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Accurate simulation of crop growth processes for predicting final yield is critical

for optimizing resource management, particularly in regions with variable

climates and limited resource availability. This paper proposes a novel data-

driven crop model to simulate phenotypic changes during biomass sorghum

growth. The model integrates a detailed physiological framework for sorghum

development—tracking how phenotypes are determined by genotype,

environment, management practices, and their interactions—with data-driven

techniques to calibrate genotypic parameters using experimental data. Results

demonstrate that the model achieves accurate biomass production predictions

and successfully disentangles the effects of environmental and management

factors on phenotypic development, even with limited data. This model

enhances the accuracy and applicability of biomass sorghum growth and yield

prediction models, offering valuable insights for precision agriculture.
KEYWORDS

biomass sorghum, yield prediction, data-driven cropmodel, process-based cropmodel,
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1 Introduction

Sorghum (Sorghum bicolor (L.) Moench) is a versatile C4 drought-resistant and

nutritionally valuable crop, integral to food security and biofuel production around the

world (Wang et al., 2008; Xiong et al., 2019; Silva et al., 2022). Among different sorghum

types, biomass sorghum has emerged as a resource capable of accumulating over 20 tn/ha of

dry matter (Salas-Fernandez and Kemp, 2022) for forage and bioenergy production. In

addition, bioenergy sorghums are beneficial toward greenhouse gas mitigation (Olson

et al., 2012).

Biomass yield can be influenced by environmental factors, management practices

(Olson et al., 2013) and, given its polygenic nature, genotypic variability (Breitzman et al.,

2019; Habyarimana et al., 2020; Singh et al., 2025). Key biomass-related traits such as stem
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diameter, plant height (Salas Fernandez et al., 2017), flowering time

(Habyarimana et al., 2020), and carbon partitioning (Boatwright

et al., 2022) have been the focus of attention to dissect the

complexity of biomass yield. The study of biomass-related traits

led to the development of genetic resources including the Bioenergy

Association Panel, the Carbon-Partitioning Nested Association

Mapping panel and the Photoperiod Sensitive Panel (PSP)

(Brenton et al., 2016; Yu et al., 2016; Boatwright et al., 2021).

These populations enabled studying biomass-related traits with

germplasm relevant to the production system, integrating growth

dynamics with high throughput phenotyping (Panelo et al., 2024)

and crop modeling strategies (Panelo et al., 2025).

Accurate simulation of the biomass sorghum growth process is

pivotal for predicting the final yield and optimizing resource

management strategies, particularly in areas susceptible to climate

variability and resource constraints (Zha et al., 2010; Biazin et al.,

2012; Kugedera et al., 2022). Reliable yield predictions are essential

for optimizing agronomic interventions, resource allocation, and

supply chain logistics. Consequently, researchers have explored

various modeling approaches, ranging from process-based crop

simulations to data-driven models, to address this challenge.

Process-based crop models have been widely used to predict

sorghum yield by explicitly integrating various physiological

processes, environmental factors, and management practices.

