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YOLOvV10-kiwi: a YOLOvV10-
based lightweight kiwifruit
detection model in trellised
orchards

Jie Ren, Wendong Wang*, Yuan Tian and Jinrong He

College of Mathematics and Computer Science, Yan'an University, Yan'an, Shaanxi, China

To address the challenge of real-time kiwifruit detection in trellised orchards, this
paper proposes YOLOv10-Kiwi, a lightweight detection model optimized for
resource-constrained devices. First, a more compact network is developed by
adjusting the scaling factors of the YOLOv10n architecture. Second, to further
reduce model complexity, a novel C2fDualHet module is proposed by integrating
two consecutive Heterogeneous Kernel Convolution (HetConv) layers as a
replacement for the traditional Bottleneck structure. This replacement enables
parallel processing and enhances feature extraction efficiency. By combining
heterogeneous kernels in sequence, C2fDualHet captures both local and global
features while significantly lowering parameter count and computational cost. To
mitigate potential accuracy loss due to lightweighting, a Cross-Channel Fusion
Module (CCFM) is introduced in the neck network. This module incorporates four
additional convolutional layers to adjust channel dimensions and strengthen
cross-channel information flow, thereby enhancing multi-scale feature
integration. In addition, a MPDIoU loss function is introduced to overcome the
limitations of the traditional CloU in terms of aspect ratio mismatch and
bounding box regression, accelerating convergence and improving detection
accuracy. Experimental results demonstrate that YOLOv10-Kiwi achieves a
model size of only 2.02 MB, with 0.51M parameters and 2.1 GFLOPs,
representing reductions of 80.34%, 81.11%, and 68.18%, respectively, compared
to the YOLOvV10n baseline. On a self-constructed kiwifruit dataset, the model
achieves 93.6% mAP@50 and an inference speed of 74 FPS. YOLOv10-Kiwi offers
an efficient solution for automated kiwifruit detection on low-power
agricultural robots.

kiwifruit detection, YOLOV10, lightweight network, HetConv, CCFM, MPDlou

1 Introduction

Kiwifruit is widely welcomed for its abundance of vitamin C, dietary fiber, and a variety
of trace elements (Richardson et al., 2018). Meixian County in Shaanxi Province, as the core
kiwi-producing region in China, has seen its industry not only boost the local economy and
rural revitalization but also gain a significant position in the global market. Modern T-
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shape cultivation enhances orchard management, but harvesting
remains labor-intensive, facing labor shortages and high physical
demands (Deng et al., 2023). Automation technologies can
streamline harvesting processes, improving efficiency and
reducing labor dependency (Fu et al,, 2024).

Traditional kiwifruit detection methods mainly rely on color
features, morphological features, and machine vision techniques,
using handcrafted features for fruit segmentation and identification.
For example (Scarfe, 2012), combined RGB color subtraction with
Sobel filters to detect kiwis and their calyx edges, using template
matching for identification, but did not consider fruit shape features
(Zhan et al,, 2013) used the Adaboost algorithm to optimize
kiwifruit segmentation and localization in field conditions. By
analyzing RGB, HSV, and Lab color spaces, they selected the
most discriminative channels between fruit and background to
improve detection accuracy. With the rising demand for
nighttime automated harvesting (Longsheng et al., 2015),
proposed a machine vision method based on artificial lighting to
overcome the impact of natural light variability, thereby enhancing
detection stability. Overall, these traditional methods are
significantly affected by lighting conditions and fruit morphology
variations, resulting in limited generalization ability and poor
adaptability to complex environments. Consequently, researchers
have begun exploring deep learning-based approaches to overcome
these limitations.

Current deep learning-based kiwi fruit detection algorithms can
be broadly categorized into two-stage and one-stage detection
methods. Two-stage methods, such as Faster R-CNN (Faster r-
cnn: Towards real-time object detection with region proposal
networks, 2015), Cascade R-CNN (Cai and Vasconcelos, 2018),
and Mask R-CNN (He et al., 2017), first generate region proposals
followed by classification and bounding box refinement. These
models achieve high detection accuracy and robustness but are
computationally intensive and slower. In contrast, one-stage
detectors—such as the YOLO series (Jiang et al., 2022), SSD (Liu
et al., 2016), and EfficientDet (Tan et al., 2020)—offer faster
inference and lower computational cost, gradually becoming the
mainstream for real-time detection. For instance (Suo et al., 2021)
used YOLOv4 for multi-class kiwifruit detection, achieving a
maximum mAP of 91.9% with a per-image inference time of 25.5
ms, reducing robotic misoperations (Yao et al., 2021) improved
YOLOV5 by adding a small object detection layer, introducing a SE
attention mechanism, and optimizing the loss function to accurately
detect kiwi defects (Xia et al., 2022) integrated an attention module
into YOLOv7 and employed spectral techniques to improve
detection precision.

