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YOLOv10-kiwi: a YOLOv10-
based lightweight kiwifruit
detection model in trellised
orchards
Jie Ren, Wendong Wang*, Yuan Tian and Jinrong He

College of Mathematics and Computer Science, Yan’an University, Yan’an, Shaanxi, China
To address the challenge of real-time kiwifruit detection in trellised orchards, this

paper proposes YOLOv10-Kiwi, a lightweight detection model optimized for

resource-constrained devices. First, a more compact network is developed by

adjusting the scaling factors of the YOLOv10n architecture. Second, to further

reducemodel complexity, a novel C2fDualHet module is proposed by integrating

two consecutive Heterogeneous Kernel Convolution (HetConv) layers as a

replacement for the traditional Bottleneck structure. This replacement enables

parallel processing and enhances feature extraction efficiency. By combining

heterogeneous kernels in sequence, C2fDualHet captures both local and global

features while significantly lowering parameter count and computational cost. To

mitigate potential accuracy loss due to lightweighting, a Cross-Channel Fusion

Module (CCFM) is introduced in the neck network. This module incorporates four

additional convolutional layers to adjust channel dimensions and strengthen

cross-channel information flow, thereby enhancing multi-scale feature

integration. In addition, a MPDIoU loss function is introduced to overcome the

limitations of the traditional CIoU in terms of aspect ratio mismatch and

bounding box regression, accelerating convergence and improving detection

accuracy. Experimental results demonstrate that YOLOv10-Kiwi achieves a

model size of only 2.02 MB, with 0.51M parameters and 2.1 GFLOPs,

representing reductions of 80.34%, 81.11%, and 68.18%, respectively, compared

to the YOLOv10n baseline. On a self-constructed kiwifruit dataset, the model

achieves 93.6% mAP@50 and an inference speed of 74 FPS. YOLOv10-Kiwi offers

an efficient solution for automated kiwifruit detection on low-power

agricultural robots.
KEYWORDS

kiwifruit detection, YOLOv10, lightweight network, HetConv, CCFM, MPDIou
1 Introduction

Kiwifruit is widely welcomed for its abundance of vitamin C, dietary fiber, and a variety

of trace elements (Richardson et al., 2018). Meixian County in Shaanxi Province, as the core

kiwi-producing region in China, has seen its industry not only boost the local economy and

rural revitalization but also gain a significant position in the global market. Modern T-
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shape cultivation enhances orchard management, but harvesting

remains labor-intensive, facing labor shortages and high physical

demands (Deng et al., 2023). Automation technologies can

streamline harvesting processes, improving efficiency and

reducing labor dependency (Fu et al., 2024).

Traditional kiwifruit detection methods mainly rely on color

features, morphological features, and machine vision techniques,

using handcrafted features for fruit segmentation and identification.

For example (Scarfe, 2012), combined RGB color subtraction with

Sobel filters to detect kiwis and their calyx edges, using template

matching for identification, but did not consider fruit shape features

(Zhan et al., 2013) used the Adaboost algorithm to optimize

kiwifruit segmentation and localization in field conditions. By

analyzing RGB, HSV, and Lab color spaces, they selected the

most discriminative channels between fruit and background to

improve detection accuracy. With the rising demand for

nighttime automated harvesting (Longsheng et al., 2015),

proposed a machine vision method based on artificial lighting to

overcome the impact of natural light variability, thereby enhancing

detection stability. Overall, these traditional methods are

significantly affected by lighting conditions and fruit morphology

variations, resulting in limited generalization ability and poor

adaptability to complex environments. Consequently, researchers

have begun exploring deep learning-based approaches to overcome

these limitations.

Current deep learning-based kiwi fruit detection algorithms can

be broadly categorized into two-stage and one-stage detection

methods. Two-stage methods, such as Faster R-CNN (Faster r-

cnn: Towards real-time object detection with region proposal

networks, 2015), Cascade R-CNN (Cai and Vasconcelos, 2018),

and Mask R-CNN (He et al., 2017), first generate region proposals

followed by classification and bounding box refinement. These

models achieve high detection accuracy and robustness but are

computationally intensive and slower. In contrast, one-stage

detectors—such as the YOLO series (Jiang et al., 2022), SSD (Liu

et al., 2016), and EfficientDet (Tan et al., 2020)—offer faster

inference and lower computational cost, gradually becoming the

mainstream for real-time detection. For instance (Suo et al., 2021)

used YOLOv4 for multi-class kiwifruit detection, achieving a

maximum mAP of 91.9% with a per-image inference time of 25.5

ms, reducing robotic misoperations (Yao et al., 2021) improved

YOLOv5 by adding a small object detection layer, introducing a SE

attention mechanism, and optimizing the loss function to accurately

detect kiwi defects (Xia et al., 2022) integrated an attention module

into YOLOv7 and employed spectral techniques to improve

detection precision.

