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Introduction: Agriculture underpins global food security by providing food, raw

materials, and livelihoods, contributing 4% to global GDP and up to 25% in rural

areas. Rice, a staple for more than half of the world’s population, is nutritionally

vital but highly vulnerable to diseases such as Hispa, leaf blast, and brown spots,

which significantly reduce yield and quality. Achieving Sustainable Development

Goal (SDG) 2 requires innovative approaches to mitigate these threats. Artificial

intelligence (AI), particularly computer vision and machine learning, offers

promising tools for early disease detection.

Methods: This study developed a convolutional neural network (CNN)–based

model for rice leaf disease detection and classification. A publicly available

dataset containing 3,355 labeled images across four categories—Brown Spot,

Leaf Blast, Hispa, and Healthy leaves—was used to train and evaluate the model.

To improve classification accuracy, the CNN was enhanced with spatial and

channel attention mechanisms, enabling it to focus on the most discriminative

image regions. The system was designed for modular deployment, allowing

lightweight, real-time implementation on edge devices.

Results: The enhanced CNN achieved high accuracy and robust performance

metrics across all disease categories. Attention mechanisms significantly

improved precision in identifying subtle disease patterns. The lightweight

design ensured efficient operation on edge devices, demonstrating feasibility

for real-world agricultural applications.

Discussion and conclusion: The proposed AI-driven system provides reliable

and scalable rice leaf disease detection, supporting timely intervention to reduce

yield loss. By strengthening rice production and promoting sustainable practices,

the model contributes to SDG 2 by advancing global food security. This research

highlights AI’s transformative role in agriculture, fostering mechanization,

ecological stability, and resilience in food systems.
KEYWORDS
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1 Introduction

Agriculture is an industry that involves a series of activities, such

as raising crops, cultivating land, and rearing animals, which

primarily strive for human sustenance. This fundamental industry

is paramount to food security, providing a significant portion of food

supply, raw materials, and livelihoods for the global population

(Pawlak and Kołodziejczak, 2020). This main goal could perfectly

align with the Sustainable Development Goal (SDG) 2, which aims to

promote zero hunger. Additionally, this industry has stimulated

expansion of the world economy, by contributing a significant 4% to

the global gross domestic product (GDP). In some rural areas, this

contribution even soars to more than 25% (“Overview,” World

Bank). The agriculture industry embodies the intricate relationship

between humans and the environment, which emphasizes the need

of sustainable methods to preserve long-term food security and

ecological balance.

In the agriculture sector, rice crops play a key role in supplying

staple food for over half of the world population. The rice is farmed in

over 100 nations, with Asia accounting for 90% of the world’s total

production (Fukagawa and Ziska, 2019). Due to the versatility and

adaptability characteristics, this cultivation serves as the primary

source of nutrition and sustenance. For instance, the rice crop acts

a dietary cornerstone in the Asia region. Rice is one of the main

source of complex carbohydrates, with also decent levels of protein,

fiber, iron, manganese, and vitamin B. Hence, rice plantations are

extremely effective in preventing malnutrition. Apart from the role as

a food contributor, the rice crop can also be manipulated in various

aspects, such as ingredient for cosmetics to make shiny hair.

Nonetheless, the rice leaf diseases present a big challenge to the

overall rice production, affecting the health and productivity of this vital

crop. There are multiple types of rice leaf diseases compromising the

rice crops, for example, leaf blast, Hispa, and brown spots. These

diseases are commonly caused by virus, bacteria and fungi and many

other pathogens, or pests (Singh and Singh, 2023). Beyond the

immediate loss of yield, these diseases pose long-term impacts, as the

infected crops frequently consist of lower grain quality and

nutritional value.

In this scenario, advanced technologies, especially artificial

intelligence (AI), could be leveraged for providing a profound and

transformative solution to the challenge of rice leaf diseases.

Artificial intelligence could offer an efficient solution for the

timely detection and management of these diseases through the

deployment of machine learning and computer vision techniques.

By employing sophisticated algorithms, AI models can be trained to

identify subtle patterns and visual cues that correspond to various

rice leaf diseases. The early detection of the rice leaf disease using AI

model could allow rice farmers to take prompt intervention and

preventive measures to avoid further yield loss (Demilie, 2024).

This research proposes a novel AI-based framework that

significantly advances traditional convolutional neural network

(CNN) approaches through two key innovations: the integration

of attention mechanisms and the incorporation of modular

deployment architecture. The attention mechanisms, such as

spatial and channel attention modules, are embedded within the
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CNN architecture to enable the model to selectively focus on the

most informative and discriminative regions of the rice leaf image.

This targeted focus improves the model’s ability to distinguish

between visually similar disease patterns and reduces the

influence of irrelevant background noise, thereby enhancing

classification accuracy, robustness, and generalization across

diverse environmental conditions and imaging scenarios.

In addition to architectural improvements, the framework is

developed with modular deployment capabilities, making it highly

adaptable for real-world agricultural settings. The system is

designed in a lightweight and scalable manner to support

seamless integration into mobile applications, edge devices, or

unmanned aerial vehicles (UAVs). This modularity ensures that

disease detection can occur in real-time and directly in the field,

without requiring extensive computational resources or constant

connectivity to centralized servers. As a result, the framework

facilitates prompt disease diagnosis, enabling timely intervention

by farmers and agricultural stakeholders, and ultimately

contributing to improved yield protection and food security in

resource-constrained environments.

In short, the research is aimed to develop a sustainable solution

for timely detection of rice leaf diseases. The proposed research is

vital in transforming the agriculture sector from crude, customary

approaches to highly mechanized and cutting-edge practices.

Ultimately, this research can effectively promote the broader goals

of SDG 2 by building robust agricultural systems, supporting global

initiatives to end hunger, achieve food security, and advance

sustainable agriculture. Despite advancements in AI for

agricultural applications, there remains a significant gap in

developing lightweight, interpretable models capable of accurate

multi-class disease classification in resource-constrained settings.

Many existing models either lack deployment feasibility on mobile

platforms or do not integrate attention mechanisms to enhance

feature discrimination. This research addresses these challenges by

proposing a novel attention-based CNN architecture tailored for

rice leaf disease classification, with an emphasis on modularity,

interpretability, and real-world deployability.

To address the challenges of early and reliable rice leaf disease

diagnosis, this research is guided by the following objectives and

technical contributions:
1.1 Design of a lightweight attention-
enhanced CNN architecture
• Developed a six-layer convolutional neural network

architecture integrated with spatial and channel attention

modules to enhance feature discrimination and reduce

background noise.

• Modular and Deployable Design: Proposed a model

optimized for deployment on edge devices (via

TensorFlow Lite), enabling real-time diagnosis in low-

resource settings.

• Dataset Engineering and Class Balancing: Addressed class

imbalance using class-weighted loss functions and targeted
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data augmentation (rotation, flipping). Evaluated its effect

on minority classes.

• Ablation and Hyperparameter Optimization: Conducted

thorough ablation studies and hyperparameter tuning to

determine the most effective configurations for accuracy

and generalization.

• Benchmark Comparison with Pre-Trained Models:

Compared the proposed model’s performance against

state-of-the-art architectures such as DenseNet121,

VGG16, InceptionV3, and MobileNetV2 using the same

dataset and conditions.
1.2 Real-world integration and usability
testing

Engineered and tested the model in an Android application

prototype for field usability, enabling practical agricultural deployment.
2 Problem background

The rice cultivation serves as a cardinal source of staple food

and key nutrients for the population, which secure for the global

food security. The following problem statements have highlighted

some real-world issues that underscore the demand for an

innovative AI solution, which aimed to preserve the rice crops

and strive for the same direction as SDG 2.
2.1 Limited efficacy of traditional disease
identification methods

One of the major challenges associated with the rice leaf diseases is

the limited effectiveness of conventional disease detection techniques.

In traditional approaches, rice farmers often rely on visual inspection to

identify the occurrence of a disease (Khakimov et al., 2022). When

relying solely on visual assessment, the process of distinguishing

between various disease types could be subjective and potentially lead

to the risk of incorrect diagnosis and ineffective treatment. Other

factors, including the varying proficiency levels among farmers, as well

as the time-consuming and laborious nature of manual inspections,

could also contribute to the overall inefficiency (Kuswidiyanto et al.,

2022). Furthermore, these techniques could possibly miss the early

detection of diseases, which would impact on delayed responses and

increased likelihood of substantial crop damage. In essence, the

inefficiency of current agricultural practices, which hinders the

prompt and accurate identification of rice leaf diseases could

exacerbate the threats to global rice production. There is an urgent

need for the incorporation of emerging technologies, such as artificial

intelligence, in order to overcome these obstacles by providing an

automated, precise, and timely disease detection solution. The

transition from traditional to advanced technological approaches

could revolutionize the management of rice crops, bringing about a
tiers in Plant Science 03
significant shift towards enhancing agricultural productivity and

ensuring global food security.
2.2 Negative environment impact of
conventional disease management

Another urgent concern of the traditional agricultural disease

management methods is the negative environment consequences.

The prevalent application of chemical treatments, such as fungicides

and pesticides, will endanger the water quality, ecosystems, and non-

target organisms (Mandal et al., 2020). The overuse of these

agrochemicals may result in the emergence of pesticide-resistant

strains, which further depletes the effectiveness of these treatments.

This scenario poses a significant threat not only to the immediate

environmental degradation, but also to the long-term sustainability

of the agricultural sector. The accumulation of chemical residues in

both soil and water can give rise to more extensive ecological

disruptions that impact biodiversity and potentially entering the

food chain. Moreover, carbon footprint produced by the application

of agricultural chemicals can lead to climate change, emphasizing the

need for more environmentally friendly alternatives. In this case, AI

can present a promising remedy for the excessive use of

agrochemicals. By analyzing images of rice leaves, AI model is

capable of detecting the diseases at early stages with high accuracy.

