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Introduction: Greenhouse tomato cultivation cycles recognition is often impeded
by the long-tailed challenge, arising from significant differences in cycle lengths
affecting data distribution. This imbalance hinders accurate recognition, particularly
for rare stages, limiting intelligent management in precision agriculture.

Methods: This study proposes a lightweight framework integrating a novel multi-
expert grouping strategy with knowledge distillation. The dataset is divided into three
groups (Head, Balanced, Tail) based on sample quantity. Separate expert models are
trained on each group. Knowledge distillation then transfers the expertise of these
models to a lightweight student model (MSC-MobileViT). MSC-MobileViT enhances
the MobileViT foundation by incorporating a multi-scale convolution module to
improve feature extraction across different scales, capturing both local details and
global structure.

Results: Experimental results demonstrate superior performance. The framework
achieves an overall accuracy of 95.99%, precision of 91.03%, recall of 93.57%, and F1-
score of 92.02%, outperforming state-of-the-art models (ResNet50, MobileNetV3,
MobileViT variants). Crucially, it excels in handling tail classes, improving accuracy
from 79.27% (baseline) to 93.83% for rare stages like "Substrate Soaking” and "Early
Production”. The maximum performance gap across categories is minimized to only
3.49 percentage points. The student model achieves this high performance while
maintaining an extremely low parameter count (0.95M).

Discussion: The proposed framework effectively addresses the long-tailed
recognition challenge in greenhouse tomato cultivation cycles. The multi-expert
grouping strategy optimizes learning for different data distributions, while knowledge
distillation enables high performance within a lightweight model suitable for edge
deployment. The integration of multi-scale convolution significantly enhances feature
extraction in complex agricultural scenes. This research provides a new paradigm for
long-tail recognition in agriculture and demonstrates the viability of deploying efficient,
high-accuracy intelligent systems in real-world greenhouse environments.

long-tail recognition, multi-expert grouping, lightweight model, mobilevit, greenhouse
tomato cultivation cycles
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1 Introduction

As the global population grows and climate change intensifies,
ensuring food security has become a significant challenge for
contemporary societies. In this context, intelligent greenhouse
production, as a model of modern precision agriculture, is
revolutionizing the traditional agricultural production model.
Among them, tomato, as one of the most economically valuable
vegetables in the world (Bergougnousx, 2014), is rich in vitamins C and
E, as well as a variety of natural pigments and flavonoids that help to
prevent oxidative damage and other minerals and antioxidants that
are beneficial to the human body (Dorais et al., 2008), which makes it a
high-quality food to support healthy lifestyles and an innovative
agricultural technology development. Along with these technological
advances, tomato cultivation has transformed from traditional open-
air cultivation to greenhouse cultivation, where precise control of
environmental factors - such as temperature, humidity, light intensity,
and carbon dioxide concentration - has significantly optimized the
tomato cultivation cycles. Controlling environmental factors in the
greenhouse - such as temperature, humidity, light intensity, and
carbon dioxide concentration - it is possible to significantly optimize
the cultivation cycles of tomatoes, thus ensuring continuity and
sustainability of supply. This shift to a more controlled growing
process has led to an increase in tomato yields and quality.
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Accurate identification of cultivation cycles at each stage of
greenhouse tomato growth is the basis for realizing intelligent
management, and its production process covers nine key steps, as
shown in Figure 1. Greenhouse tomato, such as substrate placement,
hole opening, soaking, etc. The precise execution of these steps is
crucial for ensuring the quality of production. In the whole
production system, the accurate identification and monitoring of
growing stages is vital, which involves the real-time monitoring of the
internal environment of the greenhouse and the tracking of tomato
cultivation cycles and decision support. By accurately monitoring
cultivation cycles, producers can adjust management strategies, such
as irrigation or fertilization programs, promptly to adapt to changes
in the environment and the specific growth needs of the crop. This
dynamic management improves production efficiency, enhances
adaptability to environmental changes, and ensures efficient and
sustainable production. In particular, data from greenhouse tomato
production shows a significant long-tailed distribution, with extreme
variations in the duration of different cultivation cycles. This poses a
challenge to traditional machine learning and computer vision
methods. For example, “mid-production” may last for months
while “substrate soaking” takes only a few hours, and this
unbalanced data distribution may affect the model’s overall
performance and lead to misclassification of a few classes. This
extremely unbalanced data distribution significantly challenges

Idle |Substrate Hole Substrate Planting Early Mid Late Seedling
Period [Placement| Opening | Soaking Production|Production|Production| Pulling
Upon comp [Position the |Prepare the s|Immerse the s|Plant tomato s|During the ini|Tomatoes are|This is the fin | After the har
leting the to |chosen subst Jubstrate by cr|ubstrate in wat|eeds or seedli|tial growth ph|now entering t|al stage of to|vest, it's ess
mato growt |rate, whethe |eating holes t|er to ensure it|ngs in a substr|ase of tomatoe |[heir mid-grow|mato growth |ential to rem
h cycle, it's|r it's soil for|o facilitate th|is thoroughly s|ate that has bel|s, it's crucial t|th phase, begi|where the frujove the tom
crucial to m|vegetables o|e planting offaturated and al |en prepared in|o monitor thei|nning to bear f]it begins to ri|ato seedling
eticulously |r a soilless [tomatoes. lowed to expa|advance. r development [ruit. Proper fer|pen and is rea|s from the s
sanitize and |medium, cor nd. closely and m [tilization and|dy for harves |ubstrate to p
ready the gr|rectly within ake necessary |[management a|t. repare for th
eenhouse fo |the greenhou management a |re crucial at th e next produ
r the next pr |se at this sta djustments. is stage. ction cycle.
oduction sta | ge.
ge.
FIGURE 1
Greenhouse tomato cultivation cycles.
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traditional machine learning and computer vision methods. The
long-tailed distribution problem not only affects the model’s overall
performance but also may lead to serious misclassification of a few
classes, thus affecting the accuracy of production decisions.

Various solutions have been proposed in the academic
community to address the long-tailed distribution problem. From
the data level, methods such as oversampling (Dablain et al., 2022),
undersampling (Hasegawa and Kondo, 2022), and data augmentation
(Yun et al,, 2019; Zhang, 2017) attempt to balance the data
distribution directly. Algorithmic-level improvements include cost-
sensitive learning (Thai-Nghe et al, 2010), focus loss (Ross and
Dollar, 2017), and class balancing loss (Cui et al., 2019). Integration
learning methods such as Cascade-RCNN (Cai and Vasconcelos,
2019) and PISA (Weng and Luo, 2023) improve performance by
combining multiple models. Migration learning (Liu et al., 2022; Zhou
et al, 2020) and meta-learning (Guo et al., 2022; Shu et al., 2019), on
the other hand, try to address the category imbalance problem from
different angles. However, these methods still face many challenges in
practical applications, such as high computational complexity, limited
generalization ability, and susceptibility to overfitting.

In recent years, Mixture of Experts (MoE) has shown great
potential in dealing with complex data distributions, and the core
idea of MoE is to decompose a complex task into multiple sub-tasks,
each handled by a specialized “expert” model. This approach was
first proposed by Jacobs et al. (1991) and has been widely used in
deep learning. For example, Sparsely-Gated MoE proposed by
Shazeer et al. (2017) significantly improves the performance of
large-scale language models, and AdaMV-MoE by Chen et al.
(2023) makes breakthroughs in the ImageNet classification task.
The MoE approach has a unique advantage in dealing with long-
tailed data: it can train specialized expert models for different data
distribution features. Different data distribution features are used to
train specialized expert models, adaptively select the most suitable
experts through a dynamic routing mechanism, and have good
scalability and interpretability. Therefore, the MoE method shows
higher potential and flexibility than traditional methods in solving
the long-tailed distribution problem.

