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Enhancing yield prediction
from plot-level satellite
imagery through genotype
and environment
feature disentanglement
Anirudha A. Powadi1, Talukder Z. Jubery2, Michael Tross3,
Nikee Shrestha3, Lisa Coffey4, James C. Schnable3*,
Patrick S. Schnable4,5* and Baskar Ganapathysubramanian5,6*

1Department of Electrical and Computer Engineering, Iowa State University, Ames, IA, United States,
2Translational AI Research and Education Center, Iowa State University, Ames, IA, United States,
3Department of Agronomy, University of Nebraska, Lincoln, NE, United States, 4Department of
Agronomy, Iowa State University, Ames, IA, United States, 5Plant Sciences Institute, Iowa State
University, Ames, IA, United States, 6Department of Mechanical Engineering, Iowa State University,
Ames, IA, United States
Accurately predicting yield during the growing season enables improved crop

management and better resource allocation for both breeders and growers.

Existing yield prediction models for an entire field or individual plots are based on

satellite-derived vegetation indices (VIs) and widely used machine learning-

based feature extraction models, including principal component analysis (PCA)

and autoencoders (AE). Here, we significantly enhance pre-harvest yield

prediction at plot-scale using Compositional Autoencoders (CAE) — a deep-

learning-based feature extraction approach designed to disentangle genotype

(G) and environment (E) features — on high-resolution, plot-level satellite

imagery. Our approach uses a dataset of approximately 4,000 satellite images

collected from replicated plots of 84 hybrid maize varieties grown at five distinct

locations across the U.S. Corn Belt. By deploying the CAE model, we improve the

separation of genotype and environment effects, enabling more accurate

incorporation of genotype-by-environment (GxE) interactions for downstream

prediction tasks. Results show that the CAE-based features improve early-stage

yield predictions by up to 10% compared to traditional autoencoder-based

features and outperform vegetation indices (VIs) by 9% across various growth

stages. The CAEmodel also excels in separating environmental factors, achieving

a high silhouette score of 0.919, indicating effective clustering of environmental

features. Moreover, the CAE consistently outperforms standardmodels in unseen

environments and unseen genotypes yield predictions, demonstrating strong

generalizability. This study demonstrates the value of disentangling G and E

effects for providing more accurate and early yield predictions that support

informed decision-making in precision agriculture and plant breeding.
KEYWORDS

representation learning, genotype × environment interactions, crop yield prediction,
satellite data, latent feature extraction
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1 Introduction

Maize (Zea mays L.) is one of the world’s most important cereal

crops, with nearly one billion tons of maize produced on about 200

million planted hectares annually (Erenstein et al., 2022). The

productivity of maize is highly variable, largely due to differences

in environmental conditions (Jägermeyr et al., 2021; Yang et al.,

2024), crop management practices (Lobell et al., 2014; Ort and

Long, 2014; Lobell et al., 2020), and genetic factors (Gamble, 1962;

Troyer, 1990; Butrón et al., 2012; Nolan and Santos, 2012). These

three components interact in complex ways, complicating the task

of accurately predicting yields for specific hybrids under particular

conditions and crop management strategies.

Yield forecasting is crucial for multiple stakeholders in

agriculture. Farmers benefit from reliable early predictions, as

these help optimize management practices, maximizing the use of

limited resources like water and fertilizers. Meanwhile, breeders

pursue stable genotypes that perform well in diverse environments,

which requires extensive testing of thousands of genotypes in

dozens of locations to identify those most suitable for target

regions (Cooper et al., 2014; Li et al., 2024; Tarekegne et al.,

2024). Thus, improving yield prediction systems directly supports

agricultural resilience and the long-term stability of food systems.

Remote sensing technologies have been extensively used to

tackle the challenges of yield prediction. Historically, low-

resolution field- or county-level satellite imagery has been

extensively used for predictive plant phenotyping, including yield

estimation for dry beans, rice, maize, wheat, soybean (Hamar et al.,

1996; Yang et al., 2009; Wang et al., 2010; Noureldin et al., 2013;

Johnson et al., 2016b; Jin et al., 2017; Schwalbert et al., 2018; Kamir

et al., 2020; Schwalbert R. et al., 2020; Schwalbert RA. et al., 2020;

Shendryk et al., 2021; Roznik et al., 2022; Joshi et al., 2023). This

imagery allows researchers to gain a broader perspective on crop

performance across large regions. UAVs (unmanned aerial vehicles)

have emerged as a complementary tool, offering plot-level high-

resolution data (López-Granados et al., 2016; Kanning et al., 2018;

Han et al., 2019; Du et al., 2022), yet satellite imagery retains certain

advantages, particularly for large-scale studies. It allows data

collection over extensive areas with considerably less logistical

effort, while also delivering preprocessed data and reducing user

workload. This makes it the preferred choice for multi-location

analyses. Despite this benefit, the utility of satellite data for plot-

level prediction is often hindered by lower spatial resolution, which

requires specialized acquisition strategies to obtain more detailed

imagery (Phang et al., 2023). High-resolution satellite imagery is

becoming available, although applications still face obstacles such as

restricted satellite availability, limited onboard storage capacity, and

cloud cover (over the target area), making high-resolution data
Abbreviations: CAE, Compositional autoencoder; VIs, vegetation indices; AE,

Vanilla autoencoder; PC, Principal component; RMSE, Root mean square error;

zg, genotype component in the latent space generated by the CAE; ze, macro-

environment component in the latent space generated by the CAE; zp, micro-

environment component in the latent space generated by the CAE.
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acquisition challenging. Despite the challenges, the advantages of

collecting high-resolution satellite data instead of UAV data for

breeding applications may outweigh the limitations. Evaluating the

large numbers of varieties (called hybrids) across many different

environments becomes easier with satellite data. The most

important and most common metric of evaluating hybrids is

yield. The ability to forecast yield earlier in the growing season

enhances breeding decisions, thus accelerating the selection process.