SORKAM, introduced by Rosenthal et al. (1989), broke ground

by modeling daily canopy development and adjusting carbon

partitioning based on organs’ demands. This sink-source

foundation was brought into the Decision Support System for

Agrotechnology Transfer (DSSAT) framework, introducing

CERES-Sorghum (Virmani et al., 1989). In CERES-Sorghum,

radiation-use efficiency drives daily biomass production that is

then distributed to leaves, stems, and grain according to stage-

specific coefficients, whereas genotypic coefficients drive mostly

crop phenology (White et al., 2015). Continuous updates in the

CERES-Sorghum model improved routines for leaf area

development and biomass partitioning, boosting predictive skill

by up to 20% (White et al., 2015), while experiments with larger

rooting depths have successfully identified management practices

for sweet sorghum (Lopez et al., 2017). The Agricultural Production

Systems sIMulator (APSIM) is another radiation use efficiency-

based model, including a sorghum module that has been optimized

for integration with plant breeding (Hammer et al., 2010). This crop

growth model has been effective for simulating genetic diversity in

sorghum across environments (MacCarthy et al., 2009; Chimonyo

et al., 2016; Truong et al., 2017; Yang et al., 2021; Tirfessa et al.,

2023). Advancements in high-throughput phenotyping allowed

integrating remotely sensed leaf area index (LAI) and vegetation

indices like NDVI with both CERES and APSIM to correct state

variables, thus improving predictive ability under varying climatic

conditions (Masjedi et al., 2018; Della Nave et al., 2022; Kivi et al.,

2023). Generally, process-based models like APSIM and DSSAT

describe processes on a fine-scale temporal basis (Jones et al., 2003;

Holzworth et al., 2014). However, calibrating the parameters used
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by process-based models represents a challenge as it requires

resource-intensive field experiments in a range of environments

(He et al., 2017).

Data-driven models aim to build a mathematical relationship

between the input data and the output, unlike process-based models

which rely on known physiological mechanisms (Roberts et al.,

2017). Jiang et al. (2004) developed an artificial neural network

using back-propagation algorithms to enhance crop yield prediction

accuracy. Over a decade later, several deep neural network based

models were developed to ingest daily weather grids, layered soils,

and genotype markers to untangle genotype by environment (G×E)

interactions driving yield. Khaki and Wang (2019) predicted maize

yields for new hybrids planted in unseen locations by learning the

complex G×E interactions from historical trials, while Shook et al.

(2021) integrated genotype information with weather variables to

improve soybean yield prediction. Later, Khaki et al. (2020)

improved generalization by introducing convolutional neural

networks and recurrent neural networks (CNN-RNN) framework

which extracts spatio-temporal features from weather and soil data

to capture latent G×E patterns. Such hybrid CNN-RNN

outperformed random forests and linear models (Khaki

et al., 2020).

Statistical regression modeling is another data-driven method,

which can take advantage of weather and remote sensing data.

County-scale weather regressions could achieve notable accuracy in

maize yield forecasting (Conradt et al., 2016), satellite-derived

vegetation indices, weather, soil, and location data could explain

the soybean yield variation (Chen et al., 2019). Similar methods

using NDVI time-series have been applied for wheat yield

estimation as well (Duan et al., 2017). These studies highlight that

well-structured regression models can provide robust, interpretable

predictions, especially when paired with remote sensing and

meteorological inputs. Likewise with process-based models,

integration of high-throughput phenotyping imagery from

unmanned aerial vehicles (UAVs) and advanced machine

learning improve precision. Varela et al. (2021) demonstrated that

high temporal resolution UAV imagery can capture growth

dynamics in biomass sorghum by extracting time-series features

as canopy development rates. Their model utilized dynamic and

time-point specific image-derived features to predict biomass

accumulation, highlighting the benefit of monitoring crop

progress over time. Integration of UAV-based data with deep

learning algorithms sharped predictive performance, as the fine-

scale, high-resolution data from UAVs better capture crop health

and stress status throughout the growing season (Masjedi et al.,

2019; Khaki et al., 2021; Wang and Crawford, 2021; Wang et al.,

2023). The data-driven modeling approach has two major

limitations. First, the black-box structure between input and

output layers makes the results less interpretable since it can

build relationships in the data that do not consider known

assumptions (Alibabaei et al., 2022; Drees et al., 2024). Second,

the model performance is highly sensitive to data quantity and

quality, posing challenges when applying the model with
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insufficient or noisy data (Jabed and Murad, 2024; Miftahushudur

et al., 2025).