With the increasing demand for lightweight models, researchers

have proposed various optimizations to the YOLO series to reduce

computational load while maintaining accuracy. In the fruit

detection domain, numerous efficient improvements have been

made. For example (Liu et al., 2024) proposed the Faster-YOLO-

AP model, which used structural simplification and lightweight

convolutions to compress the parameter count to 0.66M and FLOPs

to 2.29G, while retaining high apple detection accuracy (Zhao et al.,
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2024). introduced YOLO-Granada, which maintained accuracy

close to YOLOv5s while reducing parameters, computation, and

model size to 54.7%, 51.3%, and 56.3% of the original, respectively,

greatly enhancing pomegranate detection efficiency. In the context

of kiwifruit detection, several lightweight models have also shown

promising results. For example (Fu et al., 2021) optimized

YOLOv3-tiny to develop the DY3TNet model, improving

detection accuracy with 3×3 and 1×1 convolutions in layers 5 and

6, and compressing weights to 27 MB with an inference time of just

34 ms per image (Gao et al., 2022) used GhostNet to replace the

original CSP-Darknet53 backbone and partially substituted

standard convolut ional layers , s ignificant ly reducing

computational load (Zhou et al., 2022). proposed an enhanced

YOLOX-S model, reducing parameters by 44.8% and increasing

detection speed by 63.9% through feature map simplification,

activation function optimization, and loss function improvements.

Despite these advancements in model lightweighting and

detection performance, challenges remain in kiwifruit detection

tasks. Existing models still face high parameter counts and

computational burdens. While complex feature fusion and

convolution operations improve accuracy, they exacerbate

computational bottlenecks, limiting deployment and real-time

application on edge devices. To address this, this paper proposes

a lightweight kiwifruit detection model based on YOLOv10 (Wang

et al., 2024), aiming to reduce computational complexity while

maintaining high detection accuracy. The main contributions are

as follows:
1. Construction of a diversified kiwifruit dataset. A total of

1,280 images were collected from real orchards under

various angles and scenes, covering complex lighting

conditions, occlusions, and diverse morphological

appearances of the fruit.

2. Proposal of the lightweight YOLOv10-Kiwi model. Based on

YOLOv10n, the network is compressed via scaling factor

adjustments. The lightweight C2fDualHet module is designed

for feature extraction, the CCFM structure is introduced to

enhance feature fusion, and the MPDIoU loss function is

adopted to improve bounding box regression accuracy.

3. Validation through comparative and ablation experiments.

The proposed model’s effectiveness is demonstrated by

extensive experiments against mainstream detection methods.
2 Materials and methods

2.1 Dataset construction

2.1.1 Data acquisition
The image dataset used in this study was collected from July to

August 2024 in a commercial kiwifruit orchard in Meixian County,

Shaanxi Province. Xuxiang kiwifruit images grown under trellis

conditions were captured using iPhone 13 and 14 devices at various
frontiersin.org
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angles (top-down, oblique, upward) and lighting conditions (front

lighting, backlighting, flash at night). Sampling was conducted on

sunny and cloudy days, as well as at night (with flash), to simulate

realistic harvesting scenarios. Rainy conditions were excluded since

harvesting typically does not occur during such weather. This

summer sampling phase coincided with the fruit maturation

period, ensuring consistency in fruit size and color—crucial for

effective model training in robotic applications. A total of 1,280

images were collected: 828 on sunny days (411 in the morning, 417

in the afternoon), 190 under cloudy skies, and 262 at night. All

images were resized to 640 × 640 pixels and reflect challenging real-

world conditions, including dense occlusion, uneven lighting,

clustered fruit, and complex backgrounds. Representative samples

are shown in Figure 1, which illustrates these visual challenges more

intuitively. This figure highlights the diversity and complexity of

orchard environments, underscoring the need for robust detection

under variable field conditions.
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2.1.2 Data annotation
In this experiment, we used LabelImg software to annotate kiwi

fruit images with rectangular bounding boxes, assigning a single

category label “kiwi.” After the annotation process was completed,

the data was saved in YOLO format as.txt files, with each line

containing the class label, the normalized center coordinates

(x_center, y_center), width, and height—scaled to the [0, 1]

range. The dataset was divided into training, validation, and test

sets in a ratio of 8:1:1. Specifically, the 1,280 images were distributed

as follows: 772 images in the training set (containing 3,318

instances), 253 images in the validation set (1,010 instances), and

255 images in the test set (1,022 instances). The statistical analysis

results, as shown in Figure 2, indicate variations in both the scale

and distribution of the annotated bounding boxes, which are

consistent with the natural growth characteristics of kiwi fruits.

Figure 2a illustrates the distribution of width-to-height ratios of the

bounding boxes, reflecting significant differences in the sizes of the
FIGURE 1

Images of kiwifruit under different conditions: (a) Sunny day, (b) Cloudy day, (c) Night, (d) Leaf obstruction, (e) Fruit overlap, (f) Branch obstruction,
(g) Top-down shot, (h) Low-angle shot, and (i) Eye-level shot.
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fruits. Figure 2b displays the distribution of object center points,

with color intensity representing density, showing that most objects

are concentrated near the center of the images. Figure 2c presents a

scatter plot of width-to-height ratios, which tend to cluster around

1, indicating that the bounding boxes are regular in shape, with

similar width and height. These characteristics provide valuable

data support for subsequent algorithm optimization.
2.2 Novel network construction

YOLOv10 serves as the foundation for this study, offering a well-

balanced trade-off between detection accuracy and inference speed

through its lightweight classification head, spatial-channel decoupled

downsampling, and rank-based architectural simplifications. These

structural advantages make it suitable for real-time detection tasks.

