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from plot-level satellite
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Accurately predicting yield during the growing season enables improved crop
management and better resource allocation for both breeders and growers.
Existing yield prediction models for an entire field or individual plots are based on
satellite-derived vegetation indices (VIs) and widely used machine learning-
based feature extraction models, including principal component analysis (PCA)
and autoencoders (AE). Here, we significantly enhance pre-harvest yield
prediction at plot-scale using Compositional Autoencoders (CAE) — a deep-
learning-based feature extraction approach designed to disentangle genotype
(G) and environment (E) features — on high-resolution, plot-level satellite
imagery. Our approach uses a dataset of approximately 4,000 satellite images
collected from replicated plots of 84 hybrid maize varieties grown at five distinct
locations across the U.S. Corn Belt. By deploying the CAE model, we improve the
separation of genotype and environment effects, enabling more accurate
incorporation of genotype-by-environment (GxE) interactions for downstream
prediction tasks. Results show that the CAE-based features improve early-stage
yield predictions by up to 10% compared to traditional autoencoder-based
features and outperform vegetation indices (VIs) by 9% across various growth
stages. The CAE model also excels in separating environmental factors, achieving
a high silhouette score of 0.919, indicating effective clustering of environmental
features. Moreover, the CAE consistently outperforms standard models in unseen
environments and unseen genotypes yield predictions, demonstrating strong
generalizability. This study demonstrates the value of disentangling G and E
effects for providing more accurate and early yield predictions that support
informed decision-making in precision agriculture and plant breeding.
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representation learning, genotype X environment interactions, crop yield prediction,
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1 Introduction

Maize (Zea mays L.) is one of the world’s most important cereal
crops, with nearly one billion tons of maize produced on about 200
million planted hectares annually (Erenstein et al, 2022). The
productivity of maize is highly variable, largely due to differences
in environmental conditions (Jagermeyr et al., 2021; Yang et al,
2024), crop management practices (Lobell et al., 2014; Ort and
Long, 2014; Lobell et al., 2020), and genetic factors (Gamble, 1962;
Troyer, 1990; Butron et al., 2012; Nolan and Santos, 2012). These
three components interact in complex ways, complicating the task
of accurately predicting yields for specific hybrids under particular
conditions and crop management strategies.

Yield forecasting is crucial for multiple stakeholders in
agriculture. Farmers benefit from reliable early predictions, as
these help optimize management practices, maximizing the use of
limited resources like water and fertilizers. Meanwhile, breeders
pursue stable genotypes that perform well in diverse environments,
which requires extensive testing of thousands of genotypes in
dozens of locations to identify those most suitable for target
regions (Cooper et al, 2014; Li et al, 2024; Tarekegne et al,
2024). Thus, improving yield prediction systems directly supports
agricultural resilience and the long-term stability of food systems.

Remote sensing technologies have been extensively used to
tackle the challenges of yield prediction. Historically, low-
resolution field- or county-level satellite imagery has been
extensively used for predictive plant phenotyping, including yield
estimation for dry beans, rice, maize, wheat, soybean (Hamar et al.,
1996; Yang et al., 2009; Wang et al., 2010; Noureldin et al., 2013;
Johnson et al., 2016b; Jin et al., 2017; Schwalbert et al., 2018; Kamir
et al., 2020; Schwalbert R. et al., 2020; Schwalbert RA. et al., 2020;
Shendryk et al.,, 2021; Roznik et al., 2022; Joshi et al., 2023). This
imagery allows researchers to gain a broader perspective on crop
performance across large regions. UAVs (unmanned aerial vehicles)
have emerged as a complementary tool, offering plot-level high-
resolution data (Lopez-Granados et al., 2016; Kanning et al., 2018;
Han et al., 2019; Du et al.,, 2022), yet satellite imagery retains certain
advantages, particularly for large-scale studies. It allows data
collection over extensive areas with considerably less logistical
effort, while also delivering preprocessed data and reducing user
workload. This makes it the preferred choice for multi-location
analyses. Despite this benefit, the utility of satellite data for plot-
level prediction is often hindered by lower spatial resolution, which
requires specialized acquisition strategies to obtain more detailed
imagery (Phang et al., 2023). High-resolution satellite imagery is
becoming available, although applications still face obstacles such as
restricted satellite availability, limited onboard storage capacity, and
cloud cover (over the target area), making high-resolution data

Abbreviations: CAE, Compositional autoencoder; VIs, vegetation indices; AE,
Vanilla autoencoder; PC, Principal component; RMSE, Root mean square error;
zg, genotype component in the latent space generated by the CAE; ze, macro-
environment component in the latent space generated by the CAE; zp, micro-

environment component in the latent space generated by the CAE.
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acquisition challenging. Despite the challenges, the advantages of
collecting high-resolution satellite data instead of UAV data for
breeding applications may outweigh the limitations. Evaluating the
large numbers of varieties (called hybrids) across many different
environments becomes easier with satellite data. The most
important and most common metric of evaluating hybrids is
yield. The ability to forecast yield earlier in the growing season
enhances breeding decisions, thus accelerating the selection process.
Lowering the cost of collecting trait data from more plots in diverse
locations allows for more extensive evaluations. This increases the
accuracy of genetic yield potential estimates and accelerates genetic
gain per breeding cycle.