Researchers have recently attempted to integrate traditional

process-based crop growth models with data-driven modeling

techniques to gain both accuracy and interpretability. One

popular route treats simulated state the variables as engineered

features, fed into gradient-boosting or bagged-tree ensembles (Feng

et al., 2020; Shahhosseini et al., 2021). They demonstrated how

output variables from APSIM such as phenology and soil moisture,

can serve as engineered features in machine learning frameworks,

reducing prediction errors in wheat (Feng et al., 2020) and maize

(Shahhosseini et al., 2021). Similar integrations in soybean

(Corrales et al., 2022) and maize (Zhang et al., 2021), improved

the prediction performance by combining environmental data with

crop growth model outputs into linear regression models. These

integrative models tend to be more transparent, since the process-

based component ties predictions to biophysical crop responses,

and the data-driven component can quantify feature importance. A

second route builds neural experiments that approximate the entire

CERES or APSIM parameter surface. Some field-focused studies

(McCormick et al., 2021; Xiao et al., 2022; Droutsas et al., 2022;

Cunha et al., 2023) reinforced that coupling data-driven and

process-based techniques provides more interpretable agronomic

adjustments under climate adaptation scenarios. Likewise, Li et al.

(2023); Gallear (2023) and Chang et al. (2023) report that machine

learning emulators of crop models enabled faster simulations and

more efficient scenario analyses. These tools facilitate real-time

exploration of “what-if” management decisions and provide

interpretable outputs. Overall, these studies highlight that

integrating knowledge from the process-based models domain

with the flexibility of machine learning, results in more accurate

and data-efficient models that are also transparent and actionable

advancing decision making for breeders, agronomists, and farmers.

This paper presents a novel data-driven crop model for biomass

sorghum growth simulation. The model integrates a descriptive

sorghum growth framework—tracking phenotypic responses to

genotype, environment, and management (G×E×M) interactions

—with data-driven calibration of genotypic parameters from

experimental data. Unlike conventional process-based models that

treat genotypes as fixed inputs, our approach explicitly disentangles

G×E×M effects on phenotypes during the sorghum growth stage by

parameterizing genetic properties for each genotype. This

methodology streamlines the calibration of complex coefficients

inherent in process-based models and reduces reliance on uncertain

parameters derived from field experiments, which are often

confounded by G×E×M interactions. Additionally, our modular

framework adapts to data availability, eliminating the need for

predetermined datasets or assumptions about missing information.

This adaptability stands in contrast to traditional models, which

require extensive data imputation prior to implementation. To the

best of our knowledge, this paper presents the first attempt to merge

a crop model and a data-driven model to address biomass sorghum

yield prediction.
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2 Materials and methods

In this section, we first present the input data used in this study,

then demonstrate the sorghum growth model used in the data-

driven crop model approach, followed by the training approach.
2.1 Sorghum data

Sorghum phenotypic data were collected from field trials

conducted in 2021 and 2022 at the Iowa State University

Agricultural Engineering and Agronomy farm, in Boone, IA. The

experiments were conducted using a randomized complete blocks

design with two replications, with a planting rate of 12 pl/m2 and 70

cm inter-row spacing. The trials evaluated the Photoperiod

Sensitive Panel, which includes 270 photoperiod sensitive (PS)

sorghum genotypes (Yu et al., 2016). PS sorghum requires a

daylength shorter than 12 hours and 20 minutes for flowering

(Rooney and Aydin, 1999), and is primarily cultivated for biomass

production. Its extended vegetative stage in temperate and

subtropical climates results in higher total dry biomass of leaves

and stems compared to other sorghum types during later growth

phases (Rooney and Aydin, 1999; Hao et al., 2014). The dataset

includes phenotypic records for 11 time points during the growing

season (22–145 days after planting), along with genotype and

management data. Although the exact sampling dates differed by

one or two days, the scheduled measurement points were 22, 36, 43,

50, 57, 64, 71, 78, 85, 110, and 145 days after planting. Phenotypic

measurements included dry biomass weights of stems and leaf

blades. Each fraction comprises the total biomass of the main

culm and, where present, the tillers. Dry biomass was recorded

after drying the samples at 60 °C until constant weight.

