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Integrated multi-omics
analysis reveals the role of
nitrogen application in seed
storage protein metabolism
and improvement of inferior
grains in smooth bromegrass

Chengming Ou', Shigiang Zhao', Zhicheng Jia, Shoujiang Sun,
Juan Wang, Chunjiao Mi, Jinyu Shi, Changran Li
and Peisheng Mao*

College of Grassland Science and Technology, China Agricultural University, Key Laboratory of
Pratacultural Science, Beijing, Beijing, China

This study explored the effects of nitrogen application on superior and inferior
grains in smooth bromegrass (Bromus inermis) to provide insights for improving
seed quality and yield. The study was conducted using a randomized block
design with two nitrogen treatments (0 and 200 kg-N-ha™) during the 2021~
2022 growing seasons. Seed dry weight, fresh weight, and storage protein
content were measured at multiple stages after anthesis. PacBio full-length
transcriptome sequencing generated a comprehensive transcriptome
consisting of 124,425 high-quality transcripts, and metabolomic profiling were
performed across developmsental stages. Genetic transformation in Arabidopsis
was used to validate gene function. Nitrogen application significantly increased
seed dry and fresh weights and storage protein content, particularly gliadin and
glutelin. Metabolomic and transcriptomic analyses revealed that nitrogen
treatment upregulated glutamate and asparagine levels and enhanced nitrogen
transport and protein synthesis pathways. Two oa-gliadin nitrogen-responsive
genes, BiGlil and BiGli2, were identified. Overexpression of these genes in
Arabidopsis confirmed their role in regulating seed size and vigor. This study
highlights the critical role of a-gliadin in enhancing seed quality, particularly in
promoting the development of inferior grains, offering valuable insights for the
development of high-yield seed varieties and the optimization of specialized
forage seed production.

a-gliadin, nitrogen application, seed vigor, superior and inferior grains, storage protein,
smooth bromegrass, multi-omics
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1 Introduction

Smooth bromegrass (Bromus inermis Leyss.) is a perennial,
cool-season forage species native to Eurasia and widely cultivated
for its high biomass production, palatability, and resilience to
environmental stresses such as drought and cold (Saeidnia et al,
2019; Mackiewicz-Walec et al,, 2024). Its importance in hay
production, grazing, and ecological restoration has led to
extensive use; however, low seed yield and poor seed uniformity
continue to restrict its adoption and limit further breeding
improvements (Ou et al, 2024). In forage seed production,
improving seed uniformity and vigor, especially by reducing the
developmental gap between superior and inferior grains and
enhancing the quality of inferior grains, is essential for successful
hay production, livestock grazing, and the commercial
seed industry.

A critical factor behind these limitations is the positional
difference in seed development within the inflorescence, resulting
in “superior” and “inferior” grains due to sequential flowering and
filling (Jiang et al., 2003). In rice (Oryza sativa), grains developing
on upper spikelets and primary branches generally fill better,
whereas in wheat (Triticum aestivum), grains from the middle
and lower spikelets are more robust (Cheng et al, 2007; Kato,
2010, 2020; Mohapatra et al., 2011; Zuo et al., 2012). Inferior grains,
particularly under nutrient-limited conditions, compete less
effectively for assimilates and are prone to poor development or
abortion (Ishimaru et al., 2005; Kamoi et al., 2008). Such
deficiencies not only result in low seed vigor and diminished
overall quality, but can ultimately limit crop productivity. While
these positional effects on grain development have been extensively
investigated in cereal crops, they remain poorly understood in
forage grasses such as smooth bromegrass.

Seed storage proteins are vital to grain development, yield, and
quality, and are typically categorized as albumins, globulins,
gliadins, and glutelins (Shewry and Halford, 2002). Their
synthesis is tightly regulated by genetic and environmental
factors. For instance, modifying genes such as RAG2, GIb-1, or -
gliadins can significantly alter grain size and storage protein content
(Qu and Takaiwa, 2004; Kurokawa et al., 2014; Liu et al., 2023).
Among environmental inputs, nitrogen availability is one of the
most effective interventions (Govindasamy et al., 2023); it regulates
the expression of protein synthesis pathways and thus boosts
storage protein content (Barneix, 2007; Yu et al, 2017). For
example, wheat grain protein content can nearly double under
high nitrogen management (Godfrey et al, 2010; Zhang et al,
2016). Similarly, Turk et al (Turk et al, 2018)reported that the
yields and quality of smooth bromegrass forage can be optimized
when nitrogen is supplied at 120 to 160 kg-ha™.

Despite the recognized importance of nitrogen, little is known
about how its application differentially affects protein synthesis and
accumulation in superior versus inferior grains of smooth
bromegrass. This gap limits our capacity to improve seed
uniformity and quality through targeted breeding and agronomic
strategies. Therefore, understanding the molecular mechanisms of

Frontiers in Plant Science

10.3389/fpls.2025.1605073

nitrogen-regulated protein metabolism in distinct grain types will
provide a theoretical foundation for future improvement in forage
seed production.