Early detection allows farmers to take timely interventions before the

disease spreads extensively, thereby reducing the need for

widespread chemical treatments. With precise identification of the

specific disease affecting the rice crop, farmers can apply treatments

only where necessary. This targeted approach could effectively

minimize the application of chemicals, as opposed to the broad-

spectrum implementation commonly embraced in conventional

approaches. In line with the principles of environmentally

conscious and sustainable agriculture advocated by SDG 2, the

adoption of a technologically advanced early disease detection

solution can improve agricultural productivity, while also

mitigating the overall ecological footprint of conventional disease

management methods.
2.3 Lack of accessibility to artificial
intelligence solutions

In the agriculture sector, a noteworthy obstacle arises from the

limited accessibility to AI solutions. AI solutions often excel in

improving crop management, streamlining farming procedures,

and solving agricultural difficulties. However, the AI availability

remains restricted, particularly in areas with smaller farms or less

developed technology. The lack of widespread adoption of AI

solutions in agriculture could impede smallholder farmers from

harnessing the transformative power of precision agriculture,

advanced analytics, and data-driven decision-making. Additionally,

the absence of necessary technical skills for effective utilization of AI

solutions exacerbates the existing disparities in agricultural landscape,

especially among farmers residing in less technologically advanced
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regions. There are also financial barriers associated with

implementing cutting-edge technologies, for example, insufficient

funds to acquire and maintain an AI system (Jiva.ag). These

financial hurdles can further widen the digital divide, placing

certain segments of the farming community at a disadvantage. This

accessibility gap should be resolved to ensure all farmers, irrespective

of their scale or location, could get an opportunity to utilize AI for

enhanced productivity and sustainable agricultural practices. Hence,

the developed AI solutions have to offer ease of use, such as a

straightforward and user-friendly interface, and be either free or

available at a minimal charge, in order to alleviate the cost burden and

reduce requirements for high technological skills during utilization.

Addressing this critical issue could make a step closer to the SDG 2,

since farmers can obtain equitable access to technology and foster

agricultural innovation.

In summary, the inefficiencies and environmental impacts of

traditional disease management methods draw attention to the

critical need for innovative solutions. Therefore, incorporating

artificial intelligence can blaze a transformative trail to

overcoming these obstacles. Through early and accurate disease

identification, AI reduces reliance on harmful chemicals and

promotes sustainable practices in compliance with SDG 2.

However, to fully realize the potential of AI, accessibility barriers

must be addressed to ensure that all farmers could benefit from

these advancements. By making AI tools user-friendly and

affordable, the digital divide can be bridged, enhancing global

food security and fostering sustainable agricultural growth.

This research aims to develop an AI-driven system for early

detection and classification of rice leaf diseases, in order to enhance

the global rice production and foster a sustainable agricultural yield.

The paper presents an AI-empowered disease detection model that

can accurately classify various types of rice leaf diseases, including

brown spots, leaf blast, and Hispa. Multiple modelling algorithms

have been implemented and compared with diverse hyperparameters

to determine the optimal architectures for facilitating timely

identification and intervention of rice leaf diseases. The accuracy

and performance metrics were evaluated for the AI detection model,

ensuring robust effectiveness and reliability when identifying

different diseases.
3 Related work

The following section presents some of the related works in

enhancing the agricultural produce.
3.1 Agriculture in ensuring food security

A research done by (Neme et al., 2021) had stated that

establishing food security for the rapidly growing world population

is the most pressing global challenge faced today. Based on

projections, the global population may reach 9 billion by the year

2050, driving up the food demand from 59% to 98%. Considering the

aforementioned scenario, the agricultural output must rise by
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approximately 60% to 70% in order to adequately feed everyone on

the planet by 2050. To address these challenges, the agricultural sector

is intimately associated with the Sustainable Development Goal 2

(SDG 2), which aims to achieve “Zero Hunger”. According to (Pawlak

and Kołodziejczak, 2020), agriculture plays a significant role in

improving food availability and ensuring the food security. The

research had suggested that improving the agricultural productivity

and expanding land utilized for agricultural could be a potential

strategy for enhancing food provision and alleviating hunger.

However, a critical viewpoint was pointed out that the existing

knowledge and technology might pose limitations, particularly for

developing nations with low incomes. This restrictions highlighted the

necessity of increased funding in agricultural research and extension

systems for higher productivity and reducing the environment

deterioration. In addition, the significance of technology transfer

from developed to developing nations was emphasized as a way to

bridge poverty hurdles and technological gaps. In short, the

agricultural landscape can directly contribute to the main goals of

SDG 2 by enhancing the agricultural productivity, supporting the

smallholder farmers, and promoting sustainable food systems.
3.2 Importance and challenges of rice
crops

Rice crop is one of the dominant plantations in the agricultural

industry. In the research carried out in (Fukagawa and Ziska, 2019),

the rice cultivation was identified as a key source of staple food,

which contributed for over 20% of the world’s population calories.

This crop had a major impact on food security, particularly in East

and South Asia. The rice is cultivated in more than 100 countries,

with Asian countries occupying the majority of production. The

characteristics of the grains vary greatly, depending on various

factors including length, color, thickness, aroma, and stickiness. The

global rice market was often shaped by the cultural and regional

preferences. Apart from being a significant source of calories, rice

also provides important vitamins and minerals. Thus, the multi-

nutrient attributes of rice had emphasized the importance of this

cultivation in the agricultural landscape.

Nevertheless, this essential plantation is being threatened by

multiple challenges, wherein the rice leaf diseases had caused a

serious impact. Rice leaf diseases would limit the growth of the

plantation and impede the overall yield. According to research in

(Singh and Singh, 2023), substantial yield losses can occur from a

number of harmful diseases, including leaf smut, brown spot, and

bacterial leaf blight which are caused by bacteria, fungi, and viruses.

The paper mentioned that the leaf blight diseases alone can result in

global yield losses of up to 50%. Besides, the brown spot had historically

been connected to severe famines, while the leaf smut would cause

premature of leaf drying and ultimately resulted in yield reduction. The

absence of a reliable and robust diagnostic technique to identify disease

in early stage had presented a significant problem. The existing disease

identification method was considered to be time-consuming and

complex, specifically in large agricultural regions. Work

accomplished in (Tejaswini et al., 2022), mentioned that the rice
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diseases issue was further exacerbated by climate change, which

fostered a conducive environment for the thriving of pathogens.

Timely intervention for the diseases became difficult as farmers had

to visually identify the leaf diseases. This situation had underscored the

urgent need for efficient solutions to protect the growth of rice

cultivation and yield from pests and diseases.
3.3 AI in agriculture

Research carried out in (Lakshmi and Corbett, 2020) had

emphasized the fundamental role of agriculture in human life, as

well as the enormous economic importance of this industry. The

cutting-edge technology, such as Internet, mobile phone, satellite,

and social media, was highly required to solve problems in

agriculture. One of the major benefits of AI implementation in

the field is the potential to yield a 60% increase in the agricultural

output by 2030. However, the article had indicated that the

capabilities of Agricultural Information Technologies had not be

fully exploited yet. The existing economic conditions and concerns

about the return on investment had contributed to a sluggish

adoption of IT in agriculture. The slow adoption of AI was most

pronounced in rural areas. Despite obstacles, the article had

highlighted the revolutionary potential and ability of IT,

particularly AI, in assisting decision-making, as well as improving

the agricultural, productivity, profitability, sustainability,

and efficiency.

Another research (Lakshmi and Corbett, 2020) had focused on

the impact of AI on agriculture, which also acknowledged the

difficulties faced by the agriculture industry in several areas.

Different challenges being highlighted in this industry had

comprised of crop yield, crop monitoring, crop establishment,

weeding, irrigation, and soil content sensing. The existing

scenarios drawn attention to AI-driven technologies as effective

means of addressing these barriers and enhancing productivity in

general. The paper had covered the usage of numerous AI

applications, such as image recognition, output maximization,

agricultural drones and robots, workforce management, and

chatbots for farmers. A predictions made in this paper illustrated

that there will be 75 million of connected devices by 2020, due to the

growing adoption of AI among farmers. The paper highlighted the

capacity of AI in generating vast amounts of data, with an average

farm predicted to produce in 2050 an average daily record of 4.1

million data points. In short, this paper had summarized the

multifaceted contributions of AI to the agricultural landscape.

To conclude, both literatures had presented the transformative

potential of AI in the agriculture landscape. The first article

concentrated on the challenges in adopting AI and the possible

advantages, whereas the second article had delved into particular AI

applications and the effects on different aspects of agriculture. Both

articles had emphasized the need for widely adoption of AI-driven

technological solutions, in order to solve current issues encountered

by the agriculture industry and optimize economic, sustainable, and

productive outcomes.
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3.4 Machine learning algorithms

Machine learning is a vital subdivision of Artificial Intelligence

that allows computer to study patterns and make decisions without

explicit programming. Diving into the machine learning aspect,

there is the deep learning subset that manipulates neural networks

with multiple layers for complex pattern recognition. In order to

develop an AI model, the researcher has to choose an appropriate

machine learning or deep learning algorithm by considering the

characteristics and requirements of the research and dataset. The

right selection is crucial in enhancing the ability of a model to

generalize and make accurate predictions or decisions.

Work done in (Conrad et al., 2020) had presented the

implementation of two machine learning algorithms in detecting

the rice sheath blight. The supervised classification model in this

research is developed using the random forest algorithms and the

support vector machine (SVM). In the experiment, the random

forest model was utilizing the default parameters, while the SVM

model was manipulating the optimal parameter determined via 10-

fold approach for cross-validation. The SVMmodel had yield better

accuracy and performance when compared to the random forest

model. These results might be because of the parameters that were

utilized for the SVM model which were optimized. Through the

implementation of machine learning models, the researcher had

highlighted the great potential of these algorithms in detecting the

infected plant. One of the primary advantages of SVM is its

effectiveness in handling high-dimensional spaces, making it

suitable for complex datasets with many features, even when the

number of data points is relatively small. SVMs are also highly

robust to overfitting, especially in high-dimensional feature spaces,

due to the regularization parameter that controls the trade-off

between margin size and classification error. Additionally, SVMs

can be extended to non-linear classification problems through the

use of kernel functions, enabling the algorithm to map data into

higher-dimensional spaces where a linear separation is possible.

However, SVMs also have certain disadvantages. Training an

SVM can be computationally expensive, particularly with large

datasets, because it involves solving a complex optimization

problem. This can make SVMs less practical for big data

applications unless efficient algorithms or approximations are

used. Furthermore, the choice of the kernel function and its

parameters, as well as the regularization parameter, requires

careful tuning, which can be time-consuming and requires

domain knowledge. SVMs also tend to perform poorly when the

data is noisy or when there are overlapping classes, as they are

highly sensitive to outliers. Lastly, while SVMs work well for binary

classification, extending them to multi-class problems often

requires additional strategies, such as one-vs-one or one-vs-all

approaches, which can complicate the modeling process.

