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Cluster segmentation and stereo
vision-based apple localization
algorithm for robotic harvesting
Jianxia Wang and Wenbing Sun*

College of Cyber Security, Tarim University, Alar, China
Introduction: Automated apple harvesting is hindered by clustered fruits, varying

illumination, and inconsistent depth perception in complex orchard

environments. While deep learning models such as Faster R-CNN and YOLO

provide accurate 2D detection, they require large annotated datasets and high

computational resources, and often lack the precise 3D localisation required for

robotic picking.

Methods: This study proposes an enhanced K-Means clustering segmentation

algorithm integrated with a stereo-vision system for accurate 3D apple

localisation. Multi-feature fusion combining colour, morphology, and texture

descriptors was applied to improve segmentation robustness. A block-matching

stereo model was used to compute disparity and derive 3D coordinates. The

method was evaluated against Faster R-CNN, YOLOv7, Mask R-CNN, SSD,

DBSCAN, MISA, and HCA using metrics including Recognition Accuracy (RA),

mean Average Precision (mAP), Mean Coordinate Deviation (MCD), Correct

Recognition Rate (CRR), Frames Per Second (FPS), and depth-localisation error.

Results: The proposed method achieved >91% detection accuracy and <1%

localisation error across challenging orchard conditions. Compared with Faster

R-CNN, it maintained higher RA and lower MCD under high fruit overlap and

variable lighting. Depth estimation achieved errors between 0.4%–0.97% at 800–

1100 mm distances, confirming high spatial accuracy. The proposed model

exceeded YOLOv7, SSD, FCN, and Mask R-CNN in F1-score, mAP, and FPS

during complex lighting, occlusion, wind disturbance, and dense

fruit distributions.

Discussion and Conclusion: The clustering-based stereo-vision framework

provides stable 3D localisation and robust segmentation without large training

datasets or high-performance hardware. Its low computational demand and

strong performance under diverse orchard conditions make it suitable for real-

time robotic harvesting. Future work will focus on large-scale orchard

deployment, parallel optimisation, and adaptation to additional fruit types.
KEYWORDS

apple detection, stereo vision system, orchard robotics/robotic harvesting, clustering-
based segmentation, 3D localization, precision agriculture
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1 Introduction

The apple is one of the most popular fruit crops, ranking second

in global fruit production. Harvesting apples remains a crucial yet

demanding operation because it requires substantial labor and time

(Qu et al., 2015; Jia et al., 2020). Traditional harvesting methods rely

primarily on manual workforces, resulting in increased expenses,

workforce shortages, and inconsistent quality and efficiency.

Researchers have extensively investigated automated fruit

detection and harvesting technologies that utilize machine vision

and clustering-based segmentation to boost efficiency and precision

(Tu et al., 2010; Jia et al., 2020).

In recent years, deep learning techniques such as YOLO, SSD,

Faster R-CNN, and Mask R-CNN have been widely applied in fruit

detection and recognition (Onishi et al., 2019; Biffi et al., 2020; Jia

et al., 2020; Zhang et al., 2020; Xiao et al., 2023, 2023). These

systems fall into two categories: single-stage models (e.g., YOLO,

SSD), which directly predict object locations and classes for faster

processing, and two-stage models (e.g., Faster R-CNN, Mask R-

CNN), which first propose candidate regions to improve

classification and bounding accuracy (Tianjing and Mhamed,

2024; Shi et al., 2025) (Likas et al., 2003; Wang et al., 2022;

Mhamed et al., 2024; Tianjing and Mhamed, 2024). Recent

studies have demonstrated the potential of UAV-based

phenotyping and machine learning approaches for monitoring

crop traits and yield in tomato and quinoa, highlighting the

growing role of computer vision in precision agriculture

(Johansen et al., 2019, 2020; Jiang et al., 2022a). Deep learning

enhances fruit detection by extracting key colour, shape, and texture

features for segmentation and recognition. However, accuracy in

orchards is hindered by variable lighting, foliage cover, and

clustered fruit. Moreover, reliance on large datasets, high

computational demands, and long training times limits their

practical use in apple harvesting (Wang et al., 2022). Moreover,

they often produce only 2D bounding boxes, lacking the precise in-

depth information needed for robotic harvesting. These constraints

limit their suitability for real-time field deployment.