However, the direct application of MoE to greenhouse tomato
cultivation cycles identification still faces many challenges. Firstly,
the traditional MoE method requires significant computational
resources, which is unfavorable to be deployed in resource-
constrained natural production environments. Secondly, how to
effectively coordinate the knowledge interaction between different
expert models to avoid the phenomenon of “expert monopoly” is
still an open problem. Finally, it is also a challenge to realize the
lightweight model while maintaining high performance to adapt to
the needs of edge computing devices.

Based on the above analysis, this study proposes an innovative
multi-expert grouping enforcing strategy coupled with a lightweight
model, aiming to solve the problem of long-tail identification of
greenhouse tomato cultivation cycles. Our approach includes the
following key innovations:

1. A novel data grouping strategy is proposed to divide the
long-tailed distribution dataset into three groups, head,
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balance, and tail, according to the number of samples and
train the expert models separately. This strategy optimizes
the model for different distribution features and effectively
alleviates the category imbalance problem.

2. Knowledge distillation technique is introduced to
effectively transfer the knowledge of multiple expert
models into one lightweight student model. This step
reduces the model complexity, retains the advantages of
the expert models, and realizes the balance between high
performance and low number of parameters.

3. Introducing a multi-scale convolution module on top of
MSC-MobileViT significantly enhances the feature
extraction capability of the model. This improvement
enables the model to focus on both local details and the
image’s global structure, improving the accuracy of
cultivation cycles recognition in complex scenes.

To validate the effectiveness of the proposed method, we
constructed a large-scale greenhouse tomato image dataset
containing nine cultivation cycle categories, covering the entire
cultivation cycle from planting preparation to ripening and
harvesting. We conducted comparative experiments of the proposed
method with various state-of-the-art baseline models, including
traditional CNN models (e.g., ResNet50, MobileNetV3) and models
designed for lightweight applications (e.g, MobileViT series). The
experimental results comprehensively evaluate the model performance
in terms of several metrics, such as accuracy, precision, recall, and F1
score, mainly focused on the model’s performance in processing tail
categories. In addition, we conducted in-depth ablation experiments to
analyze the respective contributions of the multi-expert strategy,
knowledge distillation, and multi-scale convolution modules.
Through visual analysis, we further explore the decision-making
mechanism of the model, providing new insights for understanding
and improving the processing of long-tailed distribution data.

The significance of this study is not only limited to improving
the intelligence of greenhouse tomato production but also provides
new ideas for solving the long-tailed identification problem
prevalent in agriculture and industry. We expect that this work
will promote the development of intelligent agriculture technology
and contribute to realizing more efficient and sustainable
agricultural production. In the following sections, we will
introduce the proposed method, experimental design, result
analysis, and the outlook of future research direction in detail; the
contents of this paper are organized as follows: Section 2 describes
the related work and research background of this study; Section 3
describes the details of our dataset; Section 4 describes the overall
structure and details of this method; Section 5 reports the
experimental results and evaluation; Section 6 describes the
conclusions of this paper and prospects for future work.

2 Related work

In the current tomato factory production, cultivation cycles
identification faces several challenges: 1) Due to the significant
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variation in the lengths of various cultivation periods, there is a
long-tailed distribution of the collected data, which poses a
significant challenge for data analysis and model training. Long-
tailed distribution implies that a large amount of data is
concentrated in a few categories. In contrast, most categories have
only a small amount of data, making it difficult to thoroughly learn
the features of all the categories when the model is trained, which
affects the model’s generalization ability. Existing feature extraction
methods also show limitations when dealing with long-tailed
distribution data, as they are often based on the assumption that
the data is uniformly distributed, which is inconsistent with many
reality conditions. 2) Significance area feature extraction is also a
challenge that needs to be solved, especially in the case of high scene
similarity, where identifying the exact region becomes more
difficult. This requires models that accurately extract and
recognize target features from similar backgrounds. 3) To adapt
to the practical demands of greenhouse production, lightweight
models must be developed to ensure deploy ability. These models
need to reduce the consumption of computational resources while
maintaining high accuracy to run efficiently on various hardware
platforms for real-time monitoring and analysis. The solution to
these challenges will promote innovative agriculture development
and improve the efficiency and quality of tomato factory
production. Therefore, this study investigates the existing problems:

2.1 Long-tail identification

Long-tail identification, as a critical challenge in the current
greenhouse cultivation cycles recognition, has caused significant
difficulties in data collection due to the large difference in the
duration period of different stages, in which case the category
imbalance problem is particularly prominent, as the data of a few
categories are often challenging to obtain, which directly affects the
training and performance of the model. This class of problems has
now been provided with category rebalancing (Hong et al., 2021;
Park et al, 2021; Wu et al,, 2021; Zhang and Pfister, 2021),
information enhancement (He et al., 2021; Kim et al.,, 2020; Yin
et al,, 2019) and network structure improvement (Kang et al., 2020;
Wu et al., 2020; Zhong et al., 2021; Zhu and Yang, 2020) are the
three paradigms on which the researchers designed a series of
improvement strategies for the long-tailed recognition problems
faced in different agricultural scenarios.

Zhang et al. (2023b) solved the long-tail recognition problem of
food crop disease images based on migration learning with a
Bilateral-Branch Network (BBN) as a framework. They contributed
three re-sampling strategies, finally achieving 94.3% recognition
accuracy on the long-tail dataset of food crop disease images. Sun
et al. (2021) argued that the decoupled representation and classifier
algorithm is the crucial method to solve the long-tailed recognition
problem and proposed a two-channel algorithm based on decoupled
representation and classifier, which utilizes two channels to focus on
the head class and the middle-tail class respectively. The algorithm
achieves an accuracy, precision, and recall of 93.81%, 94.27%, and
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90.80%, respectively, for the peach leaf disease recognition task. The
recognition accuracy of the head, middle, and tail classes is 93.81%,
94.27%, and 90.80%, respectively. Head, middle, and tail classes were
94.21%, 90.13%, and 88.57%, respectively. Saleh et al. (2023)
proposed a new method for weed comparison learning through
visual representations, WeedCLR, which utilizes class-optimized
loss and the von Neumann entropy of the deep representations.
Neumann Entropy) for classifying weeds in long-tailed datasets. All
of the above methods provide valuable references, but they cannot
meet the lightweight requirement of a tomato cultivation cycles
recognition system; in addition to that, this study needs to consider
the problem of highly similar work environments, in other words, in
mining the recognizable features of different cultivation cycles at the
exact location.

2.2 Significance area feature extraction

Saliency feature extraction is a crucial step in studying
greenhouse tomato g cultivation cycles recognition. It is
challenging as the above process differentiates between different
working cultivation cycles in the same scene. This work was done in
the early days mainly by extracting features manually (Cheng et al.,
2014; Oliva and Torralba, 2006), which relied heavily on people’s
prior knowledge and was time-consuming and labor-intensive.
With the rapid rise of deep learning, saliency region feature
extraction methods have achieved significant breakthroughs in
computer vision, with major advances including attention
mechanisms, multi-scale, and feature fusion.