Advances in transcriptomics, metabolomics, proteomics, and
molecular biology have greatly facilitated the discovery of key genes
and pathways involved in seed development (Kovacik et al., 2024;
Yin et al., 2024). High-quality genome assemblies are essential for
omics-based analyses, yet genomic research in forage crops has
lagged far behind that in major cereals such as rice and wheat,
constraining molecular breeding efforts for these species. While
chromosome-scale assemblies are now available for several
important forage crops, including alfalfa (Medicago sativa) (Chen
et al., 2020), oat (Avena sativa) (Kamal et al., 2022), orchardgrass
(Dactylis glomerata) (Huang et al., 2020), and awnless cleistogenes
(Cleistogenes songorica) (Zhang et al., 2021), smooth bromegrass
(Bromus inermis), with its complex genetic background and large
genome size, still lacks a reference genome. Consequently,
transcriptomic studies in this species typically rely on de novo
assembly or reference genomes from related model crops (Zhou
et al.,, 2020; Gong et al., 2024).

Recent advances in sequencing platforms, particularly PacBio
Single Molecule Real-Time (SMRT) sequencing, enable the direct
generation of full-length transcript isoforms with long reads and
high accuracy, providing powerful advantages for analyzing
complex transcriptomes (Abdel-Ghany et al, 2016; Wang et al,
2016; Luo et al, 2019). This technology has been successfully
applied to investigate stress responses and developmental
processes in various crops.

In this study, we integrated PacBio SMRT and Illumina short-
read sequencing with metabolomic profiling to examine the effects
of nitrogen application on protein metabolism in superior and
inferior grains of smooth bromegrass across key developmental
stages. Our goals were to elucidate the major regulatory networks
and metabolic pathways underlying nitrogen-induced changes in
storage protein synthesis, identify candidate nitrogen-responsive
genes, and provide molecular insights to improve seed quality while
narrowing the gap between superior and inferior grains.

2 Materials and methods
2.1 Plant materials and experimental design

The experiment was conducted over two growing seasons
(2021-2022) at the Forage Seed Production Experimental Base of
China Agricultural University, located at Yuershan Ranch, Chengde
City, Hebei Province, China (41°44’ N, 116°8’ E; elevation 1455 m).
The site features a semi-arid continental monsoon climate with an
85-day frost-free period. Soil properties included 27.63 gkg™
organic matter, 20.58 mg-kg" available nitrogen, 10.40 mgkg™
available phosphorus, and 53.25 mgkg™ available potassium. A
randomized complete block design was employed, comprising four
blocks and two nitrogen treatments: 0 kg-N-ha™ (control, CK) and
200 kg-N-ha™* (N), applied as urea (46% N). The plant material used
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was the cultivar ‘Yuanye’ of smooth bromegrass, purchased from
Beijing Zhengdao Ecological Technology Co., Ltd. The seeds were
produced in Canada, with a purity of 97.2% and a germination rate
of 80%. Smooth bromegrass seeds were sown on 8 July 2020 at a row
spacing of 45 cm in plots measuring 4 m X 5 m, with a theoretical
sowing rate of 30 kg-ha™. Nitrogen fertilizer was applied in May of
both 2021 and 2022 after spring regreening, with the application
rate determined according to local agronomic recommendations
and prior field research.

2.2 Analysis on physiological index

During the 2021 and 2022 flowering periods of smooth
bromegrass, fertile tillers flowering on the same day were tagged
and sampled at 10, 16, 23, and 30 days after anthesis (DAA).
Spikelets from the inflorescence’s middle portion were collected to
differentiate grain positions (GP): the first and second grains from
the spikelet base were classified as superior grains (SG), and the
third to fifth as inferior grains (IG)[3]. The field sampling method,
including the positions of superior and inferior grains within the
spikelet and their appearance at different developmental stages, is
illustrated in Figure S1. For each treatment, 160 uniform seeds were
weighed fresh using an analytical balance (0.001 g precision), then
oven-dried at 130°C for 2 h to record dry weight. Next, 0.3 g of dried
seeds per treatment (four replicates) was ground, and nitrogen
content was measured via the Kjeldahl method, with protein
content calculated using a 6.25 conversion factor. Seeds harvested
at 30 DAA were air-dried at 20-25°C for 2-3 days; then, 1.000 g of
air-dried seeds underwent sequential extraction of albumin,
globulin, gliadin, and glutelin with continuous shaking (Bradford,
19765 lida et al, 1993). These protein fractions were quantified
using the Coomassie Brilliant Blue method.

2.3 Samples for PacBio sequencing and
illumina sequencing

Short-read RNA sequencing was performed on the Illumina
HiSeq platform (paired-end, 150 bp), and full-length transcriptome
sequencing was performed on the PacBio Sequel system. For PacBio
sequencing, samples comprised seeds, stems, leaves, roots, and
shoots of smooth bromegrass. For seed samples, five grains from
each of the three developmental stages (16, 23, and 30 DAA) were
pooled together. At 16 DAA, stems and leaves were harvested from
five plants with uniform growth. Seeds were germinated in a growth
chamber (16 h dark/8 h light, 15/25°C) for 14 days; subsequently,
roots and shoots were collected from 40 uniformly sized seedlings.
All samples were flash-frozen in liquid nitrogen and stored at -80°C.
For Illumina sequencing, seed samples from 16, 23, and 30 DAA
were categorized into 12 treatments (three time points x two grain
positions [superior: SG; inferior: IG] x two conditions [control: CK;
nitrogen-treated: NJ), labeled as CS16, CI16, NS16, NI16, CS23,
CI23, NS23, NI23, CS30, CI30, NS30, and NI30. Each treatment
included eight uniform seeds with three replicates.
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2.4 RNA preparation, library construction,
sequencing and Iso-Seq data processing