Beyond fruit detection, deep learning has advanced applications

in remote sensing, radar imaging, and ecological monitoring (Guan

et al., 2025). Recent studies on PolSAR ship detection (Gao et al.,

2023a), scattering-aware networks, few-shot SAR classification

(Gao et al., 2023b, 2024), and multi-source data fusion highlights

its versatility in complex detection tasks (Shen et al., 2024; Zhang

et al., 2024). These cross-domain advances reinforce the relevance

of developing efficient and adaptable methods for automated fruit

detection and localization.

An alternative to deep learning is clustering-based

segmentation. K-Means clustering is an unsupervised learning

method that groups pixels by feature similarity, enabling effective

fruit segmentation under complex orchard conditions ( (Likas et al.,

2003; Na et al., 2010). K-Means delivers rapid and sturdy

segmentation, which stands out from other methods like Fuzzy

C-Means and DBSCAN, which require more computation and

struggle with noise (Song et al., 2013; Jamel and Akay, 2019;

Ikotun et al., 2023). Previous studies have applied K-Means for
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apple recognition (Wang Dandan et al., 2015). While some

researchers utilized integrated extremum methods for fruit

positioning (Jia et al., 2020). Recent studies further refined

segmentation with fuzzy C-means (Sarbaini et al., 2022) CNN-

based semantic segmentation (Ramadhani et al., 2022; Wang et al.,

2022), and monocular vision approaches (Zubair et al., 2024).

However, the challenge of achieving robust performance in real

orchard conditions with limited data remains (Yang et al., 2012).

This study presents an enhanced K-Means clustering

segmentation algorithm combined with multi-feature fusion

(colour, morphology, and texture) and stereo vision for accurate

3D localization. The approach is designed to reduce

misclassification and provide depth information critical for

robotic harvesting. Unlike deep learning methods, the proposed

system emphasizes computational efficiency, real-time applicability,

and reduced training data requirements, making it well suited to

practical orchard deployment. The method is comprehensively

evaluated against state-of-the-art models, including Faster R-

CNN, YOLOv7, and Mask R-CNN, and demonstrates superior

accuracy, reduced coordinate deviation, and stable performance

across different camera angles.
2 Materials and methods

The experimental setup consists of a four-arm parallel picking

robot equipped with a high-precision vision system and a 3D stereo

camera (1920 × 1080 pixels; Model: Hikvision MV-DL2125-04H-R)

for apple detection and localization. The 3D camera was mounted at

the front end of the robotic arm. Computational processing was

performed on a high-performance computer running an Intel i7–

12700 processor, ensuring efficient execution of clustering,

segmentation, and localization tasks. Apple images were collected

from a commercial orchard with diverse lighting conditions

(morning, noon, evening), varying shading levels, and different

apple clustering patterns to ensure a representative dataset. A

dataset comprising 4,200 sample images of Aksu apples, a variety

cultivated in Aksu Prefecture, Xinjiang, China, was collected. The

dataset includes 2,200 images of red apples against green foliage and

2,000 images of green apples against green foliage. Each apple

within the images was manually annotated using a circle-fitting

method to ensure precise localization and segmentation. The

dataset was split into an 8:2 ratio, with 80% used for training and

20% for testing. This choice ensured sufficient data for training

while maintaining an independent set for performance evaluation.

As the proposed method is based on clustering and does not require

iterative hyperparameter optimization, no separate validation set

was used. A similar adjustment of dataset splitting has been

discussed in previous studies with small datasets (Ashtiani et al.,

2021). Each image was manually annotated using LabelImg

software, and apples were labelled based on their position, size,

and occlusion level. To improve the model’s robustness, data

augmentation was applied. Random rotation (± 15°), brightness

variation (± 20%), and Gaussian noise were introduced to simulate

real-world orchard variability caused by lighting changes, fruit
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occlusion, and viewing angle differences. This process reduced the

risk of overfitting and enabled better generalization to unseen

samples. Similar to findings in postharvest imaging studies

(Javanmardi and Ashtiani, 2025), such augmentation strategies

enhance dataset diversity and improve the reliability of

classification models.