Attention mechanisms aim to focus attention on essential
features in an image (Hermann et al, 2015), mainly including
channel attention (Hu et al., 2018; Wang et al, 2020), spatial
attention (Hsieh et al., 2019; Hu et al,, 2020; Woo et al., 2018)
and self-attention (Parmar et al., 2018; Vaswani et al., 2017), which
are also widely used in agriculture. Facing the problem of small spot
size in citrus disease identification, which makes it difficult to focus
and extract feature information, Zhang et al. (2024) proposed a
frequency-domain attention network (FdaNet), which changes the
weight of each frequency domain by adaptively learning the
importance of the feature information between different
frequency domains during the network inference process. Zhang
et al. (2023a) added a YOLO feature pyramid structure by adding
the attention mechanism module (ECA-Net) and adaptive feature
fusion mechanism (ASFF), which eftectively solves the problems of
small size of budgerigar, limited features, and unclear attributes.
Sun et al. (2023) chose the M2-transformer network as the decision
base generator. They proposed a method named “DFYOLOv5m-
M?Transformer”, a two-stage image-dense annotation model,
which can generate visual disease feature description sentences
based on identifying the disease region.

The attention mechanism is essential in improving model
performance, especially when dealing with complex tasks.
However, this mechanism increases the computational burden
(Hassanin et al., 2024) and may affect the speed and flexibility of
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model deployment. In contrast, multiscale feature fusion
techniques, which can integrate information at different levels and
provide a more comprehensive view of the data while controlling
the computational complexity, which is particularly important for
real-time applications and resource-constrained environments,
were first proposed by Szegedy et al. (2015). Since then,
multiscale feature fusion techniques have been widely used in
many fields. Zhao et al. (2022) constructed a multiscale feature
fusion network consisting of ResNet, FPN, and CBAM blocks,
which can effectively extract rich disease features in strawberry
leaves, flowers, and fruits. Rong et al. (2020) proposed a
segmentation method based on a multiscale residual fully
convolutional network in the pecan impurity detection task to
overcome the complexity of the foreign object’s shape and color
in different postures. Challenges. Subsequently, to meet the demand
for lightweight deployment of the model, this study also investigates
a lightweight visual transformer.

2.3 Progress in lightweight transformer
structure research

Visual Transformer’s (ViT) success is attributed to the multi-
head attention module. At the same time, its significant model
parameters and high latency make it unsuitable for deployment on
resource-constrained devices. As a result, researchers have
successively proposed a series of lightweight backbones for ViTs.
MobileViT (Mehta and Rastegari, 2021) is one of the typical success
stories, which implicitly integrates global representations by using
the transformer as a convolution, combining the strengths of the
CNN over the ViT, ie., the multi-head self-attention and spatial
inductive bias, and allowing them to learn representations with only
a small number of parameters. Graham et al. (2021) downplayed the
notion of a token in the transformer in their proposed LeViT while
introducing the activation map in CNNs and designing
computationally efficient image chunk extractors that can reduce
the number of features in the first layer. Chen et al. (2022) proposed
a MobileNet and Transformer parallelization of Mobile-Former,
stacking mobile blocks with images as inputs and using efficient
depthwise and pointwise convolution to extract pixel-level local
features in ImageNet classification task from 25-500 MFLOPs
under the stringent regime of MobileNetV3 (Howard et al., 2019).
Vasu et al. (2023) argued that the research on efficient networks
should not focus only on minimizing the FLOPs or the number of
parameters, as there is no strict consistency between these two and
the inference efficiency. An efficient and generalized backbone
network for mobile devices, Mobileone, is proposed, which uses a
model extension strategy with a parameterizable structure to obtain
advanced performance, achieving 75.9% Topl accuracy on the
ImageNet dataset with a speed of< 1 ms. Liu et al. (2023) found
that memory access overhead is a key factor affecting the model’s
speed; the proposed EfficientViT uses a single memory-bound
MHSA between efficient FFN layers, improving memory
efficiency while enhancing channel communication. The above
study opens up a new scope for lightweight applications of ViTs.
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Wang et al. (2024) then proposed a forest fire segmentation
model, FireViTNet, based on MobileViT, which not only achieved
an F1 score of 87.2% but also ensured the model’s lightweight and
deployability. In a study of citrus green fruit detection for real-world
applications, Lu et al. (2023) used the strategy of YOLOV5
combined with MobileViT to achieve an accuracy of 93.6% with
only 6.3 M model parameters. mobileOne-YOLO (Li et al., 2023) is
a new method to detect unfertilized duck eggs and early duck
embryo development, i.e., it is a combination of YOLO and YOLO
to detect unfertilized duck eggs and early duck embryo
development. A new method, i.e., replacing the backbone network
of YOLOv7 with MobileOne, improved the FPS performance by
41.6 without loss of accuracy. This paper investigates a lightweight
long-tail identification of greenhouse tomato work based
on MobileViT.

3 Materials
3.1 Source of data set

In this study, data collection and processing are crucial parts
that directly affect the accuracy and reliability of the research
results. The data were obtained from Beijing Cuihu Workshop
and Ulangab Hongfu Modern Agricultural Industrial Park, which
adopt advanced factory elevated soilless culture production mode
and are equipped with intelligent greenhouse management systems.
This model not only improves the efficiency of tomato production
but also provides us with an ideal environment for data collection.

The data collection period is from May 2023 to April 2024,
covering the entire tomato factory production cycle. The data from
this period allows us to observe the changes in the cultivation cycles
of the greenhouse during different seasons and cultivation cycles,
which is essential for understanding the environmental demands of
tomato growth and adjusting production strategies. The data
collection involved nine critical stages from the idle period to
seedling pulling, each with unique ecological parameters and
production requirements, which are highly valuable for analyzing
the dynamic changes of the environment inside the greenhouse and
optimizing production management.

3.2 Data collection methods

The image acquisition system utilized 16 cameras (1920x1080
resolution) with three deployment configurations: fixed cameras for
24-hour continuous monitoring, mechanically adjustable cameras
for multi-angle canopy imaging, and handheld devices for
supplementary capture of hidden areas. All cameras were installed
at varying heights to ensure full spatial coverage of the
cultivation area.

Tomato cultivation cycles annotation combined automated and
manual processes. Initial labels were generated through timestamp
synchronization with greenhouse management system logs,
followed by agronomic expert verification and supplementation
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for complex cases. A dual-operator cross-checking procedure was
implemented to ensure labeling consistency.

3.3 Data pre-processing methodology

This study employed standardized data partitioning and
augmentation protocols to ensure experimental reproducibility.
The original dataset containing 1,999 images was divided into two
mutually exclusive subsets through random stratified sampling at a
1:1 ratio, resulting in an initial training set of 1,002 images and a test
set of 997 images. To ensure adequate model training, we
implemented random image augmentation for categories
containing fewer than 100 samples in the training set. The
augmentation techniques included: 90° rotation, 180° rotation,
contrast reduction, contrast enhancement, horizontal mirror
flipping, Gaussian blurring, and Gaussian noise addition.
Following these procedures, the final dataset consisted of 1,362
training images and 997 test images. All images were resized to 224
x 224 pixels before being input into the model. Table 1 shows more
details about the number of images in the dataset.

3.4 Analysis of the data distribution

Analyzing Figure 2, it is easy to see that even after the tail-
category enhancement process, the dataset still has a long-tailed
distribution because only a few categories in the dataset have many
samples. In contrast, most other categories have a relatively small
number of samples. This may cause the model to overfit on high-
frequency categories and underfit on low-frequency categories
during training. Overfitting means that the model may not be
able to generalize to new, unseen data, while underfitting may result
in poor model performance on specific categories. However,
greenhouse tomato cultivation cycles are inherently highly
variable, and it is difficult to obtain an idealized data distribution;
therefore, long-tail identification is the focus of this study.

