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Large-scale prediction of tree diameter at breast height (DBH) using airborne
LiDAR remains constrained by models that inadequately address differences in
tree growth stages and regional ecological variation. Existing approaches often
overlook non-linear growth patterns and hierarchical spatial effects, thereby
limiting predictive accuracy and scalability. In this study, we developed a DBH
estimation model tailored for Cunninghamia lanceolata forests by integrating
field-measured DBH with corresponding airborne LiDAR data collected from
26,768 trees across 130 plots in Guangdong Province, China. To capture growth-
stage variability, a dummy variable approach was implemented to enable stage-
specific adjustments within the model. Moreover, a two-level linear mixed-
effects model was employed to account for nested spatial heterogeneity at
both regional and stand levels. Competing model structures were rigorously
evaluated using Akaike Information Criterion (AIC) and multiple error metrics, and
the final model performance was validated with an independent dataset. Our
results demonstrate that incorporating growth-stage differentiation and
multilevel random effects significantly enhances model accuracy, with
additional improvements observed upon including stand density and crown
width indicators. The final model outperformed traditional approaches,
effectively capturing spatial and ontogenetic variability. This study provides a
methodological foundation for improving DBH estimation of Cunninghamia
lanceolata using airborne LIDAR data. While further validation is needed, the
modeling framework may also offer a potential basis for future applications using
UAV-borne LiDAR platforms in similar forest environments.
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1 Introduction

Forests play a crucial role in carbon sequestration and climate
regulation, making accurate forest inventory data essential for
sustainable forest management (Bonan, 2008). Diameter at breast
height (DBH) is a key metric for forest management, providing
essential information for estimating tree stock, biomass, and carbon
storage (Fischer and Traub, 2019). Traditional DBH measurement
using manual tools such as calipers is accurate but inefficient,
making it unsuitable for large-scale forest resource assessments
(Popescu and Wynne, 2004).

The advancement of remote sensing technologies has
significantly improved forest inventory efficiency and scalability
(Gonzalez-Benecke et al,, 2014). LIDAR excels at capturing forest
structure, providing valuable insights into forest metrics and stand
characteristics (Faridhouseini et al., 2011). Previous studies have
demonstrated the utility of LIDAR in estimating stand-level metrics
(Falkowski et al., 2006; Gonzalez-Ferreiro et al., 2012) and individual
tree attributes (Aubry-Kientz et al.,, 2019; Wang et al., 2020; Yuwei
etal, 2021). However, airborne LiDAR cannot directly measure DBH
(Liu et al,, 2018), and while handheld or backpack LiDAR improves
efficiency, it is limited by understory complexity and small-scale
applicability (Bu and Wang, 2016; Hui et al., 2024). Furthermore,
existing DBH models primarily focus on stand-level metrics and
often fail to capture individual tree-level variability, particularly
across different growth stages and environmental conditions (Piao
et al,, 2018; Zhang et al., 2023). This underscores the need for more
refined models that can integrate multiple influencing factors,
including site-specific differences and within-stand competition, to
improve predictive performance and generalizability.

DBH can be categorized into stand-level and individual tree-
level metrics, with individual tree DBH being critical for detailed
forest management and improved precision in forest operations
(Sparks and Smith, 2022). While tree height and crown width have
been widely used as DBH model predictors (Filipescu et al., 2012;
Sharma et al., 2019; Nigul et al., 2021; Tizuka et al., 2022; Tinkham
et al,, 2022; Lele et al,, 2023), Growth rates differ across age classes
(Mu etal,, 2017; Liu et al,, 2020a), and models incorporating growth
stage effects tend to improve predictive accuracy (Mu et al., 2017;
Xiao et al., 2022). Similarly, competition within stands alters growth
strategies, with intense competition favoring height over diameter
growth (Kunstler et al,, 2011; Wertz et al., 2020). addition to growth
stage and competition, regional differences such as climate, soil
type, and topography also significantly affect tree growth patterns
(Canham et al, 2018; Luo et al, 2024). Therefore, developing a
modeling framework that incorporates multi-scale variability and
site-specific influences is essential for improving DBH estimation at
both the stand and individual tree levels.

Chinese fir is a commercially and ecologically important species
native to southern China. Accurate large-scale DBH estimation for
Chinese fir can improve forest resource management and ecological
monitoring. This study aims to: (1) develop a two-level nonlinear
mixed-effects model, using blocks and plots as random effects, to
enhance the accuracy of individual tree DBH estimation for Chinese
fir. improve individual tree DBH estimation accuracy; (2) evaluate
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the influence of growth stage and competition intensity on DBH
estimation; and (3) propose a scalable DBH estimation method
using airborne LiDAR data to support large-scale forest
management and resource assessment.