Lowering the cost of collecting trait data from more plots in diverse

locations allows for more extensive evaluations. This increases the

accuracy of genetic yield potential estimates and accelerates genetic

gain per breeding cycle.

Over time, a variety of methods have been developed for yield

forecasting using satellite data. Many studies combine satellite data

with crop growth model estimations (de Wit and van Diepen, 2008;

Jeong et al., 2018; Zhao et al., 2020; Zare et al., 2022; Luo et al.,

2023), incorporate additional environmental factors like weather

conditions (Bai et al., 2010; Schwalbert R. et al., 2020; Schwalbert

RA. et al., 2020; Nieto et al., 2021; Lang et al., 2022), soil data

(Broms et al., 2023; Mahalakshmi et al., 2025), and terrain

information (Li et al., 2022; Sahbeni et al., 2023). Machine

learning has been widely applied, using handcrafted features

derived from raw images, including histogram-based

representation of time-series data (You et al., 2017), and

vegetation indices, particularly the Normalized Difference

Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI)

(Yang et al., 2006; Yang et al., 2013; Johnson et al., 2016b; Peralta

et al., 2016; Schwalbert et al., 2018; Cai et al., 2019; Mateo-Sanchis

et al., 2019; Kamir et al., 2020; Khalil and Abdullaev, 2021; Meroni

et al., 2021). While these indices have been effective, they are

inherently limited by the scope of human expertise, restricting the

ability to capture the full complexity of crop conditions (Feldmann

et al., 2021).

Representation learning has emerged as a promising alternative

approach for overcoming these limitations (Gage et al., 2019;

Ubbens et al., 2020; Tross et al., 2023). Conventionally, various

machine learning techniques, including Principal Component

Analysis (PCA), Linear Discriminant Analysis (LDA), t-

distributed Stochastic Neighbor Embedding (t-SNE), and

autoencoders, have been applied to derive ‘latent representations’

from high-dimensional datasets (Zhong et al., 2016; Kopf and

Claassen, 2021; Alexander et al., 2022; Gomari et al., 2022;

Iwasaki et al., 2023; Song et al., 2023). Autoencoders stand out for

their ability to identify non-linear patterns. Through the encoding

of data into a reduced latent space followed by reconstruction of the

input, these models generate a concise and meaningful

representation that plays a key role in phenotyping (Gage et al.,

2019; Ubbens et al., 2020; Tross et al., 2023). Despite their value,

representations produced by autoencoders commonly struggle to

differentiate between genetic and environmental effects, creating

‘entangled’ latent spaces in which specific plant traits—like ‘leaf

number,’ ‘height,’ and ‘chlorophyll concentration’—are blended

rather than distinctly isolated. Separating these traits in the latent

space could enhance the interpretability of the resulting latent

factors. Unlike traditional feature engineering, representation
frontiersin.org
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learning can automatically extract complex, high-dimensional

features from raw input data without predefined formulas,

potentially providing a richer understanding of crop traits and

often outperforming traditional indices (Okada et al., 2024). This

ability makes representation learning well-suited for capturing

characteristics that influence crop performance. Recent studies

have applied representation learning techniques to satellite data

for various agricultural applications, such as classifying crop traits,

mapping floods, and monitoring land use (Dumeur et al., 2024;

Goyal et al., 2024; Nakayama and Su, 2024). While these methods

have demonstrated success in large-scale yield estimation, they have

yet to be broadly adopted for localized, plot-level predictions, where

high precision is crucial for actionable insights.

Additionally, most existing approaches have not adequately

addressed the complex interactions between genotype (G) and

environment (E)— commonly referred to as GxE interactions —

in their forecasting models. Incorporating GxE interactions is

particularly important, as these interactions are a major source of

variability in crop performance and the primary reason that the top-

performing hybrids in one environment will often rank lower in

relative performance in a second environment (Kusmec et al.,

2018). A more nuanced understanding of how specific genotypes

respond to different environmental conditions could significantly

enhance prediction precision, especially at smaller spatial scales

(e.g., plot-level).

In our recent work, we introduced a model, the Compositional

Autoencoder (CAE), specifically designed to address these

challenges (Powadi et al., 2024). The CAE integrates GxE

interactions into the yield prediction framework, allowing for a

more comprehensive representation of high-dimensional

hyperspectral ground-based sensor data as GxE components

(Figure 1). By capturing both genetic and environmental

influences, the CAE outperformed traditional methods,

demonstrating its potential as a valuable tool for improving the

accuracy of yield predictions.

Building on this foundation, the present study aims to extend

the CAE framework to satellite data at the plot level. This extension

enables more precise yield forecasting and allows for deeper insights

into the interactions between genetic and environmental factors.