With the increasing demand for lightweight models, researchers
have proposed various optimizations to the YOLO series to reduce
computational load while maintaining accuracy. In the fruit
detection domain, numerous efficient improvements have been
made. For example (Liu et al., 2024) proposed the Faster-YOLO-
AP model, which used structural simplification and lightweight
convolutions to compress the parameter count to 0.66M and FLOPs
to 2.29G, while retaining high apple detection accuracy (Zhao et al.,
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2024). introduced YOLO-Granada, which maintained accuracy
close to YOLOv5s while reducing parameters, computation, and
model size to 54.7%, 51.3%, and 56.3% of the original, respectively,
greatly enhancing pomegranate detection efficiency. In the context
of kiwifruit detection, several lightweight models have also shown
promising results. For example (Fu et al., 2021) optimized
YOLOvV3-tiny to develop the DY3TNet model, improving
detection accuracy with 3x3 and 1x1 convolutions in layers 5 and
6, and compressing weights to 27 MB with an inference time of just
34 ms per image (Gao et al,, 2022) used GhostNet to replace the
original CSP-Darknet53 backbone and partially substituted
standard convolutional layers, significantly reducing
computational load (Zhou et al., 2022). proposed an enhanced
YOLOX-S model, reducing parameters by 44.8% and increasing
detection speed by 63.9% through feature map simplification,
activation function optimization, and loss function improvements.

Despite these advancements in model lightweighting and
detection performance, challenges remain in kiwifruit detection
tasks. Existing models still face high parameter counts and
computational burdens. While complex feature fusion and
convolution operations improve accuracy, they exacerbate
computational bottlenecks, limiting deployment and real-time
application on edge devices. To address this, this paper proposes
a lightweight kiwifruit detection model based on YOLOvV10 (Wang
et al, 2024), aiming to reduce computational complexity while
maintaining high detection accuracy. The main contributions are
as follows:

1. Construction of a diversified kiwifruit dataset. A total of
1,280 images were collected from real orchards under
various angles and scenes, covering complex lighting
conditions, occlusions, and diverse morphological
appearances of the fruit.

2. Proposal of the lightweight YOLOv10-Kiwi model. Based on
YOLOVI10n, the network is compressed via scaling factor
adjustments. The lightweight C2fDualHet module is designed
for feature extraction, the CCFM structure is introduced to
enhance feature fusion, and the MPDIoU loss function is
adopted to improve bounding box regression accuracy.

3. Validation through comparative and ablation experiments.
The proposed model’s effectiveness is demonstrated by
extensive experiments against mainstream detection methods.

2 Materials and methods
2.1 Dataset construction

2.1.1 Data acquisition

The image dataset used in this study was collected from July to
August 2024 in a commercial kiwifruit orchard in Meixian County,
Shaanxi Province. Xuxiang kiwifruit images grown under trellis
conditions were captured using iPhone 13 and 14 devices at various

frontiersin.org


https://doi.org/10.3389/fpls.2025.1616165
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Ren et al.

10.3389/fpls.2025.1616165

FIGURE 1

Images of kiwifruit under different conditions: (a) Sunny day, (b) Cloudy day, (c) Night, (d) Leaf obstruction, (e) Fruit overlap, (f) Branch obstruction,

(g) Top-down shot, (h) Low-angle shot, and (i) Eye-level shot.

angles (top-down, oblique, upward) and lighting conditions (front
lighting, backlighting, flash at night). Sampling was conducted on
sunny and cloudy days, as well as at night (with flash), to simulate
realistic harvesting scenarios. Rainy conditions were excluded since
harvesting typically does not occur during such weather. This
summer sampling phase coincided with the fruit maturation
period, ensuring consistency in fruit size and color—crucial for
effective model training in robotic applications. A total of 1,280
images were collected: 828 on sunny days (411 in the morning, 417
in the afternoon), 190 under cloudy skies, and 262 at night. All
images were resized to 640 x 640 pixels and reflect challenging real-
world conditions, including dense occlusion, uneven lighting,
clustered fruit, and complex backgrounds. Representative samples
are shown in Figure 1, which illustrates these visual challenges more
intuitively. This figure highlights the diversity and complexity of
orchard environments, underscoring the need for robust detection
under variable field conditions.

Frontiers in Plant Science

2.1.2 Data annotation

In this experiment, we used Labellmg software to annotate kiwi
fruit images with rectangular bounding boxes, assigning a single
category label “kiwi.” After the annotation process was completed,
the data was saved in YOLO format as.txt files, with each line
containing the class label, the normalized center coordinates
(x_center, y_center), width, and height—scaled to the [0, 1]
range. The dataset was divided into training, validation, and test
sets in a ratio of 8:1:1. Specifically, the 1,280 images were distributed
as follows: 772 images in the training set (containing 3,318
instances), 253 images in the validation set (1,010 instances), and
255 images in the test set (1,022 instances). The statistical analysis
results, as shown in Figure 2, indicate variations in both the scale
and distribution of the annotated bounding boxes, which are
consistent with the natural growth characteristics of kiwi fruits.
Figure 2a illustrates the distribution of width-to-height ratios of the
bounding boxes, reflecting significant differences in the sizes of the
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Distribution of bounding box sizes and label scales in the kiwifruit dataset: (a) Boundary Box Size Distribution, (b) Distribution of object center points
(color intensity represents density), and (c) Scatter plot of width-to-height ratios.

fruits. Figure 2b displays the distribution of object center points,
with color intensity representing density, showing that most objects
are concentrated near the center of the images. Figure 2¢ presents a
scatter plot of width-to-height ratios, which tend to cluster around
1, indicating that the bounding boxes are regular in shape, with
similar width and height. These characteristics provide valuable
data support for subsequent algorithm optimization.

