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Introduction: Increasing evidence demonstrates that plant roots can be
connected via mycorrhizal networks. Such networks in roots play key roles in
plant physiology and ecosystem functioning, but it remains debated whether
bidirectional transfers of resources can occur simultaneously inside the network.
Methods: We constructed a compartmented system to test for bidirectional
carbon (C) and nitrogen (N) transfer between three terrestrial orchids
(Cymbidium goeringii, C. goeringii var. serratum, and C. faberi) and Pinus
yunnanensis seedlings, which were linked via a common Ceratobasidium sp. A
13¢C and N dual labelling approach was employed to trace the simultaneous
movement of both elements.

Results: A unidirectional transfer of C and N was observed between C. goeringii
and pine seedlings. In contrast, simultaneous bidirectional transfer of both
elements occurred between the other two orchid species and pine seedlings;
1.0-3.7% of assimilated C and 0.20-12.2% of acquired N were transferred
through the network. The net C transfer was consistently directed from pine
seedlings to the orchids. Nitrogen transfer exhibited three distinct, species-
specific patterns: (i) unidirectional from C. goeringii to pine, (i) bidirectional
with no net transfer between C. faberi and pine, and (iii) bidirectional with a net
transfer from C. goeringii var. serratum to pine.

Discussion: The divergent transfer patterns among orchid species demonstrate
that mycorrhizal networks function as dynamic, species-specific pathways for
resource transfer. This specificity may significantly influence orchid recruitment
and nutrient dynamics in forest understories, suggesting that the role of common
mycorrhizal networks is more complex than previously recognized.
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bidirectional pathway, mycorrhizal network, orchid mycorrhiza, pine seedlings, *°C and
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1 Introduction

More than 80% of all terrestrial plant species are symbiotically
associated with mycorrhizal fungi (Weng et al, 2022). Such
mycorrhizal symbioses lead to symbiotic exchange of resources
between fungi and their host plants, i.e. the fungal partner supplies
host plants with limiting nutrients in return for photosynthetic
assimilates (Newman, 1988; Smith and Read, 2008). Moreover,
mycorrhizal networks often develop between neighboring plants
via hyphal connections in a variety of terrestrial ecosystems
(Robinson and Fitter, 1999; Simard and Durall, 2004). An
increasing number of studies confirmed such links between
different plant species (Selosse et al., 2006) and demonstrated that
mycorrhizal networks facilitate interplant resource transfer (Teste
et al., 2009), contribute to formation and maintenance of soil
structure, and support plant diversity as well as plant defense
(van der Heijden et al, 2015). Nevertheless, this view has been
challenged. Critical reviews argue that evidence for substantial net
resource transfer is limited, and that observed patterns could be
explained by alternative pathways or fungal retention of carbon,
thus questioning the prevalence and importance of common
mycorrhizal networks mediated resource sharing in plant
communities (Karst et al., 2023; Audisio et al., 2024).

However, their function in interplant resource transfer remains
a matter of debate, particularly whether such transfer is directional
(Robinson and Fitter, 1999; Jakobsen and Hammer, 2015; Simard
etal, 2015). A large number of studies have suggested a directional
transfer of carbon (Francis and Read, 1984; Wu et al., 2001; Gebauer
and Meyer, 2003; Julou et al., 2005; Cameron et al., 2006, 2008;
Newman, 2008; Bougoure et al., 2010; Hynson et al., 2013; Klein
et al,, 2016), nitrogen (Haystead et al., 1988; Rogers et al., 2001;
Govindarajulu et al., 2005; Julou et al., 2005; Cameron et al., 2006;
He et al., 2006; Bougoure et al., 2010; Hynson et al., 2013), and
phosphorus (Chiariello et al., 1982; Whittingham and Read, 1982;
Ritz and Newman, 1984; Wilson et al., 2006) between plants
through mycorrhizal networks. Based on the source-sink theory
(Kytoviita et al., 2003) and the biological market theory (Noé and
Hammerstein, 1995; Schwart and Hoeksema, 1998), resource
transfer should be directed to the sink or the side with greater
demand. However, the dynamics of water transport (Querejeta
et al., 2003; Stuefer et al., 2004) and signal transfer (Johnson and
Gilbert, 2015) within mycorrhizal networks suggest that the
networks could be a bidirectional pathway for resources. Several
lines of evidence have suggested a bidirectional pathway for carbon
transfer between plants through arbuscular mycorrhizal (Grime
etal,, 1987) or ectomycorrhizal (Klein et al., 2016) networks. Simard
and Durall (2004) further suggested several possible pathways for
carbon transfer between two plants through ectomycorrhizal
networks. However, these results were questioned after numerous
studies demonstrated that carbon is mostly retained in roots or
fungal tissues and is not further transferred from roots to shoots for
plant utilization (Robinson and Fitter, 1999; Pfeffer et al., 2004;
Jakobsen and Hammer, 2015). Thus, the core issues for untangling
the roles of mycorrhizal networks and their ecological significance
are whether these networks serve as bidirectional conduits for
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transfer of different resources between connected plants and to
unveil the magnitude of transferred resources (Robinson and Fitter,
1999; Jakobsen and Hammer, 2015; Simard et al., 2012, 2015; van
der Heijden, 2016). Numerous studies have investigated
bidirectional transfer of carbon or nitrogen separately (Jakobsen
and Hammer, 2015; Simard et al., 2015). Recent studies have shown
that trees retain carbon in their roots (Douglas-fir recipients shared
on average one ECM species with donors and showed lower 13C
enrichment than beech recipients, which shared three species on
average) (Audisio et al,, 2024), and that global vegetation allocates
more carbon to roots than to leaves (Duanmu et al, 2025).
However, few studies have examined whether bidirectional
transfer of two resources (e.g. carbon and nitrogen) occurs
simultaneously within mycorrhizal networks between plants while
concurrently assessing the quantitative significance of
such transfers.

