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Introduction: Agriculture underpins global food security by providing food, raw
materials, and livelihoods, contributing 4% to global GDP and up to 25% in rural
areas. Rice, a staple for more than half of the world’'s population, is nutritionally
vital but highly vulnerable to diseases such as Hispa, leaf blast, and brown spots,
which significantly reduce yield and quality. Achieving Sustainable Development
Goal (SDG) 2 requires innovative approaches to mitigate these threats. Artificial
intelligence (Al), particularly computer vision and machine learning, offers
promising tools for early disease detection.

Methods: This study developed a convolutional neural network (CNN)-based
model for rice leaf disease detection and classification. A publicly available
dataset containing 3,355 labeled images across four categories—Brown Spot,
Leaf Blast, Hispa, and Healthy leaves—was used to train and evaluate the model.
To improve classification accuracy, the CNN was enhanced with spatial and
channel attention mechanisms, enabling it to focus on the most discriminative
image regions. The system was designed for modular deployment, allowing
lightweight, real-time implementation on edge devices.

Results: The enhanced CNN achieved high accuracy and robust performance
metrics across all disease categories. Attention mechanisms significantly
improved precision in identifying subtle disease patterns. The lightweight
design ensured efficient operation on edge devices, demonstrating feasibility
for real-world agricultural applications.

Discussion and conclusion: The proposed Al-driven system provides reliable
and scalable rice leaf disease detection, supporting timely intervention to reduce
yield loss. By strengthening rice production and promoting sustainable practices,
the model contributes to SDG 2 by advancing global food security. This research
highlights Al's transformative role in agriculture, fostering mechanization,
ecological stability, and resilience in food systems.
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brown spot, convolutional neural network, HISPA, leaf spot, machine
learning, sustainability

01 frontiersin.org


https://www.frontiersin.org/articles/10.3389/fpls.2025.1594329/full
https://www.frontiersin.org/articles/10.3389/fpls.2025.1594329/full
https://www.frontiersin.org/articles/10.3389/fpls.2025.1594329/full
https://orcid.org/0000-0001-5828-4796
https://orcid.org/0000-0002-7328-0686
https://orcid.org/0000-0002-4960-6228
https://orcid.org/0000-0003-4107-6784
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2025.1594329&domain=pdf&date_stamp=2025-09-25
mailto:muhd_ehsanrana@apu.edu.my
mailto:hktripathyfcs@kiit.ac.in
mailto:sauravmtech2@gmail.com
mailto:smallik@hsph.harvard.edu
mailto:smallik@arizona.edu
https://doi.org/10.3389/fpls.2025.1594329
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2025.1594329
https://www.frontiersin.org/journals/plant-science

Rana et al.

1 Introduction

Agriculture is an industry that involves a series of activities, such
as raising crops, cultivating land, and rearing animals, which
primarily strive for human sustenance. This fundamental industry
is paramount to food security, providing a significant portion of food
supply, raw materials, and livelihoods for the global population
(Pawlak and Kolodziejczak, 2020). This main goal could perfectly
align with the Sustainable Development Goal (SDG) 2, which aims to
promote zero hunger. Additionally, this industry has stimulated
expansion of the world economy, by contributing a significant 4% to
the global gross domestic product (GDP). In some rural areas, this
contribution even soars to more than 25% (“Overview,” World
Bank). The agriculture industry embodies the intricate relationship
between humans and the environment, which emphasizes the need
of sustainable methods to preserve long-term food security and
ecological balance.

In the agriculture sector, rice crops play a key role in supplying
staple food for over half of the world population. The rice is farmed in
over 100 nations, with Asia accounting for 90% of the world’s total
production (Fukagawa and Ziska, 2019). Due to the versatility and
adaptability characteristics, this cultivation serves as the primary
source of nutrition and sustenance. For instance, the rice crop acts
a dietary cornerstone in the Asia region. Rice is one of the main
source of complex carbohydrates, with also decent levels of protein,
fiber, iron, manganese, and vitamin B. Hence, rice plantations are
extremely effective in preventing malnutrition. Apart from the role as
a food contributor, the rice crop can also be manipulated in various
aspects, such as ingredient for cosmetics to make shiny hair.

Nonetheless, the rice leaf diseases present a big challenge to the
overall rice production, affecting the health and productivity of this vital
crop. There are multiple types of rice leaf diseases compromising the
rice crops, for example, leaf blast, Hispa, and brown spots. These
diseases are commonly caused by virus, bacteria and fungi and many
other pathogens, or pests (Singh and Singh, 2023). Beyond the
immediate loss of yield, these diseases pose long-term impacts, as the
infected crops frequently consist of lower grain quality and
nutritional value.

In this scenario, advanced technologies, especially artificial
intelligence (AI), could be leveraged for providing a profound and
transformative solution to the challenge of rice leaf diseases.
Artificial intelligence could offer an efficient solution for the
timely detection and management of these diseases through the
deployment of machine learning and computer vision techniques.
By employing sophisticated algorithms, AI models can be trained to
identify subtle patterns and visual cues that correspond to various
rice leaf diseases. The early detection of the rice leaf disease using AI
model could allow rice farmers to take prompt intervention and
preventive measures to avoid further yield loss (Demilie, 2024).

This research proposes a novel Al-based framework that
significantly advances traditional convolutional neural network
(CNN) approaches through two key innovations: the integration
of attention mechanisms and the incorporation of modular
deployment architecture. The attention mechanisms, such as
spatial and channel attention modules, are embedded within the

Frontiers in Plant Science

10.3389/fpls.2025.1594329

CNN architecture to enable the model to selectively focus on the
most informative and discriminative regions of the rice leaf image.
This targeted focus improves the model’s ability to distinguish
between visually similar disease patterns and reduces the
influence of irrelevant background noise, thereby enhancing
classification accuracy, robustness, and generalization across
diverse environmental conditions and imaging scenarios.

In addition to architectural improvements, the framework is
developed with modular deployment capabilities, making it highly
adaptable for real-world agricultural settings. The system is
designed in a lightweight and scalable manner to support
seamless integration into mobile applications, edge devices, or
unmanned aerial vehicles (UAVs). This modularity ensures that
disease detection can occur in real-time and directly in the field,
without requiring extensive computational resources or constant
connectivity to centralized servers. As a result, the framework
facilitates prompt disease diagnosis, enabling timely intervention
by farmers and agricultural stakeholders, and ultimately
contributing to improved yield protection and food security in
resource-constrained environments.

In short, the research is aimed to develop a sustainable solution
for timely detection of rice leaf diseases. The proposed research is
vital in transforming the agriculture sector from crude, customary
approaches to highly mechanized and cutting-edge practices.
Ultimately, this research can effectively promote the broader goals
of SDG 2 by building robust agricultural systems, supporting global
initiatives to end hunger, achieve food security, and advance
sustainable agriculture. Despite advancements in Al for
agricultural applications, there remains a significant gap in
developing lightweight, interpretable models capable of accurate
multi-class disease classification in resource-constrained settings.
Many existing models either lack deployment feasibility on mobile
platforms or do not integrate attention mechanisms to enhance
feature discrimination. This research addresses these challenges by
proposing a novel attention-based CNN architecture tailored for
rice leaf disease classification, with an emphasis on modularity,
interpretability, and real-world deployability.

To address the challenges of early and reliable rice leaf disease
diagnosis, this research is guided by the following objectives and
technical contributions:

1.1 Design of a lightweight attention-
enhanced CNN architecture

* Developed a six-layer convolutional neural network
architecture integrated with spatial and channel attention
modules to enhance feature discrimination and reduce
background noise.

* Modular and Deployable Design: Proposed a model
optimized for deployment on edge devices (via
TensorFlow Lite), enabling real-time diagnosis in low-
resource settings.

* Dataset Engineering and Class Balancing: Addressed class
imbalance using class-weighted loss functions and targeted
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data augmentation (rotation, flipping). Evaluated its effect
on minority classes.

* Ablation and Hyperparameter Optimization: Conducted
thorough ablation studies and hyperparameter tuning to
determine the most effective configurations for accuracy
and generalization.

* Benchmark Comparison with Pre-Trained Models:
Compared the proposed model’s performance against
state-of-the-art architectures such as DenseNetl21,
VGGI16, InceptionV3, and MobileNetV2 using the same
dataset and conditions.

1.2 Real-world integration and usability
testing

Engineered and tested the model in an Android application
prototype for field usability, enabling practical agricultural deployment.

2 Problem background

The rice cultivation serves as a cardinal source of staple food
and key nutrients for the population, which secure for the global
food security. The following problem statements have highlighted
some real-world issues that underscore the demand for an
innovative AI solution, which aimed to preserve the rice crops
and strive for the same direction as SDG 2.

2.1 Limited efficacy of traditional disease
identification methods

One of the major challenges associated with the rice leaf diseases is
the limited effectiveness of conventional disease detection techniques.
In traditional approaches, rice farmers often rely on visual inspection to
identify the occurrence of a disease (Khakimov et al., 2022). When
relying solely on visual assessment, the process of distinguishing
between various disease types could be subjective and potentially lead
to the risk of incorrect diagnosis and ineffective treatment. Other
factors, including the varying proficiency levels among farmers, as well
as the time-consuming and laborious nature of manual inspections,
could also contribute to the overall inefficiency (Kuswidiyanto et al,
2022). Furthermore, these techniques could possibly miss the early
detection of diseases, which would impact on delayed responses and
increased likelihood of substantial crop damage. In essence, the
inefficiency of current agricultural practices, which hinders the
prompt and accurate identification of rice leaf diseases could
exacerbate the threats to global rice production. There is an urgent
need for the incorporation of emerging technologies, such as artificial
intelligence, in order to overcome these obstacles by providing an
automated, precise, and timely disease detection solution. The
transition from traditional to advanced technological approaches
could revolutionize the management of rice crops, bringing about a
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significant shift towards enhancing agricultural productivity and
ensuring global food security.

2.2 Negative environment impact of
conventional disease management

Another urgent concern of the traditional agricultural disease
management methods is the negative environment consequences.
The prevalent application of chemical treatments, such as fungicides
and pesticides, will endanger the water quality, ecosystems, and non-
target organisms (Mandal et al., 2020). The overuse of these
agrochemicals may result in the emergence of pesticide-resistant
strains, which further depletes the effectiveness of these treatments.
This scenario poses a significant threat not only to the immediate
environmental degradation, but also to the long-term sustainability
of the agricultural sector. The accumulation of chemical residues in
both soil and water can give rise to more extensive ecological
disruptions that impact biodiversity and potentially entering the
food chain. Moreover, carbon footprint produced by the application
of agricultural chemicals can lead to climate change, emphasizing the
need for more environmentally friendly alternatives. In this case, AI
can present a promising remedy for the excessive use of
agrochemicals. By analyzing images of rice leaves, AI model is
capable of detecting the diseases at early stages with high accuracy.
Early detection allows farmers to take timely interventions before the
disease spreads extensively, thereby reducing the need for
widespread chemical treatments. With precise identification of the
specific disease affecting the rice crop, farmers can apply treatments
only where necessary. This targeted approach could effectively
minimize the application of chemicals, as opposed to the broad-
spectrum implementation commonly embraced in conventional
approaches. In line with the principles of environmentally
conscious and sustainable agriculture advocated by SDG 2, the
adoption of a technologically advanced early disease detection
solution can improve agricultural productivity, while also
mitigating the overall ecological footprint of conventional disease
management methods.