In the next section, Equations describe standard image

preprocessing operations, clustering formulations, stereo vision

disparity and depth estimation, and evaluation metrics are based

on established methods documented in (Hartigan and Wong, 1979;

Hartley and Zisserman, 2003; Gonzales and Woods, 2018). The

enhanced K-means clustering and stereo vision localization method

was implemented using standard Python and OpenCV libraries,

with all parameters reported in this study. The dataset cannot be

made publicly available due to restrictions, but a representative

subset or implementation details are available from the

corresponding author upon reasonable request.
2.1 Optimization of apple image
segmentation using enhanced K-Means

Combining morphological processing, feature optimization,

and colour space analysis, a modified K-Means clustering method

was constructed. Enhanced colour sensitivity was achieved by

converting RGB to HSI, using the H component for exceptional

target-background difference. Images were filtered using Gaussian

and median filtering techniques to reduce noise (Supplementary

Equation 2) and then transformed to greyscale to ensure
Frontiers in Plant Science 03
cons i s t ency under vary ing i l l umina t ion cond i t ions

(Supplementary Equation 1).

Then, we extracted the HSI colour space that is highly sensitive

to apple colour for segmentation purposes using Equation 1. The

RGB colour space illustrated variations in colour intensity and

brightness, whereas the HSI space replicated human visual

perception abilities. As Figure 1 shows, the RGB to HSI

conversion turned unit square data into a bicone. A 3D camera

captured apple image features and stored them as RGB grayscale

values, ensuring enhanced consistency for segmentation under

variable lighting conditions.

H = arctan(

ffiffiffi
3

p
(G − B)

2R − G − B
) (1)

Where H indicates component values.

The H component proved useful for separating apples from the

background. The conventional K-Means method did, however,

show errors, including mis-segmentation in challenging

environments. To improve accuracy and robustness, the

algorithm was enhanced through an adaptive selection of the

initial clustering centers (Equations 2, 3). The updated clustering

method minimized intra-cluster variance (Equation 5).

Ck = argmaxP(i) o
j∈N(i)

1
∥H(i) − H(j) ∥

(2)

Where Ck denotes the initial center of the k class; P(i)denotes the

set of points; N (i) denotes the set of domain points; H (i) and H (j)

represent the feature vectors or attribute values of pixels i and j.
FIGURE 1

Conversion method from RGB to HSI color space.
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D(x0, y0) =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o
n

m=1
wm · (Fm(x

0) − Fm(y
0))2

s
(3)

Where D (x0, y0) is the Euclidean distance between the pixel point

x0 and y0 and wm for the feature weights; n denotes the total dimension

of the feature space; Fm (x0) and Fm (y0) represent the pixel intensities

in pixels x0 and y0 in the mth dimension, respectively.

The segmentation results underwent morphological processing,

eliminating small noise elements and restoring target edges

(Supplementary Equation 3). Boundary extraction utilized erosion

to isolate object edges, as shown in Figure 2. Connected region

calculation was performed using Supplementary Equation 4 to

obtain complete target information.
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2.2 Multi-feature model for apple
recognition and 3D positioning

Following segmentation and clustering, apple centroids were

precisely recognized by integrating colour, morphology, and texture

features. Stereo vision technology and 3D camera calibration

principles were used to map apples from 2D image coordinates to

3D spatial coordinates, providing accurate positional data for the

harvesting robot. Figure 3 displays the calibration principle for the

stereo vision system and the 3D camera. The stereo vision system

and 3D camera underwent calibration to synchronize the vision

coordinate system with the robot coordinate system, which enabled

precise target recognition and localization.
FIGURE 3

Schematic of the robotic apple detection system integrating a 3D camera, a visual identity module, and a graph neural network for precise
recognition.
FIGURE 2

Morphological boundary extraction through erosion and subtraction. Small artifacts are removed, and clean object edges are restored for clustering.
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Single-feature detection showed high vulnerability to

environmental conditions, including lighting and noise levels.