Previous studies mainly focused on mycorrhizal networks
consisting of arbuscular mycorrhizal fungi (Jakobsen and
Hammer, 2015) or ectomycorrhizal fungi (Simard et al, 2015),
while the number of studies on orchid mycorrhizal fungi have
increased in the last two decades. Using natural stable isotope
abundance approach, several studies suggested that the net
tripartite matter flux could occur between trees, fungi, and
orchids (Gebauer and Meyer, 2003; Bidartondo et al., 2004; Julou
et al., 2005; Hynson et al,, 2013), although this approach cannot
evaluate bidirectional transfer of carbon and nitrogen. Further
studies used *C, ™C, or '°N labelling and demonstrated a
bidirectional transfer of carbon between a green orchid and its
fungal symbiont and a fungus-dependent pathway for organic N
acquisition by orchids (Cameron et al., 2006, 2008; Bougoure et al.,
2010). Using compartmentalized microcosms together with a ">C
labelling approach, Bougoure et al. (2010) confirmed that carbon
can be transferred to the understory orchid by a shrub via a
common mycorrhizal fungus. However, it remains unclear
whether bidirectional transfer of carbon and nitrogen occurs
simultaneously within mycorrhizal networks between pine and
green orchids in subtropical and tropical forests. In such forests,
various fungi forming mycorrhizas with terrestrial green orchids
typically live as saprotrophs in the soil or form endophytic/
ectomycorrhizal associations with neighboring trees (Bidartondo
et al., 2004; Dearnaley et al., 2013).

To enable the investigation of bidirectional resource transfer
within mycorrhizal networks, a gross simplification of real-world
complexity has been suggested: two plant species are linked by one
fungus (Whitfield, 2007). In this study, we set-up an experiment
with compartmented microcosms to establish mycorrhizal
symbiosis between terrestrial green orchids and a pine tree. A
native pine tree species, Pinus yunnanensis, and three orchid taxa,
Cymbidium goeringii, C. goeringii var. serratum, and C. faberi, were
used. These plant species were selected for two reasons. First, they
are often observed in subtropical forests in the Yunnan Province of
China, and all three orchid taxa grow frequently in the forest
understory in the region. Second, we obtained a fungus from C.
goeringii rhizomes in a previous study (Wu et al., 2010); this fungus
forms easily mycorrhizal associations with orchids from the genus
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Cymbidium. Such Cymbidium orchids are mixotrophic (Motomura
et al., 2010), and when they grow together with P. yunnanensis
seedlings under the same light and soil resource conditions, the
orchid and pine seedlings may have distinct resource requirements.
Here, we hypothesize the following: (1) A bidirectional transfer of
carbon occurs between orchids and pine seedlings through the
mycorrhizal network, but with a net carbon transfer from
autotrophic pines to mixotrophic orchids; (2) Nitrogen can be
transferred bidirectionally between orchids and pine seedlings
through the mycorrhizal network, with a net transfer from
orchids to pine because mixotrophic orchids could acquire more
nitrogen via fungal hypha; and (3) Orchid identity could affect the
net tripartite matter fluxes. Because the fungus was isolated from C.
goeringii rhizomes, we hypothesized that its inoculation would
enhance carbon and nitrogen transfer between C. goeringii and
pine seedlings compared to the other two Cymbidium orchid taxa.
To test these hypotheses, the *C and "N dual labelling method was
used in this study.

