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Tackling the long-tailed 
challenge of greenhouse tomato 
cultivation cycles recognition: a 
sub-group guided, multi-expert 
lightweight framework 
Ruochen Zhang1, Jingxin Yu1, Lin Han1,2, Huankang Cui1,3, 
Lichun Wang1, Fan Xu1* and Xiaoming Wei1* 

1National Engineering Research Center for Intelligent Equipment in Agriculture, Beijing, China, 
2School of Horticulture and Landscape Architecture, Tianjin Agricultural University, Tianjin, China, 
3School of Mechanical and Automotive Engineering, Xiamen University of Technology, Fujian, China 
Introduction: Greenhouse tomato cultivation cycles recognition is often impeded 
by the long-tailed challenge, arising from significant differences in cycle lengths 
affecting data distribution. This imbalance hinders accurate recognition, particularly 
for rare stages, limiting intelligent management in precision agriculture. 
Methods: This study proposes a lightweight framework integrating a novel multi-

expert grouping strategy with knowledge distillation. The dataset is divided into three 
groups (Head, Balanced, Tail) based on sample quantity. Separate expert models are 
trained on each group. Knowledge distillation then transfers the expertise of these 
models to a lightweight student model (MSC-MobileViT). MSC-MobileViT enhances 
the MobileViT foundation by incorporating a multi-scale convolution module to 
improve feature extraction across different scales, capturing both local details and 
global structure. 
Results: Experimental results demonstrate superior performance. The framework 
achieves an overall accuracy of 95.99%, precision of 91.03%, recall of 93.57%, and F1­
score of 92.02%, outperforming state-of-the-art models (ResNet50, MobileNetV3, 
MobileViT variants). Crucially, it excels in handling tail classes, improving accuracy 
from 79.27% (baseline) to 93.83% for rare stages like "Substrate Soaking" and "Early 
Production". The maximum performance gap across categories is minimized to only 
3.49 percentage points. The student model achieves this high performance while 
maintaining an extremely low parameter count (0.95M). 
Discussion: The proposed framework effectively addresses the long-tailed 
recognition challenge in greenhouse tomato cultivation cycles. The multi-expert 
grouping strategy optimizes learning for different data distributions, while knowledge 
distillation enables high performance within a lightweight model suitable for edge 
deployment. The integration of multi-scale convolution significantly enhances feature 
extraction in complex agricultural scenes. This research provides a new paradigm for 
long-tail recognition in agriculture and demonstrates the viability of deploying efficient, 
high-accuracy intelligent systems in real-world greenhouse environments. 
KEYWORDS 

long-tail recognition, multi-expert grouping, lightweight model, mobilevit, greenhouse 
tomato cultivation cycles 
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1 Introduction 

As the global population grows and climate change intensifies, 
ensuring food security has become a significant challenge for 
contemporary societies. In this context, intelligent greenhouse 
production, as a model of modern precision agriculture, is 
revolutionizing the traditional agricultural production model. 
Among them, tomato, as one of the most economically valuable 
vegetables in the world (Bergougnoux, 2014), is rich in vitamins C and 
E, as well as a variety of natural pigments and flavonoids that help to 
prevent oxidative damage and other minerals and antioxidants that 
are beneficial to the human body (Dorais et al., 2008), which makes it a 
high-quality food to support healthy lifestyles and an innovative 
agricultural technology development. Along with these technological 
advances, tomato cultivation has transformed from traditional open-
air cultivation to greenhouse cultivation, where precise control of 
environmental factors - such as temperature, humidity, light intensity, 
and carbon dioxide concentration - has significantly optimized the 
tomato cultivation cycles. Controlling environmental factors in the 
greenhouse - such as temperature, humidity, light intensity, and 
carbon dioxide concentration - it is possible to significantly optimize 
the cultivation cycles of tomatoes, thus ensuring continuity and 
sustainability of supply. This shift to a more controlled growing 
process has led to an increase in tomato yields and quality. 
Frontiers in Plant Science 02 
Accurate identification of cultivation cycles at each stage of 
greenhouse tomato growth is the basis for realizing intelligent 
management, and its production process covers nine key steps, as 
shown in Figure 1. Greenhouse tomato, such as substrate placement, 
hole opening, soaking, etc. The precise execution of these steps is 
crucial for ensuring the quality of production. In the whole 
production system, the accurate identification and monitoring of 
growing stages is vital, which involves the real-time monitoring of the 
internal environment of the greenhouse and the tracking of tomato 
cultivation cycles and decision support. By accurately monitoring 
cultivation cycles, producers can adjust management strategies, such 
as irrigation or fertilization programs, promptly to adapt to changes 
in the environment and the specific growth needs of the crop. This 
dynamic management improves production efficiency, enhances 
adaptability to environmental changes, and ensures efficient and 
sustainable production. In particular, data from greenhouse tomato 
production shows a significant long-tailed distribution, with extreme 
variations in the duration of different cultivation cycles. This poses a 
challenge to traditional machine learning and computer vision 
methods. For example, “mid-production” may last for months 
while “substrate soaking” takes only a few hours, and this 
unbalanced data distribution may affect the model’s overall

performance and lead to misclassification of a few classes. This 
extremely unbalanced data distribution significantly challenges 
FIGURE 1 

Greenhouse tomato cultivation cycles. 
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traditional machine learning and computer vision methods. The 
long-tailed distribution problem not only affects the model’s overall 
performance but also may lead to serious misclassification of a few 
classes, thus affecting the accuracy of production decisions. 

Various solutions have been proposed in the academic 
community to address the long-tailed distribution problem. From 
the data level, methods such as oversampling (Dablain et al., 2022), 
undersampling (Hasegawa and Kondo, 2022), and data augmentation 
(Yun et al., 2019; Zhang, 2017) attempt to balance the data 
distribution directly. Algorithmic-level improvements include cost-
sensitive learning (Thai-Nghe et al., 2010), focus loss (Ross and 
Dollár, 2017), and class balancing loss (Cui et al., 2019). Integration 
learning methods such as Cascade-RCNN (Cai and Vasconcelos, 
2019) and PISA (Weng and Luo, 2023) improve performance by 
combining multiple models. Migration learning (Liu et al., 2022; Zhou 
et al., 2020) and meta-learning (Guo et al., 2022; Shu et al., 2019), on 
the other hand, try to address the category imbalance problem from 
different angles. However, these methods still face many challenges in 
practical applications, such as high computational complexity, limited 
generalization ability, and susceptibility to overfitting. 

In recent years, Mixture of Experts (MoE) has shown great 
potential in dealing with complex data distributions, and the core 
idea of MoE is to decompose a complex task into multiple sub-tasks, 
each handled by a specialized “expert” model. This approach was 
first proposed by Jacobs et al. (1991) and has been widely used in 
deep learning. For example, Sparsely-Gated MoE proposed by 
Shazeer et al. (2017) significantly improves the performance of 
large-scale language models, and AdaMV-MoE by Chen et al. 
(2023) makes breakthroughs in the ImageNet classification task. 
The MoE approach has a unique advantage in dealing with long-
tailed data: it can train specialized expert models for different data 
distribution features. Different data distribution features are used to 
train specialized expert models, adaptively select the most suitable 
experts through a dynamic routing mechanism, and have good 
scalability and interpretability. Therefore, the MoE method shows 
higher potential and flexibility than traditional methods in solving 
the long-tailed distribution problem. 

However, the direct application of MoE to greenhouse tomato 
cultivation cycles identification still faces many challenges. Firstly, 
the traditional MoE method requires significant computational 
resources, which is unfavorable to be deployed in resource-
constrained natural production environments. Secondly, how to 
effectively coordinate the knowledge interaction between different 
expert models to avoid the phenomenon of “expert monopoly” is 
still an open problem. Finally, it is also a challenge to realize the 
lightweight model while maintaining high performance to adapt to 
the needs of edge computing devices. 