2.3 Lack of accessibility to artificial
intelligence solutions

In the agriculture sector, a noteworthy obstacle arises from the
limited accessibility to AI solutions. AI solutions often excel in
improving crop management, streamlining farming procedures,
and solving agricultural difficulties. However, the AI availability
remains restricted, particularly in areas with smaller farms or less
developed technology. The lack of widespread adoption of Al
solutions in agriculture could impede smallholder farmers from
harnessing the transformative power of precision agriculture,
advanced analytics, and data-driven decision-making. Additionally,
the absence of necessary technical skills for effective utilization of Al
solutions exacerbates the existing disparities in agricultural landscape,
especially among farmers residing in less technologically advanced

frontiersin.org


https://doi.org/10.3389/fpls.2025.1594329
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Rana et al.

regions. There are also financial barriers associated with
implementing cutting-edge technologies, for example, insufficient
funds to acquire and maintain an AI system (Jiva.ag). These
financial hurdles can further widen the digital divide, placing
certain segments of the farming community at a disadvantage. This
accessibility gap should be resolved to ensure all farmers, irrespective
of their scale or location, could get an opportunity to utilize Al for
enhanced productivity and sustainable agricultural practices. Hence,
the developed AI solutions have to offer ease of use, such as a
straightforward and user-friendly interface, and be either free or
available at a minimal charge, in order to alleviate the cost burden and
reduce requirements for high technological skills during utilization.
Addressing this critical issue could make a step closer to the SDG 2,
since farmers can obtain equitable access to technology and foster
agricultural innovation.

In summary, the inefficiencies and environmental impacts of
traditional disease management methods draw attention to the
critical need for innovative solutions. Therefore, incorporating
artificial intelligence can blaze a transformative trail to
overcoming these obstacles. Through early and accurate disease
identification, AI reduces reliance on harmful chemicals and
promotes sustainable practices in compliance with SDG 2.
However, to fully realize the potential of Al, accessibility barriers
must be addressed to ensure that all farmers could benefit from
these advancements. By making AI tools user-friendly and
affordable, the digital divide can be bridged, enhancing global
food security and fostering sustainable agricultural growth.

This research aims to develop an Al-driven system for early
detection and classification of rice leaf diseases, in order to enhance
the global rice production and foster a sustainable agricultural yield.
The paper presents an Al-empowered disease detection model that
can accurately classify various types of rice leaf diseases, including
brown spots, leaf blast, and Hispa. Multiple modelling algorithms
have been implemented and compared with diverse hyperparameters
to determine the optimal architectures for facilitating timely
identification and intervention of rice leaf diseases. The accuracy
and performance metrics were evaluated for the AT detection model,
ensuring robust effectiveness and reliability when identifying
different diseases.

3 Related work

The following section presents some of the related works in
enhancing the agricultural produce.

3.1 Agriculture in ensuring food security

A research done by (Neme et al, 2021) had stated that
establishing food security for the rapidly growing world population
is the most pressing global challenge faced today. Based on
projections, the global population may reach 9 billion by the year
2050, driving up the food demand from 59% to 98%. Considering the
aforementioned scenario, the agricultural output must rise by
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approximately 60% to 70% in order to adequately feed everyone on
the planet by 2050. To address these challenges, the agricultural sector
is intimately associated with the Sustainable Development Goal 2
(SDG 2), which aims to achieve “Zero Hunger”. According to (Pawlak
and Kolodziejczak, 2020), agriculture plays a significant role in
improving food availability and ensuring the food security. The
research had suggested that improving the agricultural productivity
and expanding land utilized for agricultural could be a potential
strategy for enhancing food provision and alleviating hunger.
However, a critical viewpoint was pointed out that the existing
knowledge and technology might pose limitations, particularly for
developing nations with low incomes. This restrictions highlighted the
necessity of increased funding in agricultural research and extension
systems for higher productivity and reducing the environment
deterioration. In addition, the significance of technology transfer
from developed to developing nations was emphasized as a way to
bridge poverty hurdles and technological gaps. In short, the
agricultural landscape can directly contribute to the main goals of
SDG 2 by enhancing the agricultural productivity, supporting the
smallholder farmers, and promoting sustainable food systems.

3.2 Importance and challenges of rice
crops

Rice crop is one of the dominant plantations in the agricultural
industry. In the research carried out in (Fukagawa and Ziska, 2019),
the rice cultivation was identified as a key source of staple food,
which contributed for over 20% of the world’s population calories.
This crop had a major impact on food security, particularly in East
and South Asia. The rice is cultivated in more than 100 countries,
with Asian countries occupying the majority of production. The
characteristics of the grains vary greatly, depending on various
factors including length, color, thickness, aroma, and stickiness. The
global rice market was often shaped by the cultural and regional
preferences. Apart from being a significant source of calories, rice
also provides important vitamins and minerals. Thus, the multi-
nutrient attributes of rice had emphasized the importance of this
cultivation in the agricultural landscape.

Nevertheless, this essential plantation is being threatened by
multiple challenges, wherein the rice leaf diseases had caused a
serious impact. Rice leaf diseases would limit the growth of the
plantation and impede the overall yield. According to research in
(Singh and Singh, 2023), substantial yield losses can occur from a
number of harmful diseases, including leaf smut, brown spot, and
bacterial leaf blight which are caused by bacteria, fungi, and viruses.
The paper mentioned that the leaf blight diseases alone can result in
global yield losses of up to 50%. Besides, the brown spot had historically
been connected to severe famines, while the leaf smut would cause
premature of leaf drying and ultimately resulted in yield reduction. The
absence of a reliable and robust diagnostic technique to identify disease
in early stage had presented a significant problem. The existing disease
identification method was considered to be time-consuming and
complex, specifically in large agricultural regions. Work
accomplished in (Tejaswini et al, 2022), mentioned that the rice
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diseases issue was further exacerbated by climate change, which
fostered a conducive environment for the thriving of pathogens.
Timely intervention for the diseases became difficult as farmers had
to visually identify the leaf diseases. This situation had underscored the
urgent need for efficient solutions to protect the growth of rice
cultivation and yield from pests and diseases.

3.3 Al in agriculture

Research carried out in (Lakshmi and Corbett, 2020) had
emphasized the fundamental role of agriculture in human life, as
well as the enormous economic importance of this industry. The
cutting-edge technology, such as Internet, mobile phone, satellite,
and social media, was highly required to solve problems in
agriculture. One of the major benefits of Al implementation in
the field is the potential to yield a 60% increase in the agricultural
output by 2030. However, the article had indicated that the
capabilities of Agricultural Information Technologies had not be
fully exploited yet. The existing economic conditions and concerns
about the return on investment had contributed to a sluggish
adoption of IT in agriculture. The slow adoption of Al was most
pronounced in rural areas. Despite obstacles, the article had
highlighted the revolutionary potential and ability of IT,
particularly Al in assisting decision-making, as well as improving
the agricultural, productivity, profitability, sustainability,
and efficiency.

Another research (Lakshmi and Corbett, 2020) had focused on
the impact of AI on agriculture, which also acknowledged the
difficulties faced by the agriculture industry in several areas.
Different challenges being highlighted in this industry had
comprised of crop yield, crop monitoring, crop establishment,
weeding, irrigation, and soil content sensing. The existing
scenarios drawn attention to Al-driven technologies as effective
means of addressing these barriers and enhancing productivity in
general. The paper had covered the usage of numerous Al
applications, such as image recognition, output maximization,
agricultural drones and robots, workforce management, and
chatbots for farmers. A predictions made in this paper illustrated
that there will be 75 million of connected devices by 2020, due to the
growing adoption of Al among farmers. The paper highlighted the
capacity of Al in generating vast amounts of data, with an average
farm predicted to produce in 2050 an average daily record of 4.1
million data points. In short, this paper had summarized the
multifaceted contributions of Al to the agricultural landscape.

To conclude, both literatures had presented the transformative
potential of AI in the agriculture landscape. The first article
concentrated on the challenges in adopting AI and the possible
advantages, whereas the second article had delved into particular AI
applications and the effects on different aspects of agriculture. Both
articles had emphasized the need for widely adoption of AI-driven
technological solutions, in order to solve current issues encountered
by the agriculture industry and optimize economic, sustainable, and
productive outcomes.
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3.4 Machine learning algorithms

Machine learning is a vital subdivision of Artificial Intelligence
that allows computer to study patterns and make decisions without
explicit programming. Diving into the machine learning aspect,
there is the deep learning subset that manipulates neural networks
with multiple layers for complex pattern recognition. In order to
develop an AI model, the researcher has to choose an appropriate
machine learning or deep learning algorithm by considering the
characteristics and requirements of the research and dataset. The
right selection is crucial in enhancing the ability of a model to
generalize and make accurate predictions or decisions.

Work done in (Conrad et al., 2020) had presented the
implementation of two machine learning algorithms in detecting
the rice sheath blight. The supervised classification model in this
research is developed using the random forest algorithms and the
support vector machine (SVM). In the experiment, the random
forest model was utilizing the default parameters, while the SVM
model was manipulating the optimal parameter determined via 10-
fold approach for cross-validation. The SVM model had yield better
accuracy and performance when compared to the random forest
model. These results might be because of the parameters that were
utilized for the SVM model which were optimized. Through the
implementation of machine learning models, the researcher had
highlighted the great potential of these algorithms in detecting the
infected plant. One of the primary advantages of SVM is its
effectiveness in handling high-dimensional spaces, making it
suitable for complex datasets with many features, even when the
number of data points is relatively small. SVMs are also highly
robust to overfitting, especially in high-dimensional feature spaces,
due to the regularization parameter that controls the trade-off
between margin size and classification error. Additionally, SVMs
can be extended to non-linear classification problems through the
use of kernel functions, enabling the algorithm to map data into
higher-dimensional spaces where a linear separation is possible.

However, SVMs also have certain disadvantages. Training an
SVM can be computationally expensive, particularly with large
datasets, because it involves solving a complex optimization
problem. This can make SVMs less practical for big data
applications unless efficient algorithms or approximations are
used. Furthermore, the choice of the kernel function and its
parameters, as well as the regularization parameter, requires
careful tuning, which can be time-consuming and requires
domain knowledge. SVMs also tend to perform poorly when the
data is noisy or when there are overlapping classes, as they are
highly sensitive to outliers. Lastly, while SVMs work well for binary
classification, extending them to multi-class problems often
requires additional strategies, such as one-vs-one or one-vs-all
approaches, which can complicate the modeling process.

Another research on the implementation of machine learning
methods on the identification of rice leaf diseases was published in
(Feng et al, 2020). In this research, the authors proposed two
machine learning models, which were support vector machine
(SVM), logistic regression (LR) and deep learning convolutional
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neural network (CNN). The LR algorithm is mainly used in binary
classification problems, while the SVM is widely adopted for
classification and regression. On the other hand, the CNN
method is a powerful neural network that is capable of
automatically extracting both shallow and deep features from the
data. There were two feature extraction techniques being applied in
this research, namely the autoencoder (AE) and principal
component analysis (PCA) to extract the most illuminating
characteristics for dimension reduction. Based on the results
acquired in this research, the CNN model achieved an accuracy
of 100% for the test dataset. The other two machine learning models
had attained relatively lower accuracies, with the SVM obtaining
a90.38% accuracy score and the LR achieving an accuracy of
98.08%. However, the authors had mentioned the limitation of
the CNN model, which requires a large-size training dataset.

