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Introduction: Automated apple harvesting is hindered by clustered fruits, varying
illumination, and inconsistent depth perception in complex orchard
environments. While deep learning models such as Faster R-CNN and YOLO
provide accurate 2D detection, they require large annotated datasets and high
computational resources, and often lack the precise 3D localisation required for
robotic picking.

Methods: This study proposes an enhanced K-Means clustering segmentation
algorithm integrated with a stereo-vision system for accurate 3D apple
localisation. Multi-feature fusion combining colour, morphology, and texture
descriptors was applied to improve segmentation robustness. A block-matching
stereo model was used to compute disparity and derive 3D coordinates. The
method was evaluated against Faster R-CNN, YOLOv7, Mask R-CNN, SSD,
DBSCAN, MISA, and HCA using metrics including Recognition Accuracy (RA),
mean Average Precision (mAP), Mean Coordinate Deviation (MCD), Correct
Recognition Rate (CRR), Frames Per Second (FPS), and depth-localisation error.
Results: The proposed method achieved >91% detection accuracy and <1%
localisation error across challenging orchard conditions. Compared with Faster
R-CNN, it maintained higher RA and lower MCD under high fruit overlap and
variable lighting. Depth estimation achieved errors between 0.4%—-0.97% at 800—
1100 mm distances, confirming high spatial accuracy. The proposed model
exceeded YOLOv7, SSD, FCN, and Mask R-CNN in Fl-score, mAP, and FPS
during complex lighting, occlusion, wind disturbance, and dense
fruit distributions.

Discussion and Conclusion: The clustering-based stereo-vision framework
provides stable 3D localisation and robust segmentation without large training
datasets or high-performance hardware. Its low computational demand and
strong performance under diverse orchard conditions make it suitable for real-
time robotic harvesting. Future work will focus on large-scale orchard
deployment, parallel optimisation, and adaptation to additional fruit types.

apple detection, stereo vision system, orchard robotics/robotic harvesting, clustering-
based segmentation, 3D localization, precision agriculture
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1 Introduction

The apple is one of the most popular fruit crops, ranking second
in global fruit production. Harvesting apples remains a crucial yet
demanding operation because it requires substantial labor and time
(Quetal, 2015; Jia et al., 2020). Traditional harvesting methods rely
primarily on manual workforces, resulting in increased expenses,
workforce shortages, and inconsistent quality and efficiency.
Researchers have extensively investigated automated fruit
detection and harvesting technologies that utilize machine vision
and clustering-based segmentation to boost efficiency and precision
(Tu et al., 2010; Jia et al., 2020).

In recent years, deep learning techniques such as YOLO, SSD,
Faster R-CNN, and Mask R-CNN have been widely applied in fruit
detection and recognition (Onishi et al., 2019; Biffi et al., 2020; Jia
et al, 2020; Zhang et al., 2020; Xiao et al., 2023, 2023). These
systems fall into two categories: single-stage models (e.g., YOLO,
SSD), which directly predict object locations and classes for faster
processing, and two-stage models (e.g., Faster R-CNN, Mask R-
CNN), which first propose candidate regions to improve
classification and bounding accuracy (Tianjing and Mhamed,
2024; Shi et al,, 2025) (Likas et al., 2003; Wang et al., 2022;
Mhamed et al.,, 2024; Tianjing and Mhamed, 2024). Recent
studies have demonstrated the potential of UAV-based
phenotyping and machine learning approaches for monitoring
crop traits and yield in tomato and quinoa, highlighting the
growing role of computer vision in precision agriculture
(Johansen et al., 2019, 2020; Jiang et al., 2022a). Deep learning
enhances fruit detection by extracting key colour, shape, and texture
features for segmentation and recognition. However, accuracy in
orchards is hindered by variable lighting, foliage cover, and
clustered fruit. Moreover, reliance on large datasets, high
computational demands, and long training times limits their
practical use in apple harvesting (Wang et al, 2022). Moreover,
they often produce only 2D bounding boxes, lacking the precise in-
depth information needed for robotic harvesting. These constraints
limit their suitability for real-time field deployment.