However, when applied directly to kiwifruit detection in trellised

orchard environments, the default YOLOv10n model reveals several

limitations. Its computational load and memory usage remain

relatively high for resource-constrained edge devices, and the

backbone structure lacks specialized design for lightweight feature

extraction under conditions such as dense occlusion, variable lighting,

and scale variation. In addition, the neck network provides limited

cross-channel fusion, which weakens its ability to capture fine-

grained multi-scale features, especially for small or overlapping

fruits. Furthermore, the use of the CIoU loss function in bounding

box regression often results in suboptimal localization performance

when dealing with irregular fruit shapes and aspect ratio mismatches.

To address these challenges, we propose YOLOv10-Kiwi, a

lightweight and efficient detection model specifically optimized

for kiwifruit detection in complex orchard conditions. As

illustrated in Figure 3, the model architecture incorporates three

key structural refinements. The original C2f block in the

YOLOv10n backbone is replaced with the C2fDualHet module,

which uses two consecutive HetConv layers to improve feature

representation while significantly reducing the number of

parameters and computational cost. The neck is enhanced with a

Cross-Channel Fusion Module (CCFM), which strengthens the
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integration of multi-scale and inter-channel information. Four

additional convolutional layers are incorporated to refine channel

dimensions and boost inter-channel interactions, thereby

improving detection robustness in the presence of occlusion and

size variability. Lastly, the head adopts a decoupled structure for

classification and regression, with the conventional CIoU loss

replaced by the Minimum Point Distance IoU (MPDIoU) loss.

This loss function improves localization accuracy and convergence

stability, particularly in scenes with densely packed or partially

visible targets. With these targeted improvements, YOLOv10-Kiwi

achieves a compact and efficient design that maintains real-time

performance while enhancing detection accuracy, making it well-

suited for deployment on low-power edge devices in

agricultural applications.

2.2.1 C2fDualHet
To further reduce the number of model parameters, this study

integrates HetConv (Heterogeneous Kernel Convolution) (Singh

et al., 2019) into the YOLOv10 framework. HetConv combines two

kernel sizes—3×3 and 1×1—and introduces a configurable

parameter P to control the proportion of channels processed by

each type, achieving an effective balance between spatial

representation and computational efficiency.

As shown in Figure 4, the input channels M are divided into P

parts: M/P channels are processed with 3×3 convolution kernels, while

the remaining channels use 1×1 kernels. In a standard convolution

operation, assume the input feature map has dimensions Di � Di �
M, where Di is the width and height of the input feature map, andM

is the number of input channels. The output feature map has

dimensions Do � Do � N , where Do is the width and height of the

output feature map, and N is the number of output channels. The

output feature map is obtained using N convolution kernels, each of

size K � K �M, where K is the kernel size. Based on this, the

computational cost of this layer can be expressed as:

FLs = D0 � D0 �M � N � K � K (1)

As shown in Equation 1, the computational cost of a

convolutional layer is influenced by several key factors: the kernel
FIGURE 2

Distribution of bounding box sizes and label scales in the kiwifruit dataset: (a) Boundary Box Size Distribution, (b) Distribution of object center points
(color intensity represents density), and (c) Scatter plot of width-to-height ratios.
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size K , the image dimensions Di � Di, the number of input channels

M, and the number of output channels N . In traditional standard

convolution, this computational cost is often quite substantial,

posing challenges for computational resources. In the pursuit of

more efficient convolution methods, researchers have continuously

explored and developed various convolutional models. Notable

among these are depthwise convolution (DWC) (Howard, 2017),

pointwise convolution (PWC) (Chollet, 2017), and group

convolution (GWC) (Guo et al., 2019). While these models

significantly reduce computational load, they typically introduce
Frontiers in Plant Science 05
an additional unit of latency. In contrast, HetConv not only

effectively reduces computational cost but also achieves zero

latency, which is especially important in applications with high

real-time requirements. Figure 5 illustrates a comparison between

HetConv and other convolution filters in terms of computational

efficiency and latency.

In a specific HetConv layer L, the convolution operation uses

K×K kernels over P channels, with its computational cost denoted

as FLK .

FLK = (D0 � D0 �M � N � K � K)=P (2)

For the remaining (M - M/P) channels, 1×1 kernels are applied,

with a corresponding computational cost denoted as FL1.

FL1 = (D0 � D0 � N)� (M − M
P ) (3)

Therefore, the total computational cost of layer L can be

expressed as the sum of FLK and FL1.

FLHC =   FLK + FL1 (4)

Compared to standard convolution, the computational

reduction ratio RHC of HetConv can be formulated accordingly.

RHC = FLK+FL1
FLS

= 1
P +

1−1=P
K2 (5)

The computational formulations of Equations 2–5 provide a

quantitative basis for understanding the efficiency advantages of

HetConv over standard convolution, particularly in reducing

FLOPs and parameter counts through mixed kernel usage. When

P = 1, HetConv degenerates into standard convolution. HetConv

retains K×K kernels (e.g., 3×3) only on a portion of the channels to
FIGURE 3

Schematic of the proposed lightweight network structure.
FIGURE 4

HetConv convolutional structure.
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capture critical spatial correlations, while applying 1×1 kernels on

the remaining channels to reduce computational complexity. This

design preserves essential spatial information while avoiding the

high computational cost associated with applying large kernels

across all channels. In terms of computational efficiency and

parameter reduction, HetConv significantly outperforms standard

convolution. The use of 1×1 kernels greatly reduces FLOPs and the

number of model parameters, making the model more lightweight

and vastly more efficient than standard convolution. Thus, we

construct the DualHetBlock using two consecutive HetConv

modules to replace the Bottleneck in the original C2f, naming

it C2fDualHet.