Our objectives in this work are to (a) evaluate CAE performance on

disentangling genotype and environment features from satellite
Frontiers in Plant Science 03
imagery collected at the plot scale to better understand their

contributions to yield (Figure 2), and (b) to improve yield

prediction accuracy by leveraging these disentangled features, as

evidenced by the CAE’s superior performance over other

representations, including traditional vegetation indices.
2 Materials and methods

2.1 Satellite images and yield data

2.1.1 Locations and plants
Maize (Zea mays L.) field experiments were conducted at five

locations: Scottsbluff, NE (41.85°N, -103.70°W), Lincoln, NE

(40.86°N, -96.61°W), Missouri Valley, IA (41.67°N, -95.94°W),

Ames, IA (42.01°N, -93.73°W), and Crawfordsville, IA (41.19°N,

-91.48°W) in 2022. A map of these locations is provided in the

Supplementary Figure S1. Depending on local weather conditions,

planting occurred between April 29 and May 23, 2022. This work

utilizes 84 hybrid genotypes planted in two replicated plots at each

of these five locations.

The maize plants were cultivated under rain-fed conditions at

four locations: Lincoln, Missouri Valley, Ames, and Crawfordsville.

In contrast, the Scottsbluff site was irrigated, receiving a total of 16.9

inches (429.26 mm) of water over the growing season. All locations

except Missouri Valley had one rate of nitrogen fertilization

treatment of 150 lbs/acre. Nitrogen fertilization treatment for

Missouri Valley was 175 lbs/acre. More details on the

experimental design and data collection are available in Shresta

et al (Shrestha et al., 2025). For one of the evaluation experiments of

the CAE (experiment 3 in section 3.2), we additionally used satellite

data of 45 common hybrids from Ames, Lincoln, and Missouri

Valley from 2023.

2.1.2 Satellite imagery and plot extraction
For this study, we utilized the Pléiades Neo satellite

constellation to capture images at four different time points (TP),

of which two were early in the season (July), referred to as TP1 and

TP2, capturing the late vegetative stage and early flowering stages.

Two others were late in the season (September), referred to as TP3

and TP4, capturing mature and harvest-ready plants. The growth-
FIGURE 1

Overview of trait prediction from high-dimensional plant-level hyperspectral sensor data workflow and performance of Compositional Autoencoder
(CAE) representation with other representation learning as shown in (Powadi et al., 2024).
frontiersin.org
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stage timeline for the maize plants was recorded for the plants

grown in Lincoln is shown in the Supplementary Figure S2. Table 1

provides the specifications of the Pléiades Neo satellite constellation

used in our study. The six bands in the satellite multispectral images

cover the following spectral ranges: Red (620–690 nm), Green (530–

590 nm), Blue (450–520 nm), Near-infrared (NIR, 770–880 nm),

Red Edge (700–750 nm), Deep Blue (400–450 nm).
Frontiers in Plant Science 04
In addition to multispectral images, a single-band

panchromatic raster file with a wide bandwidth of approximately

450–800 nm was generated. Each image covered a total area of 100

km × 100 km per location, encompassing the entire experimental

field at each location. The final 16-bit GeoTIFF satellite images with

30-cm resolution were generated after panchromatic sharpening

(pansharpening), manual orthorectification, and atmospheric

correction by the service provider prior to the delivery of

imagery. The plot-level images were extracted from the satellite

data as described in our previous paper (Shrestha et al., 2025). The

extracted plot images are of the shape 11 x 22 x 6 (Width x Height x

Channels) pixels. Figure 3 shows samples of satellite image data for

the 4 time points for all the locations we capture. The plots measure

approximately 3.3 meters by 6.6 meters (shown in Figure 3 on the

TP4 sample for the Mo Valley), covering an area of 21.78 square

meters. With the Pléiades Neo satellite’s native spatial resolution of

30 cm (0.3 meters) per pixel, each pixel represents a ground area of

0.09 square meters. A single plot would thus be sampled by

approximately 11 pixels along the width and 22 pixels along the

length, for a total of about 242 pixels. This limited pixel count per

plot results in the expected pixelated appearance in the imagery, as

fine details smaller than the resolution cannot be resolved. The plot

boundaries and extraction were performed using the ArcPy Jupyter

Notebook environment implemented in ArcGIS Pro V3.2.0.

2.1.3 Preprocessing of plot images
The preprocessing of the plot images was divided into two

stages: outlier removal and normalization. For each spectral

channel, outliers were removed by clipping values outside 3

standard deviations from the mean. Figure 4 illustrates the

distribution of pixel values across channels after outlier removal.
TABLE 1 Satellite specifications for the Pléiades Neo satellite
constellation used in our study.

Parameter Description

Orbit
Sun-synchronous, 10:30 a.m. descending node, 620
km altitude

Number of Satellites 2 identical satellites in constellation

Sensor Bands

Panchromatic (450–800 nm)

Multispectral:
• Red (620–690 nm)
• Green (530–590 nm)
• Blue (450–520 nm)
• Near-infrared (770–880 nm)
• Red Edge (700–750 nm)
• Deep Blue (400–450 nm)

Sensor Resolution
30 cm (panchromatic band), 1.2 m (multi-spectral
bands)

Dynamic Range 12-bits per pixel

Swath Width At nadir: 14 km

Revisit Frequency
Daily anywhere (30° off-nadir) or twice daily
anywhere (45° off-nadir)

Acquisition Capacity Up to 2 million km2 per day
FIGURE 2

Disentangling genotype and environmental effects from plot-level multispectral canopy reflectance data, collected via satellite at a 30 cm resolution,
across multiple environments and genotypes using a Compositional Autoencoder (CAE) framework. The figure illustrates data input from various
locations (Ames, Crawfordsville (Craw), Missouri Valley (MOValley), Lincoln, and Scottsbluff (Scotts)), each with a specific genotype (Hybridi)
represented in its unique environmental context. The CAE (Compositional Autoencoder) framework converts this high-resolution data to separate
genotype-specific and environment-specific features. By isolating these components, the model aims to improve the accuracy of yield prediction by
capturing the independent contributions of both genotype and environment.
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The 6-channel data were then normalized on a per-channel basis

using min-max scaling. After normalization, each plot image was

flattened into a 1 x 1452 vector before being fed into the

neural network.