Total RNA was extracted from plant samples using the
RNAprep Pure Plant Kit (Tiangen, Beijing, China) following the
manufacturer’s protocol. RNA quantity and purity were measured
with a NanoDrop 2000 spectrophotometer (Thermo Fisher
Scientific, Wilmington, DE, USA), and integrity was assessed
using an RNA Nano 6000 Assay Kit on an Agilent Bioanalyzer
2100 (Agilent Technologies, Santa Clara, CA, USA). For PacBio Iso-
Seq, high-quality RNA from seeds, stems, leaves, roots, and shoots
was pooled at a 2:1:1:1:1 ratio for full-length ¢cDNA synthesis
(NEBNext® Single Cell/Low Input ¢cDNA Synthesis &
Amplification Module, New England Biolabs, Ipswich, MA, USA)
and SMRTbell library construction (SMRTbell Express Template
Prep Kit 2.0, Pacific Biosciences, Menlo Park, CA, USA). For
Mumina sequencing, eukaryotic mRNA was enriched with Oligo
(dT) magnetic beads, fragmented, reverse-transcribed, and
converted into sequencing libraries following the manufacturer’s
standard workflow. Libraries were purified with AMPure XP beads
(Beckman Coulter, Brea, CA, USA) and quality-checked on an
Agilent Bioanalyzer 2100 before sequencing.

2.5 Assembly, annotation of SMRT and
illumina sequence assembly

Iso-Seq sequencing was performed on the PacBio Sequel
system. Raw data were filtered to exclude fragments <50 bp and
sequences with accuracy <0.90. Adapter sequences were removed to
obtain subreads, discarding those <50 bp to produce clean data.
Clean reads with >3 full passes and accuracy >0.90 were processed
into circular consensus sequences (CCS). CCS with intact 5°/3’
primers and polyA tails were classified as full-length non-chimeric
(FLNC) sequences. The IsoSeq module in SMRTLink clustered
similar FLNC sequences into consensus isoforms, generating
high-quality (HQ, >99% accuracy) and low-quality (LQ)
transcripts. CD-HIT removed redundant sequences, yielding non-
redundant full-length transcripts, which were annotated against
public databases (NR, SwissProt, COG, KOG, Pfam, GO, KEGG)
using DIAMOND.

These transcripts served as a reference for aligning second-
generation sequencing data. STAR (v2.7.10a; Dobin et al., 2013)
mapped clean reads to the transcripts, and RSEM (v1.3.3; Li and
Dewey, 2011)quantified expression as FPKM (Fragments Per
Kilobase of transcript per Million mapped fragments). RSEM
calculated gene read counts, and DESeq2 (v1.38.3; Love et al,
2014) identified differentially expressed genes (DEGs) across
replicated samples (Fold Change >1.50, P value <0.01). DEGs
were annotated using the full-length transcript annotations,
followed by KEGG and GO enrichment analyses with R packages
“clusterProfiler (v4.6.2; Wu et al, 2021)” and “ggplot2 (v3.4.1;
Ginestet, 2011)”.

DEG analysis of 12 treated samples (CS16, CI16, NS16, NI16, CS23,
CI23,NS23, NI23, CS30, CI30, NS30, NI30) identified 36,929 DEGs. Genes
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with FPKM <0.1 and MAD >1 across all samples were excluded, leaving
18,853 DEGs for WGCNA analysis (Weighted correlation network
analysis). In R, with a soft threshold of beta=9, an adjacency matrix
clustered DEGs into color-coded modules based on expression patterns.
Modules responsive to nitrogen treatment were identified, and their genes
were functionally classified.

2.6 Untargeted metabolomic analysis

A 50 mg sample of smooth bromegrass seeds, ground in liquid
nitrogen, was mixed with 1000 UL of extraction solvent (methanol:
acetonitrile:water, 2:2:1, v/v, 20 mg/L internal standard) and
vortexed for 30 s. Steel beads were added, and the mixture was
ground at 45 Hz for 10 min, ultrasonicated in an ice-water bath for
10 min, and held at -20°C for 1 h. After centrifugation at 12,000 rpm
and 4°C for 15 min, 500 pL of supernatant was dried in a vacuum
concentrator and reconstituted in 160 UL of acetonitrile:water (1:1,
v/v). This was vortexed for 30 s, ultrasonicated for 10 min, and
centrifuged again at 12,000 rpm and 4°C for 15 min. Then, 120 puL
of supernatant was collected in a 2 mL vial, with 10 uL from each
sample pooled as a QC sample. Analysis used a Waters Acquity I-
Class PLUS UPLC coupled to a Waters Xevo G2-XS QTOF mass
spectrometer. Raw data, acquired with MassLynx V4.2, were
processed in Progenesis QI for peak extraction and alignment.
Metabolites were identified using METLIN, public databases, and
Biomaker Technologies’library, with fragment matching. Mass
deviation limits were 100 ppm for precursor ions and 50 ppm for
fragment ions.

2.7 Generation of the overexpression
Arabidopsis plants

Based on Section 2.5, BiGlil and BiGli2 were selected as target
genes. Their ORFs were PCR-amplified from smooth bromegrass
seed cDNA (primers in Supplementary Table S1), cloned into PC-
GW-Hyg-eGFP via pCE-Zero, and introduced into Agrobacterium
tumefaciens GV3101. Arabidopsis was transformed using the floral
dip method. Transformants were selected on MS medium with 50
pg/mL hygromycin, and T3 homozygous lines were confirmed
for resistance.