2.2.2 Cross-scale convolutional fusion module
In the complex natural environment of kiwifruit orchards, fruits

are often affected by factors such as occlusion, uneven lighting, and
Frontiers in Plant Science 06
clustered distribution. These challenges lead to significant variations

in the morphology and scale of the targets, thereby reducing the

accuracy and robustness of detection models. To enhance the

model’s capability for multi-scale feature representation and

fusion, an improved Cross-scale Convolutional Fusion Module

(CCFM) (Zhao et al., 2024) is introduced, along with a

redesigned feature fusion pathway within the network.

As shown in Figure 6, this study adopts a processing strategy for

the final layer of efficient hybrid encoder (F5) similar to that

illustrated in the figure. Specifically, a 1×1 convolution is added

after the PSA module in YOLOv10 to reduce the number of

channels from 1024 to 256, thereby decreasing the parameter

count while maintaining spatial dimensions and promoting inter-

channel information interaction. In the diagram, shallow features

S3 and S4 are compressed via 1×1 convolutions to ensure

dimensional consistency before multi-scale feature fusion.
FIGURE 5

Comparison between HetConv and other efficient convolutional filters: (a) Standard convolution, (b) Depthwise convolution, (c) Pointwise
convolution, (d) Group convolution, and (e) HetConv.
FIGURE 6

Architecture of the original cross-channel fusion module (CCFM).
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The improved CCFM structure is illustrated in Figure 7. The

input_proj branch applies a 1×1 convolution to map the output

features of the backbone network, achieving channel alignment and

feature reorganization. The lateral_convs branch also uses 1×1

convolutions, but omits activation and normalization layers to

simplify computation and adjust feature channels. This branch

then upsamples the deep features to increase spatial resolution.

Once the two feature streams are dimensionally aligned, they are

fused through concatenation, effectively integrating high-resolution

detail with low-resolution semantic information. In this improved

architecture, the RepBlock in Figure 6 is replaced by an upsampling

operation, which boosts both small-object detection capability and

feature map resolution, facilitating efficient multi-scale

feature fusion.

Compared to the traditional PAN + FPN structure (Guo et al.,

2020), the improved neck architecture incorporates four convolution

operations for lightweight feature fusion, significantly enhancing the

model’s adaptability to multi-scale targets, particularly small objects.

2.2.3 Minimum point distance IoU
The CIoU (Complete Intersection over Union) loss function

used in YOLOv10 takes into account the overlap area between the

ground truth and predicted boxes, the Euclidean distance between

their center points, and the aspect ratio difference. This improves

the model’s ability to fit object boundaries. However, in practical

applications, when the predicted box and the ground truth box

share the same center and aspect ratio, the aspect ratio penalty term

in CIoU may degrade to zero—even if there is a significant size

mismatch between the two boxes. This reduces the loss function’s

sensitivity to boundary dimensions, which can negatively affect

model convergence speed and final accuracy.

To address this issue, the MPDIoU (Minimum Point Distance

IoU) (Ma and Xu, 2023) loss function is introduced to further

enhance the performance of bounding box regression. This method

minimizes the Euclidean distance between the top-left and bottom-

right corner points of the predicted and ground truth boxes, thereby

directly constraining both the size and position of the bounding

boxes. The corresponding loss function is expressed as follows:
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LMPDIou = 1 − IoU +
d 2
1

h2 + w2 +
d 2
2

h2 + w2 (6)

d 2
1 = (x pred

1 + x gt
1 )2 + (y pred

1 + y gt
1 )2 (7)

d 2
2 = (x pred

2 + x gt
2 )2 + (y pred

2 + y gt
2 )2 (8)

In Equations 6–8, (x pred
1 , y pred

1 )and( x pred
2 , y pred

2 ) represent the

top-left and bottom-right coordinates of the predicted bounding

box, respectively. Similarly, (x gt
1 , y gt

1 ) and (x gt
2 , y gt

2 ) denote the top-

left and bottom-right coordinates of the ground truth box. www and

hhh represent the width and height of the image.

MPDIoU builds upon the optimization of IoU and center point

distance by introducing constraints based on the distances between

corresponding key points. This enables a more precise

measurement of the geometric discrepancy between predicted and

ground truth boxes. It effectively addresses the weakness of CIoU,

which may fail when aspect ratios are identical but box sizes differ.

As a result, MPDIoU enhances both the accuracy of bounding box

regression and the model’s convergence speed. An example of

MPDIoU metric parameters is illustrated in Figure 8.
3 Results and analysis

3.1 Experimental setup

To ensure the fairness and validity of the experimental results, all

models were evaluated on the same standardized experimental

platform. The system environment was Ubuntu 20.04, equipped

with an Intel® Xeon® Gold 5418Y 12-core processor and an Nvidia

GeForce RTX 4090 GPU with 24 GB of memory. The software

environment included Python 3.8, PyTorch 1.11, and CUDA 11.3.