2.1.4 Yield data
Yield data is recorded at the time of the harvest in the field.

Plants were mechanically harvested from the two middle rows of

each four-row plot using a plot combine. At the time of harvesting,

the combine recorded percent moisture content, on a fresh weight

basis, and the fresh weight of the grain in pounds. To compare

across locations, yield in bushels per acre at 15.5% moisture on a

fresh weight basis and 56 pounds per bushel was calculated based on

these values and the total area occupied by the middle two rows of

each plot at each location.

The yield data were recorded for these 84 hybrids, which were

used for evaluating the predictive capabilities of the CAE as well as

the degree of disentanglement of environmental features. Figure 5

shows the yield distribution for different locations. As can be

expected, genotypes respond differently to different environments.

Clearly, Crawfordsville shows the highest yield overall, while

Lincoln shows the lowest yield distribution. While different yields
Frontiers in Plant Science 05
in different environments are expected due to the differences in soil,

weather, and elevation conditions, Lincoln produced the lowest

yield due to intense weed pressure. A deeper analysis of these yields

and experiments can be found in the previous work (Shrestha

et al., 2025).
2.2 Autoencoder

An autoencoder is a type of neural network designed for

representation learning, enabling the extraction of efficient and

compressed representations of input data. It consists of two main

components: an encoder and a decoder. The encoder compresses

the input data into a latent representation, while the decoder aims to

reconstruct the original input from this latent space. Through this

process, the autoencoder effectively captures the essential

characteristics of the input data, thereby learning meaningful

representations. Figure 6 shows our implementation, where the

encoder and decoder are built using multiple fully connected layers,

each utilizing the SeLU activation function. The encoder

compresses the 6-channel satellite input data into a lower-

dimensional latent space, which retains key features of the input
FIGURE 3

Satellite data samples from an arbitrary plot at each location are shown across four timepoints (TP), with the first two collected early in the growing
season (July) and the last two collected toward the end of the season (September). Only the R, G, and B channels are visualized. Each plot is 11 by
22 pixels, representing 3.3 meters by 6.6 meters (as shown in TP4, MOValley). The distinctive variations among images at each time point are
primarily due to differences in planting dates, which ranged from April 29 to May 23, 2022, depending on local weather conditions. Notably, images
from Scottsbluff exhibit visible differences, as they were captured from a field planted later than the others.
frontiersin.org
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while being highly informative. The decoder then reconstructs the

original input from this compressed latent representation.

Tables 2a, b provide detailed information about the specific layers

used in the encoder and decoder. This encoder-decoder architecture

forms a latent space that is both compact and representative of the

input data, providing added benefits of noise reduction and feature

enhancement. This “vanilla autoencoder” serves as our baseline

representation learning model.
2.3 Compositional autoencoder

The Compositional Autoencoder (CAE) builds upon the

standard autoencoder to disentangle the latent space into multiple

components that reflect various influential factors in the data. By

learning structured representations, the CAE captures general,

environmental, and specific attributes, making it significantly

more informative than a conventional autoencoder. The CAE is

composed of three primary components: an encoder, a fusion block,

and a decoder.

2.3.1 Architecture overview
The CAE architecture retains the traditional encoder-decoder

structure, with the addition of a fusion block to combine and

disentangle encoded data from multiple images. Satellite data of

the same genotype across all the locations are grouped together in

84 groups (84 being the number of genotypes). Each group will have

5 images (for 5 locations), which will be sequentially passed to the
Frontiers in Plant Science 06
encoder, resulting in a separate latent representation for each image

in the group. The encoder used here is identical to the one

implemented in the standard autoencoder, ensuring consistency

in feature extraction across both approaches.

The latent features derived from these images are then

aggregated using a fusion layer. This fusion layer operates by

combining the encoded information, resulting in a unified latent

vector that integrates features from all input images. A detailed

description of this fusion mechanism is provided in Table 3.

Once fused, the latent representation is divided into three distinct

components. The general features capture shared characteristics

present in all images. The environmental features represent

attributes specific to a given environment, shared across images

from similar conditions. Finally, specific features represent unique

aspects that differ across each image, such as particular objects or

anomalies. This structured separation ensures that the CAE can

provide a richer, more nuanced representation of the input data.

After this separation, the decoder reconstructs each original

image by reassembling the general, environmental, and specific

features. The decoder, identical to that used in the basic

autoencoder, leverages the latent space to reconstruct the input,

thereby enabling an in-depth understanding of the underlying

factors driving variations in the satellite data. Figure 7 presents an

overview of the CAE architecture, showing how different

components contribute to reconstructing the input images. The

detailed structure of the fusion layer is provided in Table 3, and

Table 4 demonstrates the disentangled latent representation for

each individual image.
FIGURE 4

Pixel value distributions across spectral channels. Histograms show the frequency of pixel values for six satellite image channels: Red (620–690 nm),
Green (530–590 nm), Blue (450–520 nm), Near-Infrared (700–880 nm), Red Edge (700–750 nm), and Deep Blue (400–450 nm). Although the
image data is 16-bit (range: 0−65,536), most pixel values fall within 0−5000, indicating a limited dynamic range in practice.
frontiersin.org
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2.3.2 Loss function
To effectively train the CAE, a two-part loss function is used,

consisting of a reconstruction loss and a correlation loss.