The transcript levels of BiGlil and BiGli2 in T3 homozygous
lines were determined by RT-qPCR using UBQIO0 as the reference
gene (primers in Supplementary Table S1), with seeds collected 3
days after germination. Based on relative expression, three
representative OE lines for each gene (BiGlil OE2, OE4, OE6;
BiGli2 OE1, OE3, OE6) were selected for seed propagation and
subsequent experiments. Protein accumulation in these lines was
confirmed by Western blot analysis using anti-GFP antibody (Bio-
swamp, TAG10014, 1:4000); B-actin (Bio-swamp, MAB48206,
1:10000) was used as a loading control, also using seeds collected
3 days after germination.
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2.8 Phenotypic analysis of overexpression
Arabidopsis seeds

T3 overexpression Arabidopsis and Columbia (Col) seeds,
harvested simultaneously, were photographed using a
stereomicroscope. Seed surface area, length, and width were
measured with Image] from 30 randomly selected seeds per line.

2.9 CDT and phenotype analysis of
overexpression Arabidopsis seeds

Homozygous overexpression Arabidopsis seeds (1 g) were
desiccated with silica gel and aged using the controlled
deterioration treatment (CDT) method described by Chen et al
(Chen et al.,, 2012). Seeds were placed in a 4-cm Petri dish within a
desiccator at 85% humidity (saturated KCI) and equilibrated at
20°C for 3 days. Aging proceeded at 40°C and 85% relative humidity
for 3 days, followed by equilibration with saturated MgCl, for
3 days. After disinfection and vernalization, aged seeds were sown
on 0.5x MS agar plates for phenotypic analysis.

2.10 Statistical analysis

Seed traits under two nitrogen levels were compared using
Student’s t-test (P < 0.05), with analyses performed in the R package
agricolae v1.3-7. Line plots were generated using GraphPad Prism 8.0.

3 Results

3.1 Effect of nitrogen application on dry
and fresh weights of superior and inferior
grains

In 2021, nitrogen application significantly (P < 0.05) increased
dry weights of superior grains (SG) at 16, 23, and 30 DAA and
inferior grains (IG) at 23 and 30 DAA, with the most notable
increase in IG at 30 DAA reaching 24.2% (Figure 1A). At 10 and 30
DAA, IG showed a greater relative dry weight increase than SG
(Figure 1B). In 2022, nitrogen significantly (P < 0.05) increased SG
dry weights at 10, 23, and 30 DAA and IG dry weights at 10, 23, and
30 DAA (Figure 1C). Relative dry weight increases were higher in
SG at 10 DAA but greater in IG at 16, 23, and 30 DAA (Figure 1D).

For fresh weights in 2021, nitrogen significantly (P < 0.05)
increased both SG and IG at 16, 23, and 30 DAA (Figure 1E), with
IG showing greater relative increases at 23 and 30 DAA (Figure 1F).
In 2022, nitrogen significantly (P < 0.05) increased SG fresh weights
across all measured time points and IG fresh weights at 10, 16, and
30 DAA, leading to a substantial 25.5% increase in the fresh weight
of IG at 30 DAA (Figure 1G). Relative fresh weight increases were
greater for IG at 16 and 30 DAA (Figure 1H).
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3.2 Nitrogen effects on seed vigor and
protein content

Nitrogen application significantly (P < 0.05) increased the total
seed protein content in both SG and IG at all developmental stages
(10, 16, 23, and 30 DAA) across both years, with relative increases
ranging from 17.3% to as high as 60.2% (Figure 2, Supplementary
Table S2). The protein components—albumin, globulin, gliadin,
and glutelin—were quantified in mature seeds harvested at 30 DAA
(Table 1). In 2021, nitrogen application resulted in significant (P <
0.05) increases in globulin content in IG (by 28.7%), glutelin
content in IG (by 25.8%), and gliadin content in both SG (by
17.4%) and IG (by 20.0%). In 2022, nitrogen significantly (P < 0.05)
increased glutelin content in both SG (by 18.3%) and IG (by 20.9%),
and gliadin content in IG (by 24.3%).

3.3 Metabolite responses to nitrogen in
superior and inferior grain

Metabolomic analysis compared nitrogen effects on SG and IG
across six conditions. In SG, nitrogen-treated (NS) versus untreated
(CS) samples at 16, 23, and 30 DAA showed 311, 350, and 313
differential metabolites, respectively, with 13 shared across stages
(Supplementary Figure S2A). In IG, CI_vs_NI comparisons at the
same time points revealed 405, 433, and 195 differential metabolites,
with 16 common (Supplementary Figure S2B).

Pathway shifts differed by grain type. In SG, nitrogen enriched
taurine and amino acid metabolism at 16 DAA, linoleic acid and
flavonoid biosynthesis at 23 DAA, and fatty acid and histidine
metabolism at 30 DAA (Figure 3A). In IG, brassinosteroid and
nitrogen metabolism peaked at 16 DAA, linoleic and galactose
metabolism at 23 DAA, and cysteine and methionine metabolism at
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30 DAA (Figure 3B). Amino acid metabolism in both SG and IG
strongly responded to nitrogen throughout development.
Nitrogen application significantly increased glutamate and
asparagine levels across development (Supplementary Figure S3).
Further analysis revealed elevated glutamine and proline at 16
DAA, declining thereafter, with nitrogen enhancing glutamine
content. By 30 DAA, lysine accumulated, further boosted by
nitrogen (Figure 3C). These shifts underscore nitrogen’s role in
modulating amino acid metabolism during grain development.