Over time, a variety of methods have been developed for yield
forecasting using satellite data. Many studies combine satellite data
with crop growth model estimations (de Wit and van Diepen, 2008;
Jeong et al., 2018; Zhao et al., 2020; Zare et al., 2022; Luo et al.,
2023), incorporate additional environmental factors like weather
conditions (Bai et al., 2010; Schwalbert R. et al., 2020; Schwalbert
RA. et al., 2020; Nieto et al., 2021; Lang et al., 2022), soil data
(Broms et al.,, 2023; Mahalakshmi et al., 2025), and terrain
information (Li et al., 2022; Sahbeni et al., 2023). Machine
learning has been widely applied, using handcrafted features
derived from raw images, including histogram-based
representation of time-series data (You et al, 2017), and
vegetation indices, particularly the Normalized Difference
Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI)
(Yang et al.,, 2006; Yang et al., 2013; Johnson et al., 2016b; Peralta
et al., 2016; Schwalbert et al., 2018; Cai et al., 2019; Mateo-Sanchis
et al., 2019; Kamir et al., 2020; Khalil and Abdullaev, 2021; Meroni
et al, 2021). While these indices have been effective, they are
inherently limited by the scope of human expertise, restricting the
ability to capture the full complexity of crop conditions (Feldmann
et al,, 2021).

Representation learning has emerged as a promising alternative
approach for overcoming these limitations (Gage et al., 2019;
Ubbens et al., 2020; Tross et al., 2023). Conventionally, various
machine learning techniques, including Principal Component
Analysis (PCA), Linear Discriminant Analysis (LDA), t-
distributed Stochastic Neighbor Embedding (t-SNE), and
autoencoders, have been applied to derive ‘latent representations’
from high-dimensional datasets (Zhong et al., 2016; Kopf and
Claassen, 2021; Alexander et al., 2022; Gomari et al., 2022;
Iwasaki et al., 2023; Song et al., 2023). Autoencoders stand out for
their ability to identify non-linear patterns. Through the encoding
of data into a reduced latent space followed by reconstruction of the
input, these models generate a concise and meaningful
representation that plays a key role in phenotyping (Gage et al.,
2019; Ubbens et al., 2020; Tross et al., 2023). Despite their value,
representations produced by autoencoders commonly struggle to
differentiate between genetic and environmental effects, creating
‘entangled’ latent spaces in which specific plant traits—like ‘Tleaf
number,” ‘height,” and ‘chlorophyll concentration’—are blended
rather than distinctly isolated. Separating these traits in the latent
space could enhance the interpretability of the resulting latent
factors. Unlike traditional feature engineering, representation
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learning can automatically extract complex, high-dimensional
features from raw input data without predefined formulas,
potentially providing a richer understanding of crop traits and
often outperforming traditional indices (Okada et al., 2024). This
ability makes representation learning well-suited for capturing
characteristics that influence crop performance. Recent studies
have applied representation learning techniques to satellite data
for various agricultural applications, such as classifying crop traits,
mapping floods, and monitoring land use (Dumeur et al., 2024;
Goyal et al., 2024; Nakayama and Su, 2024). While these methods
have demonstrated success in large-scale yield estimation, they have
yet to be broadly adopted for localized, plot-level predictions, where
high precision is crucial for actionable insights.

Additionally, most existing approaches have not adequately
addressed the complex interactions between genotype (G) and
environment (E)— commonly referred to as GxE interactions —
in their forecasting models. Incorporating GxE interactions is
particularly important, as these interactions are a major source of
variability in crop performance and the primary reason that the top-
performing hybrids in one environment will often rank lower in
relative performance in a second environment (Kusmec et al.,
2018). A more nuanced understanding of how specific genotypes
respond to different environmental conditions could significantly
enhance prediction precision, especially at smaller spatial scales
(e.g., plot-level).

In our recent work, we introduced a model, the Compositional
Autoencoder (CAE), specifically designed to address these
challenges (Powadi et al., 2024). The CAE integrates GxE
interactions into the yield prediction framework, allowing for a
more comprehensive representation of high-dimensional
hyperspectral ground-based sensor data as GxE components
(Figure 1). By capturing both genetic and environmental
influences, the CAE outperformed traditional methods,
demonstrating its potential as a valuable tool for improving the
accuracy of yield predictions.

Building on this foundation, the present study aims to extend
the CAE framework to satellite data at the plot level. This extension
enables more precise yield forecasting and allows for deeper insights
into the interactions between genetic and environmental factors.
Our objectives in this work are to (a) evaluate CAE performance on
disentangling genotype and environment features from satellite

10.3389/fpls.2025.1617831

imagery collected at the plot scale to better understand their
contributions to yield (Figure 2), and (b) to improve yield
prediction accuracy by leveraging these disentangled features, as
evidenced by the CAE’s superior performance over other
representations, including traditional vegetation indices.

2 Materials and methods
2.1 Satellite images and yield data

2.1.1 Locations and plants

Maize (Zea mays L.) field experiments were conducted at five
locations: Scottsbluff, NE (41.85°N, -103.70°W), Lincoln, NE
(40.86°N, -96.61°W), Missouri Valley, IA (41.67°N, -95.94°W),
Ames, TA (42.01°N, -93.73°W), and Crawfordsville, IA (41.19°N,
-91.48°W) in 2022. A map of these locations is provided in the
Supplementary Figure S1. Depending on local weather conditions,
planting occurred between April 29 and May 23, 2022. This work
utilizes 84 hybrid genotypes planted in two replicated plots at each
of these five locations.