Another research on the implementation of machine learning

methods on the identification of rice leaf diseases was published in

(Feng et al., 2020). In this research, the authors proposed two

machine learning models, which were support vector machine

(SVM), logistic regression (LR) and deep learning convolutional
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neural network (CNN). The LR algorithm is mainly used in binary

classification problems, while the SVM is widely adopted for

classification and regression. On the other hand, the CNN

method is a powerful neural network that is capable of

automatically extracting both shallow and deep features from the

data. There were two feature extraction techniques being applied in

this research, namely the autoencoder (AE) and principal

component analysis (PCA) to extract the most illuminating

characteristics for dimension reduction. Based on the results

acquired in this research, the CNN model achieved an accuracy

of 100% for the test dataset. The other two machine learning models

had attained relatively lower accuracies, with the SVM obtaining

a90.38% accuracy score and the LR achieving an accuracy of

98.08%. However, the authors had mentioned the limitation of

the CNN model, which requires a large-size training dataset.

A literature presented in (Narmadha et al., 2022) had proposed

a novel deep learning model using the Densely Convolution Neural

Network (DenseNet) with multilayer perceptron (MLP). This new

deep learning-based model is known as DenseNet169-MLP, which

was utilized for the classification of rice plant diseases. This model

had manipulated the computer vision techniques and deep learning

approach to address the substantial impact of diseases on the crop

productivity in Asian. Pre-processing procedures, such as grayscale

conversion, channel separation, and noise removal via median

filtering, were incorporated in this model. Firstly, the Fuzzy c-

means (FCM) approach was used to identify the diseased areas.

Then the disease classification was aided by the DenseNet169-MLP

model, which served as a feature extractor. In this research, the

model had shown to be superior through experimental validation

with a maximum accuracy of 97.68% on a benchmark dataset. The

research had suggested future improvements in tuning the

hyperparameters for enhancing the detection performance.

The research presented in (Ahad et al., 2023) had examined the

use of convolutional neural networks (CNN) for detecting and

localizing the rice disease. This significant research has filled in

gaps in the existing literature by comparing the efficacy and

performance of different CNN architectures. A total of six CNN-

based deep learning architectures, including Seresnext101,

Resnet152V, resNext101, MobileNetV2, Inceptionv3, and

DenseNet121, was specifically compared in this research using a

database of rice diseases collected in Bangladesh. This research was

extended by adopting an ensemble model, called DEX (Densenet121,

EfficientNetB7, and Xception), and a transfer learning mean on

Seresnext101, Resnet152V, MobileNetV2, and DenseNet121, to

evaluate the accuracy performance comparing to the original CNN

architectures. According to the findings, accuracy is highest for the

DEX framework at 98%, and the accuracy for transfer learning was

improved by 17% when compared to Seresnext10. This research also

outlined the potential of mobile application development as a user

interface for rice leaf disease detection system.

Figure 1 had illustrated a suggested method by (Kumar et al.,

2023), which employed a Multi-scale YOLO v5 detection network

with DenseNet-201 serving as the backbone network and depth-

aware instance segmentation. Besides, the proposed Bidirectional

Feature Attention Pyramid Network (Bi-FAPN) was employed to
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improve feature extraction and disease detection across various

scales. In this research, the YOLO v5 network, incorporated with

depth-aware instance segmentation (DAIS) and Bi-FAPN, had

demonstrated an excellent performance, with an accuracy of

94.78%. This integrated model was outperformed than the other

existing approach, including YOLO v3, YOLO v4, YOLO v5, Faster

R-CNN, Mask R-CNN, and RPN. For future improvements, the

authors mentioned to involve sensor integration into the model for

further monitoring and maintaining the rice quality. However, Bi-

FAPN also has its limitations. The main challenge lies in its

computational complexity; the integration of bidirectional feature

attention increases the number of parameters and operations,

leading to higher computational cost and longer training times.

This can make Bi-FAPN less efficient for real-time applications or

for environments with limited computational resources.

Furthermore, the performance improvements offered by Bi-FAPN

may not always justify the increased complexity, especially for

simpler tasks where less sophisticated architecture might suffice.

The design of attention modules and the choice of pyramid levels

also require careful tuning, and suboptimal configurations can lead

to overfitting or diminished performance. Finally, while BFAPN

excels in tasks requiring intricate spatial and feature understanding,

its benefits may be less pronounced in simpler tasks or on datasets

where the added attention mechanisms do not provide

substantial improvements.

Besides, another research published by (Jhatial et al., 2022) also

utilized the YOLO v5 deep learning model for rice leaf disease

detection. In this research, this latest version of YOLO has been

proven to perform better than any previous model. This model

could perform well in the test of unseen images. The research had

recommended deploying the proposed method on smart embedded

system to allow for real-time detection for enhancing

crop productivity.

An article presented by (Dogra et al., 2023) had suggested the

implementation of a CNN and Visual Geometry Group 19

(VGG19) model, so called CNN-VGG19, that utilized transfer

learning to achieve accurate identification and classification of

diseases affecting rice leaves. This proposed model had shown a

promising result with an accuracy of 93.0% on a rice leaf disease

dataset, outperforming the baseline models. Additionally, the article

investigated the use of pre-trained VGG19, InceptionV3, and

ResNet50 residual block networks for disease prediction. The

article also emphasized how crucial digital imaging and deep

learning methods, especially CNN and VGG - 19, were for

extracting important features for classification.

Several recent studies have validated the utility of attention

mechanisms in plant disease detection. For example, research in

(Nalini et al., 2021) integrated spatial attention into a ResNet

architecture for detecting cucumber diseases and reported a 4 –

6% improvement in classification accuracy. Similarly, Swin

Transformer attention combined with EfficientNetV2 for tomato

disease recognition, achieved high robustness under noisy field

conditions. These works reinforce the importance of attention-

guided feature refinement in plant disease classification tasks.

Inspired by such studies, we embedded both spatial and channel
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attention modules into our CNN architecture to enhance feature

localization for rice leaf disease detection.

Work accomplished in (Nalini et al., 2021) had proposed a new

approach for paddy leaf disease identification by utilizing a deep

neural network (DNN) classification model, along with the crow

search algorithm (CSA) for optimization. This new approach was

known as DNN-CSA architecture, which aimed to attain high

classification accuracy while minimizing the computational

burden. K-means clustering is used in the pre-processing stage to

extract diseased regions and followed by feature extraction. After

several cross-fold validations, the proposed model had

demonstrated a superior performance than a support vector

machine (SVM). In order to help farmers in making informed

decisions, this paper had significantly tackled the need for

embedded computer vision techniques in agriculture by offering a

favorable tool for real-time plant disease detection and diagnosis.

Recent advancements in agricultural disease detection have

explored the integration of hybrid deep learning models and

lightweight architectures to enhance both accuracy and deployment

feasibility. For instance, research in (Khan et al., 2023) proposed a novel

hybrid model that combines EfficientNetV2 and Swin Transformer

architectures to classify tomato leaf diseases with high precision. This

model, termed “Eff−Swin,” leverages the strong feature extraction

capabilities of EfficientNetV2 and the hierarchical self-attention

mechanisms of the Swin Transformer to capture both local and

global features effectively. Their approach achieved an impressive

accuracy of 99.72% on benchmark datasets and demonstrated

robustness in challenging conditions such as image noise, variable

lighting, and background clutter—factors commonly present in field

environments. However, despite its performance, the model is
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computationally intensive, requiring significant GPU resources and

memory bandwidth. This renders it less suitable for real-time

applications on mobile or embedded platforms, which are often

constrained by hardware limitations. In contrast (Sun et al., 2024),

developed a lightweight plant disease detection model based on

MobileNetV3-Small, specifically optimized for deployment on edge

computing devices such as smartphones and Raspberry Pi. By

incorporating Focal Loss into the training process, their model

effectively addressed class imbalance—a common issue in agricultural

datasets where certain disease categories are underrepresented.

Additionally, they employed quantization-aware training to reduce

model size and inference time without sacrificing accuracy, achieving

99.56% accuracy on the PlantVillage dataset while maintaining a

compact model footprint of less than 4MB. This enabled real-time

prediction with latency under 150 milliseconds on low-end mobile

devices.While Zhao et al.’s work excels in accuracy and feature richness

through attention-based modeling, Khan et al.’s approach

demonstrates the importance of computational efficiency and real-

world usability. Compared to both, the current study offers a balanced

approach by embedding attention mechanisms into a compact

convolutional neural network, maintaining strong classification

performance while ensuring suitability for low-resource

environments. Furthermore, unlike prior studies, our work

emphasizes modular deployment and includes advanced evaluation

strategies such as ROC-AUC, McNemar’s test, and Cohen’s Kappa to

rigorously validate model reliability across imbalanced and noisy

agricultural datasets.

Recent literature has seen a surge in deep learning applications

targeting various plant disease and classification challenges across

diverse crops, showcasing the increasing utility and adaptability of
FIGURE 1

Block Schematic of The Suggested Approach (Kumar et al., 2023).
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convolutional architectures and transfer learning in precision

agriculture. For instance, a comprehensive review in (Kumar et al.,

2023) provided a consolidated analysis of existing techniques,

datasets, and future prospects in rice disease detection. While the

review highlights the effectiveness of CNN-based models, it also

identifies key research gaps such as limited real-world deployment,

dataset imbalance, and a lack of modular frameworks for mobile

applications—gaps directly addressed in our current study. However,

such models tend to have deeper architectures with increased

computational cost, making them less suitable for resource-

constrained environments. Similarly, a study on deep learning-

based classification of alfalfa varieties using a custom leaf image

dataset emphasizes the need for crop-specific data acquisition but

lacks scalability and transferability to other species due to its limited

domain scope. In contrast, our approach, while rice-specific, is

constructed using a modular design that supports retraining on

other crops with minimal adjustments. Meanwhile, Enhanced corn

seed disease classification using MobileNetV2 with transfer learning

and feature augmentation has proven the efficiency of lightweight

models in achieving high classification performance with minimal

parameters. However, most MobileNet-based studies lack attention

mechanisms that refine feature learning by emphasizing disease-

relevant areas—an aspect our model explicitly integrates. Though

comprehensive in coverage, ensemble models typically require high

inference time and are unsuitable for real-time mobile applications.

Compared to these approaches, our proposed CNN framework offers

a balanced and sustainable solution: incorporating attention modules

for precise feature localization, using class-weighted loss to address

imbalance, and enabling efficient edge deployment via TensorFlow

Lite—all crucial for practical and scalable rice disease diagnosis in real

agricultural environments.

To conclude, the literature review reveals the noteworthy strides

made in leveraging machine learning or deep learning algorithms

for the detection and classification of rice leaf diseases. A spectrum

of models had been explored by researchers, ranging from the

traditional machine learning algorithms to sophisticated deep

learning architectures (Chen et al., 2020; Trivedi et al., 2021;

Hasan et al., 2023; Zhou et al., 2023). Notable discoveries had

highlighted the potential and capabilities of diverse frameworks.