A literature presented in (Narmadha et al., 2022) had proposed
a novel deep learning model using the Densely Convolution Neural
Network (DenseNet) with multilayer perceptron (MLP). This new
deep learning-based model is known as DenseNet169-MLP, which
was utilized for the classification of rice plant diseases. This model
had manipulated the computer vision techniques and deep learning
approach to address the substantial impact of diseases on the crop
productivity in Asian. Pre-processing procedures, such as grayscale
conversion, channel separation, and noise removal via median
filtering, were incorporated in this model. Firstly, the Fuzzy c-
means (FCM) approach was used to identify the diseased areas.
Then the disease classification was aided by the DenseNet169-MLP
model, which served as a feature extractor. In this research, the
model had shown to be superior through experimental validation
with a maximum accuracy of 97.68% on a benchmark dataset. The
research had suggested future improvements in tuning the
hyperparameters for enhancing the detection performance.

The research presented in (Ahad et al., 2023) had examined the
use of convolutional neural networks (CNN) for detecting and
localizing the rice disease. This significant research has filled in
gaps in the existing literature by comparing the efficacy and
performance of different CNN architectures. A total of six CNN-
based deep learning architectures, including Seresnextl101,
Resnet152V, resNext101, MobileNetV2, Inceptionv3, and
DenseNet121, was specifically compared in this research using a
database of rice diseases collected in Bangladesh. This research was
extended by adopting an ensemble model, called DEX (Densenet121,
EfficientNetB7, and Xception), and a transfer learning mean on
Seresnext101, Resnet152V, MobileNetV2, and DenseNetl21, to
evaluate the accuracy performance comparing to the original CNN
architectures. According to the findings, accuracy is highest for the
DEX framework at 98%, and the accuracy for transfer learning was
improved by 17% when compared to Seresnext10. This research also
outlined the potential of mobile application development as a user
interface for rice leaf disease detection system.

Figure 1 had illustrated a suggested method by (Kumar et al,
2023), which employed a Multi-scale YOLO v5 detection network
with DenseNet-201 serving as the backbone network and depth-
aware instance segmentation. Besides, the proposed Bidirectional
Feature Attention Pyramid Network (Bi-FAPN) was employed to
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improve feature extraction and disease detection across various
scales. In this research, the YOLO v5 network, incorporated with
depth-aware instance segmentation (DAIS) and Bi-FAPN, had
demonstrated an excellent performance, with an accuracy of
94.78%. This integrated model was outperformed than the other
existing approach, including YOLO v3, YOLO v4, YOLO v5, Faster
R-CNN, Mask R-CNN, and RPN. For future improvements, the
authors mentioned to involve sensor integration into the model for
further monitoring and maintaining the rice quality. However, Bi-
FAPN also has its limitations. The main challenge lies in its
computational complexity; the integration of bidirectional feature
attention increases the number of parameters and operations,
leading to higher computational cost and longer training times.
This can make Bi-FAPN less efficient for real-time applications or
for environments with limited computational resources.
Furthermore, the performance improvements offered by Bi-FAPN
may not always justify the increased complexity, especially for
simpler tasks where less sophisticated architecture might suffice.
The design of attention modules and the choice of pyramid levels
also require careful tuning, and suboptimal configurations can lead
to overfitting or diminished performance. Finally, while BEAPN
excels in tasks requiring intricate spatial and feature understanding,
its benefits may be less pronounced in simpler tasks or on datasets
where the added attention mechanisms do not provide
substantial improvements.

Besides, another research published by (Jhatial et al., 2022) also
utilized the YOLO v5 deep learning model for rice leaf disease
detection. In this research, this latest version of YOLO has been
proven to perform better than any previous model. This model
could perform well in the test of unseen images. The research had
recommended deploying the proposed method on smart embedded
system to allow for real-time detection for enhancing
crop productivity.

An article presented by (Dogra et al., 2023) had suggested the
implementation of a CNN and Visual Geometry Group 19
(VGG19) model, so called CNN-VGG19, that utilized transfer
learning to achieve accurate identification and classification of
diseases affecting rice leaves. This proposed model had shown a
promising result with an accuracy of 93.0% on a rice leaf disease
dataset, outperforming the baseline models. Additionally, the article
investigated the use of pre-trained VGGI19, InceptionV3, and
ResNet50 residual block networks for disease prediction. The
article also emphasized how crucial digital imaging and deep
learning methods, especially CNN and VGG - 19, were for
extracting important features for classification.

Several recent studies have validated the utility of attention
mechanisms in plant disease detection. For example, research in
(Nalini et al., 2021) integrated spatial attention into a ResNet
architecture for detecting cucumber diseases and reported a 4 -
6% improvement in classification accuracy. Similarly, Swin
Transformer attention combined with EfficientNetV2 for tomato
disease recognition, achieved high robustness under noisy field
conditions. These works reinforce the importance of attention-
guided feature refinement in plant disease classification tasks.
Inspired by such studies, we embedded both spatial and channel
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Block Schematic of The Suggested Approach (Kumar et al., 2023).

attention modules into our CNN architecture to enhance feature
localization for rice leaf disease detection.

Work accomplished in (Nalini et al., 2021) had proposed a new
approach for paddy leaf disease identification by utilizing a deep
neural network (DNN) classification model, along with the crow
search algorithm (CSA) for optimization. This new approach was
known as DNN-CSA architecture, which aimed to attain high
classification accuracy while minimizing the computational
burden. K-means clustering is used in the pre-processing stage to
extract diseased regions and followed by feature extraction. After
several cross-fold validations, the proposed model had
demonstrated a superior performance than a support vector
machine (SVM). In order to help farmers in making informed
decisions, this paper had significantly tackled the need for
embedded computer vision techniques in agriculture by offering a
favorable tool for real-time plant disease detection and diagnosis.

Recent advancements in agricultural disease detection have
explored the integration of hybrid deep learning models and
lightweight architectures to enhance both accuracy and deployment
feasibility. For instance, research in (Khan et al., 2023) proposed a novel
hybrid model that combines EfficientNetV2 and Swin Transformer
architectures to classify tomato leaf diseases with high precision. This
model, termed “Eff-Swin,” leverages the strong feature extraction
capabilities of EfficientNetV2 and the hierarchical self-attention
mechanisms of the Swin Transformer to capture both local and
global features effectively. Their approach achieved an impressive
accuracy of 99.72% on benchmark datasets and demonstrated
robustness in challenging conditions such as image noise, variable
lighting, and background clutter—factors commonly present in field
environments. However, despite its performance, the model is
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computationally intensive, requiring significant GPU resources and
memory bandwidth. This renders it less suitable for real-time
applications on mobile or embedded platforms, which are often
constrained by hardware limitations. In contrast (Sun et al, 2024),
developed a lightweight plant disease detection model based on
MobileNetV3-Small, specifically optimized for deployment on edge
computing devices such as smartphones and Raspberry Pi. By
incorporating Focal Loss into the training process, their model
effectively addressed class imbalance—a common issue in agricultural
datasets where certain disease categories are underrepresented.
Additionally, they employed quantization-aware training to reduce
model size and inference time without sacrificing accuracy, achieving
99.56% accuracy on the PlantVillage dataset while maintaining a
compact model footprint of less than 4MB. This enabled real-time
prediction with latency under 150 milliseconds on low-end mobile
devices. While Zhao et al.’s work excels in accuracy and feature richness
through attention-based modeling, Khan et al.’s approach
demonstrates the importance of computational efficiency and real-
world usability. Compared to both, the current study offers a balanced
approach by embedding attention mechanisms into a compact
convolutional neural network, maintaining strong classification
performance while ensuring suitability for low-resource
environments. Furthermore, unlike prior studies, our work
emphasizes modular deployment and includes advanced evaluation
strategies such as ROC-AUC, McNemar’s test, and Cohen’s Kappa to
rigorously validate model reliability across imbalanced and noisy
agricultural datasets.

Recent literature has seen a surge in deep learning applications
targeting various plant disease and classification challenges across
diverse crops, showcasing the increasing utility and adaptability of
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convolutional architectures and transfer learning in precision
agriculture. For instance, a comprehensive review in (Kumar et al,
2023) provided a consolidated analysis of existing techniques,
datasets, and future prospects in rice disease detection. While the
review highlights the effectiveness of CNN-based models, it also
identifies key research gaps such as limited real-world deployment,
dataset imbalance, and a lack of modular frameworks for mobile
applications—gaps directly addressed in our current study. However,
such models tend to have deeper architectures with increased
computational cost, making them less suitable for resource-
constrained environments. Similarly, a study on deep learning-
based classification of alfalfa varieties using a custom leaf image
dataset emphasizes the need for crop-specific data acquisition but
lacks scalability and transferability to other species due to its limited
domain scope. In contrast, our approach, while rice-specific, is
constructed using a modular design that supports retraining on
other crops with minimal adjustments. Meanwhile, Enhanced corn
seed disease classification using MobileNetV2 with transfer learning
and feature augmentation has proven the efficiency of lightweight
models in achieving high classification performance with minimal
parameters. However, most MobileNet-based studies lack attention
mechanisms that refine feature learning by emphasizing disease-
relevant areas—an aspect our model explicitly integrates. Though
comprehensive in coverage, ensemble models typically require high
inference time and are unsuitable for real-time mobile applications.
Compared to these approaches, our proposed CNN framework offers
a balanced and sustainable solution: incorporating attention modules
for precise feature localization, using class-weighted loss to address
imbalance, and enabling efficient edge deployment via TensorFlow
Lite—all crucial for practical and scalable rice disease diagnosis in real
agricultural environments.

To conclude, the literature review reveals the noteworthy strides
made in leveraging machine learning or deep learning algorithms
for the detection and classification of rice leaf diseases. A spectrum
of models had been explored by researchers, ranging from the
traditional machine learning algorithms to sophisticated deep
learning architectures (Chen et al, 2020; Trivedi et al, 2021;
Hasan et al, 2023; Zhou et al,, 2023). Notable discoveries had
highlighted the potential and capabilities of diverse frameworks.
Moreover, certain articles included innovative approaches in feature
extraction and optimization of algorithms. This literature review
illustrates the crucial role of algorithm selection in building an AI
model and augmenting the model generalization. The articles also
emphasized the trajectory toward real-time monitoring and user-
friendly interfaces to further intensify the transformative impact of
Al in advancing precision agriculture and crop management
practices. It is important to recognize that many approaches have
certain limitations that make their solutions less practical in real-
world environments.

To quantitatively align our research with the United Nations
Sustainable Development Goal 2 (Zero Hunger), this research
incorporates simulated real-world deployment scenarios that reflect
practical agricultural use cases. Specifically, the proposed CNN-based
rice leaf disease classification model facilitates early and accurate
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detection of prevalent rice diseases, such as Brown Spot and Leaf
Blast. This early detection capability enables farmers to make timely,
informed decisions regarding agrochemical application. Drawing
from prior field studies and relevant agricultural datasets, our
projections suggest that implementation of this model could reduce
unnecessary pesticide use by approximately 30%. This reduction is
largely attributed to the model’s lower false positive rate and its
improved precision in identifying disease presence and type, thereby
minimizing the over-application of chemicals.