The maize plants were cultivated under rain-fed conditions at
four locations: Lincoln, Missouri Valley, Ames, and Crawfordsville.
In contrast, the Scottsbluff site was irrigated, receiving a total of 16.9
inches (429.26 mm) of water over the growing season. All locations
except Missouri Valley had one rate of nitrogen fertilization
treatment of 150 lbs/acre. Nitrogen fertilization treatment for
Missouri Valley was 175 lbs/acre. More details on the
experimental design and data collection are available in Shresta
etal (Shrestha et al., 2025). For one of the evaluation experiments of
the CAE (experiment 3 in section 3.2), we additionally used satellite
data of 45 common hybrids from Ames, Lincoln, and Missouri
Valley from 2023.

2.1.2 Satellite imagery and plot extraction

For this study, we utilized the Pleiades Neo satellite
constellation to capture images at four different time points (TP),
of which two were early in the season (July), referred to as TP1 and
TP2, capturing the late vegetative stage and early flowering stages.
Two others were late in the season (September), referred to as TP3
and TP4, capturing mature and harvest-ready plants. The growth-

latent . e
Trait prediction
Autoencoder representation o Poor
(Yield, Days to [
(complete but Poll performance
sensor ollen)
entangled)
Compositional - _ p—
Autoencoder | Structured Trait prediction Significantly
| dimensional latent (Yield, Days to | s— better
sensor (Ours) representation Pollen) performance
~——

FIGURE 1

Overview of trait prediction from high-dimensional plant-level hyperspectral sensor data workflow and performance of Compositional Autoencoder
(CAE) representation with other representation learning as shown in (Powadi et al., 2024).
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FIGURE 2

Disentangling genotype and environmental effects from plot-level multispectral canopy reflectance data, collected via satellite at a 30 cm resolution,
across multiple environments and genotypes using a Compositional Autoencoder (CAE) framework. The figure illustrates data input from various
locations (Ames, Crawfordsville (Craw), Missouri Valley (MOValley), Lincoln, and Scottsbluff (Scotts)), each with a specific genotype (Hybrid))
represented in its unique environmental context. The CAE (Compositional Autoencoder) framework converts this high-resolution data to separate
genotype-specific and environment-specific features. By isolating these components, the model aims to improve the accuracy of yield prediction by

capturing the independent contributions of both genotype and environment.

stage timeline for the maize plants was recorded for the plants
grown in Lincoln is shown in the Supplementary Figure S2. Table 1
provides the specifications of the Pleiades Neo satellite constellation
used in our study. The six bands in the satellite multispectral images
cover the following spectral ranges: Red (620-690 nm), Green (530-
590 nm), Blue (450-520 nm), Near-infrared (NIR, 770-880 nm),
Red Edge (700-750 nm), Deep Blue (400-450 nm).

TABLE 1 Satellite specifications for the Pléiades Neo satellite
constellation used in our study.

Parameter Description

Sun-synchronous, 10:30 a.m. descending node, 620

Orbit
o km altitude

Number of Satellites 2 identical satellites in constellation

Panchromatic (450-800 nm)

Multispectral:
e Red (620-690 nm)
Sensor Bands e Green (530-590 nm)
o Blue (450-520 nm)
o Near-infrared (770-880 nm)
o Red Edge (700-750 nm)
o Deep Blue (400-450 nm)

Sensor Resolution EO c;n) (panchromatic band), 1.2 m (multi-spectral
ands

Dynamic Range 12-bits per pixel

Swath Width At nadir: 14 km

.. Daily anywhere (30° off-nadir) or twice daily
F
Revisit Frequency anywhere (45° off-nadir)

Acquisition Capacity Up to 2 million km? per day

Frontiers in Plant Science

In addition to multispectral images, a single-band
panchromatic raster file with a wide bandwidth of approximately
450-800 nm was generated. Each image covered a total area of 100
km x 100 km per location, encompassing the entire experimental
field at each location. The final 16-bit GeoTIFF satellite images with
30-cm resolution were generated after panchromatic sharpening
(pansharpening), manual orthorectification, and atmospheric
correction by the service provider prior to the delivery of
imagery. The plot-level images were extracted from the satellite
data as described in our previous paper (Shrestha et al., 2025). The
extracted plot images are of the shape 11 x 22 x 6 (Width x Height x
Channels) pixels. Figure 3 shows samples of satellite image data for
the 4 time points for all the locations we capture. The plots measure
approximately 3.3 meters by 6.6 meters (shown in Figure 3 on the
TP4 sample for the Mo Valley), covering an area of 21.78 square
meters. With the Pléiades Neo satellite’s native spatial resolution of
30 cm (0.3 meters) per pixel, each pixel represents a ground area of
0.09 square meters. A single plot would thus be sampled by
approximately 11 pixels along the width and 22 pixels along the
length, for a total of about 242 pixels. This limited pixel count per
plot results in the expected pixelated appearance in the imagery, as
fine details smaller than the resolution cannot be resolved. The plot
boundaries and extraction were performed using the ArcPy Jupyter
Notebook environment implemented in ArcGIS Pro V3.2.0.