Based on the above analysis, this study proposes an innovative 
multi-expert grouping enforcing strategy coupled with a lightweight 
model, aiming to solve the problem of long-tail identification of 
greenhouse tomato cultivation cycles. Our approach includes the 
following key innovations: 
Fron
1. A novel data grouping strategy is proposed to divide the 
long-tailed distribution dataset into three groups, head, 
tiers in Plant Science 03	
balance, and tail, according to the number of samples and 
train the expert models separately. This strategy optimizes 
the model for different distribution features and effectively 
alleviates the category imbalance problem. 

2.	 Knowledge distillation technique is introduced to 
effectively transfer the knowledge of multiple expert 
models into one lightweight student model. This step 
reduces the model complexity, retains the advantages of 
the expert models, and realizes the balance between high 
performance and low number of parameters. 

3. Introducing a multi-scale convolution module on top of 
MSC-MobileViT significantly enhances the feature 
extraction capability of the model. This improvement 
enables the model to focus on both local details and the 
image’s global structure, improving the accuracy of 
cultivation cycles recognition in complex scenes. 
To validate the effectiveness of the proposed method, we 
constructed a large-scale greenhouse tomato image dataset 
containing nine cultivation cycle categories, covering the entire 
cultivation cycle from planting preparation to ripening and 
harvesting. We conducted comparative experiments of the proposed 
method with various state-of-the-art baseline models, including 
traditional CNN models (e.g., ResNet50, MobileNetV3) and models 
designed for lightweight applications (e.g., MobileViT series). The 
experimental results comprehensively evaluate the model performance 
in terms of several metrics, such as accuracy, precision, recall, and F1 
score, mainly focused on the model’s performance in processing tail 
categories. In addition, we conducted in-depth ablation experiments to 
analyze the respective contributions of the multi-expert strategy, 
knowledge distillation, and multi-scale convolution modules. 
Through visual analysis, we further explore the decision-making 
mechanism of the model, providing new insights for understanding 
and improving the processing of long-tailed distribution data. 

The significance of this study is not only limited to improving 
the intelligence of greenhouse tomato production but also provides 
new ideas for solving the long-tailed identification problem 
prevalent in agriculture and industry. We expect that this work 
will promote the development of intelligent agriculture technology 
and contribute to realizing more efficient and sustainable 
agricultural production. In the following sections, we will 
introduce the proposed method, experimental design, result 
analysis, and the outlook of future research direction in detail; the 
contents of this paper are organized as follows: Section 2 describes 
the related work and research background of this study; Section 3 
describes the details of our dataset; Section 4 describes the overall 
structure and details of this method; Section 5 reports the 
experimental results and evaluation; Section 6 describes the 
conclusions of this paper and prospects for future work. 
2 Related work 

In the current tomato factory production, cultivation cycles 
identification faces several challenges: 1) Due to the significant 
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variation in the lengths of various cultivation periods, there is a 
long-tailed distribution of the collected data, which poses 
significant challenge for data analysis and model training. Long-
tailed distribution implies that a large amount of data is 
concentrated in a few categories. In contrast, most categories have 
only a small amount of data, making it difficult to thoroughly learn 
the features of all the categories when the model is trained, which 
affects the model’s generalization ability. Existing feature extraction 
methods also show limitations when dealing with long-tailed 
distribution data, as they are often based on the assumption that 
the data is uniformly distributed, which is inconsistent with many 
reality conditions. 2) Significance area feature extraction is also a 
challenge that needs to be solved, especially in the case of high scene 
similarity, where identifying the exact region becomes more 
difficult. This requires models that accurately extract and 
recognize target features from similar backgrounds. 3) To adapt 
to the practical demands of greenhouse production, lightweight 
models must be developed to ensure deploy ability. These models 
need to reduce the consumption of computational resources while 
maintaining high accuracy to run efficiently on various hardware 
platforms for real-time monitoring and analysis. The solution to 
these challenges will promote innovative agriculture development 
and improve the efficiency and quality of tomato factory 
production. Therefore, this study investigates the existing problems: 

a	
2.1 Long-tail identification 

Long-tail identification, as a critical challenge in the current 
greenhouse cultivation cycles recognition, has caused significant 
difficulties in data collection due to the large difference in the 
duration period of different stages, in which case the category 
imbalance problem is particularly prominent, as the data of a few 
categories are often challenging to obtain, which directly affects the 
training and performance of the model. This class of problems has 
now been provided with category rebalancing (Hong et al., 2021; 
Park et al., 2021; Wu et al., 2021; Zhang and Pfister, 2021), 
information enhancement (He et al., 2021; Kim et al., 2020; Yin 
et al., 2019) and network structure improvement (Kang et al., 2020; 
Wu et al., 2020; Zhong et al., 2021; Zhu and Yang, 2020) are the 
three paradigms on which the researchers designed a series of 
improvement strategies for the long-tailed recognition problems 
faced in different agricultural scenarios. 

Zhang et al. (2023b) solved the long-tail recognition problem of 
food crop disease images based on migration learning with 
Bilateral-Branch Network (BBN) as a framework. They contributed 
three re-sampling strategies, finally achieving 94.3% recognition 
accuracy on the long-tail dataset of food crop disease images. Sun 
et al. (2021) argued that the decoupled representation and classifier 
algorithm is the crucial method to solve the long-tailed recognition 
problem and proposed a two-channel algorithm based on decoupled 
representation and classifier, which utilizes two channels to focus on 
the head class and the middle-tail class respectively. The algorithm 
achieves an accuracy, precision, and recall of 93.81%, 94.27%, and 

a 
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90.80%, respectively, for the peach leaf disease recognition task. The 
recognition accuracy of the head, middle, and tail classes is 93.81%, 
94.27%, and 90.80%, respectively. Head, middle, and tail classes were 
94.21%, 90.13%, and 88.57%, respectively. Saleh et al. (2023) 
proposed a new method for weed comparison learning through 
visual representations, WeedCLR, which utilizes class-optimized 
loss and the von Neumann entropy of the deep representations. 
Neumann Entropy) for classifying weeds in long-tailed datasets. All 
of the above methods provide valuable references, but they cannot 
meet the lightweight requirement of a tomato cultivation cycles 
recognition system; in addition to that, this study needs to consider 
the problem of highly similar work environments, in other words, in 
mining the recognizable features of different cultivation cycles at the 
exact location. 
2.2 Significance area feature extraction 

Saliency feature extraction is a crucial step in studying 
greenhouse tomato g cultivation cycles recognition. It is 
challenging as the above process differentiates between different 
working cultivation cycles in the same scene. This work was done in 
the early days mainly by extracting features manually (Cheng et al., 
2014; Oliva and Torralba, 2006), which relied heavily on people’s 
prior knowledge and was time-consuming and labor-intensive. 
With the rapid rise of deep learning, saliency region feature 
extraction methods have achieved significant breakthroughs in 
computer vision, with major advances including attention 
mechanisms, multi-scale, and feature fusion. 

Attention mechanisms aim to focus attention on essential 
features in an image (Hermann et al., 2015), mainly including 
channel attention (Hu et al., 2018; Wang et al., 2020), spatial 
attention (Hsieh et al., 2019; Hu et al., 2020; Woo et al., 2018) 
and self-attention (Parmar et al., 2018; Vaswani et al., 2017), which 
are also widely used in agriculture. Facing the problem of small spot 
size in citrus disease identification, which makes it difficult to focus 
and extract feature information, Zhang et al. (2024) proposed a 
frequency-domain attention network (FdaNet), which changes the 
weight of each frequency domain by adaptively learning the 
importance of the feature information between different 
frequency domains during the network inference process. Zhang 
et al. (2023a) added a YOLO feature pyramid structure by adding 
the attention mechanism module (ECA-Net) and adaptive feature 
fusion mechanism (ASFF), which effectively solves the problems of 
small size of budgerigar, limited features, and unclear attributes. 
Sun et al. (2023) chose the M2-transformer network as the decision 
base generator. They proposed a method named “DFYOLOv5m­

M2Transformer”, a two-stage image-dense annotation model, 
which can generate visual disease feature description sentences 
based on identifying the disease region. 