Beyond fruit detection, deep learning has advanced applications
in remote sensing, radar imaging, and ecological monitoring (Guan
et al., 2025). Recent studies on PolSAR ship detection (Gao et al,
2023a), scattering-aware networks, few-shot SAR classification
(Gao et al., 2023b, 2024), and multi-source data fusion highlights
its versatility in complex detection tasks (Shen et al., 2024; Zhang
et al., 2024). These cross-domain advances reinforce the relevance
of developing efficient and adaptable methods for automated fruit
detection and localization.

An alternative to deep learning is clustering-based
segmentation. K-Means clustering is an unsupervised learning
method that groups pixels by feature similarity, enabling effective
fruit segmentation under complex orchard conditions ( (Likas et al.,
2003; Na et al,, 2010). K-Means delivers rapid and sturdy
segmentation, which stands out from other methods like Fuzzy
C-Means and DBSCAN, which require more computation and
struggle with noise (Song et al., 2013; Jamel and Akay, 2019;
Tkotun et al., 2023). Previous studies have applied K-Means for

Frontiers in Plant Science

10.3389/fpls.2025.1598414

apple recognition (Wang Dandan et al., 2015). While some
researchers utilized integrated extremum methods for fruit
positioning (Jia et al., 2020). Recent studies further refined
segmentation with fuzzy C-means (Sarbaini et al, 2022) CNN-
based semantic segmentation (Ramadhani et al., 2022; Wang et al,,
2022), and monocular vision approaches (Zubair et al., 2024).
However, the challenge of achieving robust performance in real
orchard conditions with limited data remains (Yang et al., 2012).

This study presents an enhanced K-Means clustering
segmentation algorithm combined with multi-feature fusion
(colour, morphology, and texture) and stereo vision for accurate
3D localization. The approach is designed to reduce
misclassification and provide depth information critical for
robotic harvesting. Unlike deep learning methods, the proposed
system emphasizes computational efficiency, real-time applicability,
and reduced training data requirements, making it well suited to
practical orchard deployment. The method is comprehensively
evaluated against state-of-the-art models, including Faster R-
CNN, YOLOv7, and Mask R-CNN, and demonstrates superior
accuracy, reduced coordinate deviation, and stable performance
across different camera angles.

2 Materials and methods

The experimental setup consists of a four-arm parallel picking
robot equipped with a high-precision vision system and a 3D stereo
camera (1920 x 1080 pixels; Model: Hikvision MV-DL2125-04H-R)
for apple detection and localization. The 3D camera was mounted at
the front end of the robotic arm. Computational processing was
performed on a high-performance computer running an Intel i7-
12700 processor, ensuring efficient execution of clustering,
segmentation, and localization tasks. Apple images were collected
from a commercial orchard with diverse lighting conditions
(morning, noon, evening), varying shading levels, and different
apple clustering patterns to ensure a representative dataset. A
dataset comprising 4,200 sample images of Aksu apples, a variety
cultivated in Aksu Prefecture, Xinjiang, China, was collected. The
dataset includes 2,200 images of red apples against green foliage and
2,000 images of green apples against green foliage. Each apple
within the images was manually annotated using a circle-fitting
method to ensure precise localization and segmentation. The
dataset was split into an 8:2 ratio, with 80% used for training and
20% for testing. This choice ensured sufficient data for training
while maintaining an independent set for performance evaluation.
As the proposed method is based on clustering and does not require
iterative hyperparameter optimization, no separate validation set
was used. A similar adjustment of dataset splitting has been
discussed in previous studies with small datasets (Ashtiani et al.,
2021). Each image was manually annotated using Labellmg
software, and apples were labelled based on their position, size,
and occlusion level. To improve the model’s robustness, data
augmentation was applied. Random rotation (+ 15°), brightness
variation (+ 20%), and Gaussian noise were introduced to simulate
real-world orchard variability caused by lighting changes, fruit
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occlusion, and viewing angle differences. This process reduced the
risk of overfitting and enabled better generalization to unseen
samples. Similar to findings in postharvest imaging studies
(Javanmardi and Ashtiani, 2025), such augmentation strategies
enhance dataset diversity and improve the reliability of
classification models.