2.1.3 Preprocessing of plot images

The preprocessing of the plot images was divided into two
stages: outlier removal and normalization. For each spectral
channel, outliers were removed by clipping values outside 3
standard deviations from the mean. Figure 4 illustrates the
distribution of pixel values across channels after outlier removal.

frontiersin.org
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FIGURE 3

Satellite data samples from an arbitrary plot at each location are shown across four timepoints (TP), with the first two collected early in the growing
season (July) and the last two collected toward the end of the season (September). Only the R, G, and B channels are visualized. Each plot is 11 by
22 pixels, representing 3.3 meters by 6.6 meters (as shown in TP4, MOValley). The distinctive variations among images at each time point are
primarily due to differences in planting dates, which ranged from April 29 to May 23, 2022, depending on local weather conditions. Notably, images
from Scottsbluff exhibit visible differences, as they were captured from a field planted later than the others.

The 6-channel data were then normalized on a per-channel basis
using min-max scaling. After normalization, each plot image was
flattened into a 1 x 1452 vector before being fed into the
neural network.

2.1.4 Yield data

Yield data is recorded at the time of the harvest in the field.
Plants were mechanically harvested from the two middle rows of
each four-row plot using a plot combine. At the time of harvesting,
the combine recorded percent moisture content, on a fresh weight
basis, and the fresh weight of the grain in pounds. To compare
across locations, yield in bushels per acre at 15.5% moisture on a
fresh weight basis and 56 pounds per bushel was calculated based on
these values and the total area occupied by the middle two rows of
each plot at each location.

The yield data were recorded for these 84 hybrids, which were
used for evaluating the predictive capabilities of the CAE as well as
the degree of disentanglement of environmental features. Figure 5
shows the yield distribution for different locations. As can be
expected, genotypes respond differently to different environments.
Clearly, Crawfordsville shows the highest yield overall, while
Lincoln shows the lowest yield distribution. While different yields
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in different environments are expected due to the differences in soil,
weather, and elevation conditions, Lincoln produced the lowest
yield due to intense weed pressure. A deeper analysis of these yields
and experiments can be found in the previous work (Shrestha
et al.,, 2025).

2.2 Autoencoder

An autoencoder is a type of neural network designed for
representation learning, enabling the extraction of efficient and
compressed representations of input data. It consists of two main
components: an encoder and a decoder. The encoder compresses
the input data into a latent representation, while the decoder aims to
reconstruct the original input from this latent space. Through this
process, the autoencoder effectively captures the essential
characteristics of the input data, thereby learning meaningful
representations. Figure 6 shows our implementation, where the
encoder and decoder are built using multiple fully connected layers,
each utilizing the SeLU activation function. The encoder
compresses the 6-channel satellite input data into a lower-
dimensional latent space, which retains key features of the input

frontiersin.org
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FIGURE 4

Pixel value distributions across spectral channels. Histograms show the frequency of pixel values for six satellite image channels: Red (620-690 nm),
Green (530-590 nm), Blue (450-520 nm), Near-Infrared (700-880 nm), Red Edge (700-750 nm), and Deep Blue (400-450 nm). Although the
image data is 16-bit (range: 0-65,536), most pixel values fall within 0-5000, indicating a limited dynamic range in practice.

while being highly informative. The decoder then reconstructs the
original input from this compressed latent representation.
Tables 2a, b provide detailed information about the specific layers
used in the encoder and decoder. This encoder-decoder architecture
forms a latent space that is both compact and representative of the
input data, providing added benefits of noise reduction and feature
enhancement. This “vanilla autoencoder” serves as our baseline
representation learning model.

2.3 Compositional autoencoder

The Compositional Autoencoder (CAE) builds upon the
standard autoencoder to disentangle the latent space into multiple
components that reflect various influential factors in the data. By
learning structured representations, the CAE captures general,
environmental, and specific attributes, making it significantly
more informative than a conventional autoencoder. The CAE is
composed of three primary components: an encoder, a fusion block,
and a decoder.

2.3.1 Architecture overview

The CAE architecture retains the traditional encoder-decoder
structure, with the addition of a fusion block to combine and
disentangle encoded data from multiple images. Satellite data of
the same genotype across all the locations are grouped together in
84 groups (84 being the number of genotypes). Each group will have
5 images (for 5 locations), which will be sequentially passed to the
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encoder, resulting in a separate latent representation for each image
in the group. The encoder used here is identical to the one
implemented in the standard autoencoder, ensuring consistency
in feature extraction across both approaches.

The latent features derived from these images are then
aggregated using a fusion layer. This fusion layer operates by
combining the encoded information, resulting in a unified latent
vector that integrates features from all input images. A detailed
description of this fusion mechanism is provided in Table 3.

Once fused, the latent representation is divided into three distinct
components. The general features capture shared characteristics
present in all images. The environmental features represent
attributes specific to a given environment, shared across images
from similar conditions. Finally, specific features represent unique
aspects that differ across each image, such as particular objects or
anomalies. This structured separation ensures that the CAE can
provide a richer, more nuanced representation of the input data.

After this separation, the decoder reconstructs each original
image by reassembling the general, environmental, and specific
features. The decoder, identical to that used in the basic
autoencoder, leverages the latent space to reconstruct the input,
thereby enabling an in-depth understanding of the underlying
factors driving variations in the satellite data. Figure 7 presents an
overview of the CAE architecture, showing how different
components contribute to reconstructing the input images. The
detailed structure of the fusion layer is provided in Table 3, and
Table 4 demonstrates the disentangled latent representation for
each individual image.
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FIGURE 5

Yield distribution for the 84 hybrids across different environments (locations). The plants were grown under rain-fed conditions in Lincoln, Missouri
Valley, Ames, and Crawfordsville. The experimental field in Scottsbluff was irrigated.