3.5 Analysis of data characteristics

Figure 3 shows a brief view of the different categories of
samples. Since all the samples are from the same greenhouse,
there may be a lot of duplicated information between the different
categories, especially in the neighboring phases. For example, in the
“Preparation for planting” phase between “Substrate placement,”
“Hole opening,” and “Substrate soaking,” only a few features can be
used to distinguish between them, which makes the task as tricky as
fine-grained image classification. The discriminative features appear
at different scales in many samples, which places high demands on
the robustness of the model and its ability to capture contextual
information. In addition, there is a risk of information loss in both
deep neural networks’ pre-processing and down-sampling stages.
Therefore, feature extraction of saliency regions is also essential in
this study.
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4 The proposed methodology

The dataset of the cultivation cycles recognition-related task
inevitably shows a long-tailed distribution due to the significant
difference in the length of the work period, which makes the model
allocate more confidence to the head category to obtain higher
accuracy, but due to the low accuracy of the tail category, it is prone
to the situation that the indexes are too high but not able to satisfy
the actual requirement. Therefore, this paper proposes a multi-
expert joint group-guided long-tail recognition scheme, in which
the categories in the dataset are firstly divided into three groups
according to the number of samples, namely “head,” “balance” and
“tail,” and each group is trained separately. Meanwhile, to optimize
the salient feature extraction capability of the method and meet the
lightweight deployment requirements, this paper proposes a multi-
scale lightweight ViT model named MSC-MobileViT and lets the
integrated expert model guide its training through knowledge
distillation; Figure 4 shows the specific flow of the method.

4.1 The multi-expert joint guidance
methodology

In researching cultivation cycles recognition, we adopt an
innovative joint approach of multi-expert models to effectively deal
with the category imbalance problem existing in the training data.
Specifically, we first analyzed the entire tomato cultivation cycles
recognition dataset in detail, as shown in Table 2, and arranged the
samples in descending order according to the number of samples in
each category in the training set. Then, we divided the dataset into three
different groups. This grouping strategy was initially designed to allow
each expert model to focus on training a specific subset of data, thus
avoiding model bias due to excessive samples in particular categories.
In this process, we are particularly mindful that training only specific
groups of categories can impair the generalization ability of the expert
model. Therefore, we introduce the concept of open-set identification, a
method that considers unknown categories during the model training
phase. We categorize all samples that do not belong to the current
group as “other” and include them in the model training. This aims to
allow the model to learn the ability to distinguish between known and
unknown categories so that when faced with subsequent integration
and distillation tasks, it can more robustly categorize samples from
other groups and more effectively guide the student model.

When constructing the expert models, to ensure adequate
training even with a limited number of samples in the target
classes, MobileViT-s are used as feature extractors for each
specific category, which can increase the model’s sensitivity to a
small number of features. In the model’s output layer, a distinctive
node configuration is implemented, augmenting the number of
target categories by one. This additional node serves as an “other”
category, specifically designed to accommodate instances that do
not fall within the predefined categories. As shown in Figure 5, this
design allows for greater flexibility and robustness in the model’s
classification. Once the three expert models have been trained, the
next step is to integrate them. All the nodes except the “other” node
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TABLE 1 Details of the dataset.

Number of
Number of . ) Number of
: Number of : : pictures in : . Total number
Duration : images in . images in the :
raw images . train set by of images
train set : test set
augmentation
Idle Period 608 304 304 304 608
Substrate Placement 59 30 90 29 119
Hole Opening 51 26 104 25 129
Substrate Soaking 32 16 96 16 112
Planting 113 57 114 56 170
Early Production 24 12 96 12 108
Mid Production 589 295 295 294 589
Late Production 263 132 132 131 263
Seedling Pulling 260 130 130 130 260

are integrated in their category order in the above process. The
outputs of these nodes are then processed by a softmax function,
which generates a probability distribution representing the
predictive confidence of each category. Ultimately, using the
technique of knowledge distillation, these probability distributions
are used as soft labels to guide the training of student models. In this
way, the student model can learn rich feature knowledge from the
expert model and reduce the impact of long-tailed distributions on

its training. Section 4.2 will introduce the design idea of the student
model MSC-MobileViT.

4.2 MSC-MobileViT

The design concept of the MSC-MobileViT model is to achieve
a perfect balance between high accuracy and a low number of
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304304 295295
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250
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150 132132 130130
114 104
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100 1
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Data distribution.
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parameters to meet the needs of practical deployment. Although the
model can improve its performance by guided training with
multiple expert models, it must also enhance its capability in
saliency region feature extraction. MobileViT-xxs, as its backbone
network, introduces a self-attention mechanism that effectively
handles contextual information while keeping the number of
parameters inexpensive, facilitating its deployment in resource-
constrained environments. In addition, the structural similarity
between MobileViT-xxs and the three expert models provides an
ideal basis for logit distillation, further enhancing the models’
performance. The innovation of this study on this basis is that
replacing the first convolution module of the model with a multi-
scale convolution not only enhances the model’s ability to capture
features at different scales but also broadens the model’s potential to
handle more complex visual tasks. The above improvements open
up new possibilities for the model’s versatility and adaptability,
enabling it to demonstrate enhanced performance and flexibility in
the face of variable visual challenges.

The proposed MultiScaleConv module shown in Figure 6 is
designed to extract multi-scale features from the input image. The
module consists of four independent branches, each performing
convolutional operations at different scales to capture information
from different-sized receptive fields. The first branch reduces the
resolution of the feature map through a 3x3 average pooling layer,
followed by feature upscaling using a 1x1 convolutional layer and
enhancing the nonlinear properties through batch normalization and
Relu activation functions. The second branch is initially designed to
enhance the feature dimension by a 1x1 convolutional layer, followed
by batch normalization and Relu activation application, and a 3x3
convolutional layer for further feature extraction. The third branch
builds on this using a 5x5 convolutional kernel to capture a wider
range of spatial features and apply batch normalization and Relu

Frontiers in Plant Science

activation. Conversely, the fourth branch utilizes a 7x7 convolutional
kernel to cover a more extensive range of receptive fields. The outputs
of these branches are eventually merged in the channel dimension to
form a composite feature map that fuses multi-scale features, greatly
enhancing the model’s ability to fully understand and characterize the
input image. This multiscale feature fusion strategy significantly
improves the model’s adaptability to image scale changes and
saliency region feature extraction capability.

4.3 Loss functions

The idea behind the group coaching mechanism is to transfer
the expertise of the three expert models to MSC-MobileViT through
knowledge distillation, which can be likened to matching a student
with a specialized teacher in each subject area. First, each teacher
model is spliced with the output nodes except the “other” node,
softmax to obtain soft labels, and the temperature T is introduced to
perform label smoothing in Equation 1:

exp(z;/T)
qi = # (1)
>,exp(z/T)

Then, in Equation 2, the output of MSC-MobileViT is done the
same way:

exp(v;/T)
pi= L ()
Ejexp(vj /T)

In Equation 3, the difference between the two feature

distributions is compared by KL scatter to generate a soft loss:

Lop = ~Spilog (g;) 3)
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To avoid the expert model passing its error to MSC-MobileViT,
then a hard label is obtained by comparing the probability
distribution of the student with the real label through
ReduceFocalLoss loss, and the parameter o is set to weight the
sum of the two losses, as detailed in Equations 4 and 5:

exp(z;)

S ez @)

Lygra = _Eci log(

©)

The obtained final loss is in the form of backpropagation for the
MSC-MobileViT update parameter.

Ly = aLsoft + (1 - a)Lhard

4.4 Experimental equipment

The experiment uses a standardized computing platform for
model development and validation, with the following hardware

TABLE 2 Grouping data sets by sample size.