In the next section, Equations describe standard image
preprocessing operations, clustering formulations, stereo vision
disparity and depth estimation, and evaluation metrics are based
on established methods documented in (Hartigan and Wong, 1979;
Hartley and Zisserman, 2003; Gonzales and Woods, 2018). The
enhanced K-means clustering and stereo vision localization method
was implemented using standard Python and OpenCV libraries,
with all parameters reported in this study. The dataset cannot be
made publicly available due to restrictions, but a representative
subset or implementation details are available from the
corresponding author upon reasonable request.

2.1 Optimization of apple image
segmentation using enhanced K-Means

Combining morphological processing, feature optimization,
and colour space analysis, a modified K-Means clustering method
was constructed. Enhanced colour sensitivity was achieved by
converting RGB to HSI, using the H component for exceptional
target-background difference. Images were filtered using Gaussian
and median filtering techniques to reduce noise (Supplementary
Equation 2) and then transformed to greyscale to ensure

10.3389/fpls.2025.1598414

consistency under varying illumination conditions
(Supplementary Equation 1).

Then, we extracted the HSI colour space that is highly sensitive
to apple colour for segmentation purposes using Equation 1. The
RGB colour space illustrated variations in colour intensity and
brightness, whereas the HSI space replicated human visual
perception abilities. As Figure 1 shows, the RGB to HSI
conversion turned unit square data into a bicone. A 3D camera
captured apple image features and stored them as RGB grayscale
values, ensuring enhanced consistency for segmentation under
variable lighting conditions.

V3(G-B)
H= arctan(m)

Where H indicates component values.

The H component proved useful for separating apples from the
background. The conventional K-Means method did, however,
show errors, including mis-segmentation in challenging
environments. To improve accuracy and robustness, the
algorithm was enhanced through an adaptive selection of the
initial clustering centers (Equations 2, 3). The updated clustering
method minimized intra-cluster variance (Equation 5).

1

THO - HO) @

Cy = argmaxp;y >,
JEN()
Where Cy. denotes the initial center of the k class; P(;denotes the
set of points; N (;) denotes the set of domain points; H (i) and H (j)
represent the feature vectors or attribute values of pixels i and j.

FIGURE 1
Conversion method from RGB to HSI color space.

Color and depth
characteristics
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Morphological boundary extraction through erosion and subtraction. Small artifacts are removed, and clean object edges are restored for clustering.
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Where D (x° 5°) is the Euclidean distance between the pixel point
x” and y° and wm for the feature weights; 7 denotes the total dimension
of the feature space; F,, (x°) and F,,, (yo) represent the pixel intensities
in pixels x° and y° in the m™ dimension, respectively.

The segmentation results underwent morphological processing,
eliminating small noise elements and restoring target edges
(Supplementary Equation 3). Boundary extraction utilized erosion
to isolate object edges, as shown in Figure 2. Connected region
calculation was performed using Supplementary Equation 4 to
obtain complete target information.