2 Materials and methods
2.1 Data description

The study area is located in five forested regions in Guangdong
Province, China (20°09'~25°31’N and 109°45'~117°20'E)
(Figure 1). The study area is predominantly situated in the
northwestern part of Guangdong, characterized by a landscape of
mountains and low hills. Slopes within the region range from 10° to
40°, with generally high relief in the north and lower relief in the
south. Precipitation in this region is concentrated from April to
September, with an average annual rainfall of 1,777 mm. The
highest recorded average annual rainfall can reach 2,321 mm. The
region has an average annual temperature of 21.8°C, with warm
temperatures throughout the year and abundant rainfall. The soil in
the study area is primarily red and yellow loam. This area is an
important part of the middle subtropical zone in China and one of
the key distribution areas for Chinese fir.

In March 2024, we selected representative Chinese fir
(Cunninghamia lanceolata) plantation forests and established 130
sample plots containing a total of 26,768 trees, each covering an area
of 666.67 m®. The basic site conditions of the sample plots were
recorded, and for each tree within the plots (with a DBH > 5 cm),
we measured the tree height(H), diameter at breast hight(DBH),
height crown base, and crown width(CW) in four perpendicular
directions. The exact location of each tree within the plot was
also recorded.

In June 2024, we collected data from all the plots using airborne
LiDAR. The equipment used to collect the data was the AS-1300HL
LiDAR system, which is equipped with the Rigel VUX-1LR laser
scanner. This system operates at a wavelength of 1550 nm, with a
pulse duration of 3.5 ns and a laser beam divergence of 0.5 m rad.
The pulse repetition frequency is set at 50 kHz, the maximum scan
angle is 30°, and the scanning frequency is 49 Hz. A grid-pattern
flight path was used, with a 50% side overlap of the point clouds.
The average flight speed was 10 m/s, and the average point cloud
density was 200 points per square meter.

The independent validation method is one of the most
commonly used methods to test the generalization ability and
fitting effectiveness of a model, we used 70% of the data as
modeling data and 30% as independent validation dataset,
Collected UAV LiDAR data were preprocessed using LiDAR 360
software. Noise filtering of the point cloud was performed using a
neighborhood-based approach with a threshold set at three times
the standard deviation. Ground points were identified using an
improved progressive triangulated irregular network (TIN)
densification filtering algorithm, enabling point cloud
normalization. Individual tree segmentation was conducted using
a distance-based single tree segmentation algorithm.
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FIGURE 1
Plot of site location.

In cases of high stand density, where the point clouds might
become densely packed, we performed an additional manual
segmentation step to ensure accurate delineation of individual
trees. This secondary segmentation ensured that overlapping or
closely spaced trees were properly separated, maintaining the
quality and accuracy of the segmentation process. The correlation
between the LIDAR-derived tree height (H) and the field-measured
values reached 0.79, and the overall correlation coefficient between
canopy width and measured values was 0.63. Stand density
indicators were the number of plants per hectare based on sample
plot surveys, and the growth stage of fir trees was determined by the
age group. A detailed summary of the data is given in Table 1. Box
plots of the distribution of breast diameter with age groups are
shown in Figure 2.

2.2 Modeling Methods

2.2.1 Basic models

Tree H and DBH are highly correlated (Hao et al.,, 2016), and
airborne LiDAR excels at providing accurate height data. To model
the relationship between DBH and LiDAR-derived height, five
candidate models were selected to describe the curvilinear
relationship between DBH and H: linear, Weibull, logistic,
Wykoff, and Gompertz models (Xue-hua et al, 2013).These
models have been widely applied in forestry for capturing tree
growth patterns and height-diameter relationships. Since DBH is
also frequently used to estimate tree height, we reversed the
equations of several established H-DBH models (Filipescu et al.,
2012) to generate additional candidate models for DBH estimation.

TABLE 1 Summary statistics of data acquired by both methods (UAV LiDAR and ground measurement).