The training parameters were configured as follows: the initial learning

rate was set to 0.01, with a batch size of 16. The SGD optimizer was

used, with a weight decay coefficient of 0.0005 and a total of 150

epochs. A warmup strategy with amomentum of 0.937 was adopted to

gradually increase the learning rate, using one-dimensional linear
FIGURE 7

Architecture of the improved cross-channel fusion module (CCFM).
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interpolation. After the warmup phase, a cosine annealing algorithm

was applied to adjust the learning rate throughout the training process.

Additionally, the input images were resized to a resolution of 640×640

to ensure consistency in the training data.
3.2 Performance evaluation

In the task of kiwifruit detection, algorithm evaluation primarily

focuses on two aspects: computational complexity and detection

accuracy. Detection accuracy is commonly measured by Precision

(P), Recall (R), and Mean Average Precision (mAP). Precision

reflects the model’s accuracy in detecting targets, Recall assesses

the detection coverage, while mAP, as a comprehensive metric for

class-level detection, provides an overall evaluation of the model’s

detection performance. Computational complexity is characterized

by the number of parameters (Params) and floating point

operations per second (FLOPs). A smaller number of parameters

indicates a more lightweight model, and lower FLOPs imply

reduced computational cost, making the model more suitable for

deployment on mobile or edge devices. Meanwhile, the real-time

performance of the algorithm is measured by Frames Per Second

(FPS); the higher the FPS, the faster the model’s inference speed,

and the stronger its real-time capability. These metrics

comprehensively reflect the performance of a model from the

perspectives of accuracy, computational speed, and complexity,

thus providing important references for algorithm optimization

and practical deployment. The following is a summary of the

formulas for calculating P, R, AP, mAP, Params and GFLOPs.

P = TP
TP+FP � 100% (9)

R = TP
TP+FN � 100% (10)
Frontiers in Plant Science 08
AP =
Z 1

0
P(R)dR (11)

mAP = 1
non

i−1APi � 100% (12)

GFLOPS =  O o
n

i=1
K2
i ∗C

2
i ∗Ci +o

n

i=1
M2 ∗Ci

 !
(13)

Params = O o
n

i=1
M2 ∗K2 ∗Ci−1 ∗Ci

 !
(14)

In Equation 9, precision P represents the proportion of correctly

predicted kiwi instances among all predicted kiwi instances. Here,

TP denotes the number of correctly detected kiwis, FP refers to the

number of incorrectly detected kiwis, and FN indicates the number

of missed (undetected) kiwis.

In Equation 10, recall R represents the proportion of correctly

detected kiwi instances out of the total number of actual kiwi

instances. In Equation 11, AP denotes the area under the Precision-

Recall (P-R) curve. Equation 12 defines mAP as the mean value of

AP across all categories.

In this study, since there is only one kiwi category, n = 1. mAP@

0.5 indicates the mean average precision when the IoU threshold is

set to 0.5. Additionally, in Equations 13 and 14, K represents the

kernel size, C is the number of channels, M is the size of the input

image, and i denotes the number of iterations.
3.3 Comparative results

3.3.1 Comparison of different dataset split ratios
To evaluate the impact of different dataset split ratios on model

training, three datasets were constructed with split ratios of 6:2:2,

7:2:1, and 8:1:1 after data annotation. All models were trained using

the same parameters. As shown in Table 1, the 8:1:1 split achieved

the best performance in terms of Recall (85.8%) and mAP@50

(93.6%). Although the 7:2:1 split achieved the highest Precision, its

mAP@50 was 92.2%, slightly lower than that of 8:1:1. The 6:2:2 split

showed weaker performance in both Recall and mAP@50. Overall,

the 8:1:1 split demonstrated the best detection performance, and

subsequent model training and validation will be based on this

dataset configuration.
TABLE 1 Comparison of model performance across different data
split ratios.

Data
division

Precision/
%

Recall/
%

mAP@50/
%

mAP@50-
95/%

8:1:1 88.4 85.8 93.6 66.4

7:2:1 88.7 85.7 92.2 66.1

6:2:2 87.5 84.4 91.6 65.8
FIGURE 8

Illustration of MPDIoU calculation process for bounding box
regression.
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3.3.2 Scaling factor experiment
To achieve the optimal balance between accuracy, inference

speed, and resource consumption, we conducted experiments with

different scaling factors on the YOLOv10n model. The experimental

results are shown in Table 2. The original model configuration

(depth 0.33, width 0.25) achieved an mAP@50 of 93.6% and the

fastest inference speed (1.8 ms), but its parameter count (2.694M)

and model size (10.28 MB) are relatively large, making it less

suitable for deployment on edge devices.

Through comparison, the configuration with scaling factors

(0.33, 0.125) demonstrated excellent performance in terms of

mAP@50, parameter count, and model size. Although its inference

speed slightly decreased to 2.9 ms, it remains within an acceptable

range. This configuration strikes a favorable balance between

accuracy and model lightweightness, making it more suitable for

edge deployment. Other configurations, such as (0.33, 0.2) and (0.33,

0.15), achieved slightly higher mAP@50, but their overall

optimization effect was inferior to that of (0.33, 0.125). The

shallower (0.25, 0.2) configuration reached an mAP@50 of 93.3%,

but did not significantly reduce the parameter count or model size.