3.4 Transcriptome analysis of superior and
inferior grain in responding to nitrogen
application

Full-length transcriptome sequencing was performed on the PacBio
Sequel system and short-read RNA-Seq on the Illumina HiSeq platform.
In total, 36 samples generated 57.48 Gb of data (Q30 > 85%). PacBio
sequencing yielded 560,075 circular consensus sequencing (CCS) reads,
including 526,768 full-length non-chimeric (FLNC) reads; after
clustering and redundancy removal, 124,425 non-redundant
transcripts were obtained. Illumina libraries yielded ~19-27 million
clean reads each, with Q30 > 90% and GC content of ~53-56%. Detailed
sequencing statistics are provided in Supplementary Tables S3-54.

Sample correlation analysis showed clear separation across
developmental stages, with samples clustering tightly by time
point (Supplementary Figure S4A). To explore nitrogen’s impact,
DEGs were compared across six conditions for SG and IG. In SG,
nitrogen application (CS_vs_NS) drove upregulation of 559, 472,
and 650 DEGs at 16, 23, and 30 DAA, respectively, with 438, 586,
and 513 downregulated. In IG (CI_vs_NI), upregulated DEGs were
683, 383, and 425, and downregulated ones were 383, 509, and 425
at the same stages (Supplementary Figure S4B).
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TABLE 1 Effects of nitrogen on protein components of SG and IG in smooth bromegrass (2021-2022).

Treatment Albumin (mg/qg) Globulin (mg/g) | Gliadin (mg/q) Glutelin (mg/g)

CI 10.00 £ 0.88 a 7.92 £049 b 9.06 £ 0.23 b 26.25+0.63 b

CS 10.55 091 a 838 £0.13b 9.50 £ 0.17 b 2563 +0.75b
2021

NI 1279 £ 095 a 10.19 £ 0.83 a 10.87 £ 0.12 a 33.02+123a

NS 10.35 + 0.88 a 9.52 +0.53 ab 1115 + 0.26 29.46 + 1.94 ab

CI 11.58 £ 0.58 a 8.04 £0.39a 890 +0.25b 27.73£0.62b

CS 990 £ 0.72 a 7.51 £0.60 a 8.89 £ 0.06 b 26.82+£0.77 b
2022

NI 1232+ 121 a 879 +0.88a 11.06 + 1.02 a 3352+ 076 a

NS 11.12 £ 0.71 a 8.84 +051a 9.75 + 0.06 ab 3173+ 1.74 a

CS: SG without nitrogen application; NS: SG with nitrogen application; CI: IG without nitrogen application; NI: IG with nitrogen application. Means within the same year and column followed by
different lowercase letters differ significantly at P < 0.05.
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FIGURE 3
KEGG pathway enrichment analysis for SG (A) and IG (B), and variation patterns of differential metabolite contents linked to glutamate and
asparagine metabolism (C).
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KEGG analysis of SG and IG DEGs revealed dynamic shifts
across the top 15 enriched pathways. For SG, early enrichment at 16
DAA featured galactose and amino acid biosynthesis, shifting to
carbon metabolism at 23 DAA, and protein processing and
glycolysis by 30 DAA (Figure 4A). For IG, enriched pathways at
16 DAA included carbon metabolism, glutamate metabolism, and
starch metabolism; at 23 DAA, amino sugar metabolism, ascorbate
metabolism, and glycan degradation; and at 30 DAA, protein
processing, fatty acid biosynthesis, and glutamate metabolism
(Figure 4B). Shared pathways between SG and IG included
carbon metabolism and starch metabolism at 16 DAA, amino
sugar metabolism at 23 DAA, and protein processing and
spliceosome at 30 DAA.

GO enrichment analysis revealed that nitrogen treatment
regulated several key biological processes in both SG and IG at
different developmental stages (Figures 4C, D). In SG, DEGs were
enriched for “vacuolar protein processing” and “serine-type
endopeptidase inhibitor activity” at 16 DAA, “pectinesterase
inhibitor activity” and “cell wall modification” at 23 DAA, and
“antibiotic catabolic process” and “nutrient reservoir activity” at 30

10.3389/fpls.2025.1605073

DAA, reflecting enhanced protein synthesis, protease inhibition, cell
wall remodeling, and defense-related metabolism. In IG, GO terms
such as “serine-type endopeptidase inhibitor activity” were enriched at
16 DAA, “sterol biosynthetic process” at 23 DAA, and “lipid storage”
and “fatty acid beta-oxidation” at 30 DAA, indicating that nitrogen
promoted not only protein-related processes but also lipid metabolism
and energy storage during late grain development. These results
suggest both shared (such as protease inhibition) and position-
specific (such as lipid metabolism in IG) effects of nitrogen on seed
developmental processes.

These findings reveal nitrogen’s dynamic role in seed
development, driving a shift from early carbon, starch, and amino
acid metabolism (16 DAA) to late protein processing, glycolysis,
and energy pathways (30 DAA), with SG and IG exhibiting distinct,
stage-specific responses in biosynthesis and catabolism.