The attention mechanism is essential in improving model 
performance, especially when dealing with complex tasks. 
However, this mechanism increases the computational burden 
(Hassanin et al., 2024) and may affect the speed and flexibility of 
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model deployment. In contrast, multiscale feature fusion 
techniques, which can integrate information at different levels and 
provide a more comprehensive view of the data while controlling 
the computational complexity, which is particularly important for 
real-time applications and resource-constrained environments, 
were first proposed by Szegedy et al. (2015). Since then, 
multiscale feature fusion techniques have been widely used in 
many fields. Zhao et al. (2022) constructed a multiscale feature 
fusion network consisting of ResNet, FPN, and CBAM blocks, 
which can effectively extract rich disease features in strawberry 
leaves, flowers, and fruits. Rong et al. (2020) proposed a 
segmentation method based on a multiscale residual fully 
convolutional network in the pecan impurity detection task to 
overcome the complexity of the foreign object’s shape and color 
in different postures. Challenges. Subsequently, to meet the demand 
for lightweight deployment of the model, this study also investigates 
a lightweight visual transformer. 
 

2.3 Progress in lightweight transformer 
structure research 

Visual Transformer’s (ViT) success is attributed to the multi-

head attention module. At the same time, its significant model 
parameters and high latency make it unsuitable for deployment on 
resource-constrained devices. As  a  result, researchers  have
successively proposed a series of lightweight backbones for ViTs. 
MobileViT (Mehta and Rastegari, 2021) is one of the typical success 
stories, which implicitly integrates global representations by using 
the transformer as a convolution, combining the strengths of the 
CNN over the ViT, i.e., the multi-head self-attention and spatial 
inductive bias, and allowing them to learn representations with only 
a small number of parameters. Graham et al. (2021) downplayed the 
notion of a token in the transformer in their proposed LeViT while 
introducing the activation map in CNNs and designing 
computationally efficient image chunk extractors that can reduce 
the number of features in the first layer. Chen et al. (2022) proposed 
a MobileNet and Transformer parallelization of Mobile-Former, 
stacking mobile blocks with images as inputs and using efficient 
depthwise and pointwise convolution to extract pixel-level local 
features in ImageNet classification task from 25–500 MFLOPs 
under the stringent regime of MobileNetV3 (Howard et al., 2019). 
Vasu et al. (2023) argued that the research on efficient networks 
should not focus only on minimizing the FLOPs or the number of 
parameters, as there is no strict consistency between these two and 
the inference efficiency. An efficient and generalized backbone 
network for mobile devices, Mobileone, is proposed, which uses a 
model extension strategy with a parameterizable structure to obtain 
advanced performance, achieving 75.9% Top1 accuracy on the 
ImageNet dataset with a speed of< 1 ms. Liu et al. (2023) found 
that memory access overhead is a key factor affecting the model’s 
speed; the proposed EfficientViT uses a single memory-bound 
MHSA between efficient FFN layers, improving memory 
efficiency while enhancing channel communication. The above 
study opens up a new scope for lightweight applications of ViTs. 
Frontiers in Plant Science 05 
Wang et al. (2024) then proposed a forest fire segmentation 
model, FireViTNet, based on MobileViT, which not only achieved 
an F1 score of 87.2% but also ensured the model’s lightweight and 
deployability. In a study of citrus green fruit detection for real-world 
applications, Lu et al. (2023) used the strategy of YOLOv5 
combined with MobileViT to achieve an accuracy of 93.6% with 
only 6.3 M model parameters. mobileOne-YOLO (Li et al., 2023) is  
a new method to detect unfertilized duck eggs and early duck 
embryo development, i.e., it is a combination of YOLO and YOLO 
to detect unfertilized duck eggs and early duck embryo 
development. A new method, i.e., replacing the backbone network 
of YOLOv7 with MobileOne, improved the FPS performance by 
41.6 without loss of accuracy. This paper investigates a lightweight 
long-tail identification of greenhouse tomato work based 
on MobileViT. 
3 Materials 

3.1 Source of data set 

In this study, data collection and processing are crucial parts 
that directly affect the accuracy and reliability of the research 
results. The data were obtained from Beijing Cuihu Workshop 
and Ulanqab Hongfu Modern Agricultural Industrial Park, which 
adopt advanced factory elevated soilless culture production mode 
and are equipped with intelligent greenhouse management systems. 
This model not only improves the efficiency of tomato production 
but also provides us with an ideal environment for data collection. 

The data collection period is from May 2023 to April 2024, 
covering the entire tomato factory production cycle. The data from 
this period allows us to observe the changes in the cultivation cycles 
of the greenhouse during different seasons and cultivation cycles, 
which is essential for understanding the environmental demands of 
tomato growth and adjusting production strategies. The data 
collection involved nine critical stages from the idle period to 
seedling pulling, each with unique ecological parameters and 
production requirements, which are highly valuable for analyzing 
the dynamic changes of the environment inside the greenhouse and 
optimizing production management. 
3.2 Data collection methods 

The image acquisition system utilized 16 cameras (1920×1080 
resolution) with three deployment configurations: fixed cameras for 
24-hour continuous monitoring, mechanically adjustable cameras 
for multi-angle canopy imaging, and handheld devices for 
supplementary capture of hidden areas. All cameras were installed 
at varying heights to ensure full spatial coverage of the 
cultivation area. 

Tomato cultivation cycles annotation combined automated and 
manual processes. Initial labels were generated through timestamp 
synchronization with greenhouse management system logs, 
followed by agronomic expert verification and supplementation 
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for complex cases. A dual-operator cross-checking procedure was 
implemented to ensure labeling consistency. 
3.3 Data pre-processing methodology 

This study employed standardized data partitioning and 
augmentation protocols to ensure experimental reproducibility. 
The original dataset containing 1,999 images was divided into two 
mutually exclusive subsets through random stratified sampling at a 
1:1 ratio, resulting in an initial training set of 1,002 images and a test 
set of 997 images. To ensure adequate model training, we 
implemented random image augmentation for categories 
containing fewer than 100 samples in the training set. The 
augmentation techniques included: 90° rotation, 180° rotation, 
contrast reduction, contrast enhancement, horizontal mirror 
flipping, Gaussian blurring, and Gaussian noise addition. 
Following these procedures, the final dataset consisted of 1,362 
training images and 997 test images. All images were resized to 224 
× 224 pixels before being input into the model. Table 1 shows more 
details about the number of images in the dataset. 
 

3.4 Analysis of the data distribution 

Analyzing Figure 2, it is easy to see that even after the tail-
category enhancement process, the dataset still has a long-tailed 
distribution because only a few categories in the dataset have many 
samples. In contrast, most other categories have a relatively small 
number of samples. This may cause the model to overfit on high-
frequency categories and underfit on low-frequency categories 
during training. Overfitting means that the model may not be 
able to generalize to new, unseen data, while underfitting may result 
in poor model performance on specific categories.  However,

greenhouse tomato cultivation cycles are inherently highly 
variable, and it is difficult to obtain an idealized data distribution; 
therefore, long-tail identification is the focus of this study. 
3.5 Analysis of data characteristics 

Figure 3 shows a brief view of the different categories of 
samples. Since all the samples are from the same greenhouse, 
there may be a lot of duplicated information between the different 
categories, especially in the neighboring phases. For example, in the 
“Preparation for planting” phase between “Substrate placement,” 
“Hole opening,” and “Substrate soaking,” only a few features can be 
used to distinguish between them, which makes the task as tricky as 
fine-grained image classification. The discriminative features appear 
at different scales in many samples, which places high demands on 
the robustness of the model and its ability to capture contextual 
information. In addition, there is a risk of information loss in both 
deep neural networks’ pre-processing and down-sampling stages. 
Therefore, feature extraction of saliency regions is also essential in 
this study. 
Frontiers in Plant Science 06
4 The proposed methodology 