2.2 Multi-feature model for apple
recognition and 3D positioning

Following segmentation and clustering, apple centroids were
precisely recognized by integrating colour, morphology, and texture
features. Stereo vision technology and 3D camera calibration
principles were used to map apples from 2D image coordinates to
3D spatial coordinates, providing accurate positional data for the
harvesting robot. Figure 3 displays the calibration principle for the
stereo vision system and the 3D camera. The stereo vision system
and 3D camera underwent calibration to synchronize the vision
coordinate system with the robot coordinate system, which enabled
precise target recognition and localization.
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' features, remove / retained key spatial . localization
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FIGURE 3

Input Apple
Images and
Depth
Information

Schematic of the robotic apple detection system integrating a 3D camera, a visual identity module, and a graph neural network for precise

recognition.
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(b) MISA

Algorithm pipeline showing preprocessing, multi-feature extraction, feature weighting, fusion, and 3D localization outputs, with results illustrated in

(a) the proposed algorithm and (b) the MISA method.

Single-feature detection showed high vulnerability to
environmental conditions, including lighting and noise levels.
Therefore, a multi-feature fusion approach was employed to
enhance detection robustness and accuracy. Composite feature
values determined target areas based on colour, texture, and

morphology weights (Equation 4).

T(x,y) = oqH(x,y) + uGLCM(x, y) + o3 Shape(x, y) (4)

Where T (x, y) is the composite feature value, which is used to

determine whether the pixel point belongs to the target area or not;
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Detection accuracy (RA) and mean coordinate deviation (MCD) of the proposed clustering algorithm and Faster R-CNN under different overlap rates,
illustrated for (a) MCD during the day, (b) MCD during the night, (c) RA during the day, and (d) RA during the night.
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Comparison between the proposed algorithm and DBSCAN across different collection distances (900-1700 mm), shown for (a) MCD under 40
images, (b) MCD under 45 images, (c) CRR under 40 images, and (d) CRR under 45 images.

oy, 0 and o5 are the weight coefficients, corresponding to the
weights of colour, texture and morphological features, respectively.
The values of o&#x2081;, o&#x2082;, and 0&#x2083; were
empirically tuned using the training dataset, selecting the
combination that achieved the best segmentation and detection
performance under varying orchard conditions. H (x, y) indicates a
colour feature; GLCM (x, y) denotes the grayscale covariance
matrix, which is used to extract texture features; Shape (x, y)
represents morphological features.

Figure 4 illustrates the multi-feature fusion approach for apple
image analysis, which involves analyzing multiple pose features
from apples and extracting essential features after bias removal to
enhance centroid recognition and localization. We calculated the
center of mass using the weighted average of pixel coordinates
within the region, as described in Supplementary Equation 5.
Internal and external camera parameters were calibrated using
Supplementary Equation 6.

The block-matching algorithm extracted parallax values to solve
positional discrepancies between left and right camera images
(Supplementary Equation 7). Depth information was then
calculated using parallax values and triangulation principles
(Supplementary Equation 8). Real-world coordinates were derived
by mapping the center of mass and depth information to the
camera’s coordinate system (Supplementary Equation 9).
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The problem of environmental occlusion was solved by applying
morphological techniques combined with depth interpolation methods
(Supplementary Equation 10). Localization accuracy was further
enhanced by adjusting camera parameters and refining feature fusion
weights based on localization error (Equation 5).

Three-dimensional localization accuracy was tested by taking
depth measurements at six points on apple corners at distances
ranging from 800 mm to 1100 mm. The difference between real and
calculated depth values was assessed, while morphological and
depth interpolation techniques minimized errors (Supplementary

Equation 10).

E= \/(Xreal - Xca\lc)2 + (Yreal - Ycalc)2 + (Zreal - anlc)2 (5)

Where E represents positioning error and (Xreal, Yreal> Zreal) are
the actual coordinates and (Xcieo Yeale> Zeale) are the
calculated coordinates.