Additionally, management records were collected, containing

information on planting date, harvest date, and stand count

(plant population density).
2.2 Weather data

To comprehensively account for the effect of weather on

sorghum growth, weather data was retrieved from the Iowa

Environmental Mesonet Herzmann and Wolt (2020), which

includes an automated weather station at the farm where the

experiments were performed. The variables obtained were air

temperature, relative humidity, solar radiation, precipitation, wind

speed, evapotranspiration, soil temperature (at 4, 12, 24, 50 inch

depth), and soil volumetric water content (at 12, 24, 50 inch depth).
2.3 Sorghum growth model

Our sorghum growth model is designed based on the available

data previously described. It has a customized module structure
frontiersin.org
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adapted to the modeling granularity provided by the available data.

Although the crop model includes a grain component, PS sorghum

does not produce grain in temperate environments. In this paper,

we focus on tracking the phenotype during the sorghum growth

process, with particular emphasis on total biomass weight, which is

determined by the dry weight of leaves and stems. Based on these

considerations, we constructed a sorghum growth model using the

module structure shown below (Figure 1). More detailed definitions

and equations are illustrated in Supplementary Presentation 1.
Fron
• Stress: heat and cold stresses based on air temperature and

root temperature are considered. Air stress can influence

leaf, stem, and root stress only affects the root.

• Tillering: tillers have their own leaf, stem, grain, and

root systems.

• Growth: the model updates leaf weight, root weight, root

length, stem weight, stem height, grain weight, after

considering maintenance and growth respiration. Root

length and stem height do not decrease due to irreversible

cell expansion and lignification. Under carbon deficit

(maintenance > growth), biomass is remobilized from

existing pools (weight decline) while maintaining

structural dimensions, reducing tissue density. When

growth biomass is replenished, the model first restores

tissue density before allocating to new growth.

• Water: water can be stored and transported in the xylem of

the main crop and tiller. Plant water uptake is influenced by

root system efficiency and xylem transport capacity, while

stand count affects water availability through competition

among neighboring plants. Soil water volume is treated as

an external input, independent of plant activity since it is

considered an input data.

• Photosynthesis: the daily biomass accumulation is

determined by light, water, leaf, and phloem capacity

constraints, radiation interception is modeled as a

function of stand count.
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• Phenology: there are four transition points for the sorghum

growth in our model, 1) planting, 2) vegetative stage, 3)

bloom and grain filling, and 4) harvest. The phenology

module does not include stage 3 (bloom and grain filling)

for PS sorghum.

• Transpiration: air temperature, humidity, evaporation, and

wind can affect the transpiration.

• Maintenance: the amount of photosynthate consumption

for maintenance and senescence for leaf, root, stem, and

grain, determined by organ weight and stress.

• Respiration: the respiration consumes the photosynthate

and provides energy for plant growth activity.
Our data-driven crop model approach can separate input data,

output data, genotype-specific properties, intermediate variables, and

output variables. Other crop models like APSIM and DSSAT use

parameters that are jointly determined by genotype and environment

interactions. Instead of using growing degree days (GDD) as the

threshold for growing stage transitions and biomass partition ratio,

we define a growing degree unit (GDU) in eq. (S2) which is similar to

GDD but is determined by hourly temperature. The GDU has more

capability to capture weather fluctuations on an hourly temporal scale

instead of being potentially misleading like average scale data. We

also define a growing phenology unit (GPU) in eq (S3) and (S4)

which is calculated by normalized temperature and normalized solar

radiation to determine the growth stage. The data-driven crop

approach calibrates the parameters using data rather than using

predetermined coefficients. This difference provides advantages

including compatibility with state-of-the-art data-driven calibration

algorithms and adaptability with breeding algorithms.
2.4 Training approach

To demonstrate the effectiveness of the data-driven crop

approach, we applied the sorghum growth model to the dataset
FIGURE 1

Architecture of the proposed sorghum growth process simulation model.
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described previously. Computational experiments were conducted

using Python on the High Performance Computing Center at

Oklahoma State University with dual Intel “Skylake” 6130 CPUs

192 2.1GHz and 96 GB RAM. The data-driven training method is

illustrated below.
Fron
Initialization: initialize all N genotypic parameters,

separate train and test set, time t = 0

1: Step 1: Compute the mean values of recorded dry

biomass in train set

2: Step 2: Parameter Calibration of g∗

3: currentRRMSE = GetRRMSE(trainset)