Therefore, a multi-feature fusion approach was employed to

enhance detection robustness and accuracy. Composite feature

values determined target areas based on colour, texture, and
Frontiers in Plant Science 05
morphology weights (Equation 4).

T(x, y) = a1H(x, y) + a2GLCM(x, y) + a3Shape(x, y) (4)

Where T (x, y) is the composite feature value, which is used to

determine whether the pixel point belongs to the target area or not;
FIGURE 4

Algorithm pipeline showing preprocessing, multi-feature extraction, feature weighting, fusion, and 3D localization outputs, with results illustrated in
(a) the proposed algorithm and (b) the MISA method.
FIGURE 5

Detection accuracy (RA) and mean coordinate deviation (MCD) of the proposed clustering algorithm and Faster R-CNN under different overlap rates,
illustrated for (a) MCD during the day, (b) MCD during the night, (c) RA during the day, and (d) RA during the night.
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a1, a2 and a3 are the weight coefficients, corresponding to the

weights of colour, texture and morphological features, respectively.

The values of a&#x2081;, a&#x2082;, and a&#x2083; were

empirically tuned using the training dataset, selecting the

combination that achieved the best segmentation and detection

performance under varying orchard conditions. H (x, y) indicates a

colour feature; GLCM (x, y) denotes the grayscale covariance

matrix, which is used to extract texture features; Shape (x, y)

represents morphological features.

Figure 4 illustrates the multi-feature fusion approach for apple

image analysis, which involves analyzing multiple pose features

from apples and extracting essential features after bias removal to

enhance centroid recognition and localization. We calculated the

center of mass using the weighted average of pixel coordinates

within the region, as described in Supplementary Equation 5.

Internal and external camera parameters were calibrated using

Supplementary Equation 6.

The block-matching algorithm extracted parallax values to solve

positional discrepancies between left and right camera images

(Supplementary Equation 7). Depth information was then

calculated using parallax values and triangulation principles

(Supplementary Equation 8). Real-world coordinates were derived

by mapping the center of mass and depth information to the

camera’s coordinate system (Supplementary Equation 9).
Frontiers in Plant Science 06
The problem of environmental occlusion was solved by applying

morphological techniques combined with depth interpolation methods

(Supplementary Equation 10). Localization accuracy was further

enhanced by adjusting camera parameters and refining feature fusion

weights based on localization error (Equation 5).

Three-dimensional localization accuracy was tested by taking

depth measurements at six points on apple corners at distances

ranging from 800 mm to 1100 mm. The difference between real and

calculated depth values was assessed, while morphological and

depth interpolation techniques minimized errors (Supplementary

Equation 10).

E =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(Xreal − Xcalc)

2 + (Yreal − Ycalc)
2 + (Zreal − Zcalc)

2
q

(5)

Where E represents positioning error and (Xreal, Yreal, Zreal) are

the actual coordinates and (Xca lc, Yca lc , Zca lc) are the

calculated coordinates.
2.3 Benchmark comparisons and
performance evaluation

Benchmarking the proposed model against several state-of-the-

art methods allowed for a comprehensive performance evaluation.
FIGURE 6

Comparison between the proposed algorithm and DBSCAN across different collection distances (900–1700 mm), shown for (a) MCD under 40
images, (b) MCD under 45 images, (c) CRR under 40 images, and (d) CRR under 45 images.
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The selected benchmarks include widely recognized and validated

techniques in fruit detection and segmentation research. Faster

Region-Based Convolutional Neural Network (Faster R-CNN), You

Only Look Once version 7 (YOLOv7), and Masked Region-Based

Convolutional Neural Network (Mask R-CNN) are leading deep

learning models known for their high detection accuracy. Density-

Based Spatial Clustering of Applications with Noise (DBSCAN),

Mean-Shift Image Segmentation Algorithm (MISA), and Superpixel

Segmentation Algorithm (SSA) are commonly used clustering and

segmentation methods designed to handle spatial variation and

noise. These methods were chosen to ensure a balanced comparison

between deep learning and clustering-based approaches.