2 Materials and methods
2.1 Fungal strain isolation

To obtain natural mycorrhizal fungal strains, C. goeringii
rhizomes were collected from a coniferous forest of P.
yunnanensis and from a mixed evergreen broad-leaved forest of
Quercus acuta and P. yunnanensis in Jindian Conservation Area
(25°04'N, 102°45'E, 1780 m above sea level), located in Kunming
City, Yunnan Province. The soils in Jindian Park are clay-loam with
high iron/aluminum oxide content, Slightly acidic to neutral (pH
5.5-6.8). The annual mean temperature ranged from 11.2 to 13.8 °C
and the annual mean precipitation varied from 980 to 1156 mm.
Mycorrhizal fungi were isolated from the collected rhizomes
according to the protocol described by Wu et al. (2010). Briefly,
the rhizome surface was sterilized with 70% ethanol for 1 min
followed by 1% sodium hypochlorite for 1 min. Segments (~5 mm)
were crushed in sterile water to release pelotons, which were
dispersed in Modified Melin-Norkrans (MMN) agar medium and
incubated at 25 °C in the dark. Emerging fungal colonies were
subcultured and identified by phylogenetic analysis of the internal
transcribed spacer (ITS) region of the ribosomal DNA (Saitou and
Nei, 1987). The fungal strain used in this study, designated as
CL111KM, has been deposited in the Culture Collection of
Southwest Forestry University.

2.2 Non-mycorrhizal seedling

Ripe seeds of three terrestrial orchid species (C. goeringii, C.
goeringii var. serratum, and C. faberi) were sterilized and
germinated as non-mycorrhizal seedlings on agar. Orchid
seedlings were grown at 25 °C with a photoperiod of light: dark
(12 h:12 h) cycle under fluorescent lamps (800 pmol m~s). After
growing for 12 months, the seedlings with five leaves and a height of
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8 cm were transplanted to a sterilized substrate that contained dried
and washed mosses (collected from the forest floor and they were
washed and sterilized before they were mixed to constitute the
substrate for plants), vermiculite, and sand in a ratio of 1:1:1 (v/v/v).
These seedlings were allowed to grow for an additional month to
adapt to soil environments in the glasshouse. To obtain non-
mycorrhizal seedlings of P. yunnanensis, pine seeds were first
sterilized and then germinated in a substrate that was sterilized
by dry heat at 160 °C for 72 h to eliminate any microorganisms. The
substrate consisted of soil from organic and mineral horizons (1:2,
v/v), which were collected from the P. yunnanensis forest. After
growing for 12 months, pine seedlings reached a height of 10 cm
and contained 3-5 branches. To prevent colonization by airborne
microorganisms in the glasshouse and any dripping of labelling
solution onto the soil surface, the soil surface of all seedlings was
covered with a thin plastic film.

2.3 Establishment of mycorrhizal
associations

Compartmented microcosms were used to establish
mycorrhizal associations between a fungus, an orchid, and a pine
tree. Each compartmented microcosm consisted of two boxes (30 x
30 cm and 30 cm height). A small drainage hole at the center of each
microcosm bottom allowed excess water to seep out after watering,
and a 0.5 cm space between the two boxes prevented solution flow
between the boxes. A window (10 x 10 cm) was cut out at the center
of the side facing the other box and covered with a 30 um nylon
mesh screen to prevent roots but allow fungal hyphae to penetrate
into the adjacent box (Figures 1a, b). Around the windows, foil was
used to keep moisture high between the two boxes and hinder
hyphal desiccation. When healthy non-mycorrhizal seedlings were
ready, they were transplanted into these microcosms, which
contained humus and mineral soil in a ratio of 1:1 (v/v); this
mixture was previously sterilized by dry heat at 160 °C for 72 h to
eliminate any microorganisms from the substrate. The transplanted
seedlings were grown in a glasshouse at 25 °C, 70-80% air humidity,
and with a natural light-dark cycle typical of Kunming City. After
acclimation for 30 d, the orchid seedlings were inoculated with the
fungal strain CL111KM. The inoculum was prepared by growing
the fungus in liquid MMN medium for 4 weeks at 25 °C. The
mycelium was homogenized and adjusted to a concentration of 10*
hyphal fragments per mL. Each orchid seedling received 20 mL of
this suspension, applied near the root zone. Additionally, Quercus
acutissima leaves colonized by the fungal mycelia were buried 1 cm
away from the Cymbidium seedlings (Wu et al., 2013). The
inoculated seedlings were grown for 12 months to form
mycorrhizal networks between orchids and pine seedlings. During
the plant growth period in the glasshouse, these microcosms were
put on the benches with the distance of approximately 1.5 cm
between the microcosms and the benches to prevent any cross
contamination between the pots. Moreover, since the roots did not
extend out of the pots and therefore could not take up nitrogen or
carbon from leachates of other pots, hyphal growth between
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microcosm bottoms was thus hindered by the space between pot
bottoms and the benches (no visible hypha coming out of the pots
through drainage holes). Experimental setup included 15 total
plant associations.