4: while t ≤ Time Limit do

5: Randomly select n (< N) parameters from g∗, and adjust

their values by incrementing and decrementing them

using varied step sizes
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6: if GetRRMSE(trainset)< currentRRMSE then

7: Updated the selected the n parameters in g∗

8: Update currentRRMSE

9: else

10: continue

11: end if

12: end while
Algorithm 1. Heuristic Algorithm for Tuning Genotypic Parameters.

The missing data in the weather dataset were imputed using

the k-nearest neighbors (kNN) method (Fu et al., 2019; Hamzah

et al., 2021), which is widely used to handle missing values in crop-
FIGURE 2

Distribution of dry biomass for stems (blue) and leaves (red) from field trials in Boone, IA, in 2021 and 2022. Panels correspond to 11 scheduled
sampling points at 22, 36, 43, 50, 57, 64, 71, 78, 85, 110, and 145 days after planting; calendar dates occasionally differed by 1–2 days. Boxes show
the interquartile range (IQR) with the median line; whiskers extend to 1.5×IQR; circles denote observations outside the whiskers. Each observation
represents one plant per organ at that date. To aid interpretation, the last three sampling points in each panel are annotated with the sample mean
and standard deviation. Figure 2 (A) contains stems records in 2021, (B) contains stems records in 2022, (C) contains leaves records in 2021,
(D) contains leaves records in 2022.
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yield prediction studies. Genotypic parameters are seeded with

values taken from APSIM 7.10 (Holzworth et al., 2014) together

with expert-derived bounds, providing a biologically plausible

starting point that speeds convergence. Following the workflow

described in Section 2.4 (Algorithm 1), we trained the model on

one experimental year and validated it on the other. The

calibration of genotypic parameters g∗ uses the relative root

mean square error (RRMSE) as the performance metric, which

scales the classic RMSE by the mean observed value, making it

easier to compare across traits and years. The heuristic algorithm

applies an iterative search: 1) randomly select n parameters from

the N-dimensional vector g∗, assigning higher sampling

probability to parameters with greater local sensitivity, 2) for

each selected parameter, propose two new values: one

incremented and one decremented by the current step size, 3)

evaluate current RRMSE for each proposed g∗ vector, 4) update

the optimal g∗ if a proposal yields better RRMSE, otherwise retain

the current solution and proceed to the next iteration. The search

terminates when the time limit is reached or when the RRMSE

falls below a predefined tolerance. The function GetRRMSE

calculates the RRMSE of dry biomass from the given training

set. The RRMSE can be calculated as:

RRMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
non

i=1(xi,t − x̂ i,t)
2

q

1
non

i=1xi,t

where,
Fron
• n, sample size number.

• xi,t , the observed total dry biomass weight of leaves and

stems in sample i on day t.
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• x̂ i,t the predicted total dry biomass weight of leaves and