Number of images in train set

Number of pictures in train set after augmentation

(Student Model)

configuration: Intel Core 19-10980XE central processor (base
frequency 3.0GHz), 64GB DDR4 memory, and NVIDIA GeForce
RTX 3090 graphic processor (24GB GDDR6X video memory). The
software environment is Windows 11 64-bit Professional operating
system, the development tool is PyCharm 2021, the programming
language is Python 3.9, and the deep learning framework is PyTorch
2.3.0 (CUDA acceleration support). All experiments were executed
in a standalone GPU environment.

4.5 Model training and validation

4.5.1 Training processes

To ensure that the experimental process is reproducible. The
network training was set to 200 full training cycles (Epoch), and the
batch size was kept at a constant ratio of 32 samples/batch. The
optimizer chooses the stochastic gradient descent (SGD) method,

Groups

Idle Period 304
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Late Production 132
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Planting 57
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Substrate Soaking 16
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the momentum factor is set to 0.9, and the weight decay is set to 5e-
4. The learning rate of the feature extraction backbone network is
set to 0.001, and its learning rate is set to 0.01, and the string
annealing algorithm is used. Each Epoch automatically decays the
learning rate to 1/1000 of the initial learning rate at the Meanwhile,
this study adopts the migration learning technique in training the
expert models by using each of the three expert models on the
ImageNet dataset as a pre-training network and migrating its
parameters as the starting point for training.

4.5.2 Evaluation indicators

This study evaluates the model by Fl-score, Accuracy,
Precision, and Recall. Accuracy represents the probability that the
predicted value is the same as the label value. Precision represents
the probability that the label value is positive simultaneously in all
samples with a positive predicted value. Recall represents the
probability that the sample with a positive label value is predicted
to be positive. The F1-score is the harmonic mean of accuracy and
recall, and the evaluation performance is better when the data
sample is unbalanced. The calculation formulas of the four
evaluation indexes are Equations 6-9, where TP is the positive
sample with a positive predictive value, FP is the negative sample
with a positive predictive value, and FN is the positive sample with a
negative predictive value.

> TP/

Accuracy = (6)
n

Precisi TP @

recision = ———

TP + FP

TP
Recall = ———— (8)
TP + FN
1 2 X Precision X Recall
F1 - score = — — = — )
Brocio  Tocll Precision + Recall
recision — Recall

5 Results and discussion

5.1 Demonstration of the overall
recognition effect of the model

The multi-expert grouping enforcing strategy coupled with the
lightweight greenhouse tomato cultivation cycles long-tail
identification method proposed in this study demonstrates
significant performance advantages in the experiments. By deeply
analyzing the experimental results demonstrated in Table 3, we can
gain insight into the effectiveness of the method and its potential
mechanism of action. First, all three expert models (Expert-head,
Expert-balance, and Expert-tail) exhibit excellent performance on
their respective test sets, confirming the grouping strategy’s
effectiveness. By dividing the dataset by the number of samples,
each expert model can focus on learning specific distributional
features, thus achieving high accuracy on the subset for which each
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is responsible. Second, the Expert-ensemble model maintains a high
level of performance, especially in terms of recall, although its
overall performance is slightly lower than that of a single expert
model. This phenomenon may stem from the fusion and trade-off
of different expert knowledge in the ensemble process. Most striking
is the performance of the MSC-MobileViT-distillation model. It not
only outperforms the baseline model MSC-MobileViT in all metrics
but also equals Expert-ensemble in accuracy and even achieves
further improvement in the other three metrics. The above results
highlight the potential of knowledge distillation techniques in
model optimization. Knowledge distillation allows small models
to learn from more complex models, which conveys critical
information and serves as regularization to some extent.

The significant improvement in precision, recall, and F1 score
of the MSC-MobileViT-distillation model reflects its strength in
balancing the ability to recognize different categories. This may be
attributed to the multi-scale knowledge inputs of the multi-expert
model, allowing the student model to understand the data
distribution more comprehensively. It is worth noting that MSC-
MobileViT-distillation significantly improves the recall rate (by
8.56% compared to the baseline model) while maintaining high
accuracy. This indicates that the model accurately recognizes
common categories and effectively captures features of rare
categories. This balance is essential for real-world application
scenarios, especially in tasks such as cultivation cycles
identification, which is sensitive to false omissions.

5.2 Effectiveness of multi-expert strategies

The multi-expert grouping enforcing strategy proposed in this
study demonstrates significant advantages in the long-tail
recognition task of greenhouse tomato cultivation cycles. By
profoundly analyzing each expert model’s contribution and
confusion matrix, we can understand the effectiveness of the
strategy and its mechanism of action more comprehensively.

5.2.1 Analysis of the contribution of each expert
model

The effectiveness of the multi-expert joint guidance strategy can
be analyzed by comparing the accuracies of the different models in
the three category groups in Table 4. Significantly, the MSC-
MobileViT differs in the recognition accuracy of the head and tail
categories without expert model guidance, with a difference of 16.05
percentage points. In contrast, the Expert-ensemble model had a
maximum difference of only 1.64 percentage points, suggesting that
the grouping mechanism of the multi-expert model effectively
balances attention to all categories, not just the head category.
Further, by comparing the expert-ensemble model with the grouped
form of the expert model, we can observe an improvement in both
the BALANCE and the TAIL categories. At the same time, there is a
decrease of 5.02 percentage points in the HEAD category compared
to the Expert-head model, which suggests that the strategy
effectively directs the model to pay more attention to the non-
HEAD category, thus achieving a more balanced performance.
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TABLE 3 Experimental results for each expert model and MSC-MobileViT.

Classes in the test set Model Accuracy

Idle Period,
Mid Production,
Others

Expert-head 98.09%

Late Production,
Seedling Pulling,
Planting,

Others

Expert-balance 94.48%

10.3389/fpls.2025.1571853

Precision Recall Fl-score

98.14% 98.11% 98.13%

90.26% 94.28% 92.09%

Substrate Placement,
Hole Opening,
Substrate Soaking, Expert-tail 95.99%
Early Production,
Others

All Classes

Expert-ensemble 93.58%

All Classes MSC-MobileViT 92.68%

75.17% 90.29% 80.53%

86.69% 92.55% 88.64%

86.29% 85.01% 85.19%

MSC-MobileViT-

All Classes distillation

95.99%

Bold values indicate the best performance for each metric.

Ultimately, the accuracy of the Expert-ensemble distillation-trained
MSC-MobileViT exceeds the baseline level on all groups, especially
the tail category, improves by 14.6 percentage points, and the
maximum gap between different groups is only 3.49
percentage points.

First, from the analysis of the contribution of each expert model
in Table 4, we observe a striking phenomenon: the recognition
accuracy gap between the head category and the tail category of
MSC-MobileViT without specialist guidance is as high as 16.05
percentage points. The colossal difference highlights the challenge
of long-tailed distributed datasets for traditional model training.
This phenomenon is consistent with the findings of Zhang et al.
(2023¢), who pointed out that on long-tailed distribution datasets,
the model tends to favor the head category with a large sample size,
significantly decreasing the ability to recognize the tail category. In
contrast, the maximum accuracy difference of the Expert-ensemble
model between different sets of categories is only 1.64 percentage
points, and the above results fully demonstrate the effectiveness of
the multi-expert grouping strategy in balancing the recognition
ability of different categories. This significant improvement can be
attributed to the grouping mechanism allowing each expert model
to focus on learning specific distributional features, thus achieving a
balanced focus on all categories overall.