The dataset of the cultivation cycles recognition-related task 
inevitably shows a long-tailed distribution due to the significant 
difference in the length of the work period, which makes the model 
allocate more confidence to the head category to obtain higher 
accuracy, but due to the low accuracy of the tail category, it is prone 
to the situation that the indexes are too high but not able to satisfy 
the actual requirement. Therefore, this paper proposes a multi-

expert joint group-guided long-tail recognition scheme, in which 
the categories in the dataset are firstly divided into three groups 
according to the number of samples, namely “head,” “balance” and 
“tail,” and each group is trained separately. Meanwhile, to optimize 
the salient feature extraction capability of the method and meet the 
lightweight deployment requirements, this paper proposes a multi-

scale lightweight ViT model named MSC-MobileViT and lets the 
integrated expert model guide its training through knowledge 
distillation; Figure 4 shows the specific flow of the method. 
4.1 The multi-expert joint guidance 
methodology 

In researching cultivation cycles recognition, we adopt an 
innovative joint approach of multi-expert models to effectively deal 
with the category imbalance problem existing in the training data. 
Specifically, we first analyzed the entire tomato cultivation cycles 
recognition dataset in detail, as shown in Table 2, and arranged the 
samples in descending order according to the number of samples in 
each category in the training set. Then, we divided the dataset into three 
different groups. This grouping strategy was initially designed to allow 
each expert model to focus on training a specific subset of data, thus 
avoiding model bias due to excessive samples in particular categories. 
In this process, we are particularly mindful that training only specific 
groups of categories can impair the generalization ability of the expert 
model. Therefore, we introduce the  concept of open-set identification, a 
method that considers unknown categories during the model training 
phase. We categorize all samples that do not belong to the current 
group as “other” and include them in the model training. This aims to 
allow the model to learn the ability to distinguish between known and 
unknown categories so that when faced with subsequent integration 
and distillation tasks, it can more robustly categorize samples from 
other groups and more effectively guide the student model. 

When constructing the expert models, to ensure adequate 
training even with a limited number of samples in the target 
classes, MobileViT-s are used as feature extractors for each 
specific category, which can increase the model’s sensitivity to a 
small number of features. In the model’s output layer, a distinctive 
node configuration is implemented, augmenting the number of 
target categories by one. This additional node serves as an “other” 
category, specifically designed to accommodate instances that do 
not fall within the predefined categories. As shown in Figure 5, this 
design allows for greater flexibility and robustness in the model’s 
classification. Once the three expert models have been trained, the 
next step is to integrate them. All the nodes except the “other” node 
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are integrated in their category order in the above process. The 
outputs of these nodes are then processed by a softmax function, 
which generates a probability distribution representing the 
predictive confidence of each category. Ultimately, using the 
technique of knowledge distillation, these probability distributions 
are used as soft labels to guide the training of student models. In this 
way, the student model can learn rich feature knowledge from the 
expert model and reduce the impact of long-tailed distributions on 
Frontiers in Plant Science 07 
its training. Section 4.2 will introduce the design idea of the student 
model MSC-MobileViT. 
4.2 MSC-MobileViT 

The design concept of the MSC-MobileViT model is to achieve 
a perfect balance between high accuracy and a low number of 
TABLE 1 Details of the dataset. 

Duration Number of 
raw images 

Number of 
images in 
train set 

Number of 
pictures in 
train set by 
augmentation 

Number of 
images in the 
test set 

Total number 
of images 

Idle Period 608 304 304 304 608 

Substrate Placement 59 30 90 29 119 

Hole Opening 51 26 104 25 129 

Substrate Soaking 32 16 96 16 112 

Planting 113 57 114 56 170 

Early Production 24 12 96 12 108 

Mid Production 589 295 295 294 589 

Late Production 263 132 132 131 263 

Seedling Pulling 260 130 130 130 260 
FIGURE 2 

Data distribution. 
frontiersin.org 

https://doi.org/10.3389/fpls.2025.1571853
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhang et al. 10.3389/fpls.2025.1571853 

 

parameters to meet the needs of practical deployment. Although the 
model can improve its performance by guided training with 
multiple expert models, it must also enhance its capability in 
saliency region feature extraction. MobileViT-xxs, as its backbone 
network, introduces a self-attention mechanism that effectively 
handles contextual information  while keeping  the number of

parameters inexpensive, facilitating its deployment in resource-
constrained environments. In addition, the structural similarity 
between MobileViT-xxs and the three expert models provides an 
ideal basis for logit distillation, further enhancing the models’ 
performance. The innovation of this study on this basis is that 
replacing the first convolution module of the model with a multi-

scale convolution not only enhances the model’s ability to capture 
features at different scales but also broadens the model’s potential to 
handle more complex visual tasks. The above improvements open 
up new possibilities for the model’s versatility and adaptability, 
enabling it to demonstrate enhanced performance and flexibility in 
the face of variable visual challenges. 

The proposed MultiScaleConv module shown in Figure 6 is 
designed to extract multi-scale features from the input image. The 
module consists of four independent branches, each performing 
convolutional operations at different scales to capture information 
from different-sized receptive fields. The first branch reduces the 
resolution of the feature map through a 3x3 average pooling layer, 
followed by feature upscaling using a 1x1 convolutional layer and 
enhancing the nonlinear properties through batch normalization and 
Relu activation functions. The second branch is initially designed to 
enhance the feature dimension by a 1x1 convolutional layer, followed 
by batch normalization and Relu activation application, and a 3x3 
convolutional layer for further feature extraction. The third branch 
builds on this using a 5x5 convolutional kernel to capture a wider 
range of spatial features and apply batch normalization and Relu 
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activation. Conversely, the fourth branch utilizes a 7x7 convolutional 
kernel to cover a more extensive range of receptive fields. The outputs 
of these branches are eventually merged in the channel dimension to 
form a composite feature map that fuses multi-scale features, greatly 
enhancing the model’s ability to fully understand and characterize the 
input image. This multiscale feature fusion strategy significantly 
improves the model’s adaptability to image scale changes and 
saliency region feature extraction capability. 
4.3 Loss functions 

The idea behind the group coaching mechanism is to transfer 
the expertise of the three expert models to MSC-MobileViT through 
knowledge distillation, which can be likened to matching a student 
with a specialized teacher in each subject area. First, each teacher 
model is spliced with the output nodes except the “other” node, 
softmax to obtain soft labels, and the temperature T is introduced to 
perform label smoothing in Equation 1: 

exp(zi =T)qi = (1) 
ojexp(zj=T) 

Then, in Equation 2, the output of MSC-MobileViT is done the 
same way: 

exp(vi =T)pi = (2) 
ojexp(vj =T) 

In Equation 3, the difference between the two feature 
distributions is compared by KL scatter to generate a soft loss: 

n 
Lsoft = −opi log (qi) (3) 

i 
FIGURE 3 

Part of the sample display. 
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To avoid the expert model passing its error to MSC-MobileViT, 
then a hard label is obtained by comparing the probability 
distribution of the student with the real label through 
ReduceFocalLoss loss, and the parameter a is set to weight the 
sum of the two losses, as detailed in Equations 4 and 5: 

Lhard = −o 
n 

i 
ci log ( 

exp(zi) 

ojexp(zj) 
) (4) 
Lk = aLsoft + (1  − a)Lhard (5) 

The obtained final loss is in the form of backpropagation for the 
MSC-MobileViT update parameter. 
4.4 Experimental equipment 

The experiment uses a standardized computing platform for 
model development and validation, with the following hardware 
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configuration: Intel Core i9-10980XE central processor (base 
frequency 3.0GHz), 64GB DDR4 memory, and NVIDIA GeForce 
RTX 3090 graphic processor (24GB GDDR6X video memory). The 
software environment is Windows 11 64-bit Professional operating 
system, the development tool is PyCharm 2021, the programming 
language is Python 3.9, and the deep learning framework is PyTorch 
2.3.0 (CUDA acceleration support). All experiments were executed 
in a standalone GPU environment. 
4.5 Model training and validation 

4.5.1 Training processes 
To ensure that the experimental process is reproducible. The 

network training was set to 200 full training cycles (Epoch), and the 
batch size was kept at a constant ratio of 32 samples/batch. The 
optimizer chooses the stochastic gradient descent (SGD) method, 
FIGURE 4 

Process of the proposed methodology. 
TABLE 2 Grouping data sets by sample size. 