2.2 Novel network construction

YOLOV10 serves as the foundation for this study, offering a well-
balanced trade-off between detection accuracy and inference speed
through its lightweight classification head, spatial-channel decoupled
downsampling, and rank-based architectural simplifications. These
structural advantages make it suitable for real-time detection tasks.
However, when applied directly to kiwifruit detection in trellised
orchard environments, the default YOLOv10n model reveals several
limitations. Its computational load and memory usage remain
relatively high for resource-constrained edge devices, and the
backbone structure lacks specialized design for lightweight feature
extraction under conditions such as dense occlusion, variable lighting,
and scale variation. In addition, the neck network provides limited
cross-channel fusion, which weakens its ability to capture fine-
grained multi-scale features, especially for small or overlapping
fruits. Furthermore, the use of the CIoU loss function in bounding
box regression often results in suboptimal localization performance
when dealing with irregular fruit shapes and aspect ratio mismatches.

To address these challenges, we propose YOLOv10-Kiwi, a
lightweight and efficient detection model specifically optimized
for kiwifruit detection in complex orchard conditions. As
illustrated in Figure 3, the model architecture incorporates three
key structural refinements. The original C2f block in the
YOLOV10n backbone is replaced with the C2fDualHet module,
which uses two consecutive HetConv layers to improve feature
representation while significantly reducing the number of
parameters and computational cost. The neck is enhanced with a
Cross-Channel Fusion Module (CCFM), which strengthens the
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integration of multi-scale and inter-channel information. Four
additional convolutional layers are incorporated to refine channel
dimensions and boost inter-channel interactions, thereby
improving detection robustness in the presence of occlusion and
size variability. Lastly, the head adopts a decoupled structure for
classification and regression, with the conventional CIoU loss
replaced by the Minimum Point Distance IoU (MPDIoU) loss.
This loss function improves localization accuracy and convergence
stability, particularly in scenes with densely packed or partially
visible targets. With these targeted improvements, YOLOv10-Kiwi
achieves a compact and efficient design that maintains real-time
performance while enhancing detection accuracy, making it well-
suited for deployment on low-power edge devices in
agricultural applications.

2.2.1 C2fDualHet

To further reduce the number of model parameters, this study
integrates HetConv (Heterogeneous Kernel Convolution) (Singh
et al.,, 2019) into the YOLOv10 framework. HetConv combines two
kernel sizes—3x3 and I1x1—and introduces a configurable
parameter P to control the proportion of channels processed by
each type, achieving an effective balance between spatial
representation and computational efficiency.

As shown in Figure 4, the input channels M are divided into P
parts: M/P channels are processed with 3x3 convolution kernels, while
the remaining channels use 1x1 kernels. In a standard convolution
operation, assume the input feature map has dimensions D; x D; x
M, where D; is the width and height of the input feature map, and M
is the number of input channels. The output feature map has
dimensions D, x D, x N, where D, is the width and height of the
output feature map, and N is the number of output channels. The
output feature map is obtained using N convolution kernels, each of
size K x K x M, where K is the kernel size. Based on this, the

computational cost of this layer can be expressed as:
FL, =Dy x Dy x M Xx N Xx K X K (1)

As shown in Equation 1, the computational cost of a
convolutional layer is influenced by several key factors: the kernel
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FIGURE 3
Schematic of the proposed lightweight network structure.
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FIGURE 4
HetConv convolutional structure.

size K, the image dimensions D; x D;, the number of input channels
M, and the number of output channels N. In traditional standard
convolution, this computational cost is often quite substantial,
posing challenges for computational resources. In the pursuit of
more efficient convolution methods, researchers have continuously
explored and developed various convolutional models. Notable
among these are depthwise convolution (DWC) (Howard, 2017),
pointwise convolution (PWC) (Chollet, 2017), and group
convolution (GWC) (Guo et al., 2019). While these models
significantly reduce computational load, they typically introduce
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an additional unit of latency. In contrast, HetConv not only
effectively reduces computational cost but also achieves zero
latency, which is especially important in applications with high
real-time requirements. Figure 5 illustrates a comparison between
HetConv and other convolution filters in terms of computational
efficiency and latency.

In a specific HetConv layer L, the convolution operation uses
KxK kernels over P channels, with its computational cost denoted
as FLg.

FLg =(Dy x Dy x M x N x K x K)/P (2)

For the remaining (M - M/P) channels, 1x1 kernels are applied,
with a corresponding computational cost denoted as FL,.

FL, = (Dy x Dy x N) x (M —4£) (3)

Therefore, the total computational cost of layer L can be
expressed as the sum of FLg and FL;.

FLyc = FLg +FL, (4)

Compared to standard convolution, the computational
reduction ratio Ryc of HetConv can be formulated accordingly.