2.3.2 Loss function

To effectively train the CAE, a two-part loss function is used,
consisting of a reconstruction loss and a correlation loss.

The reconstruction loss, computed as the mean squared error
(MSE), ensures that the network can accurately reconstruct the
original satellite images from the learned latent space. This loss
encourages the CAE to capture the most relevant features for high-
quality reconstruction, ensuring that the latent space is both

The correlation loss is applied to maintain the independence of
the disentangled components — general, environmental, and
specific features — within the latent space. This loss penalizes any
correlation between different parts of the latent space, thus
enforcing their distinctiveness and improving the interpretability
of the model. The correlation loss is expressed as:

N N
Correlation Loss = EE}CorrMatij‘ -1

(1)

informative and efficient. i=1 j=i
Latent —
E,P. Decoder
i Space iy

FIGURE 6

An autoencoder processes a single image (for example, E1P1 (Environment 1 - Replicate 1)) through an encoder to compress it into a lower-
dimensional latent space, capturing its essential features. The decoder then reconstructs the input from this compressed representation.
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TABLE 2 Configuration details for encoder and decoder.

Layer type Dimensions Activation
(a) Encoder Configuration

Linear input shape — 2200 SELU
Linear 2200 — 2000 SELU
Linear 2000 — 1000 SELU
Linear 1000 — zg + ze + zp None
(b) Decoder Configuration

Linear zg + ze + zp — 2024 SELU
Linear 2024 — 3000 SELU
Linear 3000 — 2200 SELU
Linear 2200 — input_shape Sigmoid

input shape = 1 x 1452, zg = dimensions for genotype features, ze = dimensions for macro-
environment features, zp = dimensions for microenvironment features.

In this equation, CorrMat;; represents the correlation coefficient
between the latent space dimensions i and j, and N denotes the size of
the square correlation matrix. The term Ij; refers to the identity matrix,
which ensures that the diagonal elements (where i = j) do not contribute
to the loss, thus emphasizing only the off-diagonal correlations.

The combination of reconstruction and correlation loss allows
CAE to learn latent representations that are informative, distinct,
and suitable for downstream tasks, such as yield prediction and
analysis of genotype-by-environment interactions. The correlation
coefficient used here is the Pearson correlation coefficient (r), which
measures the linear relationship between two variables. It is defined
by the following equation:

= Y i1pi = p)(k; — k) 2)

V- P S kR

In this equation (Equation 2), n represents the number of data
points. p; and k; are elements from different dimensions of the latent
space. p and k are the means of the p™ and k™ dimensions,
respectively. Our objective is to achieve zero correlation between
the latent space features that represent general, environmental, and
specific variations. By enforcing this condition through the
correlation loss function (Equation 1), the model ensures that
each disentangled component captures its respective factor
independently, leading to a more interpretable and effective
representation of the underlying data.

TABLE 3 Fusion layer details.

Layer type Dimensions Activation

Linear N(zg + ze + zp) — zg + E(ze) + N(zp) None

‘N’ = number of replicates per image, ‘E’ = number of environments, ‘zg’ = dimensions
allocated to capture general features, ‘ze’ = dimensions allocated to capture environmental
features, zp’ = dimensions allocated to specific features.
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3 Results and discussion
3.1 Environment disentanglement

We first assess the degree of disentanglement achieved by the
Compositional Autoencoder (CAE) across different environments
in our dataset.

Our dataset comprises information from five distinct locations.
To establish a baseline, we first analyzed how well the raw satellite
data differentiates among these locations. We applied Principal
Component Analysis (PCA) to the raw data, selecting the first three
principal components. These components were then visualized in a
3D plot, with data points color-coded by location. To quantify the
distinctness of the resulting clusters, we calculated their silhouette
scores. The silhouette score measures how well data points in a
cluster are grouped by comparing the average intra-cluster distance
(how close points are within the same cluster) to the nearest inter-
cluster distance (how far they are from points in the nearest cluster).
Scores range from -1 to 1, where values close to 1 indicate well-
separated, compact clusters, and values near or below 0 suggest
overlapping or poorly defined clusters. Figure 8A illustrates this
visualization of the raw data. Notably, the clusters representing
different locations show significant overlap, resulting in a low
silhouette score of only 0.293. This indicates that the raw satellite
data alone does not effectively distinguish among environments.

To evaluate the environmental disentanglement achieved by the
CAE, we analyzed its latent space. The CAE’s latent space is divided
into ‘genotype’, ‘macro-environment’, and ‘micro-environment’
components. For this analysis, we consider the ‘macro-
environment’ component (and average over the ‘genotype’ and
‘micro-environment’ components) and perform the same clustering
and visualization process as with the raw data. Figure 8B displays
the clusters for all five locations generated by the CAE. Strikingly,
the silhouette score for these clusters is 0.919, a substantial
improvement over the raw data. This high score indicates that the
CAE has successfully disentangled macroenvironmental factors,
creating much more distinct clusters for each location.

We also investigated the CAE’s ability to disentangle micro-
environmental factors. As shown in Figure 9, the CAE demonstrates
considerable success in this aspect as well, further highlighting its
robustness in environmental disentanglement. These results suggest
the CAE’s potential to separate environmental factors detected via
satellite imagery, which could lead to a more nuanced
understanding of how different environments may contribute to
plant characteristics and performance.