The segmentation performance was compared using Mean

Coordinate Deviation (MCD) and Correct Recognition Rate

(CRR) as evaluation metrics. For object detection and spatial

localization, the proposed model was evaluated against YOLOv7,

Single Shot MultiBox Detector (SSD), Fully Convolutional

Networks (FCN), and Mask R-CNN under four real-world

conditions: complex illumination, fruit occlusion, dynamic

oscillation, and dense target distribution. Performance was

measured using Recognition Accuracy (RA), mean Average

Precision (mAP), and Frames Per Second (FPS). Additionally, the

model’s stability was assessed across different camera angles (0°, 15°,

30°, and 45°) by comparing it with the Hierarchical Clustering
Frontiers in Plant Science 07
Algorithm (HCA) and Region Growing Segmentation Algorithm

(RGSA) using the standard deviation of recognition accuracy.

The proposed model was comprehensively evaluated using RA

for detection accuracy, MCD for spatial precision, CRR for

segmentation accuracy, F1-score for detection reliability, mAP for

overall detection performance, FPS for real-time efficiency, and

standard deviation for stability under varying conditions. These

metrics collectively demonstrate the model’s accuracy, robustness,

and practical efficiency for automated apple detection.
3 Results

The proposed clustering-based segmentation and 3D

localization algorithm demonstrated consistent superiority in

detection precision and spatial localization under diverse orchard

conditions. Figure 5 illustrates the variation in RA and MCD under

different lighting and occlusion levels. The proposed method

maintained an average accuracy above 91%, while Faster R-CNN

exhibited a pronounced decline when fruit overlaps exceeded 40%.

In contrast, our algorithm achieved lower MCD values (≤ 0.3%),

indicating more stable spatial localization across both daytime and

nighttime datasets. (Figure 5). Moreover, the consistently reduced

MCD values throughout all collecting distances indicate better
FIGURE 7

Precision–Recall comparison of YOLOv7, SSD, and the proposed model under different field conditions, including (a) complex lighting, (b) apple
occlusion, (c) dynamic oscillation, and (d) multi-target dense distribution environments.
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localization accuracy of the proposed algorithm (Figures 6A, B).

Figures 6C and D demonstrate that the proposed method

consistently maintains a CRR above 90%, outperforming

DBSCAN across varying overlap rates. The depth estimation

accuracy of the stereo vision system was evaluated by comparing

it with YOLOv7 and SSD across four different scenarios: complex

lighting conditions, fruit occlusion, dynamic oscillation conditions,

and dense target distributions. Across all four tested scenarios, the

suggested model showed better recall and precision than YOLOv7

and SSD (Figure 7).

Depth estimation accuracy was further validated, achieving a

maximum localization error of 0.97% across 800–1100 mm collection

distances (Figure 8). Errors ranged from 0.4–0.65% at 800 mm and

0.4–0.5% at 1000 mm, with only slight increases to 0.73–0.79% at

1100 mm. All deviations remained below 1%, confirming high-

precision depth estimation suitable for robotic harvesting

applications. As shown in Figures 9A, B, the proposed algorithm

outperformed MISA in detecting apple orientations on four trees at

0°, 45°, 90°, and 180°. It achieved the highest detection rate (> 40%) at

45°, while no apples were detected at 180°, where MISA showed
Frontiers in Plant Science 08
greater variation and overlap, indicating reduced stability. Results for

multiple algorithms at the 45° orientation are summarized in Table 1.

The proposed method achieved the highest recognition accuracy

(93%), correctly identifying 39 apples, followed by the CNN model

(88%). The template-matching (TM) approach had the lowest

accuracy (70%, 28 apples correctly identified).