Ry = PPl _

R ®

The computational formulations of Equations 2-5 provide a
quantitative basis for understanding the efficiency advantages of
HetConv over standard convolution, particularly in reducing
FLOPs and parameter counts through mixed kernel usage. When
P = 1, HetConv degenerates into standard convolution. HetConv
retains KxK kernels (e.g., 3x3) only on a portion of the channels to
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Comparison between HetConv and other efficient convolutional filters: (a) Standard convolution, (b) Depthwise convolution, (c) Pointwise

convolution, (d) Group convolution, and (e) HetConv.

capture critical spatial correlations, while applying 1x1 kernels on
the remaining channels to reduce computational complexity. This
design preserves essential spatial information while avoiding the
high computational cost associated with applying large kernels
across all channels. In terms of computational efficiency and
parameter reduction, HetConv significantly outperforms standard
convolution. The use of 1x1 kernels greatly reduces FLOPs and the
number of model parameters, making the model more lightweight
and vastly more efficient than standard convolution. Thus, we
construct the DualHetBlock using two consecutive HetConv
modules to replace the Bottleneck in the original C2f, naming
it C2fDualHet.

2.2.2 Cross-scale convolutional fusion module
In the complex natural environment of kiwifruit orchards, fruits
are often affected by factors such as occlusion, uneven lighting, and

clustered distribution. These challenges lead to significant variations
in the morphology and scale of the targets, thereby reducing the
accuracy and robustness of detection models. To enhance the
model’s capability for multi-scale feature representation and
fusion, an improved Cross-scale Convolutional Fusion Module
(CCFM) (Zhao et al., 2024) is introduced, along with a
redesigned feature fusion pathway within the network.

As shown in Figure 6, this study adopts a processing strategy for
the final layer of efficient hybrid encoder (F5) similar to that
illustrated in the figure. Specifically, a 1x1 convolution is added
after the PSA module in YOLOvVI1O to reduce the number of
channels from 1024 to 256, thereby decreasing the parameter
count while maintaining spatial dimensions and promoting inter-
channel information interaction. In the diagram, shallow features
S3 and S4 are compressed via 1x1 convolutions to ensure
dimensional consistency before multi-scale feature fusion.

Efficent Hybrid Encoder

Conv 1x1sl

CCFM \

Fusion

f?@?@iﬁ@@@ﬁ r

]

S5
S4
S3

hhbbbiooats

DDDDD?DDDDD

Fusion

—©

b1
[

1 — Fusion

-/

]

= BN

SiLU

Conv 3x3s2
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@ Concatenate @ Element-wise add @ Flatten

FIGURE 6

Architecture of the original cross-channel fusion module
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The improved CCFM structure is illustrated in Figure 7. The
input_proj branch applies a 1x1 convolution to map the output
features of the backbone network, achieving channel alignment and
feature reorganization. The lateral_convs branch also uses 1x1
convolutions, but omits activation and normalization layers to
simplify computation and adjust feature channels. This branch
then upsamples the deep features to increase spatial resolution.
Once the two feature streams are dimensionally aligned, they are
fused through concatenation, effectively integrating high-resolution
detail with low-resolution semantic information. In this improved
architecture, the RepBlock in Figure 6 is replaced by an upsampling
operation, which boosts both small-object detection capability and
feature map resolution, facilitating efficient multi-scale
feature fusion.

Compared to the traditional PAN + FPN structure (Guo et al.,
2020), the improved neck architecture incorporates four convolution
operations for lightweight feature fusion, significantly enhancing the
model’s adaptability to multi-scale targets, particularly small objects.

2.2.3 Minimum point distance loU

The CIoU (Complete Intersection over Union) loss function
used in YOLOV10 takes into account the overlap area between the
ground truth and predicted boxes, the Euclidean distance between
their center points, and the aspect ratio difference. This improves
the model’s ability to fit object boundaries. However, in practical
applications, when the predicted box and the ground truth box
share the same center and aspect ratio, the aspect ratio penalty term
in CloU may degrade to zero—even if there is a significant size
mismatch between the two boxes. This reduces the loss function’s
sensitivity to boundary dimensions, which can negatively affect
model convergence speed and final accuracy.

To address this issue, the MPDIoU (Minimum Point Distance
TIoU) (Ma and Xu, 2023) loss function is introduced to further
enhance the performance of bounding box regression. This method
minimizes the Euclidean distance between the top-left and bottom-
right corner points of the predicted and ground truth boxes, thereby
directly constraining both the size and position of the bounding
boxes. The corresponding loss function is expressed as follows:

10.3389/fpls.2025.1616165

1 dy?
LMPDIou =1-1IoU + m + hz A W2 (6)
A2 = o+ 182 + (0 + )2 7)
dz? = (xzpml +x,5) ¢ (yzmd +9,5)? (8)
In Equations 6-8, (x,”", y,”*)and( x,”"*, y,/"") represent the

top-left and bottom-right coordinates of the predicted bounding
box, respectively. Similarly, (x,, y,5) and (%', y,*') denote the top-
left and bottom-right coordinates of the ground truth box. www and
hhh represent the width and height of the image.

MPDIoU builds upon the optimization of IoU and center point
distance by introducing constraints based on the distances between
corresponding key points. This enables a more precise
measurement of the geometric discrepancy between predicted and
ground truth boxes. It effectively addresses the weakness of CloU,
which may fail when aspect ratios are identical but box sizes differ.
As a result, MPDIoU enhances both the accuracy of bounding box
regression and the model’s convergence speed. An example of
MPDIoU metric parameters is illustrated in Figure 8.

