defense in this layer
is strategically critical (Ali et al., 2024; Chen LiJun et al., 2013; Sidiq
et al., 2022). We speculate that GbD_PRIO0.11 acts as a first
responder. Its molecular function could be multifaceted: its RNase
activity might directly degrade pathogen-derived RNA molecules,
or upon programmed cell death, the protein could be released into
the apoplastic space to attack the fungus directly (Dos Santos and

Frontiers in Plant Science

10

Franco, 2023; Karimian et al, 2024). Alternatively, its ligand-
binding pocket could sequester pathogen effectors or bind
endogenous signaling molecules to modulate the defense response
(Khan et al., 2025; Przybylska and Obrepalska-Steplowska, 2020).
This highlights a clear cellular division of labor, where the epidermis
mounts a rapid, direct defense, likely while the underlying cortical
and vascular tissues initiate longer-term responses like cell wall
reinforcement and systemic signaling.

While our study provides a high-resolution snapshot of the
early infection events, we acknowledge its limitations. Our analysis
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focused on the initial 48 hours and a single cotton cultivar. The roles
of these PRIO genes in later infection stages and across different
genetic backgrounds warrant further investigation. Moreover,
while snRNA-seq provides invaluable spatial information, the
functions of the identified genes require direct validation. Future
research should therefore prioritize the functional
characterization of GbD_PRI10.11 and other promising candidates
from the D10 cluster using gene editing (e.g., CRISPR-Cas9) and
overexpression systems. Such studies will be crucial to confirm their
roles in FOV7 resistance and to elucidate their underlying
molecular mechanisms, be it through RNase activity, ligand
binding, or other functions.
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5 Conclusions

This research bridges genomics, cell biology, and pathology to
paint a cohesive picture of cotton’s frontline defense. We have
identified a tandemly-amplified PRIO gene cluster that is
functionally deployed in the epidermis. The sentinel gene
GbD_PRI0.11 represents a high-value target for a new
generation of “precision breeding”. Instead of targeting genes
with broad, constitutive expression that may incur a fitness cost,
our work paves the way for engineering a fortified cellular barrier
—enhancing frontline immunity in the exact cells where it is
needed most. This strategy holds the promise of developing a
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more sophisticated and durable resistance against one of cotton’s
most formidable pathogens.
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