Five fresh root tips (0.5 cm size) were randomly selected from
one plant individual of each treatment and fixed in formalin-acetic
acid-alcohol. The fixed samples were embedded into paraffin, cut
into sections, and stained with hematoxylin and eosin. The stained
paraffin sections were observed under an optical microscope
(Nikon-YS100; Tokyo, Japan) to count the number of infected
root segments, which was then used to calculate mycorrhizal
colonization rate (Phillip and Hayman, 1970; Stefani et al.,, 2010).

2.4 Isotope labelling

After the mycorrhizal associations were formed between the
orchids and pine seedlings, the plants were labelled symbiotically
with '*C and "N, i.e. orchid seedlings were labelled with ?CO, and
pine seedlings in the same compartmented microcosm were
simultaneously labelled with 5N (Figure la), and vice versa
(Figure 1b). At the beginning of the °C labelling, the °N labelling
was performed simultaneously by soaking green leaves (two leaves for
orchid seedlings and three clusters of leaves for pine seedlings) in a 50
mM "NH,'"®NO; solution (98 atom% '°N). Such foliar nitrogen
fertilization/foliar nitrogen application is a common procedure in
horticulture and has been adopted multiple times to apply tracers to
intact plant-soil systems without negative but instead rather positive
effects on plants e.g. (Tomaszewski and Sievering, 2007). Plants take
up nitrogen from foliar applications in natural settings e.g. forests,
grasslands and croplands (McNeill et al, 1997; Gaige et al., 2007;

—= 30 ym nylon mesh screen

10.3389/fpls.2025.1620153

Sievering et al,. 2007; Wichern et al., 2008; Adriaenssens et al., 2011;
2012) and plant-mycorrhiza systems (Hogh-Jensen and Schjoerring,
2000; He et al., 2006; Teste et al., 2015), and the concentration applied
is in the normal range usually applied as urea or ammonium nitrate
(Chalk et al., 2014). In this study, only a small section of each leaf was
soaked in "°N labelling solution to avoid damage to the leaves (Ie
et al,, 2006). During the labelling care was taken to avoid spillage of
the labelling solution onto the soil surface and to prevent N leaching
from leaves. The '°C labelling was conducted only during the first 20
h in a closed glass box (3 L) by adding 5% H,SO, to Ba'*CO; (99
atom% >C) to produce 13CO,. Its concentration was maintained at
about 410 ppm through controlled addition of 10% H,SO, every 4 h.
After °C labelling, microcosms were removed from the closed glass
boxes and a fan was installed close to each experimental unit to
remove soil ?CO, and avoid its re-assimilation by unlabeled
seedlings. The '°N labelling was allowed to perform for an
additional 52 h after the *CO, labelling. Reference microcosms,
which were not amended with >C and "N tracers, were used as
controls. Four replicates per treatment were established. Plants were
harvested destructively 72 h after the start of the '°N labelling. The
aboveground parts and roots were retrieved, washed, and dried in an
oven at 75 °C for 48 h. Dried plant materials were weighed and
ground to a fine powder with a ball mill (MM200, Retsch, Haan,
Germany) for stable isotope analysis.

2.5 Isotope analysis

Aliquots of plant samples were weighed into tin capsules for
analyzing C%, N%, as well as °C/"’C and ""N/"N ratios by
continuous-flow gas isotope ratio mass spectrometry (CF-IRMS),

L 30 ym nylon mesh screen

FIGURE 1

Double-split boxes were used to establish mycorrhizal symbioses between orchid and pine seedlings. Simultaneous 13C and **N dual labelling
commenced after the symbiosis had been established for 12 months: (a) Simultaneous Bc labelling of orchid seedlings and BN labelling of pine;

(b) Simultaneous **N labelling of orchid seedlings and *C labelling of pine.
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which was coupled to an elemental analyzer (EA 1110, CE
Instruments, Milan, Italy), a ConFlo III device (Finnigan MAT,
Bremen, Germany), and a gas isotope ratio mass spectrometer
(MAT253, Finnigan MAT). Isotopic reference materials calibrated
to atmospheric N, and Vienna-Pee Dee Belemnite international
standards were used between samples. Standard deviation of
repeated measurements for laboratory standards was +0.15%o for
carbon and nitrogen isotopes in delta notation.