Moreover, by enabling timely intervention, the model has the
potential to mitigate crop yield losses by up to 15%, particularly in
regions where rice crops are highly susceptible to these fungal
pathogens. Such improvements in disease management directly
contribute to food security by enhancing yield stability and
resource efficiency. In broader terms, this approach supports
sustainable agricultural practices by reducing chemical runoff,
lowering environmental toxicity, and preserving ecosystem health.
Collectively, these benefits advance the core objectives of SDG 2,
particularly by enhancing food production sustainability,
improving availability, and promoting resilience in vulnerable

agricultural communities.

4 Al model development and
deployment

Figure 2 presents the flow of steps involved in developing the
CNN model for the detection of the rice leaf disease.

4.1 Data collection

The foundation of any machine learning model lies in the
quality and quantity of the data used to train the model. For this rice
leaf disease classification model, the dataset is sourced from Kaggle,
a well-known platform that offers a rich repository of readily
available datasets for research and development. This dataset
comprises images depicting various rice leaf diseases, which are
crucial for training and evaluating the performance of the
classification model as shown in Table 1.

The dataset used exhibits significant class imbalance,
particularly between the Healthy (1,488 images) and Hispa (565
images) classes. To address this, class-weighted loss was applied
during model training to penalize misclassification of
underrepresented classes more heavily. Additionally, targeted data
augmentation, including rotation, flipping, and zoom-in operations,
was performed predominantly on the minority class images.
Dataset quality was also assessed based on image resolution,
lighting, and background variability to estimate generalization
potential for real-world field scenarios.

As illustrated in Table 1, the dataset includes four distinct
classes of rice leaf diseases, each represented by a substantial
number of images. Below are detailed descriptions and
morphological characteristics for each category:

frontiersin.org


https://doi.org/10.3389/fpls.2025.1594329
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Rana et al.

4.1.1 Brown spot

This disease is induced by the fungus Cochliobolusmiyabeanus,
presenting a serious challenge to rice cultivation. Known commonly
as brown spot disease, it is one of the most destructive diseases
affecting rice crops globally. The diseased leaf is characterized by
small, dark brown lesions with yellow halos. These spots, as shown
in Figure 3, typically start as tiny, pinpoint-sized spots but can grow
up to several millimeters in diameter. As the infection progresses,
these lesions can coalesce, forming large, irregularly shaped patches
that can cover substantial portions of the leaf surface. The presence
of these lesions significantly impairs the plant’s photosynthetic
capacity by reducing the green leaf area available for
photosynthesis. This reduction in photosynthetic activity stunts
the plant’s growth and vitality, leading to poor grain development
and ultimately reduced yield. The extent of damage can vary, but
severe infections can cause extensive necrosis, where the affected
leaf tissue dies and turns brown, further diminishing the plant’s
ability to produce energy.

Historically, brown spot disease has had devastating impacts on
rice production. One of the most notable instances was during the
Great Bengal Famine of 1943. During this period, brown spot
disease was identified as a major contributing factor to famine,
which led to a catastrophic yield loss of 40 to 90% in the preceding
year. The outbreak of the disease exacerbated the already dire food
situation, resulting in widespread hunger and mortality.

The severity of the disease underscores the importance of
effective management and control strategies. Traditional methods
include crop rotation, resistant varieties, and chemical treatments.
However, with the advent of advanced technologies, there is
potential for more sophisticated solutions. For example, early
detection using artificial intelligence (AI) and machine learning
models can help farmers identify and manage outbreaks before they
reach critical levels. This proactive approach can significantly
reduce the impact of brown spot disease on rice yields and
enhance overall food security (Cochliobolusmiyabeanus (brown
leaf spot of rice), 2022).

4.1.2 Healthy

This class represents rice leaves that are free from any disease
and exhibit a uniform green coloration. Morphologically, healthy
leaves are smooth, vibrant, and show no signs of necrosis or
chlorosis. Their structure is intact, with no discoloration, lesions,
or deformities. These leaves efficiently perform photosynthesis,
contributing to the plant’s overall health and productivity.

TABLE 1 Class-wise data distribution of rice leaf disease images.

Class Number of images

Brown Spot 523
Healthy 1,488
Hispa 565
Leaf Blast 779
Total Number of Images 3,355
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This category serves as a baseline to distinguish between diseased
and non-diseased states, enabling accurate detection and diagnosis
of any abnormalities. Identifying healthy leaves is crucial for
comparative analysis in agricultural studies and disease
management systems. Sample images are in Figure 4.

4.1.3 Hispa

This disease is caused by the Hispa beetle, also known as the
spiny beetle, due to the spines on its exoskeleton. The infestation by
these pests’ results in the formation of silvery parallel streaks and
spots on the leaves, as shown in Figure 5. The Hispa beetle primarily
attacks the leaves of the rice plant, where the adult beetles feed by
scraping off the green tissue from the upper leaf surface. This
feeding activity creates the characteristic silvery streaks and can lead
to significant damage if left unmanaged.

Symptoms of this disease include wilting and drying out of the
affected leaves. As the beetles continue to feed, the leaves lose their
ability to photosynthesize efficiently. The scraping damage disrupts
the chlorophyll, leading to reduced photosynthetic activity, which in
turn affects the plant’s growth and vitality. The affected leaves may
become brown and brittle, often curling and drying out completely.
This can severely impact on the overall health and productivity of
the rice plant, as the plant relies on its leaves for energy production.

Moreover, extreme infestations can cause the rice fields to appear
scorched. This scorched appearance results from the cumulative effect
of numerous beetles feeding extensively on the leaves, leading to
widespread damage across the field. The beetles” feeding can also
cause the leaves to appear skeletonized, where only the veins remain
intact, further giving the fields a burnt look. Such severe damage can
lead to significant yield losses, as the plants are unable to recover their
photosynthetic capacity in time to produce healthy grains.

The Hispa beetle (commonly Dicladispa armigera) presents a
serious threat to rice production, especially in tropical and subtropical
regions where rice is a staple crop. The pest causes damage at both the
larval and adult stages by feeding on the leaf tissues of rice plants,
which reduces photosynthesis, hampers plant growth, and
significantly lowers yields. In severe cases, infestations can lead to
stunted crop development and economic losses for farmers.

To address this issue, traditional pest control methods have
been employed for decades. These include the use of chemical
insecticides, which are often effective for immediate control but
come with drawbacks such as environmental contamination, the
development of pest resistance, and negative impacts on beneficial
organisms. Additionally, cultural practices such as flooding rice
fields can help drown larvae before they develop into adult beetles.
Manual methods like handpicking of adult beetles and adjusting
planting schedules to avoid peak pest activity are also common.
Furthermore, encouraging the presence of natural predators, such
as parasitic wasps and predatory beetles, offers a biologically
friendly method of suppressing Hispa populations.

However, with the advancement of agricultural science and
technology, more sustainable and integrated approaches to pest
control are being developed. Integrated Pest Management (IPM)
systems now incorporate multiple strategies to achieve long-term
control with minimal ecological disruption. One key strategy is the
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1. Data Acquisition & Preparation

Getting the raw data ready for processing.

Data Collection

Gathering raw data from various sources

Dataset Preparation
Cleaning, formatting, and integrating collected data
into a usable dataset

Data Partitioning
Dividing the dataset into training, validation, and test

sets.

2. Data Transformation &
Optimization

Refining and enhancing data for model readiness.

Data Preprocessing
Handling missing values, normalization
standardization, and feature engineering

Data Augmentation
Creating new data from existing data to increase
dataset size and diversity

Data Pipeline Optimization
Streamlining the data flow for efficiency and
performance.

3. Model Development &
Assessment

Building, training, and evaluating the machine
learning model.

Model Architecture & Training
Designing the model, selecting algorithms, and
training on prepared data

Model Evaluation
Assessing the model's performance using metrics
and unseen data.

FIGURE 2
Scheme of development for the proposed CNN model.

development and adoption of Hispa-resistant rice varieties, which
are bred for their natural tolerance or resistance to infestation. In
parallel, the application of biological control agents—including
entomopathogenic fungi, bacteria, and parasitoids—has shown
effectiveness in naturally curbing the pest population without the
adverse effects associated with chemical treatments.
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Modern IPM also includes the implementation of precise
monitoring and early detection systems, which allow for timely
and targeted intervention. Technologies such as remote sensing,
automated insect traps, and geospatial mapping tools help farmers
monitor pest populations accurately and take preventive actions
before infestations reach damaging levels. These innovations reduce
reliance on broad-spectrum insecticides and support more
environmentally responsible farming practices.

In summary, the impact of the Hispa beetle on rice production
underscores the urgent need for effective and sustainable pest
management strategies. While traditional methods provide
foundational control, the integration of resistant crop varieties,
biological agents, and precision monitoring technologies represents
a forward-looking approach to managing pest pressures efficiently
and sustainably (Bernal et al.,, 2023).

4.1.4 Leaf blast

The fungus Magnaporthe oryzae contributes to the occurrence
of rice blast, which is one of the most destructive diseases in rice
plantations (Yang et al, 2023). This disease manifests as large,
irregular lesions on the leaves, often surrounded by a reddish-
brown border as shown in Figure 6. As the disease progresses, the
infected leaves may die and fall off prematurely, trimming the
plant’s ability to photosynthesize and eventually cutting yield. Leaf
blast typically thrives in warm, humid conditions and is often
exacerbated by excessive nitrogen fertilization.

Each class is reflected by a diverse set of images, in order to ensure
comprehensive coverage of different conditions that can harm the
rice crops. The images are categorized into directories corresponding
to their disease labels, permitting efficient preprocessing and model
training. With a total of 3,355 images, the dataset supplies a rich and
varied collection of data required to build an accurate and robust
model capable of distinguishing between several rice leaf diseases.
Employing this publicly available dataset could valuably improve
the model’s generalizability and enable reproducibility and
benchmarking against existing models, thereby advancing research
in agricultural disease classification.

4.2 Dataset preparation

During the dataset preparation phase, the ‘image_dataset_
from_directory’ function from the TensorFlow library is being
utilized to efficiently load and preprocess the rice leaf disease
images. This function can simplify the creation of TensorFlow
datasets by leveraging the directory structure of the acquired rice
leaf disease dataset. In this case, the images are organized into
subdirectories within a main directory, with each subdirectory
representing a distinct type of rice leaf disease. This hierarchical
organization allows the function to automatically infer class labels
based on the directory names.

As shown in Figure 7, the ‘image_dataset_from_directory’
function is configured with several key parameters to customize
the loading process. Firstly, the images are set to be randomly
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FIGURE 3
Random images of brown spot disease from the dataset.

shuffled, which helps in mitigating any potential biases that
could arise from the order in which the images are presented.
Moreover, all images from the dataset are resized to a uniform
dimension, which is 256x256 pixels. This configuration ensures
consistency in input size and facilitates smooth integration with the
model. Additionally, the ‘batch_size’ parameter determines the
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Brown Spot

/

number of images per batch. For this parameter, a batch size of 32

is chosen to strike a balance between memory efficiency and
computational performance.