3 Results and analysis
3.1 Experimental setup

To ensure the fairness and validity of the experimental results, all
models were evaluated on the same standardized experimental
platform. The system environment was Ubuntu 20.04, equipped
with an Intel® Xeon® Gold 5418Y 12-core processor and an Nvidia
GeForce RTX 4090 GPU with 24 GB of memory. The software
environment included Python 3.8, PyTorch 1.11, and CUDA 11.3.
The training parameters were configured as follows: the initial learning
rate was set to 0.01, with a batch size of 16. The SGD optimizer was
used, with a weight decay coefficient of 0.0005 and a total of 150
epochs. A warmup strategy with a momentum of 0.937 was adopted to
gradually increase the learning rate, using one-dimensional linear

Conv =» | k=1,s=1, p=0

input_proj —»  Conv

\,

‘\
\\~-

_—

\ lateral_convs —-m—» Upsample —I

Concat

FIGURE 7
Architecture of the improved cross-channel fusion module (CCFM).
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FIGURE 8
Illustration of MPDIoU calculation process for bounding box
regression.

interpolation. After the warmup phase, a cosine annealing algorithm
was applied to adjust the learning rate throughout the training process.
Additionally, the input images were resized to a resolution of 640x640
to ensure consistency in the training data.

3.2 Performance evaluation

In the task of kiwifruit detection, algorithm evaluation primarily
focuses on two aspects: computational complexity and detection
accuracy. Detection accuracy is commonly measured by Precision
(P), Recall (R), and Mean Average Precision (mAP). Precision
reflects the model’s accuracy in detecting targets, Recall assesses
the detection coverage, while mAP, as a comprehensive metric for
class-level detection, provides an overall evaluation of the model’s
detection performance. Computational complexity is characterized
by the number of parameters (Params) and floating point
operations per second (FLOPs). A smaller number of parameters
indicates a more lightweight model, and lower FLOPs imply
reduced computational cost, making the model more suitable for
deployment on mobile or edge devices. Meanwhile, the real-time
performance of the algorithm is measured by Frames Per Second
(FPS); the higher the FPS, the faster the model’s inference speed,
and the stronger its real-time capability. These metrics
comprehensively reflect the performance of a model from the
perspectives of accuracy, computational speed, and complexity,
thus providing important references for algorithm optimization
and practical deployment. The following is a summary of the
formulas for calculating P, R, AP, mAP, Params and GFLOPs.

__TpP
pP= TorEp X 100 % 9)
__ 1P
R= ThrEN X 100 % (10)
Frontiers in Plant Science
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AP:/)IP(R)dR (11)

mAP =13 AP, x 100 % (12)
GFLOPs = O (ElK,Z % Cl Gy + gMZ s c,) (13)
Params = O<§}M2 % K25 Cy C,-) (14)

In Equation 9, precision P represents the proportion of correctly
predicted kiwi instances among all predicted kiwi instances. Here,
TP denotes the number of correctly detected kiwis, FP refers to the
number of incorrectly detected kiwis, and FN indicates the number
of missed (undetected) kiwis.

In Equation 10, recall R represents the proportion of correctly
detected kiwi instances out of the total number of actual kiwi
instances. In Equation 11, AP denotes the area under the Precision-
Recall (P-R) curve. Equation 12 defines mAP as the mean value of
AP across all categories.

In this study, since there is only one kiwi category, n = 1. mAP@
0.5 indicates the mean average precision when the IoU threshold is
set to 0.5. Additionally, in Equations 13 and 14, K represents the
kernel size, C is the number of channels, M is the size of the input
image, and i denotes the number of iterations.

3.3 Comparative results

3.3.1 Comparison of different dataset split ratios

To evaluate the impact of different dataset split ratios on model
training, three datasets were constructed with split ratios of 6:2:2,
7:2:1, and 8:1:1 after data annotation. All models were trained using
the same parameters. As shown in Table 1, the 8:1:1 split achieved
the best performance in terms of Recall (85.8%) and mAP@50
(93.6%). Although the 7:2:1 split achieved the highest Precision, its
mAP@50 was 92.2%, slightly lower than that of 8:1:1. The 6:2:2 split
showed weaker performance in both Recall and mAP@50. Overall,
the 8:1:1 split demonstrated the best detection performance, and
subsequent model training and validation will be based on this
dataset configuration.

TABLE 1 Comparison of model performance across different data
split ratios.

Data Precision/ Recall/l mAP@50/ mAP@50-
division % % % 95/%
7:2:1 88.7 85.7 922 66.1
6:2:2 87.5 84.4 91.6 65.8
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3.3.2 Scaling factor experiment

To achieve the optimal balance between accuracy, inference
speed, and resource consumption, we conducted experiments with
different scaling factors on the YOLOv10n model. The experimental
results are shown in Table 2. The original model configuration
(depth 0.33, width 0.25) achieved an mAP@50 of 93.6% and the
fastest inference speed (1.8 ms), but its parameter count (2.694M)
and model size (10.28 MB) are relatively large, making it less
suitable for deployment on edge devices.