Therefore, the (0.33, 0.125) configuration was selected as the optimal

choice, offering improved model compactness and inference

efficiency while maintaining high accuracy. To aid comparison, the

best-performing values in Tables 2–6 are highlighted in bold to

indicate the optimal results under each metric.

3.3.3 Performance comparison of neck network
designs

This study compares the performance of lightweight neck

modules—BiFPN (Chen et al., 2021), Slimneck (Li et al., 2022),
Frontiers in Plant Science 09
and CCFM—in object detection tasks. As shown in Table 3, CCFM

demonstrates a significant advantage in terms of lightweight design,

with only 0.586 million parameters, a model size of 2.36 MB, and a

computational complexity of 2.32 GFLOPs, outperforming both

BiFPN and Slimneck. This makes CCFM particularly suitable for

deployment on resource-constrained embedded or mobile devices.

Meanwhile, CCFM also delivers excellent detection performance,

achieving a recall rate of 87.0%, surpassing BiFPN (83.1%) and

Slimneck (82.7%). In summary, CCFM strikes a favorable balance

between lightweight design and detection performance, showcasing

strong potential for application in resource-limited scenarios.

3.3.4 Comparison of bounding box loss functions
We compared six loss functions—DIoU (Zheng et al., 2020), EIoU

(Zhang et al., 2022), GIoU (Rezatofighi et al., 2019), CIoU, MPDIoU,

and SIoU (Gevorgyan, 2022)—to evaluate their impact on model

performance. The experimental results are presented in Table 4, and

the trends of the loss curves are illustrated in Figure 9. According to

Table 4, MPDIoU demonstrates the most significant performance

improvement, with an increase of 0.8% in mAP@50 and 2.7% in

Recall, achieving the highest values among all loss functions.

Additionally, SIoU yields a 0.8% gain in Precision, while EIoU

improves Recall by 0.2%. The remaining loss functions show varying

degrees of decline across these key metrics. Further analysis of Figure 9

reveals that MPDIoU achieves the lowest final values in both val/

box_loss and val/cls_loss, with a stable convergence trend, indicating its

outstanding robustness in bounding box regression tasks. In contrast,

DIoU, EIoU, and GIoU exhibit fluctuations in the loss curves during

the later stages of training, suggesting a risk of overfitting. Overall,

MPDIoU not only achieves the lowest final loss and fastest convergence
TABLE 2 Comparison of YOLOv10 model with different scaling factors.

Depth Width Precision/
%

Recall/
%

mAP@50/
%

mAP@50-
95/%

Params/
MB

Model Size/MB Inference/
ms

0.33 0.25 88.4 85.8 93.6 66.4 2.694 10.28 1.8

0.33 0.2 89.5 85.7 93.3 66.4 1.98 7.55 1.8

0.33 0.15 89.6 83.0 92.2 66.4 1.334 5.09 3.4

0.33 0.125 87.6 82.9 92.1 65.9 0.998 3.81 2.9

0.25 0.25 88.4 84.0 93.6 66.4 2.694 10.28 2.5

0.2 0.25 89.0 85.7 93.3 66.7 2.592 9.88 3.7

0.15 0.25 89.0 85.7 93.3 66.7 2.592 9.88 1.6

0.25 0.2 89.5 85.7 93.3 66.4 1.980 7.55 2.3

0.2 0.125 88.1 82.1 91.4 65.1 0.973 3.71 3.6

0.15 0.125 88.1 82.1 91.4 65.1 0.973 3.71 3.3
TABLE 3 Performance comparison of different neck networks.

Neck Precision/% Recall/% mAP@50/% Params/MB Model size/MB GFLOGs

BiFPN 92.3 83.1 93.1 0.771 3.02 2.7

Slimneck 83.7 82.7 90.6 1.031 3.81 3.4

CCFM 88.2 87.0 93.3 0.586 2.36 2.32
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on the validation set, but also significantly enhances kiwifruit detection

performance—especially in mitigating the impact of low-quality

samples such as blurred or occluded instances—demonstrating a

well-balanced and superior capability in object detection tasks.

3.3.5 Comparison with other models
To verify the effectiveness of the proposed model in kiwifruit

detection, YOLOv10-Kiwi is compared with nine mainstream

object detection algorithms. The results are presented in Table 5

and Figure 10, covering both accuracy and efficiency metrics. In

terms of model complexity, YOLOv10-Kiwi contains only 0.51M

parameters, which is 98.8%, 97.4%, 95.8%, and 91.5% fewer than

those of Faster R-CNN, RT-DETR-R18, YOLOv3-tiny, and

YOLOv7-tiny, respectively. Its model size is 2.02 MB, significantly

smaller than that of Faster R-CNN and RT-DETR-R18, and 78.8%

and 82.4% smaller than YOLOv5n and YOLOv8n. The GFLOPs is

only 2.1, which is much lower than most compared models,

including YOLOv8n (8.2) and YOLOv10n (6.6). Despite its

compact structure, YOLOv10-Kiwi achieves competitive detection

performance. It reaches an mAP@50 of 93.6%, comparable to RT-

DETR-R18 and YOLOv10n, and 4.1% and 2.7% higher than Faster

R-CNN and YOLOv3-tiny, respectively. The recall is 86.4%, second

only to Faster R-CNN (92%). The inference speed reaches 74 FPS,
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close to YOLOv5n (76) and YOLOv7-tiny (71), demonstrating real-

time capability.