Stages Number of images in train set Number of pictures in train set after augmentation Groups 

Idle Period 304 304 
Head 

Mid Production 295 295 

Late Production 132 132 

BalanceSeedling Pulling 130 130 

Planting 57 114 

Substrate Placement 30 90 

Tail 
Hole Opening 26 104 

Substrate Soaking 16 96 

Early Production 12 96 
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FIGURE 5 

Sub-group guidance mechanism. 
FIGURE 6 

MultiScaleConv module. 
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the momentum factor is set to 0.9, and the weight decay is set to 5e­
4. The learning rate of the feature extraction backbone network is 
set to 0.001, and its learning rate is set to 0.01, and the string 
annealing algorithm is used. Each Epoch automatically decays the 
learning rate to 1/1000 of the initial learning rate at the Meanwhile, 
this study adopts the migration learning technique in training the 
expert models by using each of the three expert models on the 
ImageNet dataset as a pre-training network and migrating its 
parameters as the starting point for training. 

4.5.2 Evaluation indicators 
This study evaluates the model by F1-score, Accuracy, 

Precision, and Recall. Accuracy represents the probability that the 
predicted value is the same as the label value. Precision represents 
the probability that the label value is positive simultaneously in all 
samples with a positive predicted value. Recall represents the 
probability that the sample with a positive label value is predicted 
to be positive. The F1-score is the harmonic mean of accuracy and 
recall, and the evaluation performance is better when the data 
sample is unbalanced. The calculation formulas of the four 
evaluation indexes are Equations 6–9, where TP is the positive 
sample with a positive predictive value, FP is the negative sample 
with a positive predictive value, and FN is the positive sample with a 
negative predictive value. 

n 

Accuracy = oi=1TPi =Ii (6)
n 

TP 
Precision = (7)

TP + FP 

TP 
Recall = (8)

TP + FN 

1 2  � Precision � Recall 
F1 − score = 1 1 = (9)

+ Precision + RecallPrecision Recall 
5 Results and discussion 

5.1 Demonstration of the overall 
recognition effect of the model 

The multi-expert grouping enforcing strategy coupled with the 
lightweight greenhouse tomato cultivation cycles long-tail 
identification method proposed in this study demonstrates 
significant performance advantages in the experiments. By deeply 
analyzing the experimental results demonstrated in Table 3, we can 
gain insight into the effectiveness of the method and its potential 
mechanism of action. First, all three expert models (Expert-head, 
Expert-balance, and Expert-tail) exhibit excellent performance on 
their respective test sets, confirming the grouping strategy’s 
effectiveness. By dividing the dataset by the number of samples, 
each expert model can focus on learning specific distributional 
features, thus achieving high accuracy on the subset for which each 
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is responsible. Second, the Expert-ensemble model maintains a high 
level of performance, especially in terms of recall, although its 
overall performance is slightly lower than that of a single expert 
model. This phenomenon may stem from the fusion and trade-off 
of different expert knowledge in the ensemble process. Most striking 
is the performance of the MSC-MobileViT-distillation model. It not 
only outperforms the baseline model MSC-MobileViT in all metrics 
but also equals Expert-ensemble in accuracy and even achieves 
further improvement in the other three metrics. The above results 
highlight the potential of knowledge distillation techniques in 
model optimization. Knowledge distillation allows small models 
to learn from more complex models, which conveys critical 
information and serves as regularization to some extent. 

The significant improvement in precision, recall, and F1 score 
of the MSC-MobileViT-distillation model reflects its strength in 
balancing the ability to recognize different categories. This may be 
attributed to the multi-scale knowledge inputs of the multi-expert 
model, allowing the student model to understand the data 
distribution more comprehensively. It is worth noting that MSC-

MobileViT-distillation significantly improves the recall rate (by 
8.56% compared to the baseline model) while maintaining high 
accuracy. This indicates that the model accurately recognizes 
common categories and effectively captures features of rare 
categories. This balance is essential for real-world application 
scenarios, especially in tasks such as cultivation cycles 
identification, which is sensitive to false omissions. 
5.2 Effectiveness of multi-expert strategies 

The multi-expert grouping enforcing strategy proposed in this 
study demonstrates significant advantages in the long-tail 
recognition task of greenhouse tomato cultivation cycles. By 
profoundly analyzing each expert model’s contribution and 
confusion matrix, we can understand the effectiveness of the 
strategy and its mechanism of action more comprehensively. 

5.2.1 Analysis of the contribution of each expert 
model 

The effectiveness of the multi-expert joint guidance strategy can 
be analyzed by comparing the accuracies of the different models in 
the three category groups in Table 4. Significantly, the MSC-

MobileViT differs in the recognition accuracy of the head and tail 
categories without expert model guidance, with a difference of 16.05 
percentage points. In contrast, the Expert-ensemble model had a 
maximum difference of only 1.64 percentage points, suggesting that 
the grouping mechanism of the multi-expert model effectively 
balances attention to all categories, not just the head category. 
Further, by comparing the expert-ensemble model with the grouped 
form of the expert model, we can observe an improvement in both 
the BALANCE and the TAIL categories. At the same time, there is a 
decrease of 5.02 percentage points in the HEAD category compared 
to the Expert-head model, which suggests that the strategy 
effectively directs the model to pay more attention to the non-
HEAD category, thus achieving a more balanced performance. 
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Ultimately, the accuracy of the Expert-ensemble distillation-trained 
MSC-MobileViT exceeds the baseline level on all groups, especially 
the tail category, improves by 14.6 percentage points, and the 
maximum  gap  between  different  groups  is  only  3.49  
percentage points. 

First, from the analysis of the contribution of each expert model 
in Table 4, we observe a striking phenomenon: the recognition 
accuracy gap between the head category and the tail category of 
MSC-MobileViT without specialist guidance is as high as 16.05 
percentage points. The colossal difference highlights the challenge 
of long-tailed distributed datasets for traditional model training. 
This phenomenon is consistent with the findings of Zhang et al. 
(2023c), who pointed out that on long-tailed distribution datasets, 
the model tends to favor the head category with a large sample size, 
significantly decreasing the ability to recognize the tail category. In 
contrast, the maximum accuracy difference of the Expert-ensemble 
model between different sets of categories is only 1.64 percentage 
points, and the above results fully demonstrate the effectiveness of 
the multi-expert grouping strategy in balancing the recognition 
ability of different categories. This significant improvement can be 
attributed to the grouping mechanism allowing each expert model 
to focus on learning specific distributional features, thus achieving a 
balanced focus on all categories overall. 

Further comparing the performance of the expert ensemble 
with that of individual expert models, we find an improvement in 
the BALANCE category and the TAIL category and a decrease of 
5.02 percentage points in the HEAD category compared to the 
Expert-head model. This trade-off phenomenon reflects the 
strategy’s success in directing the model to pay more attention to 
non-head categories, achieving a more balanced performance. The 
above results echo the study of Wang et al. (2022), who suggested 
that appropriately reducing the focus on head categories can 
significantly improve overall performance when dealing with 
unbalanced data. 
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Most notably, the accuracy of the Expert-ensemble distillation-
trained MSC-MobileViT-distillation model exceeds the baseline 
level on all category groups, especially the tail category, improves 
by 14.6 percentage points, and the maximum gap between different 
groups is only 3.49 percentage points. The above results fully 
demonstrate the effectiveness of knowledge distillation in 
transferring expert model ensemble knowledge. This significant 
performance improvement may stem from the fact that during the 
distillation process, the student model not only learns the complex 
labels but also captures the rich information contained in the soft 
output of the teacher model, which is consistent with the theory of 
knowledge distillation proposed by Hinton (2015). 