stems in sample i on day t.
3 Results

In this section, we demonstrate the training and test strategies

and results of our data-driven crop model, followed by additional

noteworthy findings.
3.1 Phenotypic data

Figure 2 displays box plots of leaves and stems dry weights for

the two field trials carried out in Boone, IA. Each pair of leaves and

stems dry biomass weights box-plots represents the corresponding

phenotypic data characterized the same date. By the end of the

growing season, stems biomass showed larger values and variability

compared to the leaves biomass. Both experiments displayed a

consistent increase in biomass accumulation, with differences

between years. Notoriously, the leaves fraction showed a lower

biomass at the end of the season in 2022, compared to the same

sampling point in 2021.
3.2 Environmental characterization

In 2021, conditions for planting and crop establishment were

excellent. In 2022, although temperatures were initially higher than

in 2021, there was a very heavy rain after planting, which had a

negative impact on seed germination. Figure 3 summarizes weather
FIGURE 3

Weather data for 2021 and 2022: The weather data are retrieved from the Iowa Environmental Mesonet Herzmann and Wolt (2020). The data was
collected from the automated weather station nearby the trial field location at the Iowa State University Agricultural Engineering and Agronomy
farm, in Boone, IA. The planting and harvest dates in 2021 (2022) are 5/27 (5/30) and 10/17 (10/26), respectively. Figure 3 (A) temperature,
(B) humidity, (C) radiation.
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conditions during the 2021 and 2022 growing seasons. Notably,

mean temperatures in October 2022 were significantly lower than

those during the same period in 2021. This temperature anomaly

aligns with observed reductions in leaves dry biomass weights near

mid-October in 2022.
3.3 Training and test results

After masking missing values, the refined dataset consisted of

265 genotypes, with each genotype having two replicates per year at

varying stand counts (plants per square meter). This resulted in 530

series of leaves and stems dry biomass weight measurements

annually. We conducted two train-test experiments: (1) training

on 2021 data and testing on 2022 data, and (2) training on 2022 data

and testing on 2021 data. Figures 4, 5 summarize two sample results
Frontiers in Plant Science 07
for the same genotype after applying the data-driven crop model to

the training and test datasets.

In the Figures 4, 5, scatter points represent observed leaves and

stems dry biomass weights across the growing season, while solid

and dashed lines denote predicted stems and leaves dry biomass,

respectively. Labels “b1” and “b2” indicate replication number in

the randomized complete block design used in the field trial,

following with varying stand counts across the four observed data

series. Training results (upper subplots) generally exhibit lower

Relative Root Mean Square Errors (RRMSEs) compared to test

results (lower subplots), a common outcome as models are

optimized for training data. We can also observe that the data-

driven crop model can provide an accurate prediction of sorghum

dry biomass production with unseen weather data.

Training RRMSEs were similar across experiments

(approximately 20%), whereas test RRMSEs were significantly
FIGURE 4

Sample result 1 (Training with 2021 Data): This figure shows the model’s performance when trained on 2021 records for genotype ID 156510 and
tested on the same genotype’s 2022 data. Scatter points represent observed leaf and stem dry biomass weights across the growing season, while
solid and dashed lines indicate the predicted stem and leaf biomass weights, respectively. Labels “b1” and “b2” denote biological replicate numbers in
the field trial. The stand counts reflected in the four observed data series are also included in each small title. The upper (A, B) subplots summarize
training results for block 1 and 2 in 2021, and the lower (C, D) subplots illustrate test performance for block 1 and 2 in 2022.
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higher (Table 1), suggesting potential overfitting. We also

conducted an additional experiment training the model on

combined 2021 and 2022 data; results are presented in the final

row of Table 1. To further analyze parameter behavior,

Supplementary Figure S1 illustrates distinct probability density

curves for 56 parameters under three training scenarios: (1) 2021

dataset, (2) 2022 dataset, and (3) combined dataset.
3.4 Changing stand counts

In this subsection, we conducted a series of simulations to

identify the optimal stand count for maximizing biomass

production. The stand counts in the training data have a mean

value of 14.56 pl/m2 with the standard deviation of 3.83. The

simulations were conducted with genotypic parameters calibrated

using data from both 2021 and 2022, and assumptions of same
Frontiers in Plant Science 08
weather conditions in 2021 with same soil moisture levels. Figure 6

compares simulated biomass yields (red line) against observed 2021

and 2022 field data (blue dots). The highest biomass yield based on

the simulation was observed at approximately 25 pl/m2, with dry

biomass production reaching 3.2 kg/m2. The sudden drop in shoot

biomass around 30 pl/m2 is likely due to environmental conditions

not represented in the training data. While a comprehensive

optimal density analysis will require further field validation

environment to confirm these outputs, the present density tests

still yield valuable insights and underscore the model’s potential for

prescriptive analysis despite limited training data.
3.5 Changing planting and harvest dates