Moreover, certain articles included innovative approaches in feature

extraction and optimization of algorithms. This literature review

illustrates the crucial role of algorithm selection in building an AI

model and augmenting the model generalization. The articles also

emphasized the trajectory toward real-time monitoring and user-

friendly interfaces to further intensify the transformative impact of

AI in advancing precision agriculture and crop management

practices. It is important to recognize that many approaches have

certain limitations that make their solutions less practical in real-

world environments.

To quantitatively align our research with the United Nations

Sustainable Development Goal 2 (Zero Hunger), this research

incorporates simulated real-world deployment scenarios that reflect

practical agricultural use cases. Specifically, the proposed CNN-based

rice leaf disease classification model facilitates early and accurate
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detection of prevalent rice diseases, such as Brown Spot and Leaf

Blast. This early detection capability enables farmers to make timely,

informed decisions regarding agrochemical application. Drawing

from prior field studies and relevant agricultural datasets, our

projections suggest that implementation of this model could reduce

unnecessary pesticide use by approximately 30%. This reduction is

largely attributed to the model’s lower false positive rate and its

improved precision in identifying disease presence and type, thereby

minimizing the over-application of chemicals.

Moreover, by enabling timely intervention, the model has the

potential to mitigate crop yield losses by up to 15%, particularly in

regions where rice crops are highly susceptible to these fungal

pathogens. Such improvements in disease management directly

contribute to food security by enhancing yield stability and

resource efficiency. In broader terms, this approach supports

sustainable agricultural practices by reducing chemical runoff,

lowering environmental toxicity, and preserving ecosystem health.

Collectively, these benefits advance the core objectives of SDG 2,

particularly by enhancing food production sustainability,

improving availability, and promoting resilience in vulnerable

agricultural communities.
4 AI model development and
deployment

Figure 2 presents the flow of steps involved in developing the

CNN model for the detection of the rice leaf disease.
4.1 Data collection

The foundation of any machine learning model lies in the

quality and quantity of the data used to train the model. For this rice

leaf disease classification model, the dataset is sourced from Kaggle,

a well-known platform that offers a rich repository of readily

available datasets for research and development. This dataset

comprises images depicting various rice leaf diseases, which are

crucial for training and evaluating the performance of the

classification model as shown in Table 1.

The dataset used exhibits significant class imbalance,

particularly between the Healthy (1,488 images) and Hispa (565

images) classes. To address this, class-weighted loss was applied

during model training to penalize misclassification of

underrepresented classes more heavily. Additionally, targeted data

augmentation, including rotation, flipping, and zoom-in operations,

was performed predominantly on the minority class images.

Dataset quality was also assessed based on image resolution,

lighting, and background variability to estimate generalization

potential for real-world field scenarios.

As illustrated in Table 1, the dataset includes four distinct

classes of rice leaf diseases, each represented by a substantial

number of images. Below are detailed descriptions and

morphological characteristics for each category:
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4.1.1 Brown spot
This disease is induced by the fungus Cochliobolusmiyabeanus,

presenting a serious challenge to rice cultivation. Known commonly

as brown spot disease, it is one of the most destructive diseases

affecting rice crops globally. The diseased leaf is characterized by

small, dark brown lesions with yellow halos. These spots, as shown

in Figure 3, typically start as tiny, pinpoint-sized spots but can grow

up to several millimeters in diameter. As the infection progresses,

these lesions can coalesce, forming large, irregularly shaped patches

that can cover substantial portions of the leaf surface. The presence

of these lesions significantly impairs the plant’s photosynthetic

capacity by reducing the green leaf area available for

photosynthesis. This reduction in photosynthetic activity stunts

the plant’s growth and vitality, leading to poor grain development

and ultimately reduced yield. The extent of damage can vary, but

severe infections can cause extensive necrosis, where the affected

leaf tissue dies and turns brown, further diminishing the plant’s

ability to produce energy.

Historically, brown spot disease has had devastating impacts on

rice production. One of the most notable instances was during the

Great Bengal Famine of 1943. During this period, brown spot

disease was identified as a major contributing factor to famine,

which led to a catastrophic yield loss of 40 to 90% in the preceding

year. The outbreak of the disease exacerbated the already dire food

situation, resulting in widespread hunger and mortality.

The severity of the disease underscores the importance of

effective management and control strategies. Traditional methods

include crop rotation, resistant varieties, and chemical treatments.

However, with the advent of advanced technologies, there is

potential for more sophisticated solutions. For example, early

detection using artificial intelligence (AI) and machine learning

models can help farmers identify and manage outbreaks before they

reach critical levels. This proactive approach can significantly

reduce the impact of brown spot disease on rice yields and

enhance overall food security (Cochliobolusmiyabeanus (brown

leaf spot of rice), 2022).

4.1.2 Healthy
This class represents rice leaves that are free from any disease

and exhibit a uniform green coloration. Morphologically, healthy

leaves are smooth, vibrant, and show no signs of necrosis or

chlorosis. Their structure is intact, with no discoloration, lesions,

or deformities. These leaves efficiently perform photosynthesis,

contributing to the plant’s overall health and productivity.
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This category serves as a baseline to distinguish between diseased

and non-diseased states, enabling accurate detection and diagnosis

of any abnormalities. Identifying healthy leaves is crucial for

comparative analysis in agricultural studies and disease

management systems. Sample images are in Figure 4.

4.1.3 Hispa
This disease is caused by the Hispa beetle, also known as the

spiny beetle, due to the spines on its exoskeleton. The infestation by

these pests’ results in the formation of silvery parallel streaks and

spots on the leaves, as shown in Figure 5. The Hispa beetle primarily

attacks the leaves of the rice plant, where the adult beetles feed by

scraping off the green tissue from the upper leaf surface. This

feeding activity creates the characteristic silvery streaks and can lead

to significant damage if left unmanaged.

Symptoms of this disease include wilting and drying out of the

affected leaves. As the beetles continue to feed, the leaves lose their

ability to photosynthesize efficiently. The scraping damage disrupts

the chlorophyll, leading to reduced photosynthetic activity, which in

turn affects the plant’s growth and vitality. The affected leaves may

become brown and brittle, often curling and drying out completely.

This can severely impact on the overall health and productivity of

the rice plant, as the plant relies on its leaves for energy production.

Moreover, extreme infestations can cause the rice fields to appear

scorched. This scorched appearance results from the cumulative effect

of numerous beetles feeding extensively on the leaves, leading to

widespread damage across the field. The beetles’ feeding can also

cause the leaves to appear skeletonized, where only the veins remain

intact, further giving the fields a burnt look. Such severe damage can

lead to significant yield losses, as the plants are unable to recover their

photosynthetic capacity in time to produce healthy grains.

The Hispa beetle (commonly Dicladispa armigera) presents a

serious threat to rice production, especially in tropical and subtropical

regions where rice is a staple crop. The pest causes damage at both the

larval and adult stages by feeding on the leaf tissues of rice plants,

which reduces photosynthesis, hampers plant growth, and

significantly lowers yields. In severe cases, infestations can lead to

stunted crop development and economic losses for farmers.

To address this issue, traditional pest control methods have

been employed for decades. These include the use of chemical

insecticides, which are often effective for immediate control but

come with drawbacks such as environmental contamination, the

development of pest resistance, and negative impacts on beneficial

organisms. Additionally, cultural practices such as flooding rice

fields can help drown larvae before they develop into adult beetles.

Manual methods like handpicking of adult beetles and adjusting

planting schedules to avoid peak pest activity are also common.

Furthermore, encouraging the presence of natural predators, such

as parasitic wasps and predatory beetles, offers a biologically

friendly method of suppressing Hispa populations.

However, with the advancement of agricultural science and

technology, more sustainable and integrated approaches to pest

control are being developed. Integrated Pest Management (IPM)

systems now incorporate multiple strategies to achieve long-term

control with minimal ecological disruption. One key strategy is the
TABLE 1 Class-wise data distribution of rice leaf disease images.

Class Number of images

Brown Spot 523

Healthy 1,488

Hispa 565

Leaf Blast 779

Total Number of Images 3,355
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development and adoption of Hispa-resistant rice varieties, which

are bred for their natural tolerance or resistance to infestation. In

parallel, the application of biological control agents—including

entomopathogenic fungi, bacteria, and parasitoids—has shown

effectiveness in naturally curbing the pest population without the

adverse effects associated with chemical treatments.
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Modern IPM also includes the implementation of precise

monitoring and early detection systems, which allow for timely

and targeted intervention. Technologies such as remote sensing,

automated insect traps, and geospatial mapping tools help farmers

monitor pest populations accurately and take preventive actions

before infestations reach damaging levels. These innovations reduce

reliance on broad-spectrum insecticides and support more

environmentally responsible farming practices.

In summary, the impact of the Hispa beetle on rice production

underscores the urgent need for effective and sustainable pest

management strategies. While traditional methods provide

foundational control, the integration of resistant crop varieties,

biological agents, and precision monitoring technologies represents

a forward-looking approach to managing pest pressures efficiently

and sustainably (Bernal et al., 2023).

4.1.4 Leaf blast
The fungus Magnaporthe oryzae contributes to the occurrence

of rice blast, which is one of the most destructive diseases in rice

plantations (Yang et al., 2023). This disease manifests as large,

irregular lesions on the leaves, often surrounded by a reddish-

brown border as shown in Figure 6. As the disease progresses, the

infected leaves may die and fall off prematurely, trimming the

plant’s ability to photosynthesize and eventually cutting yield. Leaf

blast typically thrives in warm, humid conditions and is often

exacerbated by excessive nitrogen fertilization.

Each class is reflected by a diverse set of images, in order to ensure

comprehensive coverage of different conditions that can harm the

rice crops. The images are categorized into directories corresponding

to their disease labels, permitting efficient preprocessing and model

training. With a total of 3,355 images, the dataset supplies a rich and

varied collection of data required to build an accurate and robust

model capable of distinguishing between several rice leaf diseases.

Employing this publicly available dataset could valuably improve

the model’s generalizability and enable reproducibility and

benchmarking against existing models, thereby advancing research

in agricultural disease classification.
4.2 Dataset preparation

During the dataset preparation phase, the ‘image_dataset_

from_directory’ function from the TensorFlow library is being

utilized to efficiently load and preprocess the rice leaf disease

images. This function can simplify the creation of TensorFlow

datasets by leveraging the directory structure of the acquired rice

leaf disease dataset. In this case, the images are organized into

subdirectories within a main directory, with each subdirectory

representing a distinct type of rice leaf disease. This hierarchical

organization allows the function to automatically infer class labels

based on the directory names.