5.2.2 Analysis of confusion matrices 
The analysis of the confusion matrix further corroborates the 

effectiveness of the multi-expert strategy, as shown in Figure 7. The 
low accuracy of MSC-MobileViT on the tail categories of Substrate 
Soaking and Early Production (56% and 67%, respectively) 
highlights the negative impact of long-tailed distributions on the 
performance of the model, i.e., on unbalanced datasets that 
minority classes are often misclassified as majority classes. In 
contrast, MSC-MobileViT-distillation trained through the joint 
guidance of multi-expert models not only outperforms Expert-
ensemble and MSC-MobileViT in terms of overall accuracy but 
also improves the accuracy of the Substrate Soaking and Early 
Production classes by up to 88% each. Accuracy was enhanced to 
88%, 83%, 32%, and 16%, respectively. This significant 
improvement may be attributed to the success of the multi-expert 
strategy in effectively transferring the expertise of different expert 
models in their respective domains to the student model. However, 
it is worth noting that although MSC-MobileViT-distillation 
achieved significant improvements in all categories, there is still 
room for improvement in some categories. For example, although 
substantially improved, the Substrate Soaking category’s accuracy is 
TABLE 3 Experimental results for each expert model and MSC-MobileViT. 

Classes in the test set Model Accuracy Precision Recall F1-score 

Idle Period, 
Mid Production, 
Others 

Expert-head 98.09% 98.14% 98.11% 98.13% 

Late Production, 
Seedling Pulling, 
Planting, 
Others 

Expert-balance 94.48% 90.26% 94.28% 92.09% 

Substrate Placement, 
Hole Opening, 
Substrate Soaking, 
Early Production, 
Others 

Expert-tail 95.99% 75.17% 90.29% 80.53% 

All Classes Expert-ensemble 93.58% 86.69% 92.55% 88.64% 

All Classes MSC-MobileViT 92.68% 86.29% 85.01% 85.19% 

All Classes 
MSC-MobileViT­
distillation 

95.99% 91.03% 93.57% 92.02% 
Bold values indicate the best performance for each metric. 
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still lower than other categories. This may imply that the feature 
representation of some extremely unbalanced categories may not be 
fully captured during the knowledge distillation process. Future 
research could explore optimizing the distillation process further to 
deliver knowledge of rare categories more efficiently. 

In summary, the multi-expert grouping enforcing strategy 
proposed in this study mitigates the challenges posed by long-
tailed distribution datasets by effectively balancing the recognition 
capabilities of different categories. The approach theoretically 
bridges the advantages of expert systems and knowledge 
distillation and demonstrates its applicability in practice in 
complex scenarios. This provides a new way of thinking to solve 
the long-tailed recognition problem prevalent in industrial and 
agricultural fields and lays the foundation for exploring similar 
strategies in a broader range of application scenarios in the future. 
5.3 MSC-MobileViT benchmark 
performance analysis 

This study provides insights into the performance advantages of 
the MSC-MobileViT model in the greenhouse tomato working 
long-tail identification task through ablation experiments and 
Grad-CAM visualization analysis. 

5.3.1 Ablation analysis 
This paper provides an in-depth analysis of the self-attention 

mechanism and the advantages of multi-scale modules for saliency 
region feature extraction. We found significant differences by 
comparing the performance of three models, MobileNetV3, 
MobileViT,  and  MSC-MobileViT.  MobileNetV3,  as  a  
convolutional network, contains the classical SE attention 
mechanism module, which makes  it  capable of efficiently 
processing spatial information. However, MobileViT introduces a 
transformer architecture, and the above innovation enables it to 
capture long-range dependencies, which improves the model’s 
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ability to understand global information. On this basis, MSC-

MobileViT further integrates a multi-scale module, and the above 
improvement enables the network to extract features at different 
scales, allowing the model to focus on both details and overall 
structure, which leads to a more comprehensive understanding of 
the image content and enhances the model’s expressive power. 
Table 5 shows that MobileViT outperforms MobileNetV3 in terms 
of performance, while MSC-MobileViT achieves further 
improvements based on MobileViT. These findings confirm the 
importance and effectiveness of self-attention mechanisms and 
multi-scale modules in enhancing network performance. 

First, the results of the ablation experiments demonstrate the 
gradual performance improvement process from MobileNetV3 to 
MobileViT to MSC-MobileViT. MobileNetV3, as the benchmark 
model, integrates the SE attention mechanism, but it has an 
accuracy of 91.47% and a relatively limited performance on long-
tailed distribution datasets. 

MobileViT, by introducing the Transformer architecture, 
improves the accuracy to 92.38%, and the precision and recall 
rates are also significantly improved. This performance 
improvement may stem from the ability of the Transformer 
architecture to capture long-range dependencies, which echoes 
the “ Attention Is All You Need” theory proposed by Vaswani 
et al. (2017). In a complex task like greenhouse tomato cultivation 
cycles identification, the importance of global contextual 
information cannot be overstated, and Transformer’s self­

attention mechanism can capture this information effectively. 
MSC-MobileViT further improves the model performance 

based on MobileViT by integrating the multi-scale module, 
especially regarding recall and F1 score. The accuracy reached 
92.68%, recall improved by 5.15 percentage points, and F1 score 
improved by 7.65 percentage points. This overall performance 
improvement may be attributed to the ability of the multiscale 
module to extract features at different scales, thus focusing on both 
local details and the global structure of the image. 

5.3.2 Grad-CAM visualization and analysis 
The Grad-CAM visualization analysis corroborates the above 

findings while providing more profound insights. The heatmap 
generated by MobileNetV3 shows that the model tends to focus on 
more significant contiguous regions Figure 8, which  reflects the 
advantage of convolutional networks in capturing local features. 
However, this focus pattern may result in some critical long-range 
dependencies being overlooked, which is consistent with the finding of 
Jiang et al. (2024) that traditional CNNs may over-focus on certain 
discriminative regions while ignoring other important information. In 
contrast, MobileViT’s heatmap presents a more decentralized and 
fine-grained distribution of concerns, suggesting that the Transformer 
architecture can better capture global contextual information. This 
feature is essential when dealing with complex scenarios, such as 
identifying tomato plants at different cultivation cycles. 

The heatmap of MSC-MobileViT shows the most detailed and 
diverse feature focus patterns. In recognition of complex categories 
such as “Mid Production,” MSC-MobileViT can focus on the plant’s 
TABLE 4 Accuracies of the different models in the three classes. 

Model Accuracy of 
head classes 

Accuracy of 
balance 
classes 

Accuracy of 
tail classes 

Expert-head 98.33% 

Expert-
balance 

94.01% 

Expert-tail 91.46% 

Expert-
ensemble 

93.31% 94.32% 92.68% 

MSC-
MobileViT 

95.32% 91.17% 79.27% 

MSC-
MobileViT­
distillation 

97.32% 94.32% 93.83% 
Bold values indicate the best performance for each metric. 
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overall structure and the local details, such as leaf morphology, fruit 
status, etc. This multi-scale feature extraction capability is critical 
when recognizing complex scenes, such as tomato plants at different 
stages of growth. This multi-scale feature extraction capability not 
only improves the recognition accuracy of the model but also 
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enhances its sensitivity to slight differences in various cultivation 
cycles. The above findings echo the Multiscale Visual Transformer 
(MViT) proposed by Fan et al. (2021), who emphasized the 
importance of multiscale feature learning for improving the 
performance of visual tasks. 
FIGURE 7 

The confusion matrices of (a) Expert-head, (b) Expert-balance, (c) Expert-tail, (d) Expert-ensemble, (e) MSC-MobileViT, and (f) MSC-MobileViT­
distillation on the testing dataset. Note: 1 Idle Period; 2 Mid Production; 3 Late Production; 4 Seedling Pulling; 5 Planting; 6 Substrate Placement; 7 
Hole Opening; 8 Substrate Soaking; 9 Early Production. 
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TABLE 5 Analysing the advantages of MSC-MobileViT. 

Model Accuracy Precision Recall f1-score 

MobileNetV3 91.47% 81.73% 78.58% 78.34% 

MobileViT 92.38% 85.39% 79.86% 77.54% 

MSC-MobileViT 92.68% 86.29% 85.01% 85.19% 
F
rontiers in Plant Science 
15 
Bold values indicate the best performance for each metric. 
FIGURE 8 

Grad-CAM visualization. 
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5.4 Stratified cross-validation 

To ensure a more robust evaluation of our model’s generalization 
stability and reduce the bias that can stem from a single data split, we 
employed five-fold stratified cross-validation in Table 6. We  chose  an  
8:2 split between training and validation sets without applying data 
augmentation. While the original setup used a 1:1 split and included 
augmentation, this difference might introduce some variability in 
results. However, the overall performance trend remains consistent. 