We conducted a series of tests to evaluate whether the original

planting and harvest dates were optimal under 2022 weather
FIGURE 5

Sample result 2 (Training with 2022 Data): This figure shows the model’s performance when trained on 2022 records for genotype ID 156510 and
tested on the same genotype’s 2021 data. Scatter points represent observed leaf and stem dry biomass weights across the growing season, while
solid and dashed lines indicate the predicted stem and leaf biomass weights, respectively. Labels “b1” and “b2” denote biological replicate numbers in
the field trial. The stand counts reflected in the four observed data series are also included in each small title. The upper (A, B) subplots summarize
training results for block 1 and 2 in 2022, and the lower (C, D) subplots illustrate test performance for block 1 and 2 in 2021.
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conditions, using parameters calibrated with data from both years.

The original planting and harvest dates for the 2022 trial were May

30th and October 26th, respectively. As shown in Figure 7, these

dates were suboptimal. Shifting the planting date 1–2 days earlier

and the harvest date 8–9 days earlier would maximize yield. The

simulated peak shootdry biomass is about 9% higher than the

original value, with most of the increase contributed by the

leaves. This adjustment aligns with the weather patterns

illustrated in Figure 3, where early harvesting helped avoid severe

cold stress observed in late October. Cold stress during this period

can accelerate leaf senescence, leading to significant dry

biomass loss.
Frontiers in Plant Science 09
4 Discussion

Our data-driven crop model for biomass sorghum

demonstrated robust predictive performance, achieving an

average Relative Root Mean Square Error (RRMSE) of

approximately 20% across experiments trained on the 2021 and

2022 datasets. The model’s training performance is comparable to

contemporary crop biomass prediction frameworks (Roy

Choudhury et al., 2021; Servia et al., 2022), but underperforms

relative to yield prediction models in agricultural applications (Jégo

et al., 2012; Xu et al., 2020; Roy Choudhury et al., 2021; Khaki et al.,

2021; Dhillon et al., 2023; Chang et al., 2023). However, elevated

RRMSE values in test results suggest potential overfitting, likely

attributed to limited data availability for each genotype.

Furthermore, the model’s accurate prediction of post-120-day

leaves dry biomass trends in both years demonstrates its capacity

to distinguish genotypic and environmental influences. By isolating

the impacts of genotype, environment, and management, the model

offers actionable insights for both descriptive analysis and

prescriptive agricultural optimization.

Yields at various stand counts can provide critical insights for

farmers seeking to maximize profits. Our results indicate that

higher stand counts does not ensure increased biomass

production, a finding consistent with prior studies (Turgut et al.,

2005; Snider et al., 2012; Adams et al., 2015; May et al., 2015;

Mahmood et al., 2015; Xuan et al., 2015; Tang et al., 2018). While

the literature suggests that the optimal biomass production for

sorghum typically occurs at 10–20 pl/m2, our simulation results

exceed this range (Snider et al., 2012; Adams et al., 2015; May et al.,

2015; Xuan et al., 2015; Tang et al., 2018). This discrepancy may be
TABLE 1 Training and test performance for different training sets.