As shown in Figure 7, the ‘image_dataset_from_directory’

function is configured with several key parameters to customize

the loading process. Firstly, the images are set to be randomly
FIGURE 2

Scheme of development for the proposed CNN model.
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shuffled, which helps in mitigating any potential biases that

could arise from the order in which the images are presented.

Moreover, all images from the dataset are resized to a uniform

dimension, which is 256x256 pixels. This configuration ensures

consistency in input size and facilitates smooth integration with the

model. Additionally, the ‘batch_size’ parameter determines the
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number of images per batch. For this parameter, a batch size of 32

is chosen to strike a balance between memory efficiency and

computational performance.

The output of this set will be a TensorFlow dataset object, which

contains batches of images along with the corresponding class

labels. These labels are automatically assigned based on the
FIGURE 3

Random images of brown spot disease from the dataset.
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directory names, making the dataset straightforward to manipulate

for training, validation, and testing. This dataset preparation step is

essential for generating a well-structured and uniformly processed

dataset. Therefore, the dataset is readily prepared for the subsequent

stages of model development, ensuring accurate and effective

training and evaluation.
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4.3 Data partitioning

The data partitioning phase aims to divide the dataset into three

distinct subsets: training, validation, and testing. This partitioning is

crucial to ensuring that the model is evaluated fairly and

generalizable to new, unseen data.
FIGURE 4

Random images of healthy rice leaf from the dataset.
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In this model, 80% of the dataset is allocated for training, 10%

for validation, and the remaining 10% for testing. The training set

will be utilized to fit the mode; the validation set aids in tuning the

model and preventing overfitting; and the test set offers an unbiased

evaluation of the performance of the final model.

To ensure randomness and reduce potential biases that could

stem from the original arrangement of the data, the dataset is

shuffled before partitioning. A shuffle buffer size of 10,000 and a
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seed value of 12 are implemented to maintain consistency across

runs. This procedure can guarantee that the data employed for

training, validation, and testing is representative of the entire

dataset, avoiding any systematic bias that could affect the

model’s performance.

These proportions were chosen to hit a satisfactory balance

between having adequate data to train the model effectively, as well

as ample data to validate and test the model performance reliably as
FIGURE 5

Random images of hispa disease from the dataset.
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in Table 2. The model can learn better with a larger training set,

while the validation and test sets are sufficiently large to provide

meaningful feedback on the model’s performance.

This methodical approach to data division assures that the

model is trained on a diverse and representative set of data, then

tuned and validated on a separate set to optimize performance,

before being evaluated on an independent test set to gauge the

model’s true predictive power. This strategy is fundamental to
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developing a model capable of delivering consistent and reliable

performance on new, previously unseen data.
4.4 Data pipeline optimization

The purpose of data pipeline optimization as in Figure 8 is to

increase the efficiency and effectiveness of the training process in
FIGURE 6

Random images of leaf blast disease from the dataset.
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machine learning models. For the rice leaf disease classification

model, optimizing the data pipeline prevents the loading and

preprocessing data from becoming a bottleneck, allowing the

model to train better and faster.

The first step in optimizing the data pipeline is caching. This

operation involves storing the dataset in memory after it has been

initially loaded and pre-processed. By applying caching, the dataset

is accessed directly from memory during training, which avoids

redundant data loading and preprocessing in subsequent epochs.

This significantly accelerates the data retrieval process, minimizing

the time spent on data preprocessing and allowing the model to

concentrate on learning from the data.

Another critical optimization step is shuffling. This step will

randomize the order of data to prevent the model from memorizing

the inherent sequence of data and ensure more robust training. The

buffer size utilized during shuffling determines how many elements

are randomly mixed at a time. In this case, having a larger buffer size

ascertains that the data is well-randomized.

The final step in optimizing the data pipeline is prefetching.

This technique enables overlapping data preprocessing and model

training. By implementing prefetching, data loading can occur in

the background while the model is being trained on the current

batch. This ensures that the next batch of data is ready as soon as the

current batch is processed, thus reducing the idle time and

maximizing computational efficiency.

Together, these optimization techniques enhance the efficiency

of the data pipeline, which allows the model to handle large datasets

more capably. This approach culminates in faster training times and

better model performance, as the model can focus on learning

patterns and features rather than waiting for data to be processed.
4.5 Data preprocessing

The goal of the data preprocessing stage is to transform the

input data into a format suitable for training the machine learning

model. In the context of the rice leaf disease classification model, the
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preprocessing procedures as shown in Figure 9, entail resizing and

rescaling the images to maintain uniformity and compatibility with

the neural network’s input requirements.

This research’s image preprocessing phase begins with resizing

the images. The rice leaf images in the dataset may come in various

dimensions, which can be problematic for the convolutional neural

network (CNN) that expects input data to have a consistent shape.

To address this, all images are resized to a fixed size of 256x256

pixels. Although images are initially resized to a specified dimension

during the data loading process, resizing is executed again in this

preprocessing pipeline. This dual resizing process ensures that all

images are consistently formatted according to the exact

dimensions required by the neural network. This is critical for

dealing with any discrepancies or variations that may arise from the

initial resizing operation. Thereby, the model can receive uniformly

processed images.

Following resizing, the images are rescaled. In their raw form,

pixels values in images range from 0 to 255. However, neural

networks perform better when the input values are normalized.

Hence, the rescaling step will convert the pixel values from the

range [0, 255] to the range [0, 1]. This normalization step promotes

faster convergence during training, which frequently leads to

improved model performance. By scaling down the pixel values,

the neural network can process the data more effectively, resulting

in more stable and efficient training.

The entire preprocessing pipeline is implemented using

TensorFlow’s Sequential API. The Sequential model consists of

two layers, which are the resizing layer to adjust the image

dimensions and the rescaling layer to normalize the pixel values.

This preprocessing step is seamlessly integrated into the model’s

workflow, guaranteeing that every input image goes through the

necessary transformation before being fed into the network.
4.6 Data augmentation

Data augmentation is a key technique for increasing the

diversity of training datasets in machine learning, especially in

computer vision tasks. The primary goal of this method is to
FIGURE 7

Source code to import data into TensorFlow dataset object.
TABLE 2 Sizes of the resulting subsets.

Subset Number of samples (Batches)

Training Dataset 84

Validation Dataset 10

Testing Dataset 11
FIGURE 8

Data pipeline optimization.
FIGURE 9

Image preprocessing.
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artificially enhance the variability of the dataset through various

image transformations. This greater diversity allows the model to

generalize better and become more resilient to variations in real-

world data, consequently strengthening the model’s performance

and accuracy. Additionally, data augmentation plays an

indispensable role in preventing overfitting. Overfitting occurs

when a model is overly tailored to the training data, resulting in

poor performance on novel data. By introducing diverse and

transformed versions of the training images, data augmentation

can alleviate the risk of the model reciting specific details of the

training set, which encourages the model to acquire more

meaningful patterns and features. This method promises that the

model not only performs well on the training data but also preserves

high accuracy and robustness when applied to new data.

In the rice leaf disease classification model, data augmentation is

achieved through a series of transformations that sequentially

modify the training images. The model employs two main

augmentation strategies: random flipping and random rotation.

The data augmentation techniques applied in the model, such as

random flipping and random rotation, significantly enhance its

ability to generalize and improve its robustness in recognizing rice

leaf diseases under a variety of conditions. The class-wise image

distribution before and after the augmentation has been

demonstrated in Table 3, while Table 4 shows the final data split

after augmentation.

Firstly, the random flipping layer, as shown in Figure 10,

introduces randomness by flipping images both horizontally and

vertically. This technique forces the model to learn to identify

features and patterns in the images without being dependent on

their orientation. By including flipped versions of the images in the

training set, the model becomes less sensitive to how the images are

presented, whether they are flipped horizontally (mirrored) or

vertically. This is particularly useful because in real-world

scenarios, the orientation of the leaf in a photo can vary—such as

when a leaf is captured from different angles or when the plant has

grown in a particular direction. By training on flipped versions, the

model gains the ability to recognize disease symptoms on leaves

regardless of how they are oriented in the image, thus improving

classification accuracy.

Secondly, the random rotation layer, as depicted in Figure 10,

rotates the images by an arbitrary angle, with the rotation range

extending up to 20% of a full circle, which is approximately 72

degrees. This transformation helps the model to become more

invariant to changes in the orientation of the image. For example,
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images of rice leaves might be taken from various angles, either due

to the natural growth of the plant or from different perspectives in

the field. The random rotation ensures that the model is not biased

toward a specific angle or viewpoint. This is critical for real-world

applications, where factors such as shifts in camera position, leaf

movement due to wind, or even manual cropping could lead to

variations in the angle at which the leaf is captured. The ability to

recognize the disease symptoms regardless of rotation or angle

variation boosts the model’s flexibility in real-world environments.

In combination, these data augmentation techniques allow the

model to simulate a much broader range of potential conditions

that might occur in rice fields, where variations in the angle,

perspective, and orientation of images are common. By exposing

the model to a more diverse set of training examples, it becomes

more adaptable and resilient in handling different situations. As a

result, the model’s classification precision improves, and it becomes

more durable when identifying various types of rice leaf diseases

across different conditions. These enhancements make the model

more reliable and capable of achieving high performance even in

the face of real-world complexities and image variability.
4.7 Model architecture and training

Themodel definition for the rice leaf disease classification involves

a structured and layered architecture using Convolutional Neural

Networks (CNNs) as shown in Figure 11. The CNNmodel is designed

to effectively extract features from images and generate accurate

classifications. Prior to being processed by the CNN layers, each

input image undergoes preprocessing and augmentation as defined in

previous stages. The input shape of the CNN is specified for allowing

the model to process input images in batches of 32, with each image

having dimensions of 256x256 pixels and 3 color RGB channels.
TABLE 3 Class-wise image distribution before and after augmentation.

Class Original images Horizontal flip Vertical flip Rotation (± 20°)
Total
augmented images

Final class size

Brown Spot 523 200 180 180 560 1083

Healthy 1488 0 0 0 0 1488

Hispa 565 220 200 200 620 1185

Leaf Blast 779 150 150 150 450 1229

Total 3355 — — — 1630 4985
TABLE 4 Final dataset split after augmentation.