Across all key metrics, our approach (Ours) consistently 
outperformed the baseline model. The average accuracy reached 
96.06%, representing a 1.46 percentage point improvement over 
Baseline’s 94.60%. Fold K4 was particularly notable, where accuracy 
rose to 97.24%, 2.01 points above the baseline. This suggests that 
when more data is available, our model avoids overfitting and better 
captures the underlying distribution. Even in Fold K1, which 
included fewer rare categories, our model still achieved an 
impressive 96.03% accuracy, outperforming the baseline by 1.74 
points and demonstrating strong adaptability. 

Recall, which is especially important for identifying long-tail 
categories, also improved substantially. The average recall for our 
model was 92.55%, a 6.84 point increase over the baseline. In Fold 
K3, recall reached 93.70%, outperforming the baseline by over 11 
points. In Fold K4, the difference was 6.05 points. These gains 
highlight the effectiveness of the multi-expert grouping strategy, 
which helps the model learn underrepresented features more 
effectively—even without augmentation. Stages such as Substrate 
Soaking and Early Production, which have fewer samples, were 
better captured under this approach. 

Precision and F1-score saw similar improvements. Our model 
averaged 91.21% for precision and 91.33% for F1-score, outperforming 
the baseline by 3.03 and 4.90 points respectively. In Fold K3, for 
instance, precision was 89.46% compared to the baseline’s 87.17%, 
indicating fewer false positives. Fold K4 showed an F1-score of 91.78%, 
outpacing the baseline by 2.66 points and demonstrating a well-
balanced trade-off between accuracy and recall. 

Model stability is especially critical in real-world deployment 
scenarios. Our results showed smaller variation across folds, with a 
standard deviation of 0.62% for accuracy and 1.11% for recall. In 
contrast, the baseline showed higher variability—0.36% and 2.56%, 
respectively—suggesting that our approach yields more consistent 
performance across diverse subsets such as seasonal or greenhouse-
specific data. 
5.5 Comparison with existing methods 

5.5.1 Comparison with the main network of other 
classifications 

This study compares the performance of multiple state-of-the­
art models in a long-tail recognition task for greenhouse tomato 
cultivation cycles, and the experimental results are shown in 
Table 7. Overall, the accuracy of all models ranges from 83.25% 
to 95.99%, showing a significant performance variation. Our 
proposed model performs best in critical metrics such as 
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accuracy, precision, recall, and F1 score while maintaining 
deficient parameters, demonstrating an excellent performance-

efficiency balance. 
From the accuracy perspective, our model tops the list with 

95.99%, outperforming all compared models. The MobileVit-s 
model follows with 93.88% accuracy, while the ResNet50 model 
performs poorly with only 83.25%. Notably, despite having the most 
significant number of parameters (50.07M), the ViT16 model fails 
to match the accuracy (87.86%) of the lighter models with far fewer 
parameters, highlighting the critical impact of model design 
on performance. 

In terms of accuracy, our model also performs well with 91.03%. 
The MobileViT-s model comes in second place with 88.05% 
accuracy, while the ResNet50 model is again at the bottom of the 
list with 52.39%. The above results reflect traditional convolutional 
neural networks’ challenges when dealing with long-tailed 
distributed datasets. 

On the recall metric, our model is significantly ahead of the 
others with an excellent result of 93.57%. The MobileVit-s model 
comes in second place with 86.55%, while the ResNet50 model 
performs poorly with a recall of only 51.36%. The above results 
highlight the superior ability of our proposed model to recognize 
various types of cultivation cycles, especially rare categories. 

The F1 score, as a reconciled average of precision and recall, 
reflects the model’s overall performance more comprehensively. 
Our model leads the pack with 92.02% on the above metrics, and 
MobileVit-s comes in second with 87.12%. Interestingly, although 
MobilenetV3 performs well in accuracy (91.47%), its F1 score 
(78.34%) is relatively low, which may hint at some model 
limitations in dealing with unbalanced datasets. 

Regarding the number of parameters, our method has only 
0.95M parameters, which is tied with MobileVit-xxs for the lowest 
but significantly outperforms the latter. In contrast, ViT16 and 
ResNet50 have 50.07M and 25.56M parameters, respectively, yet fail 
to dominate in performance, highlighting our model’s outstanding 
advantage in balancing efficiency and performance. 

The model proposed in this study performs well in the greenhouse 
tomato cultivation cycles long-tail recognition task, comprehensively 
outperforming existing state-of-the-art models in all performance 
metrics and achieving a meager parametric count. 

First, the significant advantages of our model in terms of accuracy 
(95.99%) and recall (93.57%), especially compared to MobileVit-xxs 
with a similar number of participants (92.38% accuracy and 79.86% 
recall), highlight the effectiveness of our proposed multi-expert 
grouping enforcing strategy. This performance improvement may 
stem from the strategy effectively mitigating the category imbalance 
problem caused by the long-tailed distribution. 

Second, our model keeps the number of parameters at 0.95M 
while maintaining high performance, which is significant in 
lightweight model design. In contrast, ViT16 has a 50.07M 
parameter count, but its accuracy (87.86%) and F1 score (76.96%) 
are significantly lower than our model. Our approach may have 
achieved more efficient parameter utilization by combining multi-

scale feature extraction and knowledge distillation, thus capturing 
richer feature representations within a limited parameter space. 
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Notably, our model’s F1 score (92.02%) advantage over other 
metrics is more prominent. The above results imply that the model 
improves the overall accuracy and achieves a better balance in all 
categories when dealing with long-tailed distribution data. This balance 
is crucial for practical applications, especially in tasks such as cultivation 
cycles identification, which is sensitive to misidentification. 

Another point of concern is the poor performance of the 
ResNet50 model in this task (83.25% accuracy, 51.52% F1 score). 
The above results may reflect the limitations of traditional 
convolutional neural networks when dealing with long-tailed 
distribution data and complex scene recognition tasks. In 
contrast, models based on the Transformer architecture (e.g., the 
MobileVit family and our model) generally perform better, which 
may be attributed to the advantage of the self-attention mechanism 
in capturing long-range dependencies. 

In addition, we expanded the evaluation to include parameter 
count and computational cost, showing that MobileViT-S achieved 
93.88% accuracy and an 87.12% F1 score with 4.94 M parameters 
and 1.46 G FLOPs while our model reached 95.99% accuracy and a 
92.02% F1 score using 0.95 M parameters and 0.29 G FLOPs. 
Plotting accuracy against FLOPs positioned our approach on the 
Pareto frontier, evidencing an ideal balance between resource 
efficiency and predictive performance. Future work might explore 
dynamic early-exit mechanisms, hardware-aware neural 
architecture  search,  mixed-precision  quantization,  and  
Frontiers in Plant Science 17 
knowledge-distillation techniques to push sub-1 M-parameter 
models beyond 0.3 G FLOPs without sacrificing accuracy. 

5.5.2 Comparison with SOTA long-tailed 
recognition methods 

To further assess the advantages of our approach in long-tail 
recognition, we conducted a systematic comparison against the 
Bilateral Branch Network (BBN) (Zhou et al., 2020), the Re-mixing 
Strategy(ReMix) (Chou et al., 2020), Balanced Margin Softening 
(BMS) (Ren et al., 2020), and the Curvature-Balanced Feature 
Manifold Learning Method(CR) (Ma et al., 2023) in  Table 8 
Comparison experiment with SOTA long-tailed recognition 
methods. The results show that our method delivers the highest 
accuracy on tail categories. For the extremely rare Substrate Soaking 
stage, we achieve an identification rate of 87.50%, matching BMS. In 
the Early Production stage, we set a new record with 83.33% 
accuracy—an 8.33-point improvement over the next best method. 
Hole Opening and Substrate Placement attain 96.00% and 96.55%, 
respectively, confirming that the group expert strategy represents a 
substantial breakthrough in modeling rare samples. 