Through comparison, the configuration with scaling factors
(0.33, 0.125) demonstrated excellent performance in terms of
mAP@50, parameter count, and model size. Although its inference
speed slightly decreased to 2.9 ms, it remains within an acceptable
range. This configuration strikes a favorable balance between
accuracy and model lightweightness, making it more suitable for
edge deployment. Other configurations, such as (0.33, 0.2) and (0.33,
0.15), achieved slightly higher mAP@50, but their overall
optimization effect was inferior to that of (0.33, 0.125). The
shallower (0.25, 0.2) configuration reached an mAP@50 of 93.3%,
but did not significantly reduce the parameter count or model size.
Therefore, the (0.33, 0.125) configuration was selected as the optimal
choice, offering improved model compactness and inference
efficiency while maintaining high accuracy. To aid comparison, the
best-performing values in Tables 2-6 are highlighted in bold to
indicate the optimal results under each metric.

3.3.3 Performance comparison of neck network
designs

This study compares the performance of lightweight neck
modules—BiFPN (Chen et al.,, 2021), Slimneck (Li et al., 2022),

TABLE 2 Comparison of YOLOv10 model with different scaling factors.

10.3389/fpls.2025.1616165

and CCFM—in object detection tasks. As shown in Table 3, CCFM
demonstrates a significant advantage in terms of lightweight design,
with only 0.586 million parameters, a model size of 2.36 MB, and a
computational complexity of 2.32 GFLOPs, outperforming both
BiFPN and Slimneck. This makes CCFM particularly suitable for
deployment on resource-constrained embedded or mobile devices.
Meanwhile, CCFM also delivers excellent detection performance,
achieving a recall rate of 87.0%, surpassing BiFPN (83.1%) and
Slimneck (82.7%). In summary, CCFM strikes a favorable balance
between lightweight design and detection performance, showcasing
strong potential for application in resource-limited scenarios.

3.3.4 Comparison of bounding box loss functions

We compared six loss functions—DIoU (Zheng et al., 2020), EIoU
(Zhang et al., 2022), GIoU (Rezatofighi et al., 2019), CloU, MPDIoU,
and SIoU (Gevorgyan, 2022)—to evaluate their impact on model
performance. The experimental results are presented in Table 4, and
the trends of the loss curves are illustrated in Figure 9. According to
Table 4, MPDIoU demonstrates the most significant performance
improvement, with an increase of 0.8% in mAP@50 and 2.7% in
Recall, achieving the highest values among all loss functions.
Additionally, SIoU yields a 0.8% gain in Precision, while EIoU
improves Recall by 0.2%. The remaining loss functions show varying
degrees of decline across these key metrics. Further analysis of Figure 9
reveals that MPDIoU achieves the lowest final values in both val/
box_loss and val/cls_loss, with a stable convergence trend, indicating its
outstanding robustness in bounding box regression tasks. In contrast,
DIoU, EloU, and GIoU exhibit fluctuations in the loss curves during
the later stages of training, suggesting a risk of overfitting. Overall,
MPDIoU not only achieves the lowest final loss and fastest convergence

Depth Width Precision/ Recall/ mAP@50/ mAP@50- Params/ Model Size/MB Inference/
% % % 95/% MB ms

033 025 88.4 85.8 936 66.4 2.694 10.28 18
033 02 89.5 85.7 933 66.4 1.98 7.55 1.8
033 0.15 89.6 83.0 922 66.4 1.334 5.09 34
0.33 0.125 87.6 82.9 92.1 65.9 0.998 3.81 2.9
025 025 88.4 84.0 936 66.4 2.694 10.28 25
02 025 89.0 85.7 933 66.7 2592 9.88 37
0.15 025 89.0 85.7 933 66.7 2592 9.88 16
025 02 89.5 85.7 933 66.4 1.980 7.55 23
0.2 0.125 88.1 82.1 91.4 65.1 0.973 371 36
0.15 0.125 88.1 82.1 914 65.1 0.973 371 33

TABLE 3 Performance comparison of different neck networks.

Precision/% Recall/% mAP@50/% Params/MB Model size/MB GFLOGs
BiFPN ‘ 92.3 83.1 93.1 ‘ 0.771 ‘ 3.02 ‘ 27
Slimneck ‘ 83.7 82.7 90.6 ‘ 1.031 ‘ 3.81 ‘ 34
CCFM ‘ 88.2 87.0 93.3 ‘ 0.586 ‘ 2.36 ‘ 2.32
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TABLE 4 Performance comparison of different loss functions.

10.3389/fpls.2025.1616165

close to YOLOv5n (76) and YOLOv7-tiny (71), demonstrating real-
time capability.

e Precj/Sion/ Res/all/ mAPo/@SO/ mgl;(/do/SO- Figure 10 provides a visual comparison of six normalized

- - - - metrics, where detection-related indicators (precision, recall,

Diou 0.1 83.7 928 658 mAP®@50) are positively normalized and resource-related metrics

Eiou 88.5 83.9 922 65.7 (parameters, model size, GFLOPs) are reverse-normalized.

Giou 001 817 91 5 YOLOV10-Kiwi exhibits a well-balanced profile, combining high

detection accuracy with superior efficiency. These results highlight

Mpdiou 88.3 864 93.6 66.6 its strong potential for deployment on resource-constrained edge
Shapeiou 90.1 82.1 92 65.3 devices in agricultural scenarios.