2.6 Calculations and statistics

Atom% "°N excess (APE '°N) was calculated as the atom% "°N
difference between the labelled seedlings (atom%p,peeq) and those
from the control microcosms (atom%coniol) Of the same plant
species; APE >C was determined analogously as described by

Equation 1.

APEPN or®C = atom %;,p1eq — 2t0m % conerol (1)

Assimilation of N by foliar 15N -labelled plants ("N, ssimilateds
ug) was calculated by multiplying APE '°N by nitrogen content (N
%) and biomass (g) (Equation 2); the amount of 13C fixed by the
13C0O2-labelled plants (" Chxeds ug) was calculated by multiplying
APE °C by carbon content (C%) and biomass (g) (Equation 3).

BN similated (18) = APEN x N % xbiomass x 10°  (2)

BCaxea(lig) = APEPC x C % xbiomass x 10° 3)

The amount of "N transferred (*°Nansterreds ug) from the
labelled to the receiving plant through the mycorrhizal network
was calculated by multiplying APE '°N of the receiving plant (APE
Nre) by its nitrogen content (N%) and dry biomass (g) (Equation
4); the amount of *C transferred (13Cyransferreds ug) from the
labelled to the receiving plant through the mycorrhizal network
was calculated by multiplying APE ">C of the receiving plant (APE
Cre) by its carbon content (C%) and dry biomass (g) (Equation
5).

"N ransterred (1g) = APE" Ny x N % xbiomass x 10°  (4)

BCransterrea(Ug) = APEP Crgy x C % xbiomass x 10°  (5)

The percent of assimilated >N ("’NPyg) or fixed °C (**CPy)
from the labelled to the receiving plant through the mycorrhizal
network was calculated by dividing assimilated >N or fixed ">C by
the sum of assimilated "N or fixed '*C and transferred >N or *C
and multiplying by 100 (see Equations 6 and 7, respectively).

15 15 15 15
NPTR( %) = [ Ntransferred/( Ntransferred + Nassimilated)]

x 100 (6)

13 13 13 13
CPTR( % ) = [ Ctransferred/ ( Ctransferred + Cassimilated)]

x 100 (7)
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The standard errors of the means were used as a measure of
variability. Prior to analysis, the normality of distributions was
verified using Shapiro-Wilk tests, and homogeneity of variance was
confirmed via Levene’s test. Differences among treatments were
assessed using one-way ANOVA in SPSS 22.0 (IBM Corp., USA),
followed by Tukey’s HSD post hoc test for multiple comparisons
(oe = 0.05). Statistical significance was set at P < 0.05.

3 Results
3.1 Mycorrhizal association

Mycorrhizal symbiosis was formed between the terrestrial
green-leaved Cymbidium orchids and pine seedlings 12 months
after fungal inoculation. Root microstructure of the green
Cymbidium orchids clearly demonstrated formation of orchid
mycorrhizas (Figures 2a, b). With the establishment of orchid
mycorrhizas and extensive fungal growth, the fungi gradually
colonized the roots of P. yunnanensis seedlings and developed
ectomycorrhizas (Figures 2¢, d). Microscopic analysis of stained
root sections confirmed that all sampled root segments (n=50 per
plant) exhibited intracellular fungal colonization (e.g., pelotons,
hyphae) (Figures 2a, b), indicating 100% colonization frequency.

The phylogenetic analysis confirms our fungal strain CL111KM
clusters robustly with known Ceratobasidium sp. (Figure 3),
particularly those forming ectomycorrhizal associations (Veldre
et al., 2013). This placement supports Rhizoctonia-like
phylogenetic placement among ectomycorrhizal-forming
Ceratobasidium species.

3.2 Biomass

Among the three orchids, C. faberi showed the highest biomass,
while C. goeringii var. serratum had the lowest biomass (Figure 4).
The biomass of P. yunnanensis seedlings that were combined with
C. goeringii or C. goeringii var. serratum was similar and higher than
the biomass of seedlings combined with C. faberi. Among the three
combinations, the total biomass of P. yunnanensis seedlings was
lower than that of orchids when they were connected with C.
goeringii or C. faberi but higher when combined with C. goeringii
var. serratum (Figure 4).