Overall, our method secures a leading position with an average 
accuracy of 95.99%, outperforming the second-place CR (94.18%) 
by 1.81 points. Importantly, this advantage extends beyond tail 
categories: in the Planting stage (balanced categories), we reach 
96.43%—far exceeding existing state-of-the-art methods and 
TABLE 6 The stratified cross-validation. 

Folds 
Accuracy Precision Recall f1-score 

baseline ours baseline ours baseline ours baseline ours 

K1 94.29% 96.03% 88.69% 93.81% 85.84% 91.21% 86.83% 92.34% 

K2 94.28% 95.88% 89.91% 91.45% 89.05% 91.70% 89.11% 90.49% 

K3 94.76% 95.71% 87.17% 89.46% 82.50% 93.70% 83.90% 91% 

K4 95.23% 97.24% 89.60% 90.69% 87.97% 94.02% 89.12% 91.78% 

K5 94.43% 95.44% 85.51% 90.63% 83.21% 92.10% 83.21% 91.06% 

mean 94.60% 96.06% 88.18% 91.21% 85.71% 92.55% 86.43% 91.33% 
TABLE 7 Comparison experiment with the main network of other classifications. 

Model Accuracy Precision Recall f1-score Parameters FLOPs 

ViT16 87.86% 81.79% 75.74% 76.96% 50.07M 11.29G 

ResNet50 83.25% 52.39% 51.36% 51.52% 25.56M 4.13G 

MobilenetV3 91.47% 81.73% 78.58% 78.34% 4.21M 0.23G 

MobileOneS0 86.96% 67.35% 65.17% 64.94% 4.28M 1.12G 

MobileOneS1 86.36% 72.68% 64.16% 62.74% 3.56M 0.89G 

MobileVit-s 93.88% 88.05% 86.55% 87.12% 4.94M 1.46G 

MobileVit-xs 89.77% 70.63% 71.23% 70.22% 1.94M 0.74G 

MobileVit-xxs 92.38% 85.39% 79.86% 77.54% 0.95M 0.27G 

Ours 95.99% 91.03% 93.57% 92.02% 0.95M 0.29G 
Bold values indicate the best performance for each metric. 
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demonstrating that knowledge distillation technology effectively 
integrates expert knowledge across groups. For head categories, 
the Idle Period stage achieves an exceptional 99.34% accuracy, 
illustrating a new paradigm of head-tail collaborative optimization. 
 

5.6 Limitations and future work 

5.6.1 Research limitations 
Despite the significant results achieved in this study in the task 

of long-tail identification of greenhouse tomato cultivation cycles, 
there are still some limitations of concern. First, the limitations of 
the dataset may affect the model’s generalization ability. Although 
covering multiple cultivation cycles categories, the dataset used in 
this study may not fully reflect all possible real-world production 
scenarios, especially some extreme or rare cases. Second, although 
our model performs well on the current dataset, its ability to 
generalize to other environments or conditions  has  yet to be

verified. Finally, although our model achieves few parameters, it 
may face computational resource constraints in real-world 
deployments, especially on resource-constrained edge devices. 

5.6.2 Future Research Directions 
Based on these limitations, we propose the following promising 

directions for future research: 
Fron
1.	 Enhanced data diversity and adaptive learning: future 
research  could  focus  on  construct ing  a  more  
representative and diverse dataset of greenhouse tomato 
cultivation cycles, including different varieties, growth 
stages, and anomalies. At the same time, explore adaptive 
learning algorithms that enable the model to continuously 
learn from and adjust to new data, thus improving its 
ability to generalize in dynamic environments. 

2.	 Optimize the multi-expert collaboration mechanism: 
conduct in-depth research on improving the multi-expert 
tiers in Plant Science 18	
grouping enforcing strategy to handle the unbalanced long-
tailed distribution better. Dynamic expert allocation 
mechanisms or meta-learning approaches can be explored 
to enable models to adjust expert combinations according 
to different data distribution characteristics automatically. 
Such approaches may provide new ideas for solving the 
problem of the generalizability of AI systems. 

3.	 Cross-modal learning and knowledge fusion: consider 
extending this study to multimodal learning, combining 
mult i-source  information  such  as  image  data ,  
environmental sensor data, and plant physiological 
indicators to construct a more comprehensive cultivation 
cycles recognition system. This will not only improve the 
accuracy and robustness of the recognition but may also 
reveal new plant growth patterns and provide deeper 
insights into innovative agricultural management. 

4. Edge Intelligence and Federated Learning: To address the 
limitations of practical deployment environments, we study 
how to lighten the model further and, at the same time, 
explore federated learning techniques to achieve distributed 
model training and updating. This can fully use decentralized 
computational resources while protecting data privacy to 
realize large-scale, real-time work monitoring systems. 
Through these research directions, we aim to promote the 
development of innovative agriculture technology further, extend 
the results of this study to a broader range of application scenarios, 
and ultimately realize a more efficient and sustainable agricultural 
production model. 
6 Conclusion 

This study proposes an innovative lightweight recognition 
model coupled with a multi-expert grouping enforcing strategy 
for the above challenging problem of long-tailed recognition of 
TABLE 8 Comparison experiment with SOTA long-tailed recognition methods. 

Groups Classes BBN ReMix BMS CR Ours 

Head Classes Idle Period 92.76% 98.68% 97.70% 98.36% 99.34% 

Mid Production 93.20% 96.26% 94.56% 96.26% 95.24% 

Balance Classes Late Production 87.02% 84.73% 88.55% 87.02% 93.13% 

Seedling Pullin 88.46% 91.54% 94.62% 95.38% 94.62% 

Planting 78.57% 89.29% 92.86% 94.64% 96.43% 

Tail Classes Substrate Placement 93.10% 96.55% 89.66% 96.55% 96.55% 

Hole Opening 80% 92% 88% 88% 96% 

Substrate Soaking 37.50% 75% 87.50% 62.50% 87.50% 

Early Production 75% 75% 75% 50% 83.33% 

All 89.37% 93.78% 93.98% 94.18% 95.99% 
Bold values indicate the best performance for each metric. 
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greenhouse tomato cultivation cycles. Through in-depth theoretical 
analysis and experimental validation, we draw the following 
core conclusions: 
Fron
1. The multi-expert grouping enforcing strategy significantly 
improves the recognition performance of long-tailed 
distribution data: our approach successfully improves the 
recognition accuracies of tailed categories (e.g., Substrate 
Soaking and Early Production) from 56% and 67% in the 
baseline model to 88% and 83%, which fully demonstrates 
the effectiveness of the strategy in alleviating the category 
imbalance problem. The above findings provide a new 
paradigm for dealing with long-tailed distribution data, 
which is applicable to agriculture and may also be extended 
to other fields with category imbalance problems. 

2.	 Knowledge distillation technique realizes the balance 
between  high  performance  and  low  number  of  
parameters. By effectively transferring the knowledge 
from multiple expert models into a lightweight student 
model with only 0.95M parameters, our method 
significantly reduces the computational complexity while 
maintaining high performance (95.99% accuracy and 
92.02% F1 score). The above results provide a feasible 
solution for efficient AI deployment in resource-
constrained environments and promote the development 
of edge intelligence technology. 

3. The	 improved MSC-MobileViT model shows excellent 
feature extraction capability. By introducing a multi-scale 
convolutional module, our model can capture both local 
details and the global structure of an image and performs 
well in complex scene recognition tasks. The above 
improvements not only improve the recognition accuracy 
of the model but also enhance its ability to adapt to features 
at different scales, which provides new ideas for model 
design in the field of computer vision. 
The findings of this study have important theoretical and 
practical implications for the fields of intelligent agriculture and 
computer vision. Theoretically, our study expands the long-tailed 
distribution data processing methodology and provides a new 
perspective for solving the category imbalance problem. At the 
practical level, our approach provides a powerful tool for intelligent 
management of greenhouse tomato production, which has the 
potential to improve production efficiency and resource 
utilization significantly. 
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