In four real-world orchard scenarios, the proposed model was

compared with FCN and Mask R-CNN (Figure 10). It consistently

outperformed both, achieving an F1-score of 92% under varied

illumination (Figure 10A) and an mAP of 91% for densely clustered

fruits (Figure 10B). Under wind disturbance (Figure 10C), it

maintained the highest frame rate per second (FPS),

demonstrating strong real-time efficiency. Across multi-fruit

orchard conditions (Figure 10D), the model again achieved the

highest mAP, confirming its robustness and adaptability. Figure 11

shows that the proposed model maintained the lowest standard

deviation across all camera angles (0°–45°), stabilizing after about

25 images. Even at 45°, where deviation slightly increased for all

models, it remained the most stable, confirming reliable

performance under varying camera orientations.
FIGURE 8

Effective focal-length standard deviation of the stereo vision system under different numbers of images per sheet, evaluated for (a) camera angle 0°,
(b) camera angle 15°, (c) camera angle 30°, and (d) camera angle 45°, comparing the proposed model with HCA and RGSA.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1598414
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Wang and Sun 10.3389/fpls.2025.1598414
The proposed clustering-based stereo-vision approach achieved

> 91% detection accuracy, < 1% localization error, and stable

performance under varying lighting and camera angles, all with a

modest dataset. These results demonstrate its suitability for real-

time, low-cost robotic harvesting, offering reliable detection and

positioning without extensive training or high computational

demand—an effective solution for autonomous orchard

operations in precision agriculture.
Frontiers in Plant Science 09
4 Discussion

Accurate segmentation is crucial for precise apple detection in

challenging orchard environments (Kang and Chen, 2020). The

improved MCD and RA values indicate that multi-feature fusion

with adaptive K-means clustering increases robustness to lighting

changes and occlusion. Deep-learning models such as Faster R-

CNN often lose accuracy under these conditions (Bargoti and

Underwood, 2017; Fu et al., 2020). In contrast, the proposed

unsupervised approach remains stable with fewer samples.

Compared with DBSCAN, it achieved higher stability and

accuracy across distances and image counts (Limwattanapibool

and Arch‐int, 2017; Hartigan and Wong, 1979). These results

confirm strong generalization and real-time potential for

orchard use.

The success of robotic apple picking depends heavily on precise

3D localization. Our results are consistent with earlier research,

where YOLO-based algorithms struggle to make real-time changes

in challenging agricultural settings (Jiang et al., 2022b). This is

consistent with other studies where YOLO-based models struggle in

complex environments (Bresilla et al., 2019; Parvathi and Selvi,

2021). Consistent with previous studies, YOLOv7 demonstrated

better accuracy and recognition speed than SSD (Wang and Chen,

2024). In contrast, a previous study showed that YOLOv7 achieved

exceptional detection rates of Camellia oleifera fruit in orchards
FIGURE 9

Comparison of apple detection performance among FCN, Mask R-CNN, and the proposed model under different field conditions, including (a)
changes in lighting, (b) dense fruit distribution, (c) wind disturbance, and (d) mixed fruit types, evaluated using F1-score, mAP, and FPS.
TABLE 1 Comparative performance of various algorithms in apple
posture recognition.

Identification
methods

Recognition
accuracy (%)

Apples correctly
identified (count)

Template Matching
(TM)

70 28

Support Vector
Machine

75 30

Bayesian Classification 78 31

Convolutional Neural
Network (CNN)

88 36

Decision Tree 84 34

Proposed Method 93 39
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FIGURE 10

Measuring distance and relative error of the proposed stereo-vision depth estimation system across different collection distances, evaluated at (a)
800 mm, (b) 900 mm, (c) 1000 mm, and (d) 1100 mm, based on measurements from six corner points in the calibration board.
FIGURE 11