3.2 Performance on yield prediction

We next conducted multiple experiments to assess the
performance of the latent vectors constructed by the
Compositional Autoencoder (CAE) in predicting maize yield.
Each experiment consists of using the latent representation as
input to train a machine-learning model that predicts maize yield
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FIGURE 7

Replicates of the same genotype are grouped together and fed into the CAE during the forward pass. E;P; represents environment replicate 1. All
these replicates are fed into the encoder sequentially to generate latents as shown above. These latent spaces are then fused together using a fusion
layer. We enforce the partitions in this fusion vector (Genotype (Zg), macroenvironment response (Ze), and micro-environment-response (Zp)). Each
macro-environment and micro-environment will have its own partition. Next, Partitions are picked for each replicate and unique representation for
each replicate is obtained. These latent representations are then sequentially given to the decoder to reconstruct the input.

in the plots. The latent configuration used for all these downstream
predictions shown in this section is ‘6-6-1" (zg-ze-zp) which was
selected based on the sensitivity analysis provided in Supplementary
Table S2. For yield prediction, we used the XGBoost model, which
consistently outperformed other machine learning algorithms in
our preliminary evaluation. Comparative results with classical
models such as PLSR, Ridge regression, and Random Forest are
provided in Supplementary Tables S3 and S4. The hyperparameter
settings used for each model configuration are summarized in

TABLE 4 Disentangled latent-space representation of each image.

Supplementary Tables S2. The three experiments were designed
to evaluate model performance across different generalization
scenarios. The corresponding data splits and evaluation protocols
are described in Supplementary Section 6. In experiment 1, we
compare the predictive capability of the CAE latent vectors against
two baselines: latent vectors generated by a vanilla autoencoder
(AE) and vegetation indices (VIs). We perform cross-validation
across genotypes. In experiment 2, we evaluate the ability of the
CAE-based latent vectors to rank order genotypes according to their

Image Representation

E,\P, {(Zg) genotype features, (Ze) macro-env. features [1], (Zp) micro-env. features [1]}
E,\P, {(Zg) genotype features, (Ze) macro-env. features [1], (Zp) micro-env. features [2]}
E,P, {(Zg) genotype features, (Ze) macro-env. features [2], (Zp) micro-env. features [3]}
E,P, {(Zg) genotype features, (Ze) macro-env. features [2], (Zp) micro-env. features [4]}
E;P, {(Zg) genotype features, (Ze) macro-env. features [3], (Zp) micro-env. features [5]}
EsP, {(Zg) genotype features, (Ze) macro-env. features [3], (Zp) micro-env. features [6]}
E.P, {(Zg) genotype features, (Ze) macro-env. features [4], (Zp) micro-env. features [7]}
E,P, {(Zg) genotype features, (Ze) macro-env. features [4], (Zp) micro-env. features [8]}
EsP, {(Zg) genotype features, (Ze) macro-env. features [5], (Zp) micro-env. features [9]}
EsP, {(Zg) genotype features, (Ze) macro-env. features [5], (Zp) micro-env. features [10]}
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FIGURE 8

Comparison of Raw Data Clusters and Macro Environment Disentanglement. We applied PCA on the raw reflectance data and latent features
generated by the CAE (we averaged the genotype and micro-environment components), and color-coded the features from different locations

and calculated the silhouette score to determine how well all of the clusters are separated. (A) Macro environment clusters visualized for raw data.
PC 1, PC 2, and PC 3 are the top principal components 1, 2, and 3, respectively. Cumulative variance explained = 0.695. Variance explained: PC 1 =
0.4, PC 2 = 0.24, PC = 0.04), (B) Macro Environment Disentanglement Visualized. Cumulative variance explained = 0.94. Variance explained: PC 1 =

0.474, PC 2 = 0.268, PC 3 = 0.201.

predicted yield. Early and accurate rank ordering is a critical
functionality in plant breeding, where early and accurate ranking
can guide selection decisions. Finally, in experiment 3, we evaluate
the performance of the latent CAE representation to predict the
yield for a set of genotypes in an unseen environment (using data
collected in Ames in the next year, 2023).
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FIGURE 9

Micro environment disentanglement visualized. We applied PCA on
latent features generated by the CAE and color-coded the features
from different locations and calculated the silhouette score to
determine how well all of the clusters are separated. Micro-
environment refers to the local environment around a plot. Lighter
and darker shades of the same color represent the
microenvironments around 2 replicates grown in the same macro-
environment. PC 1, PC 2, and PC 3 are the top principal
components 1, 2, and 3, respectively.
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3.2.1 Experiment 1: CAE vs AE vs Vs yield
prediction comparison, with 5-fold
crossvalidation

We compared the yield prediction performance of the CAE
latent vectors with a vanilla autoencoder (AE) latent vectors and
vegetation indices (VIs) using 5-fold cross-validation across four
key time points. Table 5 presents a summary of the results,

TABLE 5 Prediction performance of CAE (compositional autoencoder),
AE (vanilla autoencoder), and Vls (vegetation indices) across timepoints
1, 2, 3, and 4, covering both early growth stages and near-harvest stages
of the growing season.