Siou 90.4 82.2 92.3 65.5

on the validation set, but also significantly enhances kiwifruit detection
performance—especially in mitigating the impact of low-quality
samples such as blurred or occluded instances—demonstrating a
well-balanced and superior capability in object detection tasks.

3.3.5 Comparison with other models

To verify the effectiveness of the proposed model in kiwifruit
detection, YOLOV10-Kiwi is compared with nine mainstream
object detection algorithms. The results are presented in Table 5
and Figure 10, covering both accuracy and efficiency metrics. In
terms of model complexity, YOLOv10-Kiwi contains only 0.51M
parameters, which is 98.8%, 97.4%, 95.8%, and 91.5% fewer than
those of Faster R-CNN, RT-DETR-R18, YOLOv3-tiny, and
YOLOV7-tiny, respectively. Its model size is 2.02 MB, significantly
smaller than that of Faster R-CNN and RT-DETR-R18, and 78.8%
and 82.4% smaller than YOLOv5n and YOLOv8n. The GFLOPs is
only 2.1, which is much lower than most compared models,
including YOLOv8n (8.2) and YOLOv10n (6.6). Despite its
compact structure, YOLOv10-Kiwi achieves competitive detection
performance. It reaches an mAP@50 of 93.6%, comparable to RT-
DETR-R18 and YOLOvV10n, and 4.1% and 2.7% higher than Faster
R-CNN and YOLOv3-tiny, respectively. The recall is 86.4%, second
only to Faster R-CNN (92%). The inference speed reaches 74 FPS,

3.4 Ablation experiments

To validate the effectiveness of the proposed lightweight
algorithm in kiwifruit object detection tasks, we conducted a
series of systematic ablation experiments. The results are shown
in Table 6 and Figure 11.

First, by adjusting the scaling factors of the YOLOv10n
network, we obtained Model 1, which significantly reduced model
complexity—parameters decreased from 2.7M to 0.998M (a
reduction of 63.04%) and GFLOPs from 5.5 to 3.8 (a reduction of
30.91%)—demonstrating that scaling-based compression can
effectively shrink the model footprint. However, detection
performance declined, with Recall dropping by 2.9% and mAP@
50 by 1.5%, indicating a degradation in representational capacity
due to downscaled feature extraction. To address this, Model 2
introduced the C2fDualHet module as a lightweight replacement
for the original C2f block in the backbone. The module was
designed to further reduce computational overhead while
enhancing the network’s ability to capture local and global features.
Compared to Model 1, the parameter count and GFLOPs were
further reduced by 8.12% and 13.16%, respectively—confirming
that the compression objective was further achieved. However,
detection accuracy remained relatively unchanged, and mAP@50
slightly decreased by 0.7%, suggesting that while C2fDualHet

TABLE 5 Performance comparison of YOLOv10-kiwi with different detection models on kiwifruit dataset.

Precision/  Recall/ @ mAP@50/ mAP@50- Params/ Model GFLOGs
% % 95/% size/MB

Faster R-CNN 87.9 92 89.9 63.5 42.5 165 250 29
RT-DETR-R18 90.1 84.5 93.8 67.6 19.87 75.82 57.3 38
YOLOV3-tiny 88.7 86 90.9 64.9 12.12 474 18.9 54
YOLOv5n 89.3 84.5 93.3 67 2.5 9.55 7.1 76

YOLOV7-tiny 88.5 84.7 91 63.7 6.01 2295 13.2 71
YOLOv8n 89.6 84.1 93 67 3.01 11.47 8.2 92.1
YOLOv9t 88.8 83 93.2 66.6 2.66 10.14 11 83.39
YOLOv10n 88.4 85.8 93.6 66.4 2.7 10.28 6.6 65.1
YOLOvlln 89.9 84.5 93.1 67.1 2.58 10.32 6.4 74.9
Ours 88.3 86.4 93.6 66.6 0.51 2.02 2.1 74
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TABLE 6 Ablation study results showing individual contributions of scaling factors, C2fDualHet, CCFM, and MPDIoU.

Scaling  cofpualHet CCFM  MPDIoU

Precision/ Recall/ mAP@50/ Params/

Model

il factors % % % M size/MB GFLOGs
YOLOv10n 88.4 85.8 93.6 27 1028 55
Model 1 v 87.6 82.9 92.1 0.998 381 38
Model 2 v v 86.2 832 90.9 0917 35 33
Model 3 v v 88.2 87 93.3 0.586 236 232
Model 4 v v/ 87.8 85.2 92.7 0.998 381 38
Model 5 v v v 89.6 83.7 92.8 0505 2.02 21
Ours v v v v 88.3 86.4 93.6 0.505 2.02 2.1

successfully reduces computation, its standalone impact on detection
precision is limited without enhanced feature fusion. Model 3, which
added the Cross-Channel Fusion Module (CCFM) to Model 1,
significantly improved performance. Recall increased from 82.9% to
87.0%, and mAP@50 rose from 92.1% to 93.3%, with Precision
reaching 88.2%. This confirms CCFM’s role in strengthening
feature integration across scales and channels, compensating for
information loss from earlier compression. Model 4 evaluated the
impact of using MPDIoU loss in isolation (on top of Model 1).
Compared with Model 1, Recall improved markedly from 82.9% to
85.2%, while mAP@50 increased to 92.7%, demonstrating that
MPDIoU can significantly improve localization performance
without structural changes. Model 5 combined both C2fDualHet
and CCEM, resulting in the highest Precision (89.6%) among all sub-

models and achieving strong efficiency with only 0.505M parameters
and 2.1 GFLOPs, highlighting the synergistic benefits of both
modules. Finally, our full model (Ours) integrated all proposed
components, including MPDIoU loss. It achieved the best balance
overall, with mAP@50 of 93.6%, Recall of 86.4%, and a compact
model size of 2.02 MB. These results confirm that the full architecture
of YOLOV10-Kiwi effectively balances detection accuracy and
lightweight design.