Figure 10 provides a visual comparison of six normalized

metrics, where detection-related indicators (precision, recall,

mAP@50) are positively normalized and resource-related metrics

(parameters, model size, GFLOPs) are reverse-normalized.

YOLOv10-Kiwi exhibits a well-balanced profile, combining high

detection accuracy with superior efficiency. These results highlight

its strong potential for deployment on resource-constrained edge

devices in agricultural scenarios.
3.4 Ablation experiments

To validate the effectiveness of the proposed lightweight

algorithm in kiwifruit object detection tasks, we conducted a

series of systematic ablation experiments. The results are shown

in Table 6 and Figure 11.

First, by adjusting the scaling factors of the YOLOv10n

network, we obtained Model 1, which significantly reduced model

complexity—parameters decreased from 2.7M to 0.998M (a

reduction of 63.04%) and GFLOPs from 5.5 to 3.8 (a reduction of

30.91%)—demonstrating that scaling-based compression can

effectively shrink the model footprint. However, detection

performance declined, with Recall dropping by 2.9% and mAP@

50 by 1.5%, indicating a degradation in representational capacity

due to downscaled feature extraction. To address this, Model 2

introduced the C2fDualHet module as a lightweight replacement

for the original C2f block in the backbone. The module was

designed to further reduce computational overhead while

enhancing the network’s ability to capture local and global features.

Compared to Model 1, the parameter count and GFLOPs were

further reduced by 8.12% and 13.16%, respectively—confirming

that the compression objective was further achieved. However,

detection accuracy remained relatively unchanged, and mAP@50

slightly decreased by 0.7%, suggesting that while C2fDualHet
TABLE 4 Performance comparison of different loss functions.

Model Precision/
%

Recall/
%

mAP@50/
%

mAP@50-
95/%

Diou 90.1 83.7 92.8 65.8

Eiou 88.5 83.9 92.2 65.7

Giou 90.1 81.7 92.1 65.4

Mpdiou 88.3 86.4 93.6 66.6

Shapeiou 90.1 82.1 92 65.3

Siou 90.4 82.2 92.3 65.5
TABLE 5 Performance comparison of YOLOv10-kiwi with different detection models on kiwifruit dataset.

Model Precision/
%

Recall/
%

mAP@50/
%

mAP@50-
95/%

Params/
M

Model
size/MB

GFLOGs FPS

Faster R-CNN 87.9 92 89.9 63.5 42.5 165 250 29

RT-DETR-R18 90.1 84.5 93.8 67.6 19.87 75.82 57.3 38

YOLOv3-tiny 88.7 86 90.9 64.9 12.12 47.4 18.9 54

YOLOv5n 89.3 84.5 93.3 67 2.5 9.55 7.1 76

YOLOv7-tiny 88.5 84.7 91 63.7 6.01 22.95 13.2 71

YOLOv8n 89.6 84.1 93 67 3.01 11.47 8.2 92.1

YOLOv9t 88.8 83 93.2 66.6 2.66 10.14 11 83.39

YOLOv10n 88.4 85.8 93.6 66.4 2.7 10.28 6.6 65.1

YOLOv11n 89.9 84.5 93.1 67.1 2.58 10.32 6.4 74.9

Ours 88.3 86.4 93.6 66.6 0.51 2.02 2.1 74
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successfully reduces computation, its standalone impact on detection

precision is limited without enhanced feature fusion. Model 3, which

added the Cross-Channel Fusion Module (CCFM) to Model 1,

significantly improved performance. Recall increased from 82.9% to

87.0%, and mAP@50 rose from 92.1% to 93.3%, with Precision

reaching 88.2%. This confirms CCFM’s role in strengthening

feature integration across scales and channels, compensating for

information loss from earlier compression. Model 4 evaluated the

impact of using MPDIoU loss in isolation (on top of Model 1).

Compared with Model 1, Recall improved markedly from 82.9% to

85.2%, while mAP@50 increased to 92.7%, demonstrating that

MPDIoU can significantly improve localization performance

without structural changes. Model 5 combined both C2fDualHet

and CCFM, resulting in the highest Precision (89.6%) among all sub-
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models and achieving strong efficiency with only 0.505M parameters

and 2.1 GFLOPs, highlighting the synergistic benefits of both

modules. Finally, our full model (Ours) integrated all proposed

components, including MPDIoU loss. It achieved the best balance

overall, with mAP@50 of 93.6%, Recall of 86.4%, and a compact

model size of 2.02 MB. These results confirm that the full architecture

of YOLOv10-Kiwi effectively balances detection accuracy and

lightweight design.