2.3 Benchmark comparisons and
performance evaluation

Benchmarking the proposed model against several state-of-the-
art methods allowed for a comprehensive performance evaluation.
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The selected benchmarks include widely recognized and validated
techniques in fruit detection and segmentation research. Faster
Region-Based Convolutional Neural Network (Faster R-CNN), You
Only Look Once version 7 (YOLOvV7), and Masked Region-Based
Convolutional Neural Network (Mask R-CNN) are leading deep
learning models known for their high detection accuracy. Density-
Based Spatial Clustering of Applications with Noise (DBSCAN),
Mean-Shift Image Segmentation Algorithm (MISA), and Superpixel
Segmentation Algorithm (SSA) are commonly used clustering and
segmentation methods designed to handle spatial variation and
noise. These methods were chosen to ensure a balanced comparison
between deep learning and clustering-based approaches.

The segmentation performance was compared using Mean
Coordinate Deviation (MCD) and Correct Recognition Rate
(CRR) as evaluation metrics. For object detection and spatial
localization, the proposed model was evaluated against YOLOV7,
Single Shot MultiBox Detector (SSD), Fully Convolutional
Networks (FCN), and Mask R-CNN under four real-world
conditions: complex illumination, fruit occlusion, dynamic
oscillation, and dense target distribution. Performance was
measured using Recognition Accuracy (RA), mean Average
Precision (mAP), and Frames Per Second (FPS). Additionally, the
model’s stability was assessed across different camera angles (0°, 15°,
30° and 45°) by comparing it with the Hierarchical Clustering
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Algorithm (HCA) and Region Growing Segmentation Algorithm
(RGSA) using the standard deviation of recognition accuracy.

The proposed model was comprehensively evaluated using RA
for detection accuracy, MCD for spatial precision, CRR for
segmentation accuracy, Fl-score for detection reliability, mAP for
overall detection performance, FPS for real-time efficiency, and
standard deviation for stability under varying conditions. These
metrics collectively demonstrate the model’s accuracy, robustness,
and practical efficiency for automated apple detection.

3 Results

The proposed clustering-based segmentation and 3D
localization algorithm demonstrated consistent superiority in
detection precision and spatial localization under diverse orchard
conditions. Figure 5 illustrates the variation in RA and MCD under
different lighting and occlusion levels. The proposed method
maintained an average accuracy above 91%, while Faster R-CNN
exhibited a pronounced decline when fruit overlaps exceeded 40%.
In contrast, our algorithm achieved lower MCD values (< 0.3%),
indicating more stable spatial localization across both daytime and
nighttime datasets. (Figure 5). Moreover, the consistently reduced
MCD values throughout all collecting distances indicate better
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Precision—Recall comparison of YOLOv7, SSD, and the proposed model under different field conditions, including (a) complex lighting, (b) apple
occlusion, (c) dynamic oscillation, and (d) multi-target dense distribution environments.
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Effective focal-length standard deviation of the stereo vision system under different numbers of images per sheet, evaluated for (a) camera angle 0°,
(b) camera angle 15°, (c) camera angle 30°, and (d) camera angle 45°, comparing the proposed model with HCA and RGSA.

localization accuracy of the proposed algorithm (Figures 6A, B).
Figures 6C and D demonstrate that the proposed method
consistently maintains a CRR above 90%, outperforming
DBSCAN across varying overlap rates. The depth estimation
accuracy of the stereo vision system was evaluated by comparing
it with YOLOv7 and SSD across four different scenarios: complex
lighting conditions, fruit occlusion, dynamic oscillation conditions,
and dense target distributions. Across all four tested scenarios, the
suggested model showed better recall and precision than YOLOv7
and SSD (Figure 7).

Depth estimation accuracy was further validated, achieving a
maximum localization error of 0.97% across 800-1100 mm collection
distances (Figure 8). Errors ranged from 0.4-0.65% at 800 mm and
0.4-0.5% at 1000 mm, with only slight increases to 0.73-0.79% at
1100 mm. All deviations remained below 1%, confirming high-
precision depth estimation suitable for robotic harvesting
applications. As shown in Figures 9A, B, the proposed algorithm
outperformed MISA in detecting apple orientations on four trees at
0°,45°, 90° and 180°. It achieved the highest detection rate (> 40%) at
45°, while no apples were detected at 180°, where MISA showed
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greater variation and overlap, indicating reduced stability. Results for
multiple algorithms at the 45° orientation are summarized in Table 1.
The proposed method achieved the highest recognition accuracy
(93%), correctly identifying 39 apples, followed by the CNN model
(88%). The template-matching (TM) approach had the lowest
accuracy (70%, 28 apples correctly identified).