Based on the transcriptional analyses described above, gene
expression patterns in glutamate and aspartate metabolism were
mapped via heatmaps (Figure 5). During seed development, genes
related to aspartate and glutamate metabolism, including
asparagine synthetase (ASN), bifunctional aspartokinase (AK-
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HD), adenylosuccinate synthetase (ADSS), aspartate oxidase (AO),
glutamine synthetase (GS), and glutamate decarboxylase (gadB),
displayed dynamic expression changes (Figure 5). The expression
levels of ASN and GS were increased at 30 DAA. These patterns are
consistent with the late-stage enrichment of protein processing
pathways observed in the KEGG analysis, suggesting their
possible involvement in nitrogen-mediated seed development.
Nitrogen markedly boosted ASN in both SG and IG at 30 DAA,
consistent with enhanced amino acid metabolism. At 16 DAA,
nitrogen downregulated GS, gadB, ADSS, and AO in SG—aligning
with early amino acid biosynthesis trends—while in IG, it
upregulated GS and suppressed AK-HD, gadB, ADSS, and AO,
reflecting glutamate metabolism enrichment. By 30 DAA, nitrogen
reduced AO in SG and gadB in IG, fine-tuning degradation. These
patterns highlight nitrogen’s role in amplifying glutamate and
asparagine synthesis, complementing the stage-specific
metabolic reprogramming.

3.5 WGCNA analysis of DEGs

To further dissect the metabolic shifts observed, WGCNA was
applied to 36,929 DEGs. Genes with FPKM < 0.1 across all samples or
median absolute deviation (MAD) > 1 were excluded, leaving 18,853
genes for analysis. Clustering of the 12 sample groups was performed
according to developmental stages (16, 23 and 30 DAA). At 16 and 23
DAA, samples separated by grain type (superior vs. inferior), while at
30 DAA nitrogen treatment drove clustering (Supplementary Figure
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S5). Using FPKM values, DEGs with high correlation were grouped
into 11 distinct modules, each assigned a colour, with the turquoise
module being the largest (Supplementary Table S5, Figure 6A).
Focusing on the nitrogen-responsive modules - black, pink, red and
turquoise - the expression patterns revealed stage-specific responses. At
16 DAA, black and pink module genes were up-regulated by nitrogen
in both cereal types. Red module genes showed nitrogen-induced
upregulation at 16 and 23 DAA, while turquoise module genes
peaked at 30 DAA under nitrogen treatment (Figures 6B-E). These
trends are consistent with the role of nitrogen in enhancing amino acid
metabolism, particularly glutamate and asparagine synthesis, as seen in
previous heat map analyses (Figure 5).

To further characterize the nitrogen-responsive modules,
KEGG and GO enrichment analyses were conducted on genes
within the black, pink, red, and turquoise modules. KEGG results
revealed enrichment in metabolic pathways critical for protein
synthesis, including endoplasmic reticulum protein processing
and amino acid metabolism (e.g., lysine, valine, leucine,
isoleucine, cysteine, methionine, tryptophan, B-alanine, histidine,
arginine, proline, alanine, aspartate, glutamate, and phenylalanine
metabolism) (Supplementary Figure S6). GO analysis highlighted
enrichment in nucleolus, response to water, serine-type
endopeptidase inhibitor activity, and nutrient reservoir activity
(Figure 7A). Nutrient reservoir activity, pivotal for storage
substance accumulation during seed filling, involved 393 genes,
predominantly encoding gliadins (notably a-gliadins), globulins,
and glutelins (Figure 7B). Notably, superior and inferior grains
exhibited distinct responses to nitrogen among these DEGs, sharing
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Weighted Gene Co-expression Network Analysis (WGCNA) of differentially expressed genes. (A) Gene clustering dendrogram. Each color in the
block below the dendrogram represents a distinct co-expression module. (B—E) Heatmaps (top) and eigengene expression profiles (bottom) for the
four key nitrogen-responsive modules: (B) black, (C) pink, (D) red, and (E) turquoise

only seven common DEGs (Figure 7C). These findings highlight the
differences in nitrogen responses between superior and inferior
grains, providing a basis for optimizing nitrogen fertilizer strategies.
The goal of this optimization is to narrow the developmental
disparities between grain types and ultimately increase total yield.
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3.6 Effects of overexpression BiGlil and
BiGli2 genes on seed vigor

Transcript abundance in transgenic Arabidopsis OE lines was
determined by RT-qPCR. All selected OE lines showed high
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expression of the target genes (Supplementary Figure S7), confirming
successful overexpression. Protein accumulation in these lines was
further verified by Western blot analysis using an anti-GFP antibody
(Supplementary Figure S8). These results demonstrate that BiGliI and
BiGli2 were robustly expressed at both the transcript and protein levels
in the selected transgenic lines.

Nitrogen application was found to influence amino acid
metabolism and protein biosynthesis in superior and inferior
grains, with effects observed at physiological, transcriptional, and
metabolic levels. Gene expression profiling revealed distinct
patterns between superior and inferior grains under nitrogen
treatment. From these findings, two o-gliadin-related genes,
BiGlil and BiGli2, which exhibit responsiveness to nitrogen in
inferior grains, were identified (Supplementary Table S6). Their
roles were validated through overexpression in Arabidopsis
thaliana, with seed phenotypes and germination traits evaluated
under aging conditions. Stereomicroscopic imaging (scale bar: 1000
pum) revealed that in BiGlil-overexpressing lines, OE2 had a
significantly greater seed surface area and length than the wild-

Frontiers in Plant Science

type Columbia (Col) (P < 0.01), while OE4 showed a significantly
larger surface area (P < 0.05). In BiGli2-overexpressing lines, OE1
exhibited significant increases in seed surface area, length, and
width (P < 0.05); OE3 displayed significantly greater surface area
and length (P < 0.05); and OE6 showed significant increases in all
three traits (P < 0.05). Among the BiGli2 lines, OE6 demonstrated
the most pronounced improvements, with seed surface area and
length increased by 18.4% and 12.7%, respectively, relative to
Col (Table 2).