3.3 Carbon and nitrogen contents

In all three combinations, P. yunnanensis and orchid seedlings
had similar carbon content in the aboveground tissues, while P.
yunnanensis demonstrated significantly higher carbon content in
the belowground parts than orchids (Figure 5). In contrast, the
nitrogen content in the seedlings exhibited distinct patterns. When
P. yunnanensis seedlings were combined with C. goeringii or C.
goeringii var. serratum, orchid seedlings showed significantly higher
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nitrogen content in both the above- and below-ground parts
compared to P. yunnanensis seedlings (Figure 6). Neither pine
nor orchid seedlings showed significant differences in the
nitrogen content of their aboveground parts. By comparison, C.
goeringii var. serratum and C. goeringii showed significantly higher
nitrogen content of belowground parts than C. faberi did (Figure 6).

3.4 Carbon and nitrogen assimilation and
transfer

Among the three orchids, C. faberi assimilated the highest
amounts of carbon and nitrogen, while C. goeringii var. serratum
fixed the lowest amount of carbon (Figure 7). When P. yunnanensis
was connected with C. goeringii, it fixed the most carbon but
assimilated the least nitrogen. In contrast, it fixed the most
nitrogen when combined with the other two orchids (Figure 7).
Only a unidirectional transfer of carbon and nitrogen was observed
between C. goeringii and P. yunnanensis seedlings. Approximately
1.4 £ 0.1% of carbon photosynthetically fixed by pine seedlings was
transferred to green orchid seedlings, while 0.30 + 0.02% of nitrogen
acquired by orchid leaves was transferred to pine seedlings
(Supplementary Figure S1). In contrast, simultaneous

10.3389/fpls.2025.1620153

bidirectional transfer of carbon and nitrogen was found between
the other two Cymbidium orchids (C. goeringii var. serratum and C.
faberi) and P. yunnanensis seedlings. C. goeringii var. serratum
transferred approximately 2.7 + 0.2% of fixed carbon and 9.0 + 1.3%
of acquired nitrogen to their neighboring pine seedlings, while P.
yunnanensis transferred about 1.4 + 0.2% of gained carbon and 0.25
+ 0.02% of acquired nitrogen to C. goeringii var. serratum seedlings
(Supplementary Figure S1). The amounts of carbon and nitrogen
assimilated by orchid and pine seedlings indicates that the net
transfer of carbon was directed from pine to orchid seedlings, while
the net transfer of nitrogen was channeled from green orchids to
pine seedlings. C. faberi transferred 1.6 + 0.3% of fixed carbon and
0.53 + 0.07% of gained nitrogen to P. yunnanensis seedlings.
Similarly, pine seedlings provided green-leaved C. faberi seedlings
with about 3.0 £ 0.3% of fixed carbon and 0.68 + 0.11% of acquired
nitrogen (Supplementary Figure S1). Thus, a net carbon transfer
was observed from pine to orchid seedlings in the latter association,
but there was (almost) no net transfer of nitrogen between the two
types of seedlings. In all mycorrhizal associations between
Cymbidium and P. yunnanensis seedlings, a fraction of
assimilated carbon and nitrogen was transferred via mycorrhizal
networks to the shoots of the neighboring seedlings (Supplementary
Figure S1). Regardless of whether the pathways were unidirectional

FIGURE 2

Microstructure of the mycorrhizas of Cymbidium goeringii (@), C. goeringii var. serratum (b), C. faberi (c), and Pinus yunnanensis (d) 12 months after
fungal inoculation. The letters in the images indicate root structures: CO, cortex; N, nucleus; P, peloton; VE, velamen; C, needle-shaped crystal; M,
Mantle; HN, Hartig net; PI, pith. Red arrows point to the mantle and Hartig net.
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FIGURE 3 (Continued)

Maximum likelihood and Maximum Parsimony phylogenetic tree showing the relationship between mycorrhizal fungi isolated from Cymbidium
goeringii and related fungi in Ceratobasidiaceae based on the ITS region of nuclear rDNA. Branches are labelled with maximum likelihood bootstrap
higher than 70% and parsimony bootstrap proportions higher than 50% respectively (1,000 replicates). Accession numbers from the DDBJ/EMBL/
GenBank nucleotide database are given for all sequences. CL111KM show fungal DNA isolated from ectomycorrhiza with Pinus yunnanensis.

or bidirectional, carbon transfer was always directed from pine
seedlings to green orchids (Figures 8a-c). In contrast, nitrogen
transfer was more differentiated and depended on orchid species: (i)
unidirectional from orchid (C. goeringii) to pine seedlings
(Figure 8d), (ii) bidirectional but almost no net transfer between
orchid (C. faberi) and pine seedlings (Figure 8e¢), and (iii)
bidirectional with a net transfer from orchid (C. goeringii var.
serratum) to pine seedlings (Figure 8f).