Model stability across camera angles (0°–45°) compared with HCA and RGSA.
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with 95.74% mAP, 93.67% F1 score, 94.21% precision, 93.13% recall

and a detection time of 0.025 seconds (Wu et al., 2022). Recent

research on brinjal detection using deep learning models has

demonstrated the effectiveness of a lightweight YOLO

architecture and edge-based computing frameworks for real-time

harvesting applications (Nahiduzzaman et al., 2025; Tamilarasi

et al., 2025). These approaches, while achieving high precision

and recall, still depend on large, annotated datasets and relatively

intensive computational resources. In contrast, our clustering-based

multi-feature method achieves stable performance with fewer

training samples and reduced hardware requirements,

underscoring its suitability for orchard conditions. Our results are

consistent with previous studies, indicating that while SSD performs

well in controlled environments, it may struggle in more complex

scenarios than YOLOv7. For example, Xu et al. reported lower SSD

performance in typical agricultural environments where occlusions

and cluttered backgrounds are very common (Xu et al., 2024). In

contrast, Deng et al (Deng et al., 2024). found that YOLOv7, when

enhanced with attention mechanisms, consistently outperformed

SSD in citrus detection under different orchard conditions. Apple

posture detection is critical in establishing the best picking strategies

(Liu et al., 2024). The observed stable detection suggests that our

method effectively addresses occlusion and angle-related

distortions, a common challenge in fruit detection (Safari

et al., 2024).

The proposed method showed stable performance relative to

MISA and achieved higher accuracy than CNN, TM, and other

traditional classifiers, reflecting improved feature extraction and

classification capability. Similar challenges in illumination and

feature consistency were also noted by (Sun et al., 2021).

Consistent results under varying field conditions confirm that the

model can maintain real-time reliability in orchard operations.

Previous studies using FCN reported fruit-counting accuracies of

0.91–0.95 and yield accuracies up to 0.98 (Häni et al., 2020), while

Faster R-CNN achieved an F1-score of 0.89 and 91% mAP. In

contrast, our model achieved higher mAP, F1-score, and frame

rate, demonstrating superior detection in dense, multi-fruit

environments. Real-world comparison with FCN and Mask R-

CNN confirmed the proposed model’s superior accuracy and

processing efficiency for dense, multi-fruit environments (Wan and

Goudos, 2020; He et al., 2017). Compared to previous studies, Mask

R-CNN performed poorly in our study, where the precision rate

reached 97.31% and the recall rate reached 95.70% (Jia et al., 2020).

These outcomes highlight its stability and real-time applicability

under orchard conditions. Unlike deep-learning models that rely

on large annotated datasets, the algorithm maintained strong

performance with limited training images, reflecting better

adaptability and lower data dependence (Koirala et al., 2019).

Bargoti and Underwood found that 729 training images were

necessary to stabilize AP for apple detection, but almond and

mango models needed more data (Bargoti and Underwood, 2017).

This study also demonstrated that data augmentation enabled better
Frontiers in Plant Science 11
apple detection using only 100 images compared to 300 images

without augmentation. Similarly, 93% of apples were accurately

detected in 50 images despite uneven lighting conditions in a

previous study (Xu and Lv, 2018). Compared to deep learning

models like Faster R-CNN and YOLOv7, the proposed method

requires less computational power and no extensive training,

making it suitable for real-time applications on standard hardware.

While sequential processing may limit scalability in large-scale

deployments, this can be optimized with parallel computing. The

pipeline’s reliance on generalizable features such as colour, texture,

and morphology also makes it adaptable to other fruits or crops with

minor adjustments. However, large-scale field validation and

integration with robotic harvesting systems are still required to

confirm performance under real operating conditions, which will

be addressed in future development.

In conclusion, this study presents a clustering-based stereo

vision algorithm that combines K-means segmentation and multi-

feature fusion for accurate apple detection and 3D localization in

orchard environments. The method offers high accuracy, strong

generalization, and real-time feasibility with minimal training data

and computational demand—key advantages over deep-learning

approaches. While sequential processing and limited field scale

remain constraints, these can be addressed through parallel

computing and large-scale robotic trials. Future work should

focus on optimizing real-time performance and extending the

framework to other fruit crops and intelligent harvesting systems.
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