The reconstruction loss, computed as the mean squared error

(MSE), ensures that the network can accurately reconstruct the

original satellite images from the learned latent space. This loss

encourages the CAE to capture the most relevant features for high-

quality reconstruction, ensuring that the latent space is both

informative and efficient.
Frontiers in Plant Science 07
The correlation loss is applied to maintain the independence of

the disentangled components — general, environmental, and

specific features — within the latent space. This loss penalizes any

correlation between different parts of the latent space, thus

enforcing their distinctiveness and improving the interpretability

of the model. The correlation loss is expressed as:

Correlation Loss =o
N

i=1
o
N

j=i
CorrMatij
�� �� − Iij (1)
FIGURE 5

Yield distribution for the 84 hybrids across different environments (locations). The plants were grown under rain-fed conditions in Lincoln, Missouri
Valley, Ames, and Crawfordsville. The experimental field in Scottsbluff was irrigated.
FIGURE 6

An autoencoder processes a single image (for example, E1P1 (Environment 1 - Replicate 1)) through an encoder to compress it into a lower-
dimensional latent space, capturing its essential features. The decoder then reconstructs the input from this compressed representation.
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In this equation, CorrMatij represents the correlation coefficient

between the latent space dimensions i and j, and N denotes the size of

the square correlation matrix. The term Iij refers to the identity matrix,

which ensures that the diagonal elements (where i = j) do not contribute

to the loss, thus emphasizing only the off-diagonal correlations.

The combination of reconstruction and correlation loss allows

CAE to learn latent representations that are informative, distinct,

and suitable for downstream tasks, such as yield prediction and

analysis of genotype-by-environment interactions. The correlation

coefficient used here is the Pearson correlation coefficient (r), which

measures the linear relationship between two variables. It is defined

by the following equation:

r = on
i=1(pi − �p)(ki − �k)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

on
i=1(pi − �p)2on

i=1(ki − �k)2
q (2)

In this equation (Equation 2), n represents the number of data

points. pi and ki are elements from different dimensions of the latent

space. p and k are the means of the pth and kth dimensions,

respectively. Our objective is to achieve zero correlation between

the latent space features that represent general, environmental, and

specific variations. By enforcing this condition through the

correlation loss function (Equation 1), the model ensures that

each disentangled component captures its respective factor

independently, leading to a more interpretable and effective

representation of the underlying data.
Frontiers in Plant Science 08
3 Results and discussion

3.1 Environment disentanglement

We first assess the degree of disentanglement achieved by the

Compositional Autoencoder (CAE) across different environments

in our dataset.

Our dataset comprises information from five distinct locations.

To establish a baseline, we first analyzed how well the raw satellite

data differentiates among these locations. We applied Principal

Component Analysis (PCA) to the raw data, selecting the first three

principal components. These components were then visualized in a

3D plot, with data points color-coded by location. To quantify the

distinctness of the resulting clusters, we calculated their silhouette

scores. The silhouette score measures how well data points in a

cluster are grouped by comparing the average intra-cluster distance

(how close points are within the same cluster) to the nearest inter-

cluster distance (how far they are from points in the nearest cluster).

Scores range from -1 to 1, where values close to 1 indicate well-

separated, compact clusters, and values near or below 0 suggest

overlapping or poorly defined clusters. Figure 8A illustrates this

visualization of the raw data. Notably, the clusters representing

different locations show significant overlap, resulting in a low

silhouette score of only 0.293. This indicates that the raw satellite

data alone does not effectively distinguish among environments.

To evaluate the environmental disentanglement achieved by the

CAE, we analyzed its latent space. The CAE’s latent space is divided

into ‘genotype’, ‘macro-environment’, and ‘micro-environment’

components. For this analysis, we consider the ‘macro-

environment’ component (and average over the ‘genotype’ and

‘micro-environment’ components) and perform the same clustering

and visualization process as with the raw data. Figure 8B displays

the clusters for all five locations generated by the CAE. Strikingly,

the silhouette score for these clusters is 0.919, a substantial

improvement over the raw data. This high score indicates that the

CAE has successfully disentangled macroenvironmental factors,

creating much more distinct clusters for each location.

We also investigated the CAE’s ability to disentangle micro-

environmental factors. As shown in Figure 9, the CAE demonstrates

considerable success in this aspect as well, further highlighting its

robustness in environmental disentanglement. These results suggest

the CAE’s potential to separate environmental factors detected via

satellite imagery, which could lead to a more nuanced

understanding of how different environments may contribute to

plant characteristics and performance.
3.2 Performance on yield prediction

We next conducted multiple experiments to assess the

performance of the latent vectors constructed by the

Compositional Autoencoder (CAE) in predicting maize yield.

Each experiment consists of using the latent representation as

input to train a machine-learning model that predicts maize yield
TABLE 2 Configuration details for encoder and decoder.

Layer type Dimensions Activation

(a) Encoder Configuration

Linear input shape → 2200 SELU

Linear 2200 → 2000 SELU

Linear 2000 → 1000 SELU

Linear 1000 → zg + ze + zp None

(b) Decoder Configuration

Linear zg + ze + zp → 2024 SELU

Linear 2024 → 3000 SELU

Linear 3000 → 2200 SELU

Linear 2200 → input_shape Sigmoid
input shape = 1 x 1452, zg = dimensions for genotype features, ze = dimensions for macro-
environment features, zp = dimensions for microenvironment features.
TABLE 3 Fusion layer details.