Further comparing the performance of the expert ensemble
with that of individual expert models, we find an improvement in
the BALANCE category and the TAIL category and a decrease of
5.02 percentage points in the HEAD category compared to the
Expert-head model. This trade-off phenomenon reflects the
strategy’s success in directing the model to pay more attention to
non-head categories, achieving a more balanced performance. The
above results echo the study of Wang et al. (2022), who suggested
that appropriately reducing the focus on head categories can
significantly improve overall performance when dealing with
unbalanced data.
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91.03% 93.57% 92.02%

Most notably, the accuracy of the Expert-ensemble distillation-
trained MSC-MobileViT-distillation model exceeds the baseline
level on all category groups, especially the tail category, improves
by 14.6 percentage points, and the maximum gap between different
groups is only 3.49 percentage points. The above results fully
demonstrate the effectiveness of knowledge distillation in
transferring expert model ensemble knowledge. This significant
performance improvement may stem from the fact that during the
distillation process, the student model not only learns the complex
labels but also captures the rich information contained in the soft
output of the teacher model, which is consistent with the theory of
knowledge distillation proposed by Hinton (2015).

5.2.2 Analysis of confusion matrices

The analysis of the confusion matrix further corroborates the
effectiveness of the multi-expert strategy, as shown in Figure 7. The
low accuracy of MSC-MobileViT on the tail categories of Substrate
Soaking and Early Production (56% and 67%, respectively)
highlights the negative impact of long-tailed distributions on the
performance of the model, i.e., on unbalanced datasets that
minority classes are often misclassified as majority classes. In
contrast, MSC-MobileViT-distillation trained through the joint
guidance of multi-expert models not only outperforms Expert-
ensemble and MSC-MobileViT in terms of overall accuracy but
also improves the accuracy of the Substrate Soaking and Early
Production classes by up to 88% each. Accuracy was enhanced to
88%, 83%, 32%, and 16%, respectively. This significant
improvement may be attributed to the success of the multi-expert
strategy in effectively transferring the expertise of different expert
models in their respective domains to the student model. However,
it is worth noting that although MSC-MobileViT-distillation
achieved significant improvements in all categories, there is still
room for improvement in some categories. For example, although

substantially improved, the Substrate Soaking category’s accuracy is
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TABLE 4 Accuracies of the different models in the three classes.

Accuracy of

Accuracy of Accuracy of

Model balance h
head classes tail classes
classes
Expert-head 98.33%
Expert-
94.01%

balance
Expert-tail 91.46%
Expert-

93.31% 94.32% 92.68%
ensemble
MSC- 95.32% 91.17% 79.27%
MobileViT e R o
MSC-
MobileViT- 97.32% 94.32% 93.83%
distillation

Bold values indicate the best performance for each metric.

still lower than other categories. This may imply that the feature
representation of some extremely unbalanced categories may not be
fully captured during the knowledge distillation process. Future
research could explore optimizing the distillation process further to
deliver knowledge of rare categories more efficiently.

In summary, the multi-expert grouping enforcing strategy
proposed in this study mitigates the challenges posed by long-
tailed distribution datasets by effectively balancing the recognition
capabilities of different categories. The approach theoretically
bridges the advantages of expert systems and knowledge
distillation and demonstrates its applicability in practice in
complex scenarios. This provides a new way of thinking to solve
the long-tailed recognition problem prevalent in industrial and
agricultural fields and lays the foundation for exploring similar
strategies in a broader range of application scenarios in the future.

5.3 MSC-MobileViT benchmark
performance analysis

This study provides insights into the performance advantages of
the MSC-MobileViT model in the greenhouse tomato working
long-tail identification task through ablation experiments and
Grad-CAM visualization analysis.

5.3.1 Ablation analysis

This paper provides an in-depth analysis of the self-attention
mechanism and the advantages of multi-scale modules for saliency
region feature extraction. We found significant differences by
comparing the performance of three models, MobileNetV3,
MobileViT, and MSC-MobileViT. MobileNetV3, as a
convolutional network, contains the classical SE attention
mechanism module, which makes it capable of efficiently
processing spatial information. However, MobileViT introduces a
transformer architecture, and the above innovation enables it to
capture long-range dependencies, which improves the model’s
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ability to understand global information. On this basis, MSC-
MobileViT further integrates a multi-scale module, and the above
improvement enables the network to extract features at different
scales, allowing the model to focus on both details and overall
structure, which leads to a more comprehensive understanding of
the image content and enhances the model’s expressive power.
Table 5 shows that MobileViT outperforms MobileNetV3 in terms
of performance, while MSC-MobileViT achieves further
improvements based on MobileViT. These findings confirm the
importance and effectiveness of self-attention mechanisms and
multi-scale modules in enhancing network performance.

First, the results of the ablation experiments demonstrate the
gradual performance improvement process from MobileNetV3 to
MobileViT to MSC-MobileViT. MobileNetV3, as the benchmark
model, integrates the SE attention mechanism, but it has an
accuracy of 91.47% and a relatively limited performance on long-
tailed distribution datasets.

MobileViT, by introducing the Transformer architecture,
improves the accuracy to 92.38%, and the precision and recall
rates are also significantly improved. This performance
improvement may stem from the ability of the Transformer
architecture to capture long-range dependencies, which echoes
the “ Attention Is All You Need” theory proposed by Vaswani
et al. (2017). In a complex task like greenhouse tomato cultivation
cycles identification, the importance of global contextual
information cannot be overstated, and Transformer’s self-
attention mechanism can capture this information effectively.

MSC-MobileViT further improves the model performance
based on MobileViT by integrating the multi-scale module,
especially regarding recall and F1 score. The accuracy reached
92.68%, recall improved by 5.15 percentage points, and F1 score
improved by 7.65 percentage points. This overall performance
improvement may be attributed to the ability of the multiscale
module to extract features at different scales, thus focusing on both
local details and the global structure of the image.

5.3.2 Grad-CAM visualization and analysis

The Grad-CAM visualization analysis corroborates the above
findings while providing more profound insights. The heatmap
generated by MobileNetV3 shows that the model tends to focus on
more significant contiguous regions Figure 8, which reflects the
advantage of convolutional networks in capturing local features.
However, this focus pattern may result in some critical long-range
dependencies being overlooked, which is consistent with the finding of
Jiang et al. (2024) that traditional CNNs may over-focus on certain
discriminative regions while ignoring other important information. In
contrast, MobileViT’s heatmap presents a more decentralized and
fine-grained distribution of concerns, suggesting that the Transformer
architecture can better capture global contextual information. This
feature is essential when dealing with complex scenarios, such as
identifying tomato plants at different cultivation cycles.

The heatmap of MSC-MobileViT shows the most detailed and
diverse feature focus patterns. In recognition of complex categories
such as “Mid Production,” MSC-MobileViT can focus on the plant’s
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overall structure and the local details, such as leaf morphology, fruit
status, etc. This multi-scale feature extraction capability is critical

when recognizing complex scenes, such as tomato plants at different
stages of growth. This multi-scale feature extraction capability not
only improves the recognition accuracy of the model but also
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enhances its sensitivity to slight differences in various cultivation
cycles. The above findings echo the Multiscale Visual Transformer
(MViT) proposed by Fan et al. (2021), who emphasized the
importance of multiscale feature learning for improving the

performance of visual tasks.
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TABLE 5 Analysing the advantages of MSC-MobileViT.

Model Accuracy Precision Recall fl-score
MobileNetV3 91.47% 81.73% 78.58% 78.34%
MobileViT 92.38% 85.39% 79.86% 77.54%
MSC-MobileViT 92.68% 86.29% 85.01% 85.19%

Bold values indicate the best performance for each metric.
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FIGURE 8
Grad-CAM visualization.
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5.4 Stratified cross-validation

To ensure a more robust evaluation of our model’s generalization
stability and reduce the bias that can stem from a single data split, we
employed five-fold stratified cross-validation in Table 6. We chose an
8:2 split between training and validation sets without applying data
augmentation. While the original setup used a 1:1 split and included
augmentation, this difference might introduce some variability in
results. However, the overall performance trend remains consistent.