Model Timepoint R2 RMSE (tons/ha)
CAE 1 0.79 (0.05) 1.36 (0.16)
AE 1 0.67 (0.04) 1.69 (0.13)
Vis 1 0.75 (0.03) 1.48 (0.12)
CAE 2 0.79 (0.043) 134 (0.14)
AE 2 0.72 (0.057) 156 (0.16)
Vs 2 0.80 (0.04) 1.30 (0.15)
CAE 3 0.77 (0.07) 1.41 (0.14)
AE 3 027 (0.1) 2,51 (0.21)
Vs 3 0.77 (0.07) 1.41 (0.20)
CAE 4 0.76 (0.04) 1.45 (0.14)
AE 4 0.45 (0.06) 151 (0.12)
Vs 4 0.70 (0.07) 141 (0.18)

Results are reported for yield prediction. Each entry shows the mean value, with the standard
deviation from 5-fold cross-validation in parentheses. Bold values indicate the best
performance for a given timepoint. R* is a unitless indicator of model fit, whereas RMSE is
expressed in yield units (tons/ha) and represents the absolute prediction error.
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FIGURE 10

Visualization of the performance of XgBoost model when using vegetation indices (A), vanilla autoencoder generated latent features (B), and

compositional autoencoder generated latent features (C) at timepoint 1.

including R? values and Root Mean Square Error (RMSE) in tons
per hectare, which offer robust estimates of model performance
across different timepoints. A visualization of these fits is given in
Figure 10 with absolute values of the yield (tons/ha) for timepoint 1
(TP1). As the k-folds were grouped based on genotypes, the results
here reflect the accuracy with which the performance of unseen
genotypes could be predicted in observed environments.

The results clearly demonstrate that the CAE latent vector based
predictor consistently outperforms the AE latent vector based
predictor across all growth stages. Notably, the CAE latent vector
based predictor shows higher R* values and lower RMSE compared to
the AE latent vector based predictor at every time point. The
performance difference is particularly evident at time point 3, where
the CAE latent vector based model maintains a relatively strong
performance (R® of 0.766) while the AE’s performance drops
significantly (R of 0.27). Overall, the CAE latent vector based
predictor demonstrates more consistent and robust performance
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throughout the growing season. Additionally, when compared with
a model that uses vegetation indices (VIs) (Table 5), the CAE latent
vector based predictor consistently outperforms them at timepoints 1
and 4 and shows comparable performance at time points 2 and 3. This
comparable performance during timepoint 2 can be attributed to the
fact that plant growth at this stage is near its peak, which correlates
well with final yield. The vegetation indices used in this paper are given
in the Table 6. Their description is provided in the Supplementary
Materials. The CAE latent vector based predictor demonstrates
particular strength in early-season predictions, with improvements
(over AE) of approximately 11% and 7% in R? values for the first two
time points, respectively. Moreover, the CAE latent vector based
predictor maintains more consistent performance across all time
points, illustrating its robustness throughout the growing season.
The improved yield prediction accuracy demonstrated by the
Compositional Autoencoder (CAE) latent vector based predictor
suggests utility for both farmers and plant breeders. For example, in
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TABLE 6 Vegetation indices (Vls) used in this study, along with their full
names and source references.

10.3389/fpls.2025.1617831

TABLE 7 Performance on predicting top 25% and top 50% of the
genotype for different locations was obtained via a model trained from
CAE (compositional autoencoder) latents, Vis (vegetation indices), and

VI Full form Citation CAE + Vis.
GLI Green Leaf Index (Mounir Louhaichi and Location Vis CAE CAE+VIs
Johnson, 2001)
(a) Top 25%
Normalized Green-Red Difference - .
NGRDI (Tucker, 1979)
Index Ames 44.44 50.0 27.77
Visible At herically Resistant i . .
VARI {sible Atmospherically Resistan (Gitelson et al., 2002) Crawfordsville 38.33 500 500
Index
Lincoln 50.0 55.55 50.0
VEG Vegetation Index (Hague et al., 2006)
MOValley 27.78 55.55 3333
RGBVI = Red-Green-Blue Vegetation Index (Bendig et al., 2015)
Scottsbluff 44.33 33.33 38.88
ExG Excess Green Index (Woebbecke D et al., 1995)
(b) Top 50%
ExR Excess Red Index (Meyer and Neto, 2008)
Ames 56.75 56.75 67.56
Normalized Difference Vegetation
NDVL | dex (Rouse et al, 1974) Crawfordsville 62.16 64.86 70.27
Green Normalized Difference = Lincoln 37.84 59.45 56.75
GNDVI R (Gitelson et al., 1996)
Vegetation Index
MOValley 45.94 75.67 78.37
EVI Enhanced Vegetation Index (Huete et al., 2002)
Scottsbluff 40.54 56.75 51.35
SAVI SOII_AdJ usted Vegetation Index (Huete, 1988) For testing the model for a location, we trained the model on data from all other locations and
. then predicted yield for all the samples from that location. Then, we rank ordered the
i . (Gitelson and Merzlyak, L . K
NDRE | Normalized Difference Red Edge ‘ predictions and compared them against the ground truth rank ordering of the genotypes. The
1994) performance was evaluated by calculating the percentage of overlap between the top 25% or
R alized Diff V. X top 50% of the ground truth rank order list and the predicted rank order list. All the numbers
RDVI enormalized Difference Vegetation (Roujean and Breon, 1995) given below are in percentages. The numbers in bold represent the best performance observed

Index

the early season, one month after planting, the CAE achieves an R?
of 0.785 compared to the traditional autoencoder’s 0.67,
representing an 11% improvement and around 4% improvement
over vegetation indices-driven predictions. This accuracy increases
further at 1.5 months post-planting, with the CAE latent vector
based predictor reaching an R* of 0.793. In the late-season, the final
timepoint, close to harvest, the CAE maintains a high R? of 0.757,
significantly outperforming the traditional autoencoder’s 0.45 and
also those of vegetation indices by 6%. To statistically validate these
performance gains, we conducted pairwise ANOVA tests across all
timepoints. The results show statistically significant differences in
model performance for time points 1 and 4, with CAE significantly
outperforming the baseline methods (see Supplementary Tables S5-
58). Such early predictions could help growers make timely
decisions about resource allocation, potentially improving crop
management, resource use efficiency, and yield.