Train on 2021 and test
on 2022

Train avg.
RRMSE

Test avg.
RRMSE

Mean 19.93% 40.45%

Standard Deviation 4.62% 16.93%

Train on 2022 and test
on 2021

Train avg.
RRMSE

Test avg.
RRMSE

Mean 20.39% 51.07%

Standard Deviation 6.73% 26.26%

Train on both 2021 and
2022

Train avg.
RRMSE

Mean 23.19%

Standard Deviation 5.43%
FIGURE 6

Dry biomass under different stand counts: The blue dots represent the total shoot dry biomass (in kilograms per square meter), calculated from the
observed final shoot dry biomass per plant and the stand counts. The red line indicates the simulated shoot dry biomass under varying densities but
the same growing environment in 2021.
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attributed to idealized assumptions in our model, such as soil

moisture and nutrient availability, which could elevate the

optimal stand count. Due to current data limitations, our model

does not incorporate seed or labor costs during the sorghum

growing process. However, we emphasize that the model’s flexible

framework allows for seamless integration of these variables once

additional data become available, enabling future analyses with

alternative objective functions (e.g., cost-benefit optimization).

The results from planting and harvest dates adjustments test

suggests yield improvements harvesting 8 days earlier. The results

from the different planting and harvest dates tested indicate that the

potential value of data-driven crop models for prescriptive analysis

would not have been possible without their ability to separate the

genotypic and environmental effects of crop yield. Separating these

influences is a crucial feature that enables the data-driven crop

model to provide useful recommendations and insights for

optimizing crop planting practices. Note that the current model

has limited capability to capture certain real-world risks associated

with earlier or later planting and harvesting. These include poor
Frontiers in Plant Science 10
emergence due to cold soil temperatures, insect damage linked to

delayed planting, or frost risks resulting from late harvesting.

By parameterizing the genotypic properties, our model

circumvents calibration challenges inherent to conventional

process-based approaches. The proposed data-driven crop model

has the ability to fundamentally distinguish genotypic and

environmental effects on crop yield, which can unlock valuable

prescriptive potential. After obtaining a set of explainable and

insightful results, the parameters from our model are transferable

to other environments, whereas the genotype parameters for other

process-based crop models may need to be recalibrated when the

same varieties are grown in different environments (Adnan et al.,

2019; Chang et al., 2023; Shawon et al., 2024; Wallach et al., 2025).

Such advantages could empower farmers to optimize planting

schedules using weather forecasts, reducing reliance on costly

field trials for parameter recalibration. Simulations that combine

weather forecasts with our model could help farmers choosing

sowing dates that favor seed germination, promoting even crop

emergence and biomass accumulation and allowing the crop to take
FIGURE 7

Yield under varying planting and harvesting dates. Values in horizontal and vertical axes indicate numbers of days deviation from actual planting date
(May 30) and harvesting date (November 26) in 2022.
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advantage of a favorable growing season. If conditions appear

unfavorable, the model can recommend delaying planting or

scheduling a second sowing to maximize yield. Likewise, toward

the end of the growing period, integrating our model with real-time

forecasts could alert farmers to the risk of a killing frost, enabling

timely harvest and preventing the potential biomass and sugar

losses that can follow a sudden cold snap. Our data-driven model

has modular flexibility, allowing adaptation to data availability

without requiring imputation or assumptions for missing inputs.

This adaptabi l i ty streamlines model development for

diverse datasets.

The proposed data-driven model has limitations. The modular

structure for one crop species is not easily transferable to another, as

each crop has unique physiological properties that need a carefully re-

designed framework suitable to that specific species’ biology and

growth processes. In addition, the performance is heavily dependent

on the quality and quantity of input data. Furthermore, some key

practices of management like irrigation, fertilization, and tilling

methods are absent in the current version of data-driven crop model.

The results of applying this data-driven model in biomass

sorghum could lead to additional data-integration strategies. First,

results from our model may provide insightful information that can

be readily adapted to other sorghum types as well. Second, UAV

and remote sensing data could be incorporated into the model to

provide a more comprehensive framework for crop growth. Third,

other phenotypic data such as leaf temperature and root depth can

be integrated within the data-driven crop model to achieve more

reliable simulation and yield prediction results. Furthermore, the

data-driven modeling framework could be applied to more crop

species and even more complex systems.
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