In four real-world orchard scenarios, the proposed model was
compared with FCN and Mask R-CNN (Figure 10). It consistently
outperformed both, achieving an Fl-score of 92% under varied
illumination (Figure 10A) and an mAP of 91% for densely clustered
fruits (Figure 10B). Under wind disturbance (Figure 10C), it
maintained the highest frame rate per second (FPS),
demonstrating strong real-time efficiency. Across multi-fruit
orchard conditions (Figure 10D), the model again achieved the
highest mAP, confirming its robustness and adaptability. Figure 11
shows that the proposed model maintained the lowest standard
deviation across all camera angles (0°-45°), stabilizing after about
25 images. Even at 45°, where deviation slightly increased for all
models, it remained the most stable, confirming reliable
performance under varying camera orientations.
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FIGURE 9

Comparison of apple detection performance among FCN, Mask R-CNN, and the proposed model under different field conditions, including (a)
changes in lighting, (b) dense fruit distribution, (c) wind disturbance, and (d) mixed fruit types, evaluated using F1-score, mAP, and FPS.

The proposed clustering-based stereo-vision approach achieved
> 91% detection accuracy, < 1% localization error, and stable
performance under varying lighting and camera angles, all with a
modest dataset. These results demonstrate its suitability for real-
time, low-cost robotic harvesting, offering reliable detection and
positioning without extensive training or high computational
demand—an effective solution for autonomous orchard
operations in precision agriculture.

TABLE 1 Comparative performance of various algorithms in apple
posture recognition.

Identification
methods

Recognition

Apples correctly

accuracy (%) identified (count)

Template Matching

(T™) 70 28
Support Vector
pl\};[achine 7 30
Bayesian Classification 78 31
Convolutional Neural g8 36
Network (CNN)
Decision Tree 84 34
Proposed Method 93 39
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4 Discussion

Accurate segmentation is crucial for precise apple detection in
challenging orchard environments (Kang and Chen, 2020). The
improved MCD and RA values indicate that multi-feature fusion
with adaptive K-means clustering increases robustness to lighting
changes and occlusion. Deep-learning models such as Faster R-
CNN often lose accuracy under these conditions (Bargoti and
Underwood, 2017; Fu et al., 2020). In contrast, the proposed
unsupervised approach remains stable with fewer samples.
Compared with DBSCAN, it achieved higher stability and
accuracy across distances and image counts (Limwattanapibool
and Arch-int, 2017; Hartigan and Wong, 1979). These results
confirm strong generalization and real-time potential for
orchard use.