To intuitively illustrate the performance trade-offs, Figure 11

presents a radar chart with normalized values (0–1), where

computational metrics were inversely scaled. The progressive

expansion of the radar area clearly visualizes how each component

contributes to the overall model performance, with YOLOv10-Kiwi

(Model Ours) demonstrating the best balance across all metrics.
TABLE 6 Ablation study results showing individual contributions of scaling factors, C2fDualHet, CCFM, and MPDIoU.

Model
Scaling
factors

C2fDualHet CCFM MPDIoU
Precision/

%
Recall/

%
mAP@50/

%
Params/

M
Model
size/MB

GFLOGs

YOLOv10n 88.4 85.8 93.6 2.7 10.28 5.5

Model 1 ✓ 87.6 82.9 92.1 0.998 3.81 3.8

Model 2 ✓ ✓ 86.2 83.2 90.9 0.917 3.5 3.3

Model 3 ✓ ✓ 88.2 87 93.3 0.586 2.36 2.32

Model 4 ✓ ✓ 87.8 85.2 92.7 0.998 3.81 3.8

Model 5 ✓ ✓ ✓ 89.6 83.7 92.8 0.505 2.02 2.1

Ours ✓ ✓ ✓ ✓ 88.3 86.4 93.6 0.505 2.02 2.1
fr
FIGURE 9

Comparison of training and validation loss curves for various IoU-based loss functions.
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3.5 Model detection effect analysis

To evaluate the performance of YOLOv10-Kiwi in the kiwifruit

detection task, we present the detection results of RT-DETR-R18,

YOLOv3-tiny, YOLOv8n, YOLOv10n, and YOLOv10-Kiwi in
Frontiers in Plant Science 12
Figure 12. YOLOv10-Kiwi is capable of accurately identifying

kiwifruit and maintains high detection precision even in complex

backgrounds. Although occlusion from branches and leaves or

lighting variations may cause occasional false detections or missed

detections, the overall impact is minimal, indicating that YOLOv10-
FIGURE 11

Radar chart comparing accuracy and complexity of ablation models.
FIGURE 10

Normalized comparison of accuracy and efficiency among models.
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Kiwi can effectively meet the requirements of kiwifruit detection. In

comparison, RT-DETR-R18 demonstrates limited detection accuracy

and is prone to false detections under complex backgrounds; YOLOv3-

tiny shows improvements in reducing false positives but still suffers

from missed detections; YOLOv8n and YOLOv10n strike a balance

between accuracy and real-time performance, yet exhibit deviations in

detecting partially occluded targets. Notably, as a lightweight model,

YOLOv10-Kiwi significantly reduces parameter count and

computational complexity while maintaining detection accuracy

comparable to YOLOv10n, making it more suitable for deployment

on resource-constrained edge devices. YOLOv10-Kiwi effectively

reduces the missed detection rate while ensuring high confidence,

demonstrating outstanding detection performance.
3.6 Model visualization analysis

To further investigate the feature extraction capabilities of the

model in kiwifruit detection, this study extracts features from
Frontiers in Plant Science 13
multiple convolutional layers of different models and utilizes the

Grad-CAM method (Selvaraju et al., 2017)to generate heatmaps for

visual analysis, as shown in Figure 13. In these heatmaps, the regions

of higher attention toward the kiwifruit targets are represented by

deeper red areas, while lighter areas reflect lower attention.

Experimental results indicate that YOLOv10-Kiwi demonstrates

excellent performance in multi-layer feature extraction. Compared

to YOLOv3-tiny and YOLOv8n, its heatmaps exhibit more focused

and precise responses in the target regions, particularly in the

identification of kiwifruit under complex backgrounds. This

suggests that YOLOv10-Kiwi holds significant advantages in the

hierarchical structure and accuracy of feature extraction, making it

more suitable for the task of kiwifruit detection.
4 Conclusion

In this study, we proposed YOLOv10-Kiwi, a lightweight and

high-performance model specifically designed for kiwifruit
FIGURE 12

Detection results of different models. (a) RT-DETR-R18; (b) YOLOv3-tiny; (c) YOLOv8n; (d) YOLOv10n; (e) YOLOv10-Kiwi.
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detection in complex orchard environments. By integrating the

C2fDualHet module, CCFM neck, and MPDIoU loss into the

YOLOv10n framework, the model achieves an effective trade-off

between accuracy and computational efficiency. Extensive

experiments demonstrated that YOLOv10-Kiwi achieves an

mAP@50 of 93.6%, recall of 86.4%, and precision of 88.3%, while
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reducing parameters to 0.51M, model size to 2.02 MB, and GFLOPs

to 2.1. The real-time inference speed reaches 74 FPS, making it

highly suitable for deployment on edge devices in agricultural

scenarios. The proposed model exhibits robust detection under

various conditions, such as occlusion, lighting variations, and

complex backgrounds. It is also much more lightweight than
FIGURE 13

Heat map for different models. (a) original images; (b) YOLOv3-tiny; (c) YOLOv8n; (d) YOLOv10-Kiwi.
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comparable state-of-the-art detectors, enabling its practical use in

resource-constrained environments.

In future work, we plan to expand the dataset across multiple

seasons and kiwifruit varieties, and validate the model’s generalizability

under varying orchard geometries. Moreover, we aim to integrate

YOLOv10-Kiwi into robotic picking platforms to further explore its

applicability in real-world agricultural automation tasks.
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