After aging, the germination phenotypes (Figures 8A, D) were
observed, and the germination percentage and seedling fresh weight
were assessed. The BiGlil-overexpressing OE2 line exhibited
significantly higher germination percentage and seedling fresh
weight (P < 0.05) compared to Col, with a 26.9% increase in fresh
weight (Supplementary Table S7). Both OE2 and OE4 lines
outperformed Col in germinated seed count on day two
(Figures 8B, C) and displayed significantly shorter mean
germination times (P < 0.05) (Figure 9A). For BiGli2-
overexpressing lines, germination percentage did not differ
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TABLE 2 Seed length, width and surface area of Arabidopsis plants overexpressing BiGlil and BiGli2 genes.

BiGli1 BiGli2
OE4 OE3

Indices

Surface area

) 0.087 0.097** 0.092* 0.091 0.094** 0.093** 0.103**
(mm®)
Length(mm) 0.426 0.451%* 0.440 0.436 0.453%+ 0.454** 0.480%*
Width(mm) 0.260 0.269 0.263 0.264 0.274* 0.260 0.274*

* indicates significant difference compared with the control. * means significant difference at 0.05 level, ** means significant difference at 0.01 level.

significantly from Col (P>0.05), but OE1 and OE3 lines had higher =~ bound amino acid levels (Zhao et al., 2015), with inferior grains
germinated seed counts on day two (Figure 8E), while OE3 and OE6  showing heightened sensitivity (Zhang et al., 2017). Similarly, in
lines showed significantly greater seedling fresh weight (P<0.05)  smooth bromegrass, nitrogen boosted glutamine early in seed
(Figure 8F). Additionally, all three BiGli2-overexpressing lines  development, aiding nitrogen transport, and elevated asparagine
(OE1, OE3, OE6) exhibited significantly shorter mean  and glutamate levels, catalyzed by asparagine synthetase (THPY).
germination times (P<0.05) than Col (Figure 9B). These findings  Previous maize studies link THP9 overexpression to increased
suggest that BiGlil and BiGli2 enhance seed vigor by modulating  protein accumulation (Huang et al., 2022), a trend mirrored here,
seed size and germination performance, notably through a unique  where nitrogen enhanced protein content in both SG and IG.
responsiveness observed in inferior grains of Bromus inermis, Nitrogen fertilization enhanced storage protein accumulation in
offering preliminary insights into improving grain quality,  both SG and IG, with a proportionally greater benefit observed in
particularly in inferior grains, under nitrogen regulation. IG. A plausible explanation is that adequate nitrogen availability
alleviates the inherent resource competition between grain types by
increasing the overall pool of assimilates and potentially modifying
4 Discussion source-sink dynamics (Abdelrahman et al., 2020). While this study
offers valuable insights into the responses of SG and IG to nitrogen
4.1 Nitrogen application regulates nitrogen application, several limitations should be noted. The experiments
and amino acid metabolism in superior and  were conducted only in the field, introducing environmental
inferior grain development variability, and included just two nitrogen levels, precluding a full
dose-response assessment.
Nitrogen metabolism underpins seed development, with nitrate
and ammonium serving as primary inorganic nitrogen sources. Roots
absorb nitrate, converting it to ammonium, which is then assimilated 4.2 Nitrogen application regulates protein
into organic nitrogen via the glutamine synthetase (GS)/glutamate synthesis in superior and inferior grains
synthase (GOGAT) cycle (Liu et al, 2022). This organic nitrogen,
transported to stems and leaves, forms free amino acids (e.g., aspartate, Seed storage proteins, accumulated during development, determine
asparagine, glutamate, glutamine) that are later mobilized to seeds  yield and quality. Environmental factors, particularly nitrogen, exert a
during reproductive growth to synthesize storage proteins like gliadin  stronger influence on protein content than genetics (Wan et al., 2012).
and glutelin. Glutamate and aspartate, critical in the GS/GOGAT  In wheat, nitrogen doubles protein levels (Godfrey et al., 2010), with
pathway and nitrogen transport, constitute over 20% of total seed = moderate application optimizing both yield and protein (Zhang et al,,
protein (Masclaux-Daubresse et al., 2010). Here, at 16 DAA, nitrogen ~ 2016). This study found nitrogen significantly increased gliadin and
application suppressed the expression of aspartate degradation genes  glutelin content in smooth bromegrass seeds, enhancing seed vigor and
(AK-HD, ADSS, ASP) more markedly in superior grains than in inferior ~ slightly reducing germination time, consistent with our preprint
ones, favoring aspartate accumulation. Notably, GS expression was  findings (Ou et al, 2025). KEGG and GO analyses of nitrogen-
downregulated in superior grains but upregulated in inferior grains at  responsive genes (via WGCNA) revealed enriched pathways in
16 DAA, suggesting nitrogen enhances assimilation and transport more  protein synthesis (e.g., endoplasmic reticulum processing, amino acid
effectively in inferior grains. Prior studies corroborate that GS  metabolism) and processes like nutrient reservoir activity and protein
overexpression boosts ammonia assimilation and nitrogen  folding (Barneix, 2007). Yu et al (Yu et al, 2017). and Chope et al
remobilization (Zeng et al, 2017; Hu et al, 2018). Additionally,  (Chope et al., 2014). reported similar increases in wheat gliadin and
asparagine, a key nitrogen transport compound in cereals (Miflin and  glutelin under high nitrogen, with differential gene responses (e.g., o.-
Habash, 2002), increased significantly in seeds with nitrogen application ~ gliadin dominance) between superior and inferior grains here
(Wilson et al., 2020), with ASN expression markedly upregulated at 30 suggesting tailored regulation. High nitrogen also elevated total
DAA in both grain types, further amplified by nitrogen. gliadin (Zhen et al, 2020), underscoring its role in storage protein
Amino acid metabolism, vital for protein synthesis, responded =~ modulation. Future research should target inferior grain protein
strongly to nitrogen. In rice, nitrogen elevates free and protein-  synthesis pathways to optimize smooth bromegrass seed quality.
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Effects of aging treatment on seed germination in Arabidopsis plants overexpressing BiGlil and BiGli2 genes. (A, D) Images of seed germination on
day 7 for aged Arabidopsis seeds overexpressing BiGlil (A) and BiGli2 (D). (B, E) Germination percentages of aged Arabidopsis seeds overexpressing
BiGli1 (B) and BiGli2 (E). (C, F) Seedling fresh weights of aged Arabidopsis seeds overexpressing BiGli1 (C) and BiGli2 (F). An asterisk (*) denotes a
significant difference compared to the wild-type Columbia (Col) at the P<0.05 level