The success of robotic apple picking depends heavily on precise
3D localization. Our results are consistent with earlier research,
where YOLO-based algorithms struggle to make real-time changes
in challenging agricultural settings (Jiang et al., 2022b). This is
consistent with other studies where YOLO-based models struggle in
complex environments (Bresilla et al., 2019; Parvathi and Selvi,
2021). Consistent with previous studies, YOLOv7 demonstrated
better accuracy and recognition speed than SSD (Wang and Chen,
2024). In contrast, a previous study showed that YOLOv7 achieved
exceptional detection rates of Camellia oleifera fruit in orchards
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with 95.74% mAP, 93.67% F1 score, 94.21% precision, 93.13% recall
and a detection time of 0.025 seconds (Wu et al.,, 2022). Recent
research on brinjal detection using deep learning models has
demonstrated the effectiveness of a lightweight YOLO
architecture and edge-based computing frameworks for real-time
harvesting applications (Nahiduzzaman et al, 2025; Tamilarasi
et al, 2025). These approaches, while achieving high precision
and recall, still depend on large, annotated datasets and relatively
intensive computational resources. In contrast, our clustering-based
multi-feature method achieves stable performance with fewer
training samples and reduced hardware requirements,
underscoring its suitability for orchard conditions. Our results are
consistent with previous studies, indicating that while SSD performs
well in controlled environments, it may struggle in more complex
scenarios than YOLOV?7. For example, Xu et al. reported lower SSD
performance in typical agricultural environments where occlusions
and cluttered backgrounds are very common (Xu et al,, 2024). In
contrast, Deng et al (Deng et al., 2024). found that YOLOv7, when
enhanced with attention mechanisms, consistently outperformed
SSD in citrus detection under different orchard conditions. Apple
posture detection is critical in establishing the best picking strategies
(Liu et al., 2024). The observed stable detection suggests that our
method effectively addresses occlusion and angle-related
distortions, a common challenge in fruit detection (Safari
et al., 2024).

The proposed method showed stable performance relative to
MISA and achieved higher accuracy than CNN, TM, and other
traditional classifiers, reflecting improved feature extraction and
classification capability. Similar challenges in illumination and
feature consistency were also noted by (Sun et al., 2021).
Consistent results under varying field conditions confirm that the
model can maintain real-time reliability in orchard operations.
Previous studies using FCN reported fruit-counting accuracies of
0.91-0.95 and yield accuracies up to 0.98 (Héni et al., 2020), while
Faster R-CNN achieved an Fl-score of 0.89 and 91% mAP. In
contrast, our model achieved higher mAP, Fl-score, and frame
rate, demonstrating superior detection in dense, multi-fruit
environments. Real-world comparison with FCN and Mask R-
CNN confirmed the proposed model’s superior accuracy and
processing efficiency for dense, multi-fruit environments (Wan and
Goudos, 2020; He et al., 2017). Compared to previous studies, Mask
R-CNN performed poorly in our study, where the precision rate
reached 97.31% and the recall rate reached 95.70% (Jia et al., 2020).
These outcomes highlight its stability and real-time applicability
under orchard conditions. Unlike deep-learning models that rely
on large annotated datasets, the algorithm maintained strong
performance with limited training images, reflecting better
adaptability and lower data dependence (Koirala et al., 2019).
Bargoti and Underwood found that 729 training images were
necessary to stabilize AP for apple detection, but almond and
mango models needed more data (Bargoti and Underwood, 2017).
This study also demonstrated that data augmentation enabled better

Frontiers in Plant Science

11

10.3389/fpls.2025.1598414

apple detection using only 100 images compared to 300 images
without augmentation. Similarly, 93% of apples were accurately
detected in 50 images despite uneven lighting conditions in a
previous study (Xu and Lv, 2018). Compared to deep learning
models like Faster R-CNN and YOLOv7, the proposed method
requires less computational power and no extensive training,
making it suitable for real-time applications on standard hardware.
While sequential processing may limit scalability in large-scale
deployments, this can be optimized with parallel computing. The
pipeline’s reliance on generalizable features such as colour, texture,
and morphology also makes it adaptable to other fruits or crops with
minor adjustments. However, large-scale field validation and
integration with robotic harvesting systems are still required to
confirm performance under real operating conditions, which will
be addressed in future development.

In conclusion, this study presents a clustering-based stereo
vision algorithm that combines K-means segmentation and multi-
feature fusion for accurate apple detection and 3D localization in
orchard environments. The method offers high accuracy, strong
generalization, and real-time feasibility with minimal training data
and computational demand—key advantages over deep-learning
approaches. While sequential processing and limited field scale
remain constraints, these can be addressed through parallel
computing and large-scale robotic trials. Future work should
focus on optimizing real-time performance and extending the
framework to other fruit crops and intelligent harvesting systems.
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