Across all key metrics, our approach (Ours) consistently
outperformed the baseline model. The average accuracy reached
96.06%, representing a 1.46 percentage point improvement over
Baseline’s 94.60%. Fold K4 was particularly notable, where accuracy
rose to 97.24%, 2.01 points above the baseline. This suggests that
when more data is available, our model avoids overfitting and better
captures the underlying distribution. Even in Fold K1, which
included fewer rare categories, our model still achieved an
impressive 96.03% accuracy, outperforming the baseline by 1.74
points and demonstrating strong adaptability.

Recall, which is especially important for identifying long-tail
categories, also improved substantially. The average recall for our
model was 92.55%, a 6.84 point increase over the baseline. In Fold
K3, recall reached 93.70%, outperforming the baseline by over 11
points. In Fold K4, the difference was 6.05 points. These gains
highlight the effectiveness of the multi-expert grouping strategy,
which helps the model learn underrepresented features more
effectively—even without augmentation. Stages such as Substrate
Soaking and Early Production, which have fewer samples, were
better captured under this approach.

Precision and Fl-score saw similar improvements. Our model
averaged 91.21% for precision and 91.33% for F1-score, outperforming
the baseline by 3.03 and 4.90 points respectively. In Fold K3, for
instance, precision was 89.46% compared to the baseline’s 87.17%,
indicating fewer false positives. Fold K4 showed an F1-score of 91.78%,
outpacing the baseline by 2.66 points and demonstrating a well-
balanced trade-off between accuracy and recall.

Model stability is especially critical in real-world deployment
scenarios. Our results showed smaller variation across folds, with a
standard deviation of 0.62% for accuracy and 1.11% for recall. In
contrast, the baseline showed higher variability—0.36% and 2.56%,
respectively—suggesting that our approach yields more consistent
performance across diverse subsets such as seasonal or greenhouse-
specific data.

5.5 Comparison with existing methods

5.5.1 Comparison with the main network of other
classifications

This study compares the performance of multiple state-of-the-
art models in a long-tail recognition task for greenhouse tomato
cultivation cycles, and the experimental results are shown in
Table 7. Overall, the accuracy of all models ranges from 83.25%
to 95.99%, showing a significant performance variation. Our
proposed model performs best in critical metrics such as

Frontiers in Plant Science

16

10.3389/fpls.2025.1571853

accuracy, precision, recall, and F1 score while maintaining
deficient parameters, demonstrating an excellent performance-
efficiency balance.

From the accuracy perspective, our model tops the list with
95.99%, outperforming all compared models. The MobileVit-s
model follows with 93.88% accuracy, while the ResNet50 model
performs poorly with only 83.25%. Notably, despite having the most
significant number of parameters (50.07M), the ViT16 model fails
to match the accuracy (87.86%) of the lighter models with far fewer
parameters, highlighting the critical impact of model design
on performance.

In terms of accuracy, our model also performs well with 91.03%.
The MobileViT-s model comes in second place with 88.05%
accuracy, while the ResNet50 model is again at the bottom of the
list with 52.39%. The above results reflect traditional convolutional
neural networks’ challenges when dealing with long-tailed
distributed datasets.

On the recall metric, our model is significantly ahead of the
others with an excellent result of 93.57%. The MobileVit-s model
comes in second place with 86.55%, while the ResNet50 model
performs poorly with a recall of only 51.36%. The above results
highlight the superior ability of our proposed model to recognize
various types of cultivation cycles, especially rare categories.

The FI score, as a reconciled average of precision and recall,
reflects the model’s overall performance more comprehensively.
Our model leads the pack with 92.02% on the above metrics, and
MobileVit-s comes in second with 87.12%. Interestingly, although
MobilenetV3 performs well in accuracy (91.47%), its F1 score
(78.34%) is relatively low, which may hint at some model
limitations in dealing with unbalanced datasets.

Regarding the number of parameters, our method has only
0.95M parameters, which is tied with MobileVit-xxs for the lowest
but significantly outperforms the latter. In contrast, ViT16 and
ResNet50 have 50.07M and 25.56M parameters, respectively, yet fail
to dominate in performance, highlighting our model’s outstanding
advantage in balancing efficiency and performance.

The model proposed in this study performs well in the greenhouse
tomato cultivation cycles long-tail recognition task, comprehensively
outperforming existing state-of-the-art models in all performance
metrics and achieving a meager parametric count.

First, the significant advantages of our model in terms of accuracy
(95.99%) and recall (93.57%), especially compared to MobileVit-xxs
with a similar number of participants (92.38% accuracy and 79.86%
recall), highlight the effectiveness of our proposed multi-expert
grouping enforcing strategy. This performance improvement may
stem from the strategy effectively mitigating the category imbalance
problem caused by the long-tailed distribution.

Second, our model keeps the number of parameters at 0.95M
while maintaining high performance, which is significant in
lightweight model design. In contrast, ViT16 has a 50.07M
parameter count, but its accuracy (87.86%) and F1 score (76.96%)
are significantly lower than our model. Our approach may have
achieved more efficient parameter utilization by combining multi-
scale feature extraction and knowledge distillation, thus capturing
richer feature representations within a limited parameter space.

frontiersin.org


https://doi.org/10.3389/fpls.2025.1571853
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Zhang et al.

TABLE 6 The stratified cross-validation.

10.3389/fpls.2025.1571853

Accuracy Precision Recall fl-score
baseline ours baseline ours baseline ours baseline
K1 94.29% 96.03% 88.69% 93.81% 85.84% 91.21% 86.83% 92.34%
K2 94.28% 95.88% 89.91% 91.45% 89.05% 91.70% 89.11% 90.49%
K3 94.76% 95.71% 87.17% 89.46% 82.50% 93.70% 83.90% 91%
K4 95.23% 97.24% 89.60% 90.69% 87.97% 94.02% 89.12% 91.78%
K5 94.43% 95.44% 85.51% 90.63% 83.21% 92.10% 83.21% 91.06%
mean 94.60% 96.06% 88.18% 91.21% 85.71% 92.55% 86.43% 91.33%

Notably, our model’s F1 score (92.02%) advantage over other
metrics is more prominent. The above results imply that the model
improves the overall accuracy and achieves a better balance in all
categories when dealing with long-tailed distribution data. This balance
is crucial for practical applications, especially in tasks such as cultivation
cycles identification, which is sensitive to misidentification.

Another point of concern is the poor performance of the
ResNet50 model in this task (83.25% accuracy, 51.52% F1 score).
The above results may reflect the limitations of traditional
convolutional neural networks when dealing with long-tailed
distribution data and complex scene recognition tasks. In
contrast, models based on the Transformer architecture (e.g., the
MobileVit family and our model) generally perform better, which
may be attributed to the advantage of the self-attention mechanism
in capturing long-range dependencies.

In addition, we expanded the evaluation to include parameter
count and computational cost, showing that MobileViT-S achieved
93.88% accuracy and an 87.12% F1 score with 4.94 M parameters
and 1.46 G FLOPs while our model reached 95.99% accuracy and a
92.02% F1 score using 0.95 M parameters and 0.29 G FLOPs.
Plotting accuracy against FLOPs positioned our approach on the
Pareto frontier, evidencing an ideal balance between resource
efficiency and predictive performance. Future work might explore
dynamic early-exit mechanisms, hardware-aware neural
architecture search, mixed-precision quantization, and

knowledge-distillation techniques to push sub-1 M-parameter
models beyond 0.3 G FLOPs without sacrificing accuracy.