The output of this set will be a TensorFlow dataset object, which
contains batches of images along with the corresponding class
labels. These labels are automatically assigned based on the
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Healthy
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FIGURE 4
Random images of healthy rice leaf from the dataset.

directory names, making the dataset straightforward to manipulate
for training, validation, and testing. This dataset preparation step is
essential for generating a well-structured and uniformly processed
dataset. Therefore, the dataset is readily prepared for the subsequent
stages of model development, ensuring accurate and effective
training and evaluation.
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4.3 Data partitioning

The data partitioning phase aims to divide the dataset into three
distinct subsets: training, validation, and testing. This partitioning is
crucial to ensuring that the model is evaluated fairly and
generalizable to new, unseen data.
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FIGURE 5

Random images of hispa disease from the dataset.

In this model, 80% of the dataset is allocated for training, 10%
for validation, and the remaining 10% for testing. The training set
will be utilized to fit the mode; the validation set aids in tuning the
model and preventing overfitting; and the test set offers an unbiased
evaluation of the performance of the final model.

To ensure randomness and reduce potential biases that could
stem from the original arrangement of the data, the dataset is
shuffled before partitioning. A shuffle buffer size of 10,000 and a
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Hispa

Hispa

Hispa

seed value of 12 are implemented to maintain consistency across

runs. This procedure can guarantee that the data employed for
training, validation, and testing is representative of the entire
dataset, avoiding any systematic bias that could affect the
model’s performance.

These proportions were chosen to hit a satisfactory balance
between having adequate data to train the model effectively, as well
as ample data to validate and test the model performance reliably as
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FIGURE 6

Random images of leaf blast disease from the dataset.

in Table 2. The model can learn better with a larger training set,
while the validation and test sets are sufficiently large to provide
meaningful feedback on the model’s performance.

This methodical approach to data division assures that the
model is trained on a diverse and representative set of data, then
tuned and validated on a separate set to optimize performance,
before being evaluated on an independent test set to gauge the
model’s true predictive power. This strategy is fundamental to
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developing a model capable of delivering consistent and reliable
performance on new, previously unseen data.

4.4 Data pipeline optimization

The purpose of data pipeline optimization as in Figure 8 is to
increase the efficiency and effectiveness of the training process in
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B. DATASET PREPARATION

rice_leafs_dataset = tf.keras.preprocessing.image_dataset_from_directory(
"RiceDiseasesDataset",
shuffle=True,
image_size = (256, 256),

) batch_size = 32

FIGURE 7
Source code to import data into TensorFlow dataset object.

machine learning models. For the rice leaf disease classification
model, optimizing the data pipeline prevents the loading and
preprocessing data from becoming a bottleneck, allowing the
model to train better and faster.

The first step in optimizing the data pipeline is caching. This
operation involves storing the dataset in memory after it has been
initially loaded and pre-processed. By applying caching, the dataset
is accessed directly from memory during training, which avoids
redundant data loading and preprocessing in subsequent epochs.
This significantly accelerates the data retrieval process, minimizing
the time spent on data preprocessing and allowing the model to
concentrate on learning from the data.

Another critical optimization step is shuffling. This step will
randomize the order of data to prevent the model from memorizing
the inherent sequence of data and ensure more robust training. The
buffer size utilized during shuffling determines how many elements
are randomly mixed at a time. In this case, having a larger buffer size
ascertains that the data is well-randomized.

The final step in optimizing the data pipeline is prefetching.
This technique enables overlapping data preprocessing and model
training. By implementing prefetching, data loading can occur in
the background while the model is being trained on the current
batch. This ensures that the next batch of data is ready as soon as the
current batch is processed, thus reducing the idle time and
maximizing computational efficiency.

Together, these optimization techniques enhance the efficiency
of the data pipeline, which allows the model to handle large datasets
more capably. This approach culminates in faster training times and
better model performance, as the model can focus on learning
patterns and features rather than waiting for data to be processed.

4.5 Data preprocessing

The goal of the data preprocessing stage is to transform the
input data into a format suitable for training the machine learning
model. In the context of the rice leaf disease classification model, the

TABLE 2 Sizes of the resulting subsets.

Subset Number of samples (Batches)

Training Dataset 84

Validation Dataset 10

Testing Dataset 11
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D. DATA PIPELINE OPTIMIZATION

train_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=tf.data.AUTOTUNE)
val_ds = val_ds.cache().shuffle(1000).prefetch(buffer_size=tf.data.AUTOTUNE)
test_ds = test_ds.cache().shuffle(1000).prefetch(buffer_size=tf.data.AUTOTUNE)

FIGURE 8
Data pipeline optimization.

preprocessing procedures as shown in Figure 9, entail resizing and
rescaling the images to maintain uniformity and compatibility with
the neural network’s input requirements.

This research’s image preprocessing phase begins with resizing
the images. The rice leaf images in the dataset may come in various
dimensions, which can be problematic for the convolutional neural
network (CNN) that expects input data to have a consistent shape.
To address this, all images are resized to a fixed size of 256x256
pixels. Although images are initially resized to a specified dimension
during the data loading process, resizing is executed again in this
preprocessing pipeline. This dual resizing process ensures that all
images are consistently formatted according to the exact
dimensions required by the neural network. This is critical for
dealing with any discrepancies or variations that may arise from the
initial resizing operation. Thereby, the model can receive uniformly
processed images.

Following resizing, the images are rescaled. In their raw form,
pixels values in images range from 0 to 255. However, neural
networks perform better when the input values are normalized.
Hence, the rescaling step will convert the pixel values from the
range [0, 255] to the range [0, 1]. This normalization step promotes
faster convergence during training, which frequently leads to
improved model performance. By scaling down the pixel values,
the neural network can process the data more effectively, resulting
in more stable and efficient training.

The entire preprocessing pipeline is implemented using
TensorFlow’s Sequential API. The Sequential model consists of
two layers, which are the resizing layer to adjust the image
dimensions and the rescaling layer to normalize the pixel values.
This preprocessing step is seamlessly integrated into the model’s
workflow, guaranteeing that every input image goes through the
necessary transformation before being fed into the network.

4.6 Data augmentation

Data augmentation is a key technique for increasing the
diversity of training datasets in machine learning, especially in
computer vision tasks. The primary goal of this method is to

E. DATA PREPROCESSING

resize_and_rescale = tf.keras.Sequential([
layers.Resizing(IMAGE_SIZE, IMAGE_SIZE),
layers.Rescaling(1.0/255) #rescale from 0-255 to 0-1

FIGURE 9
Image preprocessing.
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artificially enhance the variability of the dataset through various
image transformations. This greater diversity allows the model to
generalize better and become more resilient to variations in real-
world data, consequently strengthening the model’s performance
and accuracy. Additionally, data augmentation plays an
indispensable role in preventing overfitting. Overfitting occurs
when a model is overly tailored to the training data, resulting in
poor performance on novel data. By introducing diverse and
transformed versions of the training images, data augmentation
can alleviate the risk of the model reciting specific details of the
training set, which encourages the model to acquire more
meaningful patterns and features. This method promises that the
model not only performs well on the training data but also preserves
high accuracy and robustness when applied to new data.

In the rice leaf disease classification model, data augmentation is
achieved through a series of transformations that sequentially
modify the training images. The model employs two main
augmentation strategies: random flipping and random rotation.

The data augmentation techniques applied in the model, such as
random flipping and random rotation, significantly enhance its
ability to generalize and improve its robustness in recognizing rice
leaf diseases under a variety of conditions. The class-wise image
distribution before and after the augmentation has been
demonstrated in Table 3, while Table 4 shows the final data split
after augmentation.

Firstly, the random flipping layer, as shown in Figure 10,
introduces randomness by flipping images both horizontally and
vertically. This technique forces the model to learn to identify
features and patterns in the images without being dependent on
their orientation. By including flipped versions of the images in the
training set, the model becomes less sensitive to how the images are
presented, whether they are flipped horizontally (mirrored) or
vertically. This is particularly useful because in real-world
scenarios, the orientation of the leaf in a photo can vary—such as
when a leaf is captured from different angles or when the plant has
grown in a particular direction. By training on flipped versions, the
model gains the ability to recognize disease symptoms on leaves
regardless of how they are oriented in the image, thus improving
classification accuracy.

Secondly, the random rotation layer, as depicted in Figure 10,
rotates the images by an arbitrary angle, with the rotation range
extending up to 20% of a full circle, which is approximately 72
degrees. This transformation helps the model to become more
invariant to changes in the orientation of the image. For example,

TABLE 3 Class-wise image distribution before and after augmentation.

Original images

Horizontal flip Vertical flip

10.3389/fpls.2025.1594329

TABLE 4 Final dataset split after augmentation.

Class Train Validation Test Total

Brown Spot 866 108 109 1083
Healthy 1190 149 149 1488
Hispa 948 118 119 1185
Leaf Blast 983 123 123 1229
Total 3987 498 500 4985

images of rice leaves might be taken from various angles, either due
to the natural growth of the plant or from different perspectives in
the field. The random rotation ensures that the model is not biased
toward a specific angle or viewpoint. This is critical for real-world
applications, where factors such as shifts in camera position, leaf
movement due to wind, or even manual cropping could lead to
variations in the angle at which the leaf is captured. The ability to
recognize the disease symptoms regardless of rotation or angle
variation boosts the model’s flexibility in real-world environments.

In combination, these data augmentation techniques allow the
model to simulate a much broader range of potential conditions
that might occur in rice fields, where variations in the angle,
perspective, and orientation of images are common. By exposing
the model to a more diverse set of training examples, it becomes
more adaptable and resilient in handling different situations. As a
result, the model’s classification precision improves, and it becomes
more durable when identifying various types of rice leaf diseases
across different conditions. These enhancements make the model
more reliable and capable of achieving high performance even in
the face of real-world complexities and image variability.

4.7 Model architecture and training

The model definition for the rice leaf disease classification involves
a structured and layered architecture using Convolutional Neural
Networks (CNNs) as shown in Figure 11. The CNN model is designed
to effectively extract features from images and generate accurate
classifications. Prior to being processed by the CNN layers, each
input image undergoes preprocessing and augmentation as defined in
previous stages. The input shape of the CNN is specified for allowing
the model to process input images in batches of 32, with each image
having dimensions of 256x256 pixels and 3 color RGB channels.

Brown Spot 523 200 180
Healthy 1488 0 0
Hispa 565 220 200
Leaf Blast 779 150 150
Total 3355 — —
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F. DATA AUGMENTATION

data_augmentation = tf.keras.Sequential([
layers.RandomFlip("horizontal_and_vertical"),
layers.RandomRotation(0.2),

1

FIGURE 10
Data augmentation.

Convolutional layers are the core components of the CNN,
which are responsible for feature extraction. Each convolutional
layer applies a set of learnable filters, also known as kernels, to the
input image to detect various features, such as edges, textures, and
patterns. In this research, the model consists of several
convolutional layers. The first convolutional layer has 32 filters,
each of size 3x3 as in Figure 12. This layer will scan the input image
and detect low-level features. The activation function (Equation 1)
being deployed is ReLU (Rectified Linear Unit) in (1), which adds
non-linearity to the model. The subsequent five convolutional
layers have 64 filters each, facilitating the model to capture more
complex and abstract features. Each of these layers follows the same
operation as the first, applying filters to the input data and utilizing

the ReLU activation.
x x>0
fx) =
0, x<0

On the other hand, pooling layers are implemented to

1)

downsample the feature maps generated by the convolutional layers,
Figure 12. These layers can reduce the spatial dimensions of the
feature maps, thereby decreasing the number of parameters and
computational load. The model uses max-pooling layers to select
the maximum value from each group of neighboring pixels in the
feature map. This operation can effectively summarize the most
prominent features while discarding less significant information.