Training data

Testing data

LCD LCD
Max. 51.20 32.58 12.29 5311 40 44.10 29.76 16.47 5311 40
Mean 14.69 13.14 2.32 2878 18.24 14.71 13.13 2.33 2866 18.28
Min. 5.00 3.82 0.04 433 6 5.00 3.51 0.046 433 6
Stand error | 5.02 3.90 1.40 916 9.82 5.01 391 1.42 919 9.70

DBH, stem outside bark diameter at 1.3 m height (cm); LH, tree height by lidar (m); LCD, Crown width by lidar (m); S, number of living trees per hectare (ha); A: the age of an individual

tree (years).
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FIGURE 2
The box plots of the distribution of breast diameter with age groups.
Ultimately, a total of ten candidate base models were identified. The n
i DBH = 3(Gia)g(LH,C,c)) + € (1)

mathematical expressions of these models are presented in Table 2.

2.2.2 Variable selection

LiDAR-derived metrics were classified into two primary
categories: height-related metrics (e.g., tree height) and canopy-
related metrics (e.g., crown width, canopy area, and canopy
volume). These metrics are widely used in forestry due to their
strong ecological interpretation and demonstrated correlations with
DBH (Brolly et al., 2012). To account for competition effects, stand
density was extracted by counting individual trees identified
through LiDAR point cloud segmentation within each sample
plot. Studies have shown that LiDAR-derived metrics often
exhibit multicollinearity (Silva et al.,, 2016; Stitt et al., 2022). To
mitigate this issue, we first conducted a Variance Inflation Factor
(VIF) test and retained only those variables with VIF< 5 (Peereman
et al, 2021). Subsequently, a Pearson correlation analysis was
performed on the selected variables to identify the optimal set for
model development. Once the base model (Table 2) was established,
additional variables were gradually introduced through the
reparameterization or other statistical methods to optimize the
models’ evaluation metrics (Equations 3-6).

2.2.3 Dummy variable modeling

Dummy variables allow for the inclusion of categorical variables
into the model, i.e., growth stages or age groups can be included in the
form of dummy variables to influence the model. Tree growth patterns
can vary across different growth stages, as observed in species, such as
Picea abies (Konopka et al., 1987), Calocedrus formosana (Chiu et al,,
2015), and Larix (Orzel, 2007). Chinese fir is a typical fast-growing
species, and according to age, we categorized fir into five growth stages:
young (1-10 years), middle-aged (11-20 years), near mature (21-25
years), mature (26-36 years), and overmature (>36 years), and we used
this to characterize the effect of growth stage on the model of DBH.
Therefore the DBH model was developed by incorporating the tree
growth stage as a dummy variable. The dummy variable model is
formulated as shown in Equation 1.
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i=1

Where:a; are model parameters and G; is the dummy variable
which can be 0 or 1. i =1,2,3,4,5. When G, = 1,G,,G3,G, and G5 are
0, and so on, G; refers to young fir forests and G5 refers to over-
mature fir forests, g(LH, C, ¢;) represents a DBH model with LH and
C as variables and ¢; as parameter, HL and C are independent
variables in the model, and € represents the error term.

The established dummy variable model not only incorporates
the individual tree variables and competition variables but also
accounts for the impact on the changes in DBH. The optimal form

TABLE 2 Basic DBH - height models evaluated.

Model Equation Name

Two-parameter models
M1 D=a+bH Linear
M2 D=aH’ Allometric growth model
M3 D = aet? Exponential functions
M4 D=alnH+Db Logarithmic functions
M5 D = tn(H-1.3)/a) Tuan et al., 2019
Mé D= b 1 Wykoft et al, 1982

InH-a
Three-parameter models
. Allometric model
M7 D=a+bH o
with intercepts
M8 D= {ln (?) F Yang et al., 1978
v
i

M9 ln[l - (%)c] Clarke and Haines, 1995

p=—t “1

-b
M10 - b e Exponential
In(H-13)-a

D, diameter at breast height; H, tree height; a, b, and ¢ are parameters to be estimated.
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of the model and its fitting performance are determined and
selected based on model evaluation metrics (Equations 3-6).

2.2.4 Mixed-effects modeling

A combination of factors, such as regional climatic conditions,
significantly influences DBH growth (Liu et al., 2020b). Even within the
same region, subtle environmental and competitive differences between
sample sites can lead to variations in DBH growth. Therefore, it is
essential to consider both inter-regional and intra-regional differences
when modeling DBH growth. To better account for these hierarchical
influences, we implemented a two-level nonlinear mixed-effects model
that captures both broad regional variability and localized site-specific
effects. This approach enhances the accuracy of DBH growth
estimation by incorporating nested random effects, providing a more
refined representation of the underlying biological and environmental
processes. In this model, tree growth is expressed as a