5.5.2 Comparison with SOTA long-tailed
recognition methods

To further assess the advantages of our approach in long-tail
recognition, we conducted a systematic comparison against the
Bilateral Branch Network (BBN) (Zhou et al., 2020), the Re-mixing
Strategy(ReMix) (Chou et al., 2020), Balanced Margin Softening
(BMS) (Ren et al, 2020), and the Curvature-Balanced Feature
Manifold Learning Method(CR) (Ma et al, 2023) in Table 8
Comparison experiment with SOTA long-tailed recognition
methods. The results show that our method delivers the highest
accuracy on tail categories. For the extremely rare Substrate Soaking
stage, we achieve an identification rate of 87.50%, matching BMS. In
the Early Production stage, we set a new record with 83.33%
accuracy—an 8.33-point improvement over the next best method.
Hole Opening and Substrate Placement attain 96.00% and 96.55%,
respectively, confirming that the group expert strategy represents a
substantial breakthrough in modeling rare samples.

Overall, our method secures a leading position with an average
accuracy of 95.99%, outperforming the second-place CR (94.18%)
by 1.81 points. Importantly, this advantage extends beyond tail
categories: in the Planting stage (balanced categories), we reach
96.43%—far exceeding existing state-of-the-art methods and

TABLE 7 Comparison experiment with the main network of other classifications.

Model Accuracy Precision Recall fl-score Parameters FLOPs
ViT16 87.86% 81.79% 75.74% 76.96% 50.07M 11.29G
ResNet50 83.25% 52.39% 51.36% 51.52% 25.56M 413G
MobilenetV3 91.47% 81.73% 78.58% 78.34% 421M 0.23G
MobileOneS0 86.96% 67.35% 65.17% 64.94% 4.28M 112G
MobileOneS1 86.36% 72.68% 64.16% 62.74% 3.56M 0.89G
MobileVit-s 93.88% 88.05% 86.55% 87.12% 4.94M 1.46G
MobileVit-xs 89.77% 70.63% 71.23% 70.22% 1.94M 0.74G
MobileVit-xxs 92.38% 85.39% 79.86% 77.54% 0.95M 027G
Ours 95.99% 91.03% 93.57% 92.02% 0.95M 0.29G

Bold values indicate the best performance for each metric.
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TABLE 8 Comparison experiment with SOTA long-tailed recognition methods.

Groups Classes BBN ReMix BMS CR Ours
Head Classes Idle Period 92.76% 98.68% 97.70% 98.36% 99.34%
Mid Production 93.20% 96.26% 94.56% 96.26% 95.24%
Balance Classes Late Production 87.02% 84.73% 88.55% 87.02% 93.13%
Seedling Pullin 88.46% 91.54% 94.62% 95.38% 94.62%
Planting 78.57% 89.29% 92.86% 94.64% 96.43%
Tail Classes Substrate Placement 93.10% 96.55% 89.66% 96.55% 96.55%
Hole Opening 80% 92% 88% 88% 96%
Substrate Soaking 37.50% 75% 87.50% 62.50% 87.50%
Early Production 75% 75% 75% 50% 83.33%
All 89.37% 93.78% 93.98% 94.18% 95.99%

Bold values indicate the best performance for each metric.

demonstrating that knowledge distillation technology effectively
integrates expert knowledge across groups. For head categories,
the Idle Period stage achieves an exceptional 99.34% accuracy,
illustrating a new paradigm of head-tail collaborative optimization.

5.6 Limitations and future work

5.6.1 Research limitations

Despite the significant results achieved in this study in the task
of long-tail identification of greenhouse tomato cultivation cycles,
there are still some limitations of concern. First, the limitations of
the dataset may affect the model’s generalization ability. Although
covering multiple cultivation cycles categories, the dataset used in
this study may not fully reflect all possible real-world production
scenarios, especially some extreme or rare cases. Second, although
our model performs well on the current dataset, its ability to
generalize to other environments or conditions has yet to be
verified. Finally, although our model achieves few parameters, it
may face computational resource constraints in real-world
deployments, especially on resource-constrained edge devices.

5.6.2 Future Research Directions
Based on these limitations, we propose the following promising
directions for future research:

1. Enhanced data diversity and adaptive learning: future
research could focus on constructing a more
representative and diverse dataset of greenhouse tomato
cultivation cycles, including different varieties, growth
stages, and anomalies. At the same time, explore adaptive
learning algorithms that enable the model to continuously
learn from and adjust to new data, thus improving its
ability to generalize in dynamic environments.

2. Optimize the multi-expert collaboration mechanism:
conduct in-depth research on improving the multi-expert
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grouping enforcing strategy to handle the unbalanced long-
tailed distribution better. Dynamic expert allocation
mechanisms or meta-learning approaches can be explored
to enable models to adjust expert combinations according
to different data distribution characteristics automatically.
Such approaches may provide new ideas for solving the
problem of the generalizability of AI systems.

3. Cross-modal learning and knowledge fusion: consider
extending this study to multimodal learning, combining
multi-source information such as image data,
environmental sensor data, and plant physiological
indicators to construct a more comprehensive cultivation
cycles recognition system. This will not only improve the
accuracy and robustness of the recognition but may also
reveal new plant growth patterns and provide deeper
insights into innovative agricultural management.

. Edge Intelligence and Federated Learning: To address the
limitations of practical deployment environments, we study
how to lighten the model further and, at the same time,
explore federated learning techniques to achieve distributed
model training and updating. This can fully use decentralized
computational resources while protecting data privacy to
realize large-scale, real-time work monitoring systems.

Through these research directions, we aim to promote the
development of innovative agriculture technology further, extend
the results of this study to a broader range of application scenarios,
and ultimately realize a more efficient and sustainable agricultural
production model.

6 Conclusion

This study proposes an innovative lightweight recognition
model coupled with a multi-expert grouping enforcing strategy
for the above challenging problem of long-tailed recognition of
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greenhouse tomato cultivation cycles. Through in-depth theoretical
analysis and experimental validation, we draw the following
core conclusions:

1. The multi-expert grouping enforcing strategy significantly
improves the recognition performance of long-tailed
distribution data: our approach successfully improves the
recognition accuracies of tailed categories (e.g., Substrate
Soaking and Early Production) from 56% and 67% in the
baseline model to 88% and 83%, which fully demonstrates
the effectiveness of the strategy in alleviating the category
imbalance problem. The above findings provide a new
paradigm for dealing with long-tailed distribution data,
which is applicable to agriculture and may also be extended
to other fields with category imbalance problems.

. Knowledge distillation technique realizes the balance
between high performance and low number of
parameters. By effectively transferring the knowledge
from multiple expert models into a lightweight student
model with only 0.95M parameters, our method
significantly reduces the computational complexity while
maintaining high performance (95.99% accuracy and
92.02% F1 score). The above results provide a feasible
solution for efficient AI deployment in resource-
constrained environments and promote the development
of edge intelligence technology.

. The improved MSC-MobileViT model shows excellent
feature extraction capability. By introducing a multi-scale
convolutional module, our model can capture both local
details and the global structure of an image and performs
well in complex scene recognition tasks. The above
improvements not only improve the recognition accuracy
of the model but also enhance its ability to adapt to features
at different scales, which provides new ideas for model
design in the field of computer vision.

The findings of this study have important theoretical and
practical implications for the fields of intelligent agriculture and
computer vision. Theoretically, our study expands the long-tailed
distribution data processing methodology and provides a new
perspective for solving the category imbalance problem. At the
practical level, our approach provides a powerful tool for intelligent
management of greenhouse tomato production, which has the
potential to improve production efficiency and resource
utilization significantly.
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