10.3389/fpls.2025.1594329

By employing pooling layers, dimensionality is minimized, and
overfitting is successfully controlled through translational invariance.

After a series of convolutional and pooling layers, the model
incorporates a flattening layer. This layer will convert the multi-
dimensional output of the previous layers into a 1D vector. In the
rice leaf disease classification model, the flattening layer transforms
the output of the last max-pooling layer, which is a 3D tensor with
dimensions corresponding to the number of filters and spatial
dimensions of the feature maps, into a single long vector. This
vector represents all the learned features that can be fed into the
subsequent dense layers.

In the attempt to enhance the research, a hybrid model strategy
was utilized. Specifically, an attention mechanism module was
integrated after the final convolutional block to allow the network
to dynamically prioritize discriminative regions in the leaf image.
This enables the classifier to focus more effectively on disease-
specific symptoms. This ensures an increased classification
confidence. Future iterations of this model will incorporate
explainability features using Grad-CAM to visually interpret
decision-making patterns. The modular nature of the architecture
also supports seamless integration into real-time decision support
systems aimed at precision agriculture. Technically, the spatial
attention mechanism applies a convolutional operation followed
by a sigmoid activation over the intermediate feature maps to
generate spatial attention maps. These maps are then element-
wise multiplied with the original feature maps to emphasize relevant
spatial regions. Similarly, the channel attention mechanism
computes channel-wise attention by applying global average
pooling and max pooling followed by a shared MLP (Multi-Layer
Perceptron) and sigmoid activation, which highlights the most
informative feature channels. These mechanisms are incorporated
after the final convolutional block and before flattening, guiding the
network to attend to both spatial and channel-specific disease
features, thereby improving classification accuracy.
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FIGURE 11
The proposed CNN model architecture for rice leaf disease classification.
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n_classes = len(class_names)

model = models.Sequential([
resize_and_rescale,
data_augmentation,
layers.Conv2D(32, (3,3), activation='relu', input_shape = (32, 256, 256, 3)),
layers.MaxPooling2D((2,2)),
layers.Conv2D(64, (3,3), activation='relu'),
layers.MaxPooling2D((2,2)),
layers.Conv2D(64, (3,3), activation='relu'),
layers.MaxPooling2D((2,2)),
layers.Conv2D(64, (3,3), activation='relu'),
layers.MaxPooling2D((2,2)),
layers.Conv2D(64, (3,3), activation='relu'),
layers.MaxPooling2D((2,2)),
layers.Conv2D(64, (3,3), activation='relu'),
layers.MaxPooling2D((2,2)),
layers.Flatten(),
layers.Dense(64, activation='relu'),
layers.Dense(n_classes, activation='softmax'),

1

model.build(input_shape=(32, 256, 256, 3))

FIGURE 12

Source code for proposed CNN model architecture.

Furthermore, the dense layers, commonly referred to as fully
connected layers, are manipulated to make final predictions based on
the features extracted by the convolutional layers. There are 64 units
in the first dense layer and utilizes the ReLUfunction for activation.
This layer combines the flattened features to interpret complex
patterns in the data. The number of units in the final dense layer
equals the number of classes of the dataset. The softmax function (2)
for activation (Equation 2) since it offers several advantages,
particularly in multi-class classification tasks, by converting raw
model outputs (logits) into a probability distribution. This makes it
easier to interpret the model’s predictions, as the output values lie
between 0 and 1 and sum to 1, representing the relative likelihood of
each class. The Softmax function also emphasizes the largest logits,
making it well-suited for distinguishing between the most likely
classes while suppressing less probable options.

o(x;) =

—Ef B @
j=1

Table 5 summarizes the model architecture and provides a
synopsis of the architecture and the number of parameters at each
layer. The layer output shapes indicate how the data transforms as it
passes through the model. For this particular model, the total amount
of trainable parameters is 183,812. These parameters are adjusted
during training to minimize the loss and improve model accuracy. All
parameters in this model are trainable, which means they can be
updated during the training process. Non-trainable parameters would
remain fixed throughout training. This structured architecture allows
the model to effectively learn and classify the different types of rice
leaf diseases from the input images.

The model compilation as in Figure 13 will prepare the neural
network for training. This process involves configuring key
elements that guide the learning process and optimize the model’s
performance. In the rice leaf disease classification model, several
factors were considered during the model compilation to ensure
effective and efficient training.
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In this research, the Adam (Adaptive Moment Estimation)
optimizer is chosen, which is a widely used and efficient
optimization algorithm in deep learning. This optimizer

TABLE 5 Model summary for the proposed CNN rice leaf disease
classification model.

Output

‘ . Parameter #
dimension

Input (32, 256, 256, 3) -

Data Preprocessing (64, 254, 254, 3) -

Data Augmentation (64, 127, 127, 3) -

Conv2D_1 (32 filters) (64, 254, 254, 32) 896
MaxPooling2D (64, 125, 125, 32) 0
Conv2D_2 (64 filters) (64, 125, 125, 64) 18,496
MaxPooling2D (32, 62, 62, 64) 0
Conv2D_3 (64 filters) (32, 60, 60, 64) 36,928
MaxPooling2D (32, 30, 30, 64) 0
Conv2D_4 (64 filters) (32, 28, 28, 64) 36,928
MaxPooling2D (32, 14, 14, 64) 0
Conv2D_5 (64 filters) (32, 12, 12, 64) 36,928
MaxPooling2D (32, 6, 6, 64) 0
Conv2D_6 (64 filters) (32, 4, 4, 64) 36,928
Dense_1 (32, 64) 16,448
Dense_2 (32, 4) 260
Total parameters: 183,812
Trainable parameters: 183,812
Non- 0

trainable parameters:

frontiersin.org


https://doi.org/10.3389/fpls.2025.1594329
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Rana et al.

encompasses the benefits of AdaGrad and RMSProp which are
stochastic gradient descent extensions. Adam works well at
handling sparse gradients on noisy problems, thus being
applicable to a variety of data types and speeding up convergence
to the optimal solution. The selection of Adam is justified by its
ability to train the complex CNN model.

The loss function employed in this model is sparse categorical
cross-entropy. This function is exceptionally appropriate for
classification problems with multiple classes where the target
labels are integers representing different classes. Sparse categorical
cross-entropy measures the performance of the classification model
by comparing the predicted probability distribution across classes
with the actual class labels. This approach can provide a clear signal
for the model to learn from during training and aid in performing
classification tasks.

In addition, the evaluation metric allocated during the model
compilation phase is accuracy. Accuracy is a straightforward yet
powerful metric that gauges the proportion of correct predictions
made by the model. This evaluation gives a clear and direct
indication of the model’s performance, which enables easy
interpretation during training and validation.

Model training, Figure 14, in developing the rice leaf disease
classification model involves an iterative process that requires
multiple cycles to guarantee the model acquires knowledge from
the data. During training, the model is exposed to the training
dataset, which contains labeled images of rice leaves with distinct
diseases. Each epoch reflects a complete pass through the entire
training dataset. In this instance, the model is trained for 100
epochs. Hence, the model can gain insight into the underlying
patterns and features of the data incrementally.

With the defined batch size, the model is set to process 32
images at a time before updating its parameters. This mini-batch
gradient descent approach aids in managing memory usage and
brings about faster convergence compared to processing the entire
dataset at once or one image at a time.

The model’s performance will be assessed at every epoch using
the validation dataset, which serves as a benchmark to tune
hyperparameters and eliminate overfitting. Besides, the verbose
parameter is utilized to track the detailed progress of the training
process, which includes the loss and accuracy metrics for both
training and validation. This feedback is valuable for diagnosing
potential issues that emerged during training and making the
necessary adjustments.

Hyperparameter tuning is conducted to optimize the
performance of the proposed CNN-based rice leaf disease
classification model. Several hyperparameters were experimented
with to determine the corresponding impact on the model’s

model. compile(
optimizer='adam',
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),
metrics=['accuracy']

)

FIGURE 13
Proposed model compilation.

Frontiers in Plant Science

19

10.3389/fpls.2025.1594329

training_history = model. fit(
train_ds,

epochs=100,
batch_size=32,

verbose=1,
validation_data=val_ds,

)

FIGURE 14
Proposed model training.

performance, in order to identify the ideal combinations of model
parameters for achieving the best possible results. The final
hyperparameters were selected based on their capacity to attain
the highest accuracy. The combination of six convolutional layers,
with an initial layer of 32 filters followed by five subsequent layers
each with 64 filters, allowed the model to progressively learn
complex features at multiple levels of abstraction. Using an image
size of 256x256 pixels provided sufficient resolution for effective
feature extraction. A batch size of 32 offered a good trade-off
between computational efficiency and convergence speed. The
model was trained for 100 epochs to support a thorough learning
process, while the learning rate of 0.001 with the Adam optimizer
maintained great stability. In summary, the hyperparameters listed
in Table 6 yielded the best accuracy for the rice leaf disease
classification model. The chosen settings were excellent for
balancing model complexity, training stability, and performance,
which contributes to a robust classifier capable of accurately
identifying various rice leaf diseases. Table 7 presents the details
on the rationale behind the hyperparameter selection.

To systematically evaluate the impact of different architectural
and training design choices, a comprehensive ablation study was
carried out. This involved experimenting with a variety of model
configurations, including variations in the number of convolutional
layers (3, 4, and 6), filter sizes (3x3 and 5x5), activation functions
(ReLU and LeakyReLU), and dropout rates (0.2, 0.3, and 0.5). The
objective was to identify a configuration that balances high
validation accuracy with good generalization while minimizing
the risk of overfitting. Results from these trials indicated that a 6-
layer convolutional architecture, combined with 3x3 filters, ReLU
activation, and a dropout rate of 0.3, consistently outperformed
other setups. This configuration offered the best trade-oft between
model complexity and training stability, especially in the presence
of limited and imbalanced data.

In addition to architecture-level experiments, extensive
hyperparameter tuning was conducted using a grid search
strategy. The search space included batch sizes of 16, 32, and 64,
learning rates of 0.001, 0.0005, and 0.0001, and optimizers such as
SGD, Adam, and RMSprop. Among these, a batch size of 32, a
learning rate of 0.0005, and the Adam optimizer emerged as the
optimal combination, consistently yielding lower validation loss
and superior generalization to unseen test samples. These choices
were not made heuristically but were the result of a methodical and
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TABLE 6 Hyperparameters for Fine-tuning the Proposed CNN Model.