Layer type Dimensions Activation

Linear N(zg + ze + zp) → zg + E(ze) + N(zp) None
‘N’ = number of replicates per image, ‘E’ = number of environments, ‘zg’ = dimensions
allocated to capture general features, ‘ze’ = dimensions allocated to capture environmental
features, ‘zp’ = dimensions allocated to specific features.
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in the plots. The latent configuration used for all these downstream

predictions shown in this section is ‘6-6-1’ (zg-ze-zp) which was

selected based on the sensitivity analysis provided in Supplementary

Table S2. For yield prediction, we used the XGBoost model, which

consistently outperformed other machine learning algorithms in

our preliminary evaluation. Comparative results with classical

models such as PLSR, Ridge regression, and Random Forest are

provided in Supplementary Tables S3 and S4. The hyperparameter

settings used for each model configuration are summarized in
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Supplementary Tables S2. The three experiments were designed

to evaluate model performance across different generalization

scenarios. The corresponding data splits and evaluation protocols

are described in Supplementary Section 6. In experiment 1, we

compare the predictive capability of the CAE latent vectors against

two baselines: latent vectors generated by a vanilla autoencoder

(AE) and vegetation indices (VIs). We perform cross-validation

across genotypes. In experiment 2, we evaluate the ability of the

CAE-based latent vectors to rank order genotypes according to their
TABLE 4 Disentangled latent-space representation of each image.

Image Representation

E1P1 {(Zg) genotype features, (Ze) macro-env. features [1], (Zp) micro-env. features [1]}

E1P2 {(Zg) genotype features, (Ze) macro-env. features [1], (Zp) micro-env. features [2]}

E2P1 {(Zg) genotype features, (Ze) macro-env. features [2], (Zp) micro-env. features [3]}

E2P2 {(Zg) genotype features, (Ze) macro-env. features [2], (Zp) micro-env. features [4]}

E3P1 {(Zg) genotype features, (Ze) macro-env. features [3], (Zp) micro-env. features [5]}

E3P2 {(Zg) genotype features, (Ze) macro-env. features [3], (Zp) micro-env. features [6]}

E4P1 {(Zg) genotype features, (Ze) macro-env. features [4], (Zp) micro-env. features [7]}

E4P2 {(Zg) genotype features, (Ze) macro-env. features [4], (Zp) micro-env. features [8]}

E5P1 {(Zg) genotype features, (Ze) macro-env. features [5], (Zp) micro-env. features [9]}

E5P2 {(Zg) genotype features, (Ze) macro-env. features [5], (Zp) micro-env. features [10]}
FIGURE 7

Replicates of the same genotype are grouped together and fed into the CAE during the forward pass. E1P1 represents environment replicate 1. All
these replicates are fed into the encoder sequentially to generate latents as shown above. These latent spaces are then fused together using a fusion
layer. We enforce the partitions in this fusion vector (Genotype (Zg), macroenvironment response (Ze), and micro-environment-response (Zp)). Each
macro-environment and micro-environment will have its own partition. Next, Partitions are picked for each replicate and unique representation for
each replicate is obtained. These latent representations are then sequentially given to the decoder to reconstruct the input.
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predicted yield. Early and accurate rank ordering is a critical

functionality in plant breeding, where early and accurate ranking

can guide selection decisions. Finally, in experiment 3, we evaluate

the performance of the latent CAE representation to predict the

yield for a set of genotypes in an unseen environment (using data

collected in Ames in the next year, 2023).
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3.2.1 Experiment 1: CAE vs AE vs VIs yield
prediction comparison, with 5-fold
crossvalidation

We compared the yield prediction performance of the CAE

latent vectors with a vanilla autoencoder (AE) latent vectors and

vegetation indices (VIs) using 5-fold cross-validation across four

key time points. Table 5 presents a summary of the results,
FIGURE 8

Comparison of Raw Data Clusters and Macro Environment Disentanglement. We applied PCA on the raw reflectance data and latent features
generated by the CAE (we averaged the genotype and micro-environment components), and color-coded the features from different locations
and calculated the silhouette score to determine how well all of the clusters are separated. (A) Macro environment clusters visualized for raw data.
PC 1, PC 2, and PC 3 are the top principal components 1, 2, and 3, respectively. Cumulative variance explained = 0.695. Variance explained: PC 1 =
0.4, PC 2 = 0.24, PC = 0.04), (B) Macro Environment Disentanglement Visualized. Cumulative variance explained = 0.94. Variance explained: PC 1 =
0.474, PC 2 = 0.268, PC 3 = 0.201.
FIGURE 9

Micro environment disentanglement visualized. We applied PCA on
latent features generated by the CAE and color-coded the features
from different locations and calculated the silhouette score to
determine how well all of the clusters are separated. Micro-
environment refers to the local environment around a plot. Lighter
and darker shades of the same color represent the
microenvironments around 2 replicates grown in the same macro-
environment. PC 1, PC 2, and PC 3 are the top principal
components 1, 2, and 3, respectively.
TABLE 5 Prediction performance of CAE (compositional autoencoder),
AE (vanilla autoencoder), and VIs (vegetation indices) across timepoints
1, 2, 3, and 4, covering both early growth stages and near-harvest stages
of the growing season.