4.3 Overexpression of gliadin genes BiGlil efforts reduce allergenicity ( ;

and BiGli2 enhances seed V|ab|[|ty ), smooth bromegrass lacks such concerns. In this study, the
overexpression of BiGlil and BiGli2 (annotated as o-gliadins) in
Gliadins, comprising 40-50% of grain protein in Poaceae ( Arabidopsis increased seed size (surface area, length, and width)
), are classified by electrophoresis into 0/B- (55%), Y- (30%), and ~ compared to Col controls (Section 3.6, ), which indicates
-gliadins (15%) ( ; ), influencing  that these genes promote seed development. Storage proteins fuel
flour properties and celiac disease ( ). While silencing ~ germination, as seen in rice where PcG-OsFIEI and Snrklod/o2
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FIGURE 9
Effects of aging treatment on mean germination time of Arabidopsis seeds overexpressing BiGlil (A) and BiGli2 (B) genes. An asterisk (*) indicates a
significant difference compared to the wild-type Columbia (Col) at the P<0.05 level
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regulate protein and amino acid availability (Huang et al., 2016;
2021). Higher globulin correlates with better
2022). Under aging, BiGlil and BiGli2
overexpressing seeds exhibited shorter germination times and greater

Henninger et al,
germination (Peng et al,

seedling weight (Figures 9A, B), suggesting improved vigor and stress
resistance. However, the mechanisms driving these effects require
further study.

Our results highlight the central role of BiGlil and BiGli2 in
enhancing seed vigour through nitrogen-mediated regulation in
smooth bromegrass. Compared to other Poaceae species, such as
wheat, where gliadins primarily influence flour quality (Zhen et al,
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2020), smooth bromegrass uses BiGlil and BiGli2 to enhance
germination and stress resistance, highlighting a species-specific
adaptation. In practical terms, these findings suggest a dual strategy
of nitrogen optimisation and genetic modification as a promising
way to improve seed quality in forage grasses under variable
environmental conditions. To fully elucidate their mechanisms,
future work should investigate the temporal dynamics of BiGlil
and BiGli2 expression and their downstream effects on protein-
amino acid metabolism under nitrogen gradients, possibly using
proteomics for deeper resolution. Future research could leverage
advanced breeding and molecular tools such as CRISPR/Cas9-
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mediated genome editing to modify key genes regulating storage
protein synthesis and nutrient allocation. While our study reveals
important molecular features underlying nitrogen-mediated
regulation of seed vigor in smooth bromegrass, it was conducted
on a single cultivar. As genotype- and grain position-dependent
differences in responses to nitrogen may exist, multi-omics analyses
across diverse cultivars are needed to validate and extend these
findings. Such comparative work will help determine the broader
applicability of the mechanisms identified here and provide a
stronger basis for breeding and management strategies.

5 Conclusion

Nitrogen application significantly increased both the dry and
fresh weights of superior and inferior smooth bromegrass grains,
primarily by elevating seed protein content through enhanced
gliadin and glutelin accumulation. At the metabolic and
transcriptional levels, nitrogen markedly influenced amino acid
metabolism during seed development, upregulating glutamate and
asparagine levels in both grain types to facilitate nitrogen transport
and protein synthesis. Overexpression of BiGlil and BiGli2 in
Arabidopsis enhanced seed vigor, supporting the observed
positive effects of nitrogen application on smooth bromegrass
seeds and modelling our hypothesis model (Figure 10). This was
evidenced by increased seed size and seedling fresh weight,
alongside reduced mean germination time. Collectively, these
findings demonstrate that nitrogen application, coupled with
BiGlil and BiGli2 activity, offers a robust strategy to improve seed
quality and vigor in smooth bromegrass.
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