4 Discussion

Despite the ecological importance of mycorrhizal networks, the
mechanisms underlying carbon and nitrogen transfer between
terrestrial orchids and co-occurring plant species remain poorly
understood. In particular, systematic investigations into the
directionality, magnitude, and drivers of these resource exchanges

are still lacking. Our study, employing a simplified tripartite system
and dual "’C and "N labeling, provides direct evidence for
bidirectional C and N transfer via a common Ceratobasidium
fungus between P. yunnanensis seedlings and three Cymbidium
orchids. Crucially, we found that the net flux and directionality of
these transfers were not uniform but depended on the identity of the
orchid species, revealing a previously underappreciated complexity
in the functioning of common mycorrhizal networks.

Our observation that 1.0-3.7% of gained C and 0.20-12.2% of
acquired N were transferred through the common mycorrhizal
network aligns with the range reported in other systems (Simard
and Durall, 2004). While numerous studies suggest transferred
resources may be retained in fungal tissues (Waters and
Borowicz, 1994; Watkins et al.,, 1996; Robinson and Fitter, 1999;
Jakobsen and Hammer, 2015; Karst et al., 2023; Audisio et al., 2024),
our data demonstrate that carbon and nitrogen were transferred
through mycorrhizal networks to another plant in amounts
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FIGURE 4

Dry biomass of orchid and pine seedlings in each treatment 12 months after fungal inoculation. The means + SE of 12 replicates are presented.
Different lowercase and uppercase letters indicate significant difference in carbon assimilation and nitrogen acquisition, respectively, within the
same plant tissues (leaves vs. roots) between orchid and pine seedlings, and “*" indicate significant difference in biomass between orchid and pine
seedlings in the same plant tissue at P = 0.05 level (compared of the aboveground and belowground parts separately). PIY, Pinus yunnanensis;

CYG, Cymbidium goeringii; CGS, C. goeringii var. serratum; CYF, C. faberi.
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FIGURE 5

Carbon content of orchid and pine seedlings in each treatment. 12 months after fungal inoculation. The means + SE of 12 replicates are presented.
Different lowercase and uppercase letters indicate significant difference in carbon assimilation and nitrogen acquisition, respectively, within the
same plant tissues (leaves vs. roots) between orchid and pine seedlings at P = 0.05 level. PIY, Pinus yunnanensis; CYG, Cymbidium goeringii;

CGS, C. goeringii var. serratum; CYF, C. faberi.

comparable to those observed in ectomycorrhizal fungal networks
(Simard et al, 2015). Additionally, a recent study in a temperate
forest showed that a large amount of carbon can be traded between
tall trees though ectomycorrhizal networks (Klein et al., 2016), but
the net carbon exchange remained almost zero. The divergent
transfer patterns among orchid species “unidirectional in C.
goeringii versus bidirectional in C. goeringii var. serratum and C.
faberi” may explain the longstanding controversies and
inconsistencies in the literature regarding common mycorrhizal
network mediated resource exchange (Robinson and Fitter, 1999;
Karst et al., 2023). It suggests that generalized predictions based on
source-sink theory alone are insufficient.

During long-term evolution, the three partners have developed
a tripartite symbiosis in subtropical forests. C. goeringii, which
grows in the forest understory in a light-limited environment,
supposedly obtains carbon from pine trees, while pine trees
obtain nitrogen from orchids via a common mycorrhizal network.
When the tripartite symbiosis was established in the glasshouse,
these species kept the same pattern of resource transfer and
partitioning. In contrast, a bidirectional pathway between two of
the Cymbidium orchid species and P. yunnanensis seedlings cannot
be explained by the sink-source or the biological market theory
(Noé and Hammerstein, 1995; Schwartz and Hoeksema, 1998). The
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mechanisms responsible for such bidirectional exchange need
further investigations for better understanding of the function of
mycorrhizal networks in forests. Nonetheless, the net carbon
transfer in all mycorrhizal associations between the three
Cymbidium orchids and P. yunnanensis seedlings was directed
towards orchids. This could be ascribed to the mixotrophic
character of the green-leaved Cymbidium orchids studied here
(Motomura et al., 2010; Ogura-Tsujita et al., 2012). A previous
study has demonstrated that low light levels lead to stronger
mycoheterotrophy, while higher irradiances successively drive the
orchids towards autotrophy (Preiss et al., 2010). In this study, the
orchids were planted under high light levels in a glasshouse, but
they still exhibited strong mycoheterotrophy. This indicates that the
three Cymbidium orchid taxa exhibit strong, inherent mixotrophic
traits compared to other orchid species engaged in tripartite
symbioses. Another explanation is that their legacy of growing in
the forest understory, in a light-limited environment could make
them profit from photosynthetically fixed carbon originating from
the coexisting pine trees, even under high light conditions.
However, this needs further investigations.