Model Timepoint R2 RMSE (tons/ha)

CAE 1 0.79 (0.05) 1.36 (0.16)

AE 1 0.67 (0.04) 1.69 (0.13)

VIs 1 0.75 (0.03) 1.48 (0.12)

CAE 2 0.79 (0.043) 1.34 (0.14)

AE 2 0.72 (0.057) 1.56 (0.16)

VIs 2 0.80 (0.04) 1.30 (0.15)

CAE 3 0.77 (0.07) 1.41 (0.14)

AE 3 0.27 (0.1) 2.51 (0.21)

VIs 3 0.77 (0.07) 1.41 (0.20)

CAE 4 0.76 (0.04) 1.45 (0.14)

AE 4 0.45 (0.06) 1.51 (0.12)

VIs 4 0.70 (0.07) 1.41 (0.18)
Results are reported for yield prediction. Each entry shows the mean value, with the standard
deviation from 5-fold cross-validation in parentheses. Bold values indicate the best
performance for a given timepoint. R2 is a unitless indicator of model fit, whereas RMSE is
expressed in yield units (tons/ha) and represents the absolute prediction error.
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including R2 values and Root Mean Square Error (RMSE) in tons

per hectare, which offer robust estimates of model performance

across different timepoints. A visualization of these fits is given in

Figure 10 with absolute values of the yield (tons/ha) for timepoint 1

(TP1). As the k-folds were grouped based on genotypes, the results

here reflect the accuracy with which the performance of unseen

genotypes could be predicted in observed environments.

The results clearly demonstrate that the CAE latent vector based

predictor consistently outperforms the AE latent vector based

predictor across all growth stages. Notably, the CAE latent vector

based predictor shows higher R2 values and lower RMSE compared to

the AE latent vector based predictor at every time point. The

performance difference is particularly evident at time point 3, where

the CAE latent vector based model maintains a relatively strong

performance (R2 of 0.766) while the AE’s performance drops

significantly (R2 of 0.27). Overall, the CAE latent vector based

predictor demonstrates more consistent and robust performance
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throughout the growing season. Additionally, when compared with

a model that uses vegetation indices (VIs) (Table 5), the CAE latent

vector based predictor consistently outperforms them at timepoints 1

and 4 and shows comparable performance at time points 2 and 3. This

comparable performance during timepoint 2 can be attributed to the

fact that plant growth at this stage is near its peak, which correlates

well with final yield. The vegetation indices used in this paper are given

in the Table 6. Their description is provided in the Supplementary

Materials. The CAE latent vector based predictor demonstrates

particular strength in early-season predictions, with improvements

(over AE) of approximately 11% and 7% in R2 values for the first two

time points, respectively. Moreover, the CAE latent vector based

predictor maintains more consistent performance across all time

points, illustrating its robustness throughout the growing season.

The improved yield prediction accuracy demonstrated by the

Compositional Autoencoder (CAE) latent vector based predictor

suggests utility for both farmers and plant breeders. For example, in
FIGURE 10

Visualization of the performance of XgBoost model when using vegetation indices (A), vanilla autoencoder generated latent features (B), and
compositional autoencoder generated latent features (C) at timepoint 1.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1617831
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Powadi et al. 10.3389/fpls.2025.1617831
the early season, one month after planting, the CAE achieves an R2

of 0.785 compared to the traditional autoencoder’s 0.67,

representing an 11% improvement and around 4% improvement

over vegetation indices-driven predictions. This accuracy increases

further at 1.5 months post-planting, with the CAE latent vector

based predictor reaching an R2 of 0.793. In the late-season, the final

timepoint, close to harvest, the CAE maintains a high R2 of 0.757,

significantly outperforming the traditional autoencoder’s 0.45 and

also those of vegetation indices by 6%. To statistically validate these

performance gains, we conducted pairwise ANOVA tests across all

timepoints. The results show statistically significant differences in

model performance for time points 1 and 4, with CAE significantly

outperforming the baseline methods (see Supplementary Tables S5-

S8). Such early predictions could help growers make timely

decisions about resource allocation, potentially improving crop

management, resource use efficiency, and yield.

3.2.2 Experiment 2: rank ordering of top yielding
genotypes

Breeders often rank order varieties to make breeding selections.

We evaluated the ability of the CAE latent vector-based predictor to

rank order the top 25% and top 50% performing genotypes. We

consider time-point 2. This is around the time all the maize plants are

near the end of the vegetative stage. We trained the same XGBoost

model as before (which uses the disentangled latents as inputs and the

yield as outputs) and performed a leave-one-location-out evaluation.

That is, for evaluating the performance of a location, we trained the

model on all the other locations and tested the model on that location.
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For example, for evaluating ‘Ames’, we trained the model on the data

from all the other locations and then tested its performance on that of

‘Ames’. To understand how well a model is able to capture the top n%

highest-performing genotypes, we consider the list of top-yielding

genotypes for each location and then calculate the percentage overlap

of the top-yielding genotypes from the respective predictions.

Tables 7a, b show the performance of CAE features and vegetation

indices for the top 25% and top 50%. We observe that the model

trained on CAE features consistently outperforms the model trained

using vegetation indices, with one exception for the top 25%

(Scottsbluff). We can also see that using both of these feature sets

together does not seem to improve the performance for most cases.

To better understand the outcome, we examined the cross-correlation

between features from CAE and VIs as shown in Figure 11. The plot

shows relatively high correlations between several VIs and the ze

components from the CAE. This overlap may be introducing

redundancy, which could be affecting the combined model’s

performance. We also note that the CAE currently processes

images from different locations based on calendar timepoints.

Aligning the images by growth stages, rather than dates, might help

improve the consistency of the encoded information and could

potentially lead to better model performance in future work.