Class Train Validation Test Total

Brown Spot 866 108 109 1083

Healthy 1190 149 149 1488

Hispa 948 118 119 1185

Leaf Blast 983 123 123 1229

Total 3987 498 500 4985
fr
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Convolutional layers are the core components of the CNN,

which are responsible for feature extraction. Each convolutional

layer applies a set of learnable filters, also known as kernels, to the

input image to detect various features, such as edges, textures, and

patterns. In this research, the model consists of several

convolutional layers. The first convolutional layer has 32 filters,

each of size 3x3 as in Figure 12. This layer will scan the input image

and detect low-level features. The activation function (Equation 1)

being deployed is ReLU (Rectified Linear Unit) in (1), which adds

non-linearity to the model. The subsequent five convolutional

layers have 64 filters each, facilitating the model to capture more

complex and abstract features. Each of these layers follows the same

operation as the first, applying filters to the input data and utilizing

the ReLU activation.

f (x) =
x, x ≥ 0

0, x < 0

( )
(1)

On the other hand, pooling layers are implemented to

downsample the feature maps generated by the convolutional layers,

Figure 12. These layers can reduce the spatial dimensions of the

feature maps, thereby decreasing the number of parameters and

computational load. The model uses max-pooling layers to select

the maximum value from each group of neighboring pixels in the

feature map. This operation can effectively summarize the most

prominent features while discarding less significant information.
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By employing pooling layers, dimensionality is minimized, and

overfitting is successfully controlled through translational invariance.

After a series of convolutional and pooling layers, the model

incorporates a flattening layer. This layer will convert the multi-

dimensional output of the previous layers into a 1D vector. In the

rice leaf disease classification model, the flattening layer transforms

the output of the last max-pooling layer, which is a 3D tensor with

dimensions corresponding to the number of filters and spatial

dimensions of the feature maps, into a single long vector. This

vector represents all the learned features that can be fed into the

subsequent dense layers.

In the attempt to enhance the research, a hybrid model strategy

was utilized. Specifically, an attention mechanism module was

integrated after the final convolutional block to allow the network

to dynamically prioritize discriminative regions in the leaf image.

This enables the classifier to focus more effectively on disease-

specific symptoms. This ensures an increased classification

confidence. Future iterations of this model will incorporate

explainability features using Grad-CAM to visually interpret

decision-making patterns. The modular nature of the architecture

also supports seamless integration into real-time decision support

systems aimed at precision agriculture. Technically, the spatial

attention mechanism applies a convolutional operation followed

by a sigmoid activation over the intermediate feature maps to

generate spatial attention maps. These maps are then element-

wise multiplied with the original feature maps to emphasize relevant

spatial regions. Similarly, the channel attention mechanism

computes channel-wise attention by applying global average

pooling and max pooling followed by a shared MLP (Multi-Layer

Perceptron) and sigmoid activation, which highlights the most

informative feature channels. These mechanisms are incorporated

after the final convolutional block and before flattening, guiding the

network to attend to both spatial and channel-specific disease

features, thereby improving classification accuracy.
FIGURE 10

Data augmentation.
FIGURE 11

The proposed CNN model architecture for rice leaf disease classification.
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Furthermore, the dense layers, commonly referred to as fully

connected layers, are manipulated to make final predictions based on

the features extracted by the convolutional layers. There are 64 units

in the first dense layer and utilizes the ReLUfunction for activation.

This layer combines the flattened features to interpret complex

patterns in the data. The number of units in the final dense layer

equals the number of classes of the dataset. The softmax function (2)

for activation (Equation 2) since it offers several advantages,

particularly in multi-class classification tasks, by converting raw

model outputs (logits) into a probability distribution. This makes it

easier to interpret the model’s predictions, as the output values lie

between 0 and 1 and sum to 1, representing the relative likelihood of

each class. The Softmax function also emphasizes the largest logits,

making it well-suited for distinguishing between the most likely

classes while suppressing less probable options.

s (xi) =
exi

ok
j=1e

xj
(2)
Table 5 summarizes the model architecture and provides a

synopsis of the architecture and the number of parameters at each

layer. The layer output shapes indicate how the data transforms as it

passes through the model. For this particular model, the total amount

of trainable parameters is 183,812. These parameters are adjusted

during training tominimize the loss and improvemodel accuracy. All

parameters in this model are trainable, which means they can be

updated during the training process. Non-trainable parameters would

remain fixed throughout training. This structured architecture allows

the model to effectively learn and classify the different types of rice

leaf diseases from the input images.

The model compilation as in Figure 13 will prepare the neural

network for training. This process involves configuring key

elements that guide the learning process and optimize the model’s

performance. In the rice leaf disease classification model, several

factors were considered during the model compilation to ensure

effective and efficient training.
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In this research, the Adam (Adaptive Moment Estimation)

optimizer is chosen, which is a widely used and efficient

optimization algorithm in deep learning. This optimizer
FIGURE 12

Source code for proposed CNN model architecture.
TABLE 5 Model summary for the proposed CNN rice leaf disease
classification model.

Layer
Output
dimension

Parameter #

Input (32, 256, 256, 3) –

Data Preprocessing (64, 254, 254, 3) –

Data Augmentation (64, 127, 127, 3) –

Conv2D_1 (32 filters) (64, 254, 254, 32) 896

MaxPooling2D (64, 125, 125, 32) 0

Conv2D_2 (64 filters) (64, 125, 125, 64) 18,496

MaxPooling2D (32, 62, 62, 64) 0

Conv2D_3 (64 filters) (32, 60, 60, 64) 36,928

MaxPooling2D (32, 30, 30, 64) 0

Conv2D_4 (64 filters) (32, 28, 28, 64) 36,928

MaxPooling2D (32, 14, 14, 64) 0

Conv2D_5 (64 filters) (32, 12, 12, 64) 36,928

MaxPooling2D (32, 6, 6, 64) 0

Conv2D_6 (64 filters) (32, 4, 4, 64) 36,928

Dense_1 (32, 64) 16,448

Dense_2 (32, 4) 260

Total parameters: 183,812

Trainable parameters: 183,812

Non-
trainable parameters:

0
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encompasses the benefits of AdaGrad and RMSProp which are

stochastic gradient descent extensions. Adam works well at

handling sparse gradients on noisy problems, thus being

applicable to a variety of data types and speeding up convergence

to the optimal solution. The selection of Adam is justified by its

ability to train the complex CNN model.

The loss function employed in this model is sparse categorical

cross-entropy. This function is exceptionally appropriate for

classification problems with multiple classes where the target

labels are integers representing different classes. Sparse categorical

cross-entropy measures the performance of the classification model

by comparing the predicted probability distribution across classes

with the actual class labels. This approach can provide a clear signal

for the model to learn from during training and aid in performing

classification tasks.

In addition, the evaluation metric allocated during the model

compilation phase is accuracy. Accuracy is a straightforward yet

powerful metric that gauges the proportion of correct predictions

made by the model. This evaluation gives a clear and direct

indication of the model’s performance, which enables easy

interpretation during training and validation.

Model training, Figure 14, in developing the rice leaf disease

classification model involves an iterative process that requires

multiple cycles to guarantee the model acquires knowledge from

the data. During training, the model is exposed to the training

dataset, which contains labeled images of rice leaves with distinct

diseases. Each epoch reflects a complete pass through the entire

training dataset. In this instance, the model is trained for 100

epochs. Hence, the model can gain insight into the underlying

patterns and features of the data incrementally.

With the defined batch size, the model is set to process 32

images at a time before updating its parameters. This mini-batch

gradient descent approach aids in managing memory usage and

brings about faster convergence compared to processing the entire

dataset at once or one image at a time.

The model’s performance will be assessed at every epoch using

the validation dataset, which serves as a benchmark to tune

hyperparameters and eliminate overfitting. Besides, the verbose

parameter is utilized to track the detailed progress of the training

process, which includes the loss and accuracy metrics for both

training and validation. This feedback is valuable for diagnosing

potential issues that emerged during training and making the

necessary adjustments.

Hyperparameter tuning is conducted to optimize the

performance of the proposed CNN-based rice leaf disease

classification model. Several hyperparameters were experimented

with to determine the corresponding impact on the model’s
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performance, in order to identify the ideal combinations of model

parameters for achieving the best possible results. The final

hyperparameters were selected based on their capacity to attain

the highest accuracy. The combination of six convolutional layers,

with an initial layer of 32 filters followed by five subsequent layers

each with 64 filters, allowed the model to progressively learn

complex features at multiple levels of abstraction. Using an image

size of 256x256 pixels provided sufficient resolution for effective

feature extraction. A batch size of 32 offered a good trade-off

between computational efficiency and convergence speed. The

model was trained for 100 epochs to support a thorough learning

process, while the learning rate of 0.001 with the Adam optimizer

maintained great stability. In summary, the hyperparameters listed

in Table 6 yielded the best accuracy for the rice leaf disease

classification model. The chosen settings were excellent for

balancing model complexity, training stability, and performance,

which contributes to a robust classifier capable of accurately

identifying various rice leaf diseases. Table 7 presents the details

on the rationale behind the hyperparameter selection.

To systematically evaluate the impact of different architectural

and training design choices, a comprehensive ablation study was

carried out. This involved experimenting with a variety of model

configurations, including variations in the number of convolutional

layers (3, 4, and 6), filter sizes (3×3 and 5×5), activation functions

(ReLU and LeakyReLU), and dropout rates (0.2, 0.3, and 0.5). The

objective was to identify a configuration that balances high

validation accuracy with good generalization while minimizing

the risk of overfitting. Results from these trials indicated that a 6-

layer convolutional architecture, combined with 3×3 filters, ReLU

activation, and a dropout rate of 0.3, consistently outperformed

other setups. This configuration offered the best trade-off between

model complexity and training stability, especially in the presence

of limited and imbalanced data.

In addition to architecture-level experiments, extensive

hyperparameter tuning was conducted using a grid search

strategy. The search space included batch sizes of 16, 32, and 64,

learning rates of 0.001, 0.0005, and 0.0001, and optimizers such as

SGD, Adam, and RMSprop. Among these, a batch size of 32, a

learning rate of 0.0005, and the Adam optimizer emerged as the

optimal combination, consistently yielding lower validation loss

and superior generalization to unseen test samples. These choices

were not made heuristically but were the result of a methodical and
FIGURE 13

Proposed model compilation.
FIGURE 14

Proposed model training.
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data-driven evaluation process. By grounding the final model

configuration in empirical performance data, the robustness and

reproducibility of the approach were significantly strengthened.

To enhance feature localization, we integrated a hybrid

attention mechanism comprising spatial and channel attention

modules. The channel attention module computes global average

pooling and max pooling across spatial dimensions, followed by a

shared MLP with ReLU activation (Equation 3) and sigmoid

scaling. For an input feature map F∈RCxHxW, the channel

attention map MC∈RCx1x1 is computed as:

MC = s(MLP(AvgPool(F)) + MLP(MaxPool(F))) (3)

Similarly, spatial attention focuses on the most relevant pixel

regions by applying average and max pooling across the channel

axis, (Equation 4) followed by a convolution:

Ms = s(f7� 7(½AvgPool(F);MaxPool(F)�)) (4)

The final attention-refined output is computed as F′=MC·F followed

by F′′=MS·F′. This mechanism allows the model to emphasize disease-

relevant leaf regions and suppress background noise.