The species-specific patterns are likely governed by a
combination of factors. The fungus, isolated from C. goeringii,
may have established a more specialized, efficient partnership
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Nitrogen content of orchid and pine seedlings in each treatment 12 months after fungal inoculation. The means + SE of 12 replicates are presented.
Different lowercase and uppercase letters indicate significant difference in carbon assimilation and nitrogen acquisition, respectively, within the same
plant tissues (leaves vs. roots) between orchid and pine at P = 0.05 level (compared of the belowground parts separately). PIY, Pinus yunnanensis;
CYG, Cymbidium goeringii; CGS, C. goeringii var. serratum; CYF, C. faberi.
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FIGURE 7

The amount of carbon fixed and nitrogen assimilated by plants. The data show only *C fixation in **CO,-labelled plants and **N assimilation in foliar
15N-labelled plants, not the receiving plants in the microcosms. The means + SE of 4 replicates are presented. Different lowercase and uppercase
letters indicate significant difference in carbon assimilation and nitrogen acquisition, respectively, between orchid and pine seedlings at P = 0.05
level (compared of the aboveground and belowground parts separately). PIY, Pinus yunnanensis; CYG, Cymbidium goeringii; CGS, C. goeringii var.
serratum; CYF, C. faberi.
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FIGURE 8

Patterns of carbon and nitrogen transfers between three terrestrial Cymbidium orchid taxa and Pinus yunnanensis seedlings. (a-c) Carbon transfer in
the systems with C. goeringii (a), C. goeringii var. serratum (b), and C. faberi (c). Red arrows indicate the direction of net carbon transfer. (d-f)
Nitrogen transfer in the systems with C. goeringii (d), C. goeringii var. serratum (e), and C. faberi (f). Blue arrows indicate the direction of net
nitrogen transfer. The common mycorrhizal fungus Ceratobasidium sp. is represented in the center of each diagram.

with its original host, optimizing a unidirectional exchange (i.e.
carbon transfer from pine to orchid and nitrogen transfer from
orchid to pine). In contrast, its interaction with the other orchids
might reflect a more generalist, balanced mutualism allowing for
bidirectional flow. Furthermore, the strong inherent mixotrophy of
these Cymbidium orchids (Motomura et al., 2010; Ogura-Tsujita
etal, 2012), even under high light conditions, consistently created a
carbon sink, explaining the universal net C transfer from pine to
orchids. The differential N transfer (net, no net, or unidirectional)
highlights how the nitrogen economy and demand can vary
significantly even among closely related taxa, modulating the net
outcome of the tripartite exchange. These carbon and nitrogen
transfers between orchid and pine seedlings have confirmed the
existence of several ectomycorrhizal pathways as predicted by
Simard and Durall (2004), although a unidirectional pathway was
not found for C. goeringii var. serratum and C. faberi. Such results
indicate that the identity of orchid species that form mycorrhizal
associations with fungi could modify the function of the
mycorrhizal network in terms of resource transfer between the
orchid and neighboring plants. This might well be the reason why
so many observations on resource transfers in mycorrhizal
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networks are inconsistent or even contradictory (Jakobsen and
Hammer, 2015; Simard et al., 2015).

These findings imply that common mycorrhizal networks are
not merely passive pipelines but dynamic interfaces where the
identity of the partner plants can fundamentally alter resource
flow patterns. This plasticity could be a key mechanism enabling
the coexistence of mixotrophic orchids in forest understories,
allowing them to fine-tune their resource acquisition strategies.
The gross simplification of the real-world complexity using two
plant species linked by one fungal partner can provide highly
valuable information regarding resource transfers between
plants via mycorrhizal networks (Whitfield, 2007). Future
research should move beyond binary plant-fungal systems to
incorporate more complex networks involving multiple plant
and fungal species to better mimic natural conditions and
unravel the intricate web of belowground interactions. In
conclusion, our study demonstrates that common mycorrhizal
networks can indeed facilitate simultaneous bidirectional
resource transfer, the magnitude and net outcome of which
are controlled by the specific biological identity of the
partners involved.
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