3.2.3 Experiment 3: performance on an unseen
environment

In the third experiment, we evaluated the CAE’s performance in

predicting yield in a completely new environment. To do this, we

used data from Ames during the 2023 growing season to test the
TABLE 6 Vegetation indices (VIs) used in this study, along with their full
names and source references.

VI Full form Citation

GLI Green Leaf Index
(Mounir Louhaichi and

Johnson, 2001)

NGRDI
Normalized Green-Red Difference
Index

(Tucker, 1979)

VARI
Visible Atmospherically Resistant
Index

(Gitelson et al., 2002)

VEG Vegetation Index (Hague et al., 2006)

RGBVI Red-Green-Blue Vegetation Index (Bendig et al., 2015)

ExG Excess Green Index (Woebbecke D et al., 1995)

ExR Excess Red Index (Meyer and Neto, 2008)

NDVI
Normalized Difference Vegetation
Index

(Rouse et al., 1974)

GNDVI
Green Normalized Difference
Vegetation Index

(Gitelson et al., 1996)

EVI Enhanced Vegetation Index (Huete et al., 2002)

SAVI Soil-Adjusted Vegetation Index (Huete, 1988)

NDRE Normalized Difference Red Edge
(Gitelson and Merzlyak,

1994)

RDVI
Renormalized Difference Vegetation
Index

(Roujean and Breon, 1995)
TABLE 7 Performance on predicting top 25% and top 50% of the
genotype for different locations was obtained via a model trained from
CAE (compositional autoencoder) latents, VIs (vegetation indices), and
CAE + VIs.

Location VIs CAE CAE+VIs

(a) Top 25%

Ames 44.44 50.0 27.77

Crawfordsville 38.33 50.0 50.0

Lincoln 50.0 55.55 50.0

MOValley 27.78 55.55 33.33

Scottsbluff 44.33 33.33 38.88

(b) Top 50%

Ames 56.75 56.75 67.56

Crawfordsville 62.16 64.86 70.27

Lincoln 37.84 59.45 56.75

MOValley 45.94 75.67 78.37

Scottsbluff 40.54 56.75 51.35
For testing the model for a location, we trained the model on data from all other locations and
then predicted yield for all the samples from that location. Then, we rank ordered the
predictions and compared them against the ground truth rank ordering of the genotypes. The
performance was evaluated by calculating the percentage of overlap between the top 25% or
top 50% of the ground truth rank order list and the predicted rank order list. All the numbers
given below are in percentages. The numbers in bold represent the best performance observed
for a particular location.
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downstream prediction accuracy of a model that uses the CAE

latent representation as inputs. Specifically, a disentangled latent

representation was first generated via the CAE on all available

(unlabeled) data – three from 2022 and three from 2023 (Ames,

Lincoln, and MO Valley). These disentangled latent features were

then used to train a downstream XGBoost model to predict yield.

The downstream model was trained on all the data except Ames

2023. We then tested this model on Ames 2023 data and observed

an RMSE of 27.815, demonstrating an improvement over

traditional methods such as linear mixed models (RMSE = 29.91)

and vegetation indices (RMSE = 45.80). The CAE also

outperformed large pre-trained models like ResNet-18, which had

an RMSE of 48. This highlights the ability of the CAE to generalize

well to new environmental conditions, even when models like

ResNet-18 (He et al., 2016), with its 11.7 million parameters and

deeper architecture, struggled.
4 Conclusion

This study extends our previous work on disentangling

Genotype x Environment (GxE) features by applying a

Compositional Autoencoder (CAE) to create disentangled latent

representations of satellite imagery. These disentangled latent

representations produced improved yield prediction. Our results

demonstrate the CAE’s effectiveness in separating environmental

factors and improving yield predictions at various growth stages.

The CAE outperformed raw satellite data in distinguishing macro-

environmental factors, as evidenced by the improvement in

silhouette scores from 0.293 to 0.919. This enhanced separation of

environmental features suggests the CAE’s potential for more
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precise modeling of environmental influences on crop

performance. The model also showed promising results in

disentangling micro-environmental factors.

In terms of yield prediction, regression (XGBoost) models

trained on CAE-based latent representations consistently

outperformed regression models trained on latent representations

from vanilla autoencoders across all time points and beat models

trained on VIs for yield prediction for the vegetative stage and post-

flowering stage, with competitive performance during the flowering

stage. This enhanced early-stage prediction capability could provide

breeders with valuable insights for resource management

throughout the growing season.

The genotype features extracted by the CAE could also be

valuable for genome-wide association studies, offering a new way

to link genetic markers to complex traits. Additionally, exploring

the CAE’s use with other sensing modalities and applying it to time-

series data may further improve its predictive capabilities and reveal

new biological insights. Combining the CAE’s disentangled latent

representations with other data sources, such as crop models or

physiological measurements, could lead to enhanced end-of-season

trait prediction models. While this study focused on high-resolution

(30 cm) Pleiades Neo imagery to enable fine-grained plot-level yield

prediction, an important direction for future work is to evaluate the

performance and generalizability of the CAE framework across

coarser resolutions (e.g., 1 m, 3 m, and 10 m) to understand the

trade-offs between spatial resolution, model accuracy, and

operational scalability for broader deployment. Another

important direction is to examine how pixel size relates to maize

plant size, incorporating factors such as planting density and pixel-

level variability, and to assess how these spatial effects correlate with

trait variability among maize hybrids.
FIGURE 11

Feature correlations for combined feature space (CAE+VIs). We observe that the VIs show high correlation with the ‘ze’ components generated by
CAE. High correlations between these feature sets will introduce redundant information, which could negatively affect the model’s performance.
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