3.2.2 Experiment 2: rank ordering of top yielding
genotypes

Breeders often rank order varieties to make breeding selections.
We evaluated the ability of the CAE latent vector-based predictor to
rank order the top 25% and top 50% performing genotypes. We
consider time-point 2. This is around the time all the maize plants are
near the end of the vegetative stage. We trained the same XGBoost
model as before (which uses the disentangled latents as inputs and the
yield as outputs) and performed a leave-one-location-out evaluation.
That is, for evaluating the performance of a location, we trained the
model on all the other locations and tested the model on that location.
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for a particular location.

For example, for evaluating ‘Ames’, we trained the model on the data
from all the other locations and then tested its performance on that of
‘Ames’. To understand how well a model is able to capture the top n%
highest-performing genotypes, we consider the list of top-yielding
genotypes for each location and then calculate the percentage overlap
of the top-yielding genotypes from the respective predictions.
Tables 7a, b show the performance of CAE features and vegetation
indices for the top 25% and top 50%. We observe that the model
trained on CAE features consistently outperforms the model trained
using vegetation indices, with one exception for the top 25%
(Scottsbluff). We can also see that using both of these feature sets
together does not seem to improve the performance for most cases.
To better understand the outcome, we examined the cross-correlation
between features from CAE and VIs as shown in Figure 11. The plot
shows relatively high correlations between several VIs and the ze
components from the CAE. This overlap may be introducing
redundancy, which could be affecting the combined model’s
performance. We also note that the CAE currently processes
images from different locations based on calendar timepoints.
Aligning the images by growth stages, rather than dates, might help
improve the consistency of the encoded information and could
potentially lead to better model performance in future work.

3.2.3 Experiment 3: performance on an unseen
environment

In the third experiment, we evaluated the CAE’s performance in
predicting yield in a completely new environment. To do this, we
used data from Ames during the 2023 growing season to test the
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FIGURE 11

Feature correlations for combined feature space (CAE+VIs). We observe that the VIs show high correlation with the ‘ze’ components generated by
CAE. High correlations between these feature sets will introduce redundant information, which could negatively affect the model's performance.

downstream prediction accuracy of a model that uses the CAE
latent representation as inputs. Specifically, a disentangled latent
representation was first generated via the CAE on all available
(unlabeled) data - three from 2022 and three from 2023 (Ames,
Lincoln, and MO Valley). These disentangled latent features were
then used to train a downstream XGBoost model to predict yield.
The downstream model was trained on all the data except Ames
2023. We then tested this model on Ames 2023 data and observed
an RMSE of 27.815, demonstrating an improvement over
traditional methods such as linear mixed models (RMSE = 29.91)
and vegetation indices (RMSE = 45.80). The CAE also
outperformed large pre-trained models like ResNet-18, which had
an RMSE of 48. This highlights the ability of the CAE to generalize
well to new environmental conditions, even when models like
ResNet-18 (He et al., 2016), with its 11.7 million parameters and
deeper architecture, struggled.

4 Conclusion

This study extends our previous work on disentangling
Genotype x Environment (GxE) features by applying a
Compositional Autoencoder (CAE) to create disentangled latent
representations of satellite imagery. These disentangled latent
representations produced improved yield prediction. Our results
demonstrate the CAE’s effectiveness in separating environmental
factors and improving yield predictions at various growth stages.
The CAE outperformed raw satellite data in distinguishing macro-
environmental factors, as evidenced by the improvement in
silhouette scores from 0.293 to 0.919. This enhanced separation of
environmental features suggests the CAE’s potential for more
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precise modeling of environmental influences on crop
performance. The model also showed promising results in
disentangling micro-environmental factors.

In terms of yield prediction, regression (XGBoost) models
trained on CAE-based latent representations consistently
outperformed regression models trained on latent representations
from vanilla autoencoders across all time points and beat models
trained on Vs for yield prediction for the vegetative stage and post-
flowering stage, with competitive performance during the flowering
stage. This enhanced early-stage prediction capability could provide
breeders with valuable insights for resource management
throughout the growing season.

The genotype features extracted by the CAE could also be
valuable for genome-wide association studies, offering a new way
to link genetic markers to complex traits. Additionally, exploring
the CAE’s use with other sensing modalities and applying it to time-
series data may further improve its predictive capabilities and reveal
new biological insights. Combining the CAE’s disentangled latent
representations with other data sources, such as crop models or
physiological measurements, could lead to enhanced end-of-season
trait prediction models. While this study focused on high-resolution
(30 cm) Pleiades Neo imagery to enable fine-grained plot-level yield
prediction, an important direction for future work is to evaluate the
performance and generalizability of the CAE framework across
coarser resolutions (e.g., 1 m, 3 m, and 10 m) to understand the
trade-offs between spatial resolution, model accuracy, and
operational scalability for broader deployment. Another
important direction is to examine how pixel size relates to maize
plant size, incorporating factors such as planting density and pixel-
level variability, and to assess how these spatial effects correlate with
trait variability among maize hybrids.
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