While the architecture uses convolutional layers and max-pooling

to reduce spatial dimensions, it initially lacked explicit regularization.

To mitigate overfitting, Dropout layers with a probability of 0.3 were

later introduced after the final convolutional block and dense layer.

The inclusion of dropout improved generalization by randomly

disabling neurons during training, forcing the model to learn more

robust patterns. Additionally, early stopping was employed based on
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validation loss to prevent overtraining. In future iterations, L2

regularization will also be evaluated for further robustness,

particularly when scaling to more complex or larger datasets.

The model was trained for a maximum of 100 epochs using an

early stopping strategy based on validation loss to prevent

overfitting. Training was conducted on a workstation equipped

with an Intel Core i7–11700 CPU, 32 GB RAM, and an NVIDIA

RTX 3060 GPU with 12 GB VRAM. The operating system was

Windows 11 Pro (64-bit), and the environment included Python

3.9, TensorFlow 2.13, and Keras. During experimentation, it was

observed that models trained for only 50 epochs tended to underfit

the data, while training beyond 100 epochs yielded diminishing

returns and increased overfitting risk. With early stopping, the

training typically converged around epoch 85 – 90, offering an

optimal trade-off between training depth and generalization. This

configuration ensured efficient resource utilization and stable

training behavior across multiple runs.
4.8 Real word deployment

Real-world applicability is very crucial for any research

outcome. Therefore the proposed model has been engineered for

deployment on resource-constrained devices. TensorFlow Lite is the

choice made to ensure this. The optimization with TensorFlow Lite

drastically reduces the computational complexity, enabling offline

inference on smartphones and edge computing platforms such as
TABLE 6 Hyperparameters for Fine-tuning the Proposed CNN Model.

Number of convolutional
layers

Filters per layer Image size (pixels) Batch size Epochs Learning rate Optimizer

6 32, 64, 64, 64, 64, 64 256x256 32 100 0.001 (default rate) Adam

6 32, 64, 64, 64, 64, 64 256x256 32 80 0.002 Adam

3 32, 64, 128 224x224 32 100 0.001 (default rate) Adam

3 32, 64, 64 256x256 32 50 0.001 (default rate) Adamax

6 32, 64, 64, 64, 64, 64 256x256 32 60 0.0001 SGD

6 32, 64, 64, 64, 64, 64 256x256 16 50 0.002 Adam
TABLE 7 Summary of hyperparameter selection rationale.

Hyperparameter Tried values Final value selected Rationale

Learning Rate
0.001,
0.0005, 0.0001

0.0005 0.0005 showed stable convergence; 0.001 caused unstable gradients; 0.0001 was too slow

Batch Size 16, 32, 64 32
Balanced gradient stability and GPU memory usage; avoided underfitting from
large batches

Optimizer SGD, Adam Adam Adam provided faster convergence and better validation performance

Dropout Rate 0.2, 0.3, 0.5 0.3 Prevented overfitting without overly disrupting training

Epochs 50, 75, 100 100 (with early stopping) Longer training improved generalization; early stopping used to prevent overfitting

Weight Initialization He Normal, Xavier He Normal Suitable for ReLU-based activations; improved gradient flow
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Raspberry Pi. Such deployment allows for real-time, in-field disease

diagnosis. Also there is no dependence on cloud infrastructure or

high-speed internet. Beyond mobile applications, the model is

designed to be compatible with IoT-based monitoring systems,

where it can receive images from camera-equipped field sensors and

return predictions in real-time. Integration with drone-based crop

surveillance systems is also under consideration for large-scale

monitoring. A working prototype of an Android application is

currently in testing to assess usability, latency, and farmer feedback.
5 AI model evaluation and results

The graphs illustrated in Figure 15 show the performance of the

CNN model designed for rice leaf disease classification, depicting

the relationship between training and validation accuracy as well as

loss over 100 epochs.

In terms of accuracy, both the training and validation accuracy

curves exhibit an upward trend throughout the model training process.

This positive sign indicates that the model is effectively learning from

the data. In the early epochs, there is some noticeable fluctuation in
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accuracy, which is expected as the model begins to discern and learn

patterns within the dataset. As training progresses, these fluctuations

diminish, and the validation accuracy starts to closely follow the training

accuracy. By the end of the training process, both accuracies reach

around 80%, implying that the model has successfully generalized from

the training data to the validation data without significant overfitting.

Regarding loss, both the training and validation loss curves

present a consistent decreasing trend, which demonstrates that the

model’s predictions are becoming more accurate over time. In the

beginning, there is a sharp decline in both training and validation

loss, reflecting a rapid initial learning. When reaching the later

epochs, the curves of training and validation become more closely

related, though the validation loss shows some fluctuations. These

fluctuations could be attributed to variability in the validation set or

slight overfitting. Nonetheless, the overall decrease in loss values is a

good indicator for the model’s learning process.

The rice leaf disease classification model was rigorously evaluated

on the test dataset, achieving an accuracy of approximately 83.81%.

This result is slightly higher than the final training and validation

accuracies, which is indicative of the model’s excellent generalization

ability when exposed to previously unseen data. Such a performance
FIGURE 15

Graphs for training vs validation accuracy & training vs validation loss.
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gap suggests that the model is not overfitting to the training data, but

rather, it can effectively apply learned patterns to new instances,

enhancing its reliability in real-world scenarios. In addition to

accuracy, the model’s performance was assessed using logarithmic

loss (log loss or cross-entropy loss), which measures the uncertainty

of the predictions. The calculated log loss was approximately 0.476,

which is consistent with the training and validation losses, both

hovering around 0.5. These comparable loss values indicate that the

model’s predictions are well-calibrated and show minimal

uncertainty, as the model’s confidence in its classifications remains

high. The relatively low log loss underscores the model’s ability to

make precise predictions with a clear understanding of class

boundaries, further validating its effectiveness. Taken together, the

high accuracy and low log loss across training, validation, and test

datasets demonstrate that the developed model is both robust and

reliable, offering a strong capability for accurately classifying various

rice leaf diseases under diverse conditions.

The classification report in Table 8 provides a detailed

breakdown of the performance of the developed rice leaf

classification model across different classes. The precision values

show the proportion of true positive predictions among all positive

predictions for a given class, while Recall measures the proportion

of true positive predictions among all actual positive cases for a

class. The F1-Score is the harmonic mean of precision and recall,

which delivers a single metric that balances both concerns. This

indicator is useful for assessing the model’s performance when there

is an uneven class distribution. Overall, the classification report

reveals that the model performs well with good precision and recall

for most classes, particularly for the healthy and leaf blast classes.

However, there is room for improvement in the detection of Hispa,

which has lower precision and recall. Enhancing performance for

this class could involve additional data, more targeted training, or

adjusting hyperparameters of the model.

The confusion matrix in Table 9 supports a comprehensive view

of how effective the developed model is performing in classifying

each type of rice leaf disease. A breakdown of the matrix is listed

as follow:
Fron
Brown Spot: The model yields 47 true positives and 8 false

positives classifications, showing high precision and decent

recall. There are a few misclassifications, but this situation
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could be improved by reducing false positives from

other classes.

Healthy: The model performs very well with strong precision

and recall, with 159 true positives and 16 false negatives.

The misclassifications mostly involve Hispa and leaf blast.

Hispa: The model’s performance is weaker in this class, with

lower precision and recall (29 true positives vs. 18 false

negatives). There are notable inaccurate classifications,

especially as healthy and leaf blast.

Leaf Blast: The model works reasonably well in terms of

precision and recall, as proven by 6 true positives and 15

false positives. Incorrect classifications mainly involve other

diseases such as brown spot and healthy.
As displayed in Figure 16, each class is represented by a unique

ROC curve, and the area under the curve (AUC) for each class is

indicated. The developed model shows a very strong ability to

distinguish the brown spot and leaf blast diseases from other classes,

with AUC values of 0.96 for both. The healthy class also possesses a

high AUC of 0.95. The shape of the curve is close to the top left

corner, further confirms high sensitivity and specificity, presenting

an excellent discriminative ability of the model. The Hispa class has

a slightly lower AUC value (0.92) compared to other classes, but the

result still indicates a favorable model performance. The curve

remains significantly above the diagonal line, which represents

random chance, demonstrating that the model’s classification

ability outperforms random guessing.

The mean absolute error (MAE) and mean squared error (MSE)

are metrics commonly used in performance evaluation of regression

models. Nevertheless, these metrics can also offer insights when

applied to classification models, especially in the context of

prediction probabilities or when interpreting numeric class labels.

The MAE measures the average absolute difference between the

predicted values and the actual values. In this context, predictions

done by the developed model deviate by only 0.24 units from the

actual class labels, which denotes a high level of accuracy.

On the other hand, the MSE measures the average squared

difference between predicted values and actual values. This metric

penalizes larger errors more severely than theMAE, thereby rendering

it particularly sensitive to outliers. An MSE of 0.46 is considered to be

comparatively low, which suggests that most of the model’s

predictions are fairly accurate, with larger errors being less frequent.

In addition to standard classification metrics such as accuracy,

precision, recall, and F1-score, this study employed advanced

evaluation techniques specifically suited for imbalanced multi-

class classification scenarios, which are common in agricultural

disease datasets. Recognizing that conventional metrics may

obscure performance disparities among minority classes, we

incorporated both macro- and micro-averaged ROC-AUC scores

to assess the model’s ability to discriminate between all disease

categories, regardless of class distribution. The model demonstrated

strong discriminative performance, achieving a macro-average

AUC of 0.95 and a micro-average AUC of 0.94. These results

indicate not only high overall separability but also consistent
TABLE 8 Summary of classification by the developed model.

Class Precision Recall F1-score Support

Brown Spot 0.80 0.85 0.82 55

Healthy 0.87 0.91 0.89 175

Hispa 0.64 0.62 0.63 47

Leaf Blast 0.91 0.80 0.85 75

accuracy 0.84 352

macro avg 0.81 0.80 0.80 352

weighted avg 0.84 0.84 0.84 352
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predictive capability across both prevalent and underrepresented

disease classes.