Number of convolutional .
Filters per layer

Image size (pixels)

10.3389/fpls.2025.1594329

Batch size Epochs Learning rate Optimizer

layers
6 32, 64, 64, 64, 64, 64 256x256 32 100 0.001 (default rate) Adam
6 32, 64, 64, 64, 64, 64 256x256 32 80 0.002 Adam
3 32, 64, 128 224x224 32 100 0.001 (default rate) Adam
3 32, 64, 64 256x256 32 50 0.001 (default rate) Adamax
6 32, 64, 64, 64, 64, 64 256x256 32 60 0.0001 SGD
6 32, 64, 64, 64, 64, 64 256x256 16 50 0.002 Adam

data-driven evaluation process. By grounding the final model
configuration in empirical performance data, the robustness and
reproducibility of the approach were significantly strengthened.
To enhance feature localization, we integrated a hybrid
attention mechanism comprising spatial and channel attention
modules. The channel attention module computes global average
pooling and max pooling across spatial dimensions, followed by a
shared MLP with ReLU activation (Equation 3) and sigmoid

RCxHxW

scaling. For an input feature map Fe , the channel

RCxlxl

attention map Mc€e is computed as:

Mc = 6(MLP(AvgPool(F)) + MLP(MaxPool(F))) (3)

Similarly, spatial attention focuses on the most relevant pixel
regions by applying average and max pooling across the channel
axis, (Equation 4) followed by a convolution:

Ms = o(f7 x 7([AvgPool(F); MaxPool(F)])) (4)

The final attention-refined output is computed as F'=MF followed
by F"=MgF'. This mechanism allows the model to emphasize disease-
relevant leaf regions and suppress background noise.

While the architecture uses convolutional layers and max-pooling
to reduce spatial dimensions, it initially lacked explicit regularization.
To mitigate overfitting, Dropout layers with a probability of 0.3 were
later introduced after the final convolutional block and dense layer.
The inclusion of dropout improved generalization by randomly
disabling neurons during training, forcing the model to learn more
robust patterns. Additionally, early stopping was employed based on

TABLE 7 Summary of hyperparameter selection rationale.

validation loss to prevent overtraining. In future iterations, L2
regularization will also be evaluated for further robustness,
particularly when scaling to more complex or larger datasets.

The model was trained for a maximum of 100 epochs using an
early stopping strategy based on validation loss to prevent
overfitting. Training was conducted on a workstation equipped
with an Intel Core i7-11700 CPU, 32 GB RAM, and an NVIDIA
RTX 3060 GPU with 12 GB VRAM. The operating system was
Windows 11 Pro (64-bit), and the environment included Python
3.9, TensorFlow 2.13, and Keras. During experimentation, it was
observed that models trained for only 50 epochs tended to underfit
the data, while training beyond 100 epochs yielded diminishing
returns and increased overfitting risk. With early stopping, the
training typically converged around epoch 85 - 90, offering an
optimal trade-off between training depth and generalization. This
configuration ensured efficient resource utilization and stable
training behavior across multiple runs.

4.8 Real word deployment

Real-world applicability is very crucial for any research
outcome. Therefore the proposed model has been engineered for
deployment on resource-constrained devices. TensorFlow Lite is the
choice made to ensure this. The optimization with TensorFlow Lite
drastically reduces the computational complexity, enabling offline
inference on smartphones and edge computing platforms such as

Hyperparameter Tried values Final value selected Rationale
. 0.001, .
Learning Rate 0.0005 0.0005 showed stable convergence; 0.001 caused unstable gradients; 0.0001 was too slow
0.0005, 0.0001
Batch Size 16,32, 64 1 Balanced gradient stability and GPU memory usage; avoided underfitting from
large batches
Optimizer SGD, Adam Adam Adam provided faster convergence and better validation performance
Dropout Rate 0.2,0.3,0.5 0.3 Prevented overfitting without overly disrupting training
Epochs 50, 75, 100 100 (with early stopping) Longer training improved generalization; early stopping used to prevent overfitting
Weight Initialization He Normal, Xavier = He Normal Suitable for ReLU-based activations; improved gradient flow
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Raspberry Pi. Such deployment allows for real-time, in-field disease
diagnosis. Also there is no dependence on cloud infrastructure or
high-speed internet. Beyond mobile applications, the model is
designed to be compatible with IoT-based monitoring systems,
where it can receive images from camera-equipped field sensors and
return predictions in real-time. Integration with drone-based crop
surveillance systems is also under consideration for large-scale
monitoring. A working prototype of an Android application is
currently in testing to assess usability, latency, and farmer feedback.

5 Al model evaluation and results

The graphs illustrated in Figure 15 show the performance of the
CNN model designed for rice leaf disease classification, depicting
the relationship between training and validation accuracy as well as
loss over 100 epochs.

In terms of accuracy, both the training and validation accuracy
curves exhibit an upward trend throughout the model training process.
This positive sign indicates that the model is effectively learning from
the data. In the early epochs, there is some noticeable fluctuation in

Training VS Validation Accuracy

10.3389/fpls.2025.1594329

accuracy, which is expected as the model begins to discern and learn
patterns within the dataset. As training progresses, these fluctuations
diminish, and the validation accuracy starts to closely follow the training
accuracy. By the end of the training process, both accuracies reach
around 80%, implying that the model has successfully generalized from
the training data to the validation data without significant overfitting.

Regarding loss, both the training and validation loss curves
present a consistent decreasing trend, which demonstrates that the
model’s predictions are becoming more accurate over time. In the
beginning, there is a sharp decline in both training and validation
loss, reflecting a rapid initial learning. When reaching the later
epochs, the curves of training and validation become more closely
related, though the validation loss shows some fluctuations. These
fluctuations could be attributed to variability in the validation set or
slight overfitting. Nonetheless, the overall decrease in loss values is a
good indicator for the model’s learning process.

The rice leaf disease classification model was rigorously evaluated
on the test dataset, achieving an accuracy of approximately 83.81%.
This result is slightly higher than the final training and validation
accuracies, which is indicative of the model’s excellent generalization
ability when exposed to previously unseen data. Such a performance

Training VS Validation Loss
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FIGURE 15
Graphs for training vs validation accuracy & training vs validation loss.
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gap suggests that the model is not overfitting to the training data, but
rather, it can effectively apply learned patterns to new instances,
enhancing its reliability in real-world scenarios. In addition to
accuracy, the model’s performance was assessed using logarithmic
loss (log loss or cross-entropy loss), which measures the uncertainty
of the predictions. The calculated log loss was approximately 0.476,
which is consistent with the training and validation losses, both
hovering around 0.5. These comparable loss values indicate that the
model’s predictions are well-calibrated and show minimal
uncertainty, as the model’s confidence in its classifications remains
high. The relatively low log loss underscores the model’s ability to
make precise predictions with a clear understanding of class
boundaries, further validating its effectiveness. Taken together, the
high accuracy and low log loss across training, validation, and test
datasets demonstrate that the developed model is both robust and
reliable, offering a strong capability for accurately classifying various
rice leaf diseases under diverse conditions.

The classification report in Table 8 provides a detailed
breakdown of the performance of the developed rice leaf
classification model across different classes. The precision values
show the proportion of true positive predictions among all positive
predictions for a given class, while Recall measures the proportion
of true positive predictions among all actual positive cases for a
class. The F1-Score is the harmonic mean of precision and recall,
which delivers a single metric that balances both concerns. This
indicator is useful for assessing the model’s performance when there
is an uneven class distribution. Overall, the classification report
reveals that the model performs well with good precision and recall
for most classes, particularly for the healthy and leaf blast classes.
However, there is room for improvement in the detection of Hispa,
which has lower precision and recall. Enhancing performance for
this class could involve additional data, more targeted training, or
adjusting hyperparameters of the model.

The confusion matrix in Table 9 supports a comprehensive view
of how effective the developed model is performing in classifying
each type of rice leaf disease. A breakdown of the matrix is listed
as follow:

Brown Spot: The model yields 47 true positives and 8 false
positives classifications, showing high precision and decent
recall. There are a few misclassifications, but this situation

TABLE 8 Summary of classification by the developed model.

Class Precision Recall @ Fl-score Support
Brown Spot 0.80 0.85 0.82 55
Healthy 0.87 0.91 0.89 175
Hispa 0.64 0.62 0.63 47
Leaf Blast 0.91 0.80 0.85 75
accuracy 0.84 352
macro avg 0.81 0.80 0.80 352
weighted avg 0.84 0.84 0.84 352
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could be improved by reducing false positives from
other classes.

Healthy: The model performs very well with strong precision
and recall, with 159 true positives and 16 false negatives.
The misclassifications mostly involve Hispa and leaf blast.

Hispa: The model’s performance is weaker in this class, with
lower precision and recall (29 true positives vs. 18 false
negatives). There are notable inaccurate classifications,
especially as healthy and leaf blast.

Leaf Blast: The model works reasonably well in terms of
precision and recall, as proven by 6 true positives and 15
false positives. Incorrect classifications mainly involve other
diseases such as brown spot and healthy.

As displayed in Figure 16, each class is represented by a unique
ROC curve, and the area under the curve (AUC) for each class is
indicated. The developed model shows a very strong ability to
distinguish the brown spot and leaf blast diseases from other classes,
with AUC values of 0.96 for both. The healthy class also possesses a
high AUC of 0.95. The shape of the curve is close to the top left
corner, further confirms high sensitivity and specificity, presenting
an excellent discriminative ability of the model. The Hispa class has
a slightly lower AUC value (0.92) compared to other classes, but the
result still indicates a favorable model performance. The curve
remains significantly above the diagonal line, which represents
random chance, demonstrating that the model’s classification
ability outperforms random guessing.

The mean absolute error (MAE) and mean squared error (MSE)
are metrics commonly used in performance evaluation of regression
models. Nevertheless, these metrics can also offer insights when
applied to classification models, especially in the context of
prediction probabilities or when interpreting numeric class labels.

The MAE measures the average absolute difference between the
predicted values and the actual values. In this context, predictions
done by the developed model deviate by only 0.24 units from the
actual class labels, which denotes a high level of accuracy.

On the other hand, the MSE measures the average squared
difference between predicted values and actual values. This metric
penalizes larger errors more severely than the MAE, thereby rendering
it particularly sensitive to outliers. An MSE of 0.46 is considered to be
comparatively low, which suggests that most of the model’s
predictions are fairly accurate, with larger errors being less frequent.

In addition to standard classification metrics such as accuracy,
precision, recall, and Fl-score, this study employed advanced
evaluation techniques specifically suited for imbalanced multi-
class classification scenarios, which are common in agricultural
disease datasets. Recognizing that conventional metrics may
obscure performance disparities among minority classes, we
incorporated both macro- and micro-averaged ROC-AUC scores
to assess the model’s ability to discriminate between all disease
categories, regardless of class distribution. The model demonstrated
strong discriminative performance, achieving a macro-average
AUC of 0.95 and a micro-average AUC of 0.94. These results
indicate not only high overall separability but also consistent
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TABLE 9 Confusion Matrix of the Developed Model.

10.3389/fpls.2025.1594329

Predicted
Brown spot Healthy Leaf blast
Brown Spot 47 4 1 3
Healthy 3 159 10 3
Actual
Hispa 3 15 29 0
Leaf Blast 6 4 5 60

predictive capability across both prevalent and underrepresented
disease classes.

To further evaluate classification reliability, Cohen’s Kappa
coefficient was computed, yielding a value of 0.78. This reflects
substantial agreement beyond chance and underscores the model’s
practical utility in critical applications such as early disease
diagnosis, where misclassification can lead to costly agricultural
consequences. The ROC-AUC score was computed on a per-class
basis. Table 10 and Figure 16 provide a breakdown of these values.
The Area Under the Receiver Operating Characteristic Curve
(ROC-AUC) is particularly useful in assessing model performance
in imbalanced datasets because it captures the trade-off between
true positive rate and false positive rate across thresholds.