To intuitively illustrate the performance trade-offs, Figure 11
presents a radar chart with normalized values (0-1), where
computational metrics were inversely scaled. The progressive
expansion of the radar area clearly visualizes how each component
contributes to the overall model performance, with YOLOv10-Kiwi
(Model Ours) demonstrating the best balance across all metrics.

Comparison of Different Loss Functions During Training

train/box_loss train/cls_loss train/dfl_loss
20 20 20
—— Diou —— Diou —— Diou
~—— Eiou 1.8 4 ~—— Eiou j ~—— Eiou
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FIGURE 9

Comparison of training and validation loss curves for various loU-based loss functions.
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3.5 Model detection effect analysis

To evaluate the performance of YOLOv10-Kiwi in the kiwifruit
detection task, we present the detection results of RT-DETR-RIS,
YOLOV3-tiny, YOLOv8n, YOLOv10n, and YOLOv10-Kiwi in

Figure 12. YOLOv10-Kiwi is capable of accurately identifying
kiwifruit and maintains high detection precision even in complex
backgrounds. Although occlusion from branches and leaves or
lighting variations may cause occasional false detections or missed
detections, the overall impact is minimal, indicating that YOLOv10-
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FIGURE 11

Radar chart comparing accuracy and complexity of ablation models.
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(b)

FIGURE 12

Detection results of different models. (a) RT-DETR-R18; (b) YOLOv3-tiny; (c) YOLOV8N; (d) YOLOV10n; (e) YOLOV10-Kiwi.

Kiwi can effectively meet the requirements of kiwifruit detection. In
comparison, RT-DETR-R18 demonstrates limited detection accuracy
and is prone to false detections under complex backgrounds; YOLOv3-
tiny shows improvements in reducing false positives but still suffers
from missed detections; YOLOv8n and YOLOv10n strike a balance
between accuracy and real-time performance, yet exhibit deviations in
detecting partially occluded targets. Notably, as a lightweight model,
YOLOvV10-Kiwi significantly reduces parameter count and
computational complexity while maintaining detection accuracy
comparable to YOLOv10n, making it more suitable for deployment
on resource-constrained edge devices. YOLOv10-Kiwi effectively
reduces the missed detection rate while ensuring high confidence,
demonstrating outstanding detection performance.

3.6 Model visualization analysis

To further investigate the feature extraction capabilities of the
model in kiwifruit detection, this study extracts features from
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multiple convolutional layers of different models and utilizes the
Grad-CAM method (Selvaraju et al., 2017)to generate heatmaps for
visual analysis, as shown in Figure 13. In these heatmaps, the regions
of higher attention toward the kiwifruit targets are represented by
deeper red areas, while lighter areas reflect lower attention.
Experimental results indicate that YOLOv10-Kiwi demonstrates
excellent performance in multi-layer feature extraction. Compared
to YOLOvV3-tiny and YOLOVSn, its heatmaps exhibit more focused
and precise responses in the target regions, particularly in the
identification of kiwifruit under complex backgrounds. This
suggests that YOLOv10-Kiwi holds significant advantages in the
hierarchical structure and accuracy of feature extraction, making it
more suitable for the task of kiwifruit detection.

4 Conclusion

In this study, we proposed YOLOv10-Kiwi, a lightweight and
high-performance model specifically designed for kiwifruit
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FIGURE 13

Heat map for different models. (a) original images; (b) YOLOv3-tiny; (c) YOLOv8n; (d) YOLOvV10-Kiwi.

detection in complex orchard environments. By integrating the
C2fDualHet module, CCEM neck, and MPDIoU loss into the
YOLOV10n framework, the model achieves an effective trade-off
between accuracy and computational efficiency. Extensive
experiments demonstrated that YOLOv10-Kiwi achieves an
mAP@50 of 93.6%, recall of 86.4%, and precision of 88.3%, while
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reducing parameters to 0.51M, model size to 2.02 MB, and GFLOPs
to 2.1. The real-time inference speed reaches 74 FPS, making it
highly suitable for deployment on edge devices in agricultural
scenarios. The proposed model exhibits robust detection under
various conditions, such as occlusion, lighting variations, and
complex backgrounds. It is also much more lightweight than
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comparable state-of-the-art detectors, enabling its practical use in
resource-constrained environments.

In future work, we plan to expand the dataset across multiple
seasons and kiwifruit varieties, and validate the model’s generalizability
under varying orchard geometries. Moreover, we aim to integrate
YOLOV10-Kiwi into robotic picking platforms to further explore its
applicability in real-world agricultural automation tasks.
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