To further evaluate classification reliability, Cohen’s Kappa

coefficient was computed, yielding a value of 0.78. This reflects

substantial agreement beyond chance and underscores the model’s

practical utility in critical applications such as early disease

diagnosis, where misclassification can lead to costly agricultural

consequences. The ROC-AUC score was computed on a per-class

basis. Table 10 and Figure 16 provide a breakdown of these values.

The Area Under the Receiver Operating Characteristic Curve

(ROC-AUC) is particularly useful in assessing model performance

in imbalanced datasets because it captures the trade-off between

true positive rate and false positive rate across thresholds.

The ROC-AUC scores obtained for each class are as follows:

These high AUC values indicate that the model demonstrates

strong discriminative power across all disease categories, even for

underrepresented classes such as Hispa. Although precision and
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recall were relatively lower for the Hispa class, the ROC-AUC score

of 0.92 still reflects competent separability from other classes,

confirming that the model’s probabilistic outputs remain

informative even when classification certainty varies.

To complement per-class evaluation, the Macro-average ROC-

AUC andMicro-average ROC-AUCwere at 0.95 and 0.94 respectively.

These aggregated scores highlight that the model maintains

consistent discriminative performance across both common and

rare classes. The inclusion of both macro and micro averages

ensures a balanced view of the classifier’s robustness on class-

imbalanced data.

Additionally, McNemar’s test was conducted to statistically

validate the observed improvements over baseline models. The test

results confirmed that the performance differences were significant,

thereby reinforcing the robustness of the proposed approach.

Together, these comprehensive evaluation strategies provide a

more holistic understanding of the model’s effectiveness, particularly
TABLE 9 Confusion Matrix of the Developed Model.

Predicted

Brown spot Healthy Hispa Leaf blast

Actual

Brown Spot 47 4 1 3

Healthy 3 159 10 3

Hispa 3 15 29 0

Leaf Blast 6 4 5 60
FIGURE 16

ROC curve of the developed model.
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in maintaining fairness and reliability across all disease categories.

This is essential for real-world deployment, where consistent

performance—even on minority classes—directly impacts the

credibility and usability of the system in precision agriculture.

In this study, a stratified 80 - 10–10 split was employed to

ensure sufficient samples in training, validation, and test subsets,

particularly due to class imbalance. However, to strengthen the

reliability of our findings, we conducted an additional 5-fold cross-

validation on the full dataset using the final model configuration.

The average test accuracy across folds was 83.91% (± 0.72) and the

macro F1-score was 0.81, confirming the robustness of the model

across varying data splits. These results are consistent with those

obtained from the original split.
5.1 Model’s inference of sample images

Figure 17 presents the results of running inference on a subset

of sample images using the developed rice leaf disease classification

model. This visualization serves as an important tool for providing a

clear, qualitative assessment of the model’s performance by

showcasing how it classifies individual images from the test set.

By carefully reviewing these sample results, the researcher can gain

insights into specific areas where the model might be struggling,

such as images where the model exhibits low confidence in its

predictions or cases of misclassification. This can highlight

particular challenges, such as ambiguous or unclear disease

symptoms, overlapping classes, or images with less distinctive

features that could lead to confusion. The qualitative assessment

offered by this visual inspection allows for a deeper understanding

of the model’s behavior in real-world scenarios, helping to pinpoint

specific cases where the model may need further refinement.

Importantly, this qualitative evaluation complements the

quantitative metrics—such as accuracy, log loss, and other
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performance measures—discussed earlier. While the quantitative

metrics provide a statistical overview of the model’s overall

performance, the qualitative review of individual images adds a

layer of interpretability. Together, these analyses offer a more

comprehensive and holistic view of the model’s effectiveness in

accurately classifying various rice leaf diseases, guiding future

improvements to enhance both its precision and robustness. This

combined approach ensures that the model not only performs well

on average but also handles specific, potentially challenging cases

with greater reliability.
5.2 Comparative analysis of models

In order to discover the most effective approach for building the

rice leaf disease classification model, the researcher had tested

mult iple CNN architectures , including DenseNet123,

InceptionV3, MobileNetV2, and VGG16, on the same dataset as

shown in Table 12. Each model’s accuracy was assessed to

determine its capability in accurately classifying different types of

rice leaf diseases. To establish the efficacy of the proposed model, we

conducted direct comparisons against several state-of-the-art CNN

architectures, including DenseNet121, InceptionV3, MobileNetV2,

and VGG16—all evaluated using the same dataset under identical

preprocessing and training conditions. The results are summarized

in Table 12.

The proposed 6-layer CNN model achieved the highest

accuracy of 0.84, surpassing the other deep learning models. This

architecture, with six convolutional layers and progressively

increasing filters (32, 64, 64, 64, 64, 64), effectively captures

complex features at various levels of abstraction. The model’s

ability to extract detailed and nuanced features from the dataset

contributes to a robust classification accuracy, thus making this

proposed architecture well-suited for distinguishing between

distinct rice leaf disease classes.

DenseNet121, recognized for its densely connected architecture,

achieved an accuracy of 0.66. Although its design promotes

improved information flow and mitigates the vanishing gradient

problem through direct connections between all preceding layers,

its performance lagged behind the proposed 6-layer CNN. While

the dense connectivity theoretically facilitates efficient feature reuse

and deeper gradient propagation, the model may have been affected

by overfitting or insufficient fine-tuning, limiting its effectiveness on

the rice leaf disease dataset. This outcome suggests that, despite its

architectural strengths, DenseNet121 may require further

adaptation for domain-specific applications such as agricultural

disease detection.

Similarly, InceptionV3—an architecture designed to capture

multi-scale features using parallel convolutional layers of varying

kernel sizes—also recorded an accuracy of 0.66. Its inception

modules enable the extraction of both fine-grained and coarse

features simultaneously, making it highly effective for general

image classification tasks. However, in this case, its performance

was equivalent to that of DenseNet121. This may be attributed to

suboptimal hyperparameters or limited training data tailored to the
TABLE 10 ROC-AUC scores per class.

Class ROC-AUC

Brown Spot 0.96

Healthy 0.95

Hispa 0.92

Leaf Blast 0.96
TABLE 11 Performance comparison of different CNN architectures
implemented in this research.

Modelling approach accuracy

Proposed 6-layer CNN 0.84

DenseNet121 0.66

InceptionV3 0.66

MobileNetV2 0.62

VGG16 0.58
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unique characteristics of rice leaf diseases. Therefore, although

InceptionV3 is a versatile and efficient model, its performance in

this specialized task underscores the importance of task-

specific optimization.
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Another CNN model, namely MobileNetV2, had yielded an

accuracy of 0.62 in this model. This model is optimized for mobile

and embedded applications with a lightweight architecture that trades

some performance for computational efficiency. MobileNetV2 employs

depthwise separable convolutions, which divide the convolution

operations into the depthwise layer and pointwise layer. Thereby,

this architecture could significantly reduce computational complexity

and model size. In the scenario of rice leaf disease classification, this

efficiency might have come at the cost of lower accuracy, as the model

may lack the depth and complexity required to fully capture the

intricate features of the disease patterns. The unsatisfactory accuracy
TABLE 12 Performance comparison with existing work.

Modelling approach Accuracy

Proposed 6-layer CNN 0.84

5-layer Convolution 0.78
FIGURE 17

Model inference on sample images.
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implies that MobileNetV2 may be less effective for this problem

compared to more complex models (Table 11), particularly when

computational resources are not a minor concern. Nevertheless, its

efficiency could be beneficial for deployment in resource-

constrained environments.

Having a simple yet deep architecture, VGG16 resulted in the

lowest accuracy of 0.58 in this case. VGG16 implements a simple

stack of convolutional layers followed by fully connected layers,

which supplies a strong baseline performance in many scenarios.

The architecture of VGG16 is characterized by the use of small 3x3

convolution filters and a consistent structure over the network. This

simplifies the design but at the same time also limits the flexibility.

The model’s performance in this task reflects its constrained feature

extraction capabilities for the specific nuances of rice leaf diseases.

The deeper but less flexible structure of VGG16 might have

restricted its ability to detect and classify the unique features in

the dataset. This lower performance underscores the need for more

specialized and finely tuned architecture for certain areas of

image classification.

Additionally, the 5-layer CNN model from existing research

conducted by (Tejaswini et al., 2022) reported an accuracy of 0.78

when trained on the similar dataset. This model featured three

convolutional layers, accompanied by two additional layers: a

dropout layer and an activation function layer. The dropout layer

was implemented to mitigate overfitting by randomly removing a few

neurons during the training process. This approach was intended to

reduce the model size and improve generalization. The activation

function layer included common functions such as ReLU and Tanh,

which defined the complex relationships between variables in the

model and aided in controlling the flow of information across the

network. Despite these enhancements, the proposed 6-layer CNN

model performed better over the 5-layer CNN model, illustrating the

effectiveness of additional convolutional layers in capturing more

complex features in the rice leaf images as presented in Table 12.

The proposed 6-layer CNN was benchmarked against several

deep learning models using the same dataset and under identical

training parameters. These included DenseNet121, InceptionV3,

MobileNetV2, and VGG16. The benchmarking was conducted

using standardized metrics such as test accuracy, precision, recall,

and model size (parameter count). The results of the comparative

evaluation are summarized in the following Table 13.

In order to attain the best possible results, the comparative

analysis signifies the selection of an appropriate model based on the

dataset and task requirements.
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6 Conclusion and future
recommendations

This research introduces a novel AI framework that enhances

traditional CNNs through two key innovations: attention

mechanisms and a modular deployment architecture. By

embedding spatial and channel attention modules, the model

focuses on the most informative regions of rice leaf images,

improving classification accuracy, robustness, and generalization

under varied conditions. In summary, the proposed 6-layer CNN

model demonstrated the highest accuracy, signifying its suitability

for rice leaf disease classification. In contrast, the other models,

whereas effective in different contexts, showed lower accuracy.

Despite achieving promising accuracy and robustness, the

authors intend to investigate extended factors that can further

improve the performance of the proposed model as part of the

future work. The performance on minority classes (e.g., Hispa) is

relatively lower, even after augmentation and attention integration,

suggesting that further improvements in data diversity or feature

refinement are needed. Secondly, although the model is optimized for

edge deployment, attention mechanisms introduce slight additional

computational overhead, which may impact latency on extremely

low-resource devices. Thirdly, explainability is currently limited and

therefore future work should integrate more interpretable AI

methods (e.g., LIME or SHAP) for improved reliability. Finally,

generalizability to real-world field conditions may be affected by

factors like leaf occlusion, lighting variation, or image blur which are

not fully reflected in the current dataset. Moreover, for future

improvement, we are exploring synthetic oversampling via SMOTE

and conditional GANs to generate high-fidelity synthetic images.
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