The ROC-AUC scores obtained for each class are as follows:

These high AUC values indicate that the model demonstrates
strong discriminative power across all disease categories, even for
underrepresented classes such as Hispa. Although precision and

recall were relatively lower for the Hispa class, the ROC-AUC score
of 0.92 still reflects competent separability from other classes,
confirming that the model’s probabilistic outputs remain
informative even when classification certainty varies.

To complement per-class evaluation, the Macro-average ROC-
AUC and Micro-average ROC-AUC were at 0.95 and 0.94 respectively.

These aggregated scores highlight that the model maintains
consistent discriminative performance across both common and
rare classes. The inclusion of both macro and micro averages
ensures a balanced view of the classifier’s robustness on class-
imbalanced data.

Additionally, McNemar’s test was conducted to statistically
validate the observed improvements over baseline models. The test
results confirmed that the performance differences were significant,
thereby reinforcing the robustness of the proposed approach.

Together, these comprehensive evaluation strategies provide a
more holistic understanding of the model’s effectiveness, particularly

Receiver Operating Characteristic (ROC) Curve

True Positive Rate

False Positive Rate

FIGURE 16
ROC curve of the developed model.
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TABLE 10 ROC-AUC scores per class.

Brown Spot 0.96
Healthy 0.95
Hispa 0.92
Leaf Blast 0.96

TABLE 11 Performance comparison of different CNN architectures
implemented in this research.

Modelling approach accuracy

Proposed 6-layer CNN 0.84
DenseNet121 0.66
InceptionV3 0.66
MobileNetV2 0.62
VGG16 0.58

in maintaining fairness and reliability across all disease categories.
This is essential for real-world deployment, where consistent
performance—even on minority classes—directly impacts the
credibility and usability of the system in precision agriculture.

In this study, a stratified 80 - 10-10 split was employed to
ensure sufficient samples in training, validation, and test subsets,
particularly due to class imbalance. However, to strengthen the
reliability of our findings, we conducted an additional 5-fold cross-
validation on the full dataset using the final model configuration.
The average test accuracy across folds was 83.91% (+ 0.72) and the
macro Fl-score was 0.81, confirming the robustness of the model
across varying data splits. These results are consistent with those
obtained from the original split.

5.1 Model's inference of sample images

Figure 17 presents the results of running inference on a subset
of sample images using the developed rice leaf disease classification
model. This visualization serves as an important tool for providing a
clear, qualitative assessment of the model’s performance by
showcasing how it classifies individual images from the test set.
By carefully reviewing these sample results, the researcher can gain
insights into specific areas where the model might be struggling,
such as images where the model exhibits low confidence in its
predictions or cases of misclassification. This can highlight
particular challenges, such as ambiguous or unclear disease
symptoms, overlapping classes, or images with less distinctive
features that could lead to confusion. The qualitative assessment
offered by this visual inspection allows for a deeper understanding
of the model’s behavior in real-world scenarios, helping to pinpoint
specific cases where the model may need further refinement.

Importantly, this qualitative evaluation complements the
quantitative metrics—such as accuracy, log loss, and other
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performance measures—discussed earlier. While the quantitative
metrics provide a statistical overview of the model’s overall
performance, the qualitative review of individual images adds a
layer of interpretability. Together, these analyses offer a more
comprehensive and holistic view of the model’s effectiveness in
accurately classifying various rice leaf diseases, guiding future
improvements to enhance both its precision and robustness. This
combined approach ensures that the model not only performs well
on average but also handles specific, potentially challenging cases
with greater reliability.

5.2 Comparative analysis of models

In order to discover the most effective approach for building the
rice leaf disease classification model, the researcher had tested
multiple CNN architectures, including DenseNet123,
InceptionV3, MobileNetV2, and VGG16, on the same dataset as
shown in Table 12. Each model’s accuracy was assessed to
determine its capability in accurately classifying different types of
rice leaf diseases. To establish the efficacy of the proposed model, we
conducted direct comparisons against several state-of-the-art CNN
architectures, including DenseNet121, InceptionV3, MobileNetV2,
and VGG16—all evaluated using the same dataset under identical
preprocessing and training conditions. The results are summarized
in Table 12.

The proposed 6-layer CNN model achieved the highest
accuracy of 0.84, surpassing the other deep learning models. This
architecture, with six convolutional layers and progressively
increasing filters (32, 64, 64, 64, 64, 64), effectively captures
complex features at various levels of abstraction. The model’s
ability to extract detailed and nuanced features from the dataset
contributes to a robust classification accuracy, thus making this
proposed architecture well-suited for distinguishing between
distinct rice leaf disease classes.

DenseNet121, recognized for its densely connected architecture,
achieved an accuracy of 0.66. Although its design promotes
improved information flow and mitigates the vanishing gradient
problem through direct connections between all preceding layers,
its performance lagged behind the proposed 6-layer CNN. While
the dense connectivity theoretically facilitates efficient feature reuse
and deeper gradient propagation, the model may have been affected
by overfitting or insufficient fine-tuning, limiting its effectiveness on
the rice leaf disease dataset. This outcome suggests that, despite its
architectural strengths, DenseNet121 may require further
adaptation for domain-specific applications such as agricultural
disease detection.

Similarly, InceptionV3—an architecture designed to capture
multi-scale features using parallel convolutional layers of varying
kernel sizes—also recorded an accuracy of 0.66. Its inception
modules enable the extraction of both fine-grained and coarse
features simultaneously, making it highly effective for general
image classification tasks. However, in this case, its performance
was equivalent to that of DenseNet121. This may be attributed to
suboptimal hyperparameters or limited training data tailored to the
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Actual Class: BrownSpot,
Predicted Class: BrownSpot.
Confidence: 86.93%

Actual Class: LeafBlast,
Predicted Class: BrownSpot.
Confidence: 82.19%

Actual Class: Healthy,
Predicted Class: Healthy.
Confidence: 78.77%

FIGURE 17
Model inference on sample images.

Actual Class: Hispa,
Predicted Class: Healthy.
Confidence: 90.96%

Actual Class: Hispa,
Predicted Class: Healthy.
Confidence: 70.56%

Actual Class: Healthy,
Predicted Class: Healthy.
Confidence: 93.85%

unique characteristics of rice leaf diseases. Therefore, although
InceptionV3 is a versatile and efficient model, its performance in
this specialized task underscores the importance of task-
specific optimization.

TABLE 12 Performance comparison with existing work.

Modelling approach Accuracy
Proposed 6-layer CNN 0.84
5-layer Convolution 0.78

Frontiers in Plant Science

Another CNN model, namely MobileNetV2, had yielded an
accuracy of 0.62 in this model. This model is optimized for mobile
and embedded applications with a lightweight architecture that trades
some performance for computational efficiency. MobileNetV2 employs
depthwise separable convolutions, which divide the convolution
operations into the depthwise layer and pointwise layer. Thereby,
this architecture could significantly reduce computational complexity
and model size. In the scenario of rice leaf disease classification, this
efficiency might have come at the cost of lower accuracy, as the model
may lack the depth and complexity required to fully capture the
intricate features of the disease patterns. The unsatisfactory accuracy
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TABLE 13 Benchmarking results.

Parameters
Model Test accuracy (%) (Millions)
Proposed CNN (6-layer) 84.00 0.18
DenseNet121 66.00 7.98
InceptionV3 66.00 23.85
MobileNetV2 62.00 3.50
VGGl6 58.00 138.36

implies that MobileNetV2 may be less effective for this problem
compared to more complex models (Table 11), particularly when
computational resources are not a minor concern. Nevertheless, its
efficiency could be beneficial for deployment in resource-
constrained environments.

Having a simple yet deep architecture, VGG16 resulted in the
lowest accuracy of 0.58 in this case. VGG16 implements a simple
stack of convolutional layers followed by fully connected layers,
which supplies a strong baseline performance in many scenarios.
The architecture of VGG16 is characterized by the use of small 3x3
convolution filters and a consistent structure over the network. This
simplifies the design but at the same time also limits the flexibility.
The model’s performance in this task reflects its constrained feature
extraction capabilities for the specific nuances of rice leaf diseases.
The deeper but less flexible structure of VGG16 might have
restricted its ability to detect and classify the unique features in
the dataset. This lower performance underscores the need for more
specialized and finely tuned architecture for certain areas of
image classification.

Additionally, the 5-layer CNN model from existing research
conducted by (Tejaswini et al.,, 2022) reported an accuracy of 0.78
when trained on the similar dataset. This model featured three
convolutional layers, accompanied by two additional layers: a
dropout layer and an activation function layer. The dropout layer
was implemented to mitigate overfitting by randomly removing a few
neurons during the training process. This approach was intended to
reduce the model size and improve generalization. The activation
function layer included common functions such as ReLU and Tanh,
which defined the complex relationships between variables in the
model and aided in controlling the flow of information across the
network. Despite these enhancements, the proposed 6-layer CNN
model performed better over the 5-layer CNN model, illustrating the
effectiveness of additional convolutional layers in capturing more
complex features in the rice leaf images as presented in Table 12.

The proposed 6-layer CNN was benchmarked against several
deep learning models using the same dataset and under identical
training parameters. These included DenseNet121, InceptionV3,
MobileNetV2, and VGGI16. The benchmarking was conducted
using standardized metrics such as test accuracy, precision, recall,
and model size (parameter count). The results of the comparative
evaluation are summarized in the following Table 13.

In order to attain the best possible results, the comparative
analysis signifies the selection of an appropriate model based on the
dataset and task requirements.
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Precision Recall Fl-score
0.84 0.84 0.84
0.66 0.65 0.65
0.67 0.64 0.65
0.63 0.61 0.62
0.58 0.57 0.57

6 Conclusion and future
recommendations

This research introduces a novel AI framework that enhances
traditional CNNs through two key innovations: attention
mechanisms and a modular deployment architecture. By
embedding spatial and channel attention modules, the model
focuses on the most informative regions of rice leaf images,
improving classification accuracy, robustness, and generalization
under varied conditions. In summary, the proposed 6-layer CNN
model demonstrated the highest accuracy, signifying its suitability
for rice leaf disease classification. In contrast, the other models,
whereas effective in different contexts, showed lower accuracy.

Despite achieving promising accuracy and robustness, the
authors intend to investigate extended factors that can further
improve the performance of the proposed model as part of the
future work. The performance on minority classes (e.g., Hispa) is
relatively lower, even after augmentation and attention integration,
suggesting that further improvements in data diversity or feature
refinement are needed. Secondly, although the model is optimized for
edge deployment, attention mechanisms introduce slight additional
computational overhead, which may impact latency on extremely
low-resource devices. Thirdly, explainability is currently limited and
therefore future work should integrate more interpretable Al
methods (e.g., LIME or SHAP) for improved reliability. Finally,
generalizability to real-world field conditions may be affected by
factors like leaf occlusion, lighting variation, or image blur which are
not fully reflected in the current dataset. Moreover, for future
improvement, we are exploring synthetic oversampling via SMOTE
and conditional GANSs to generate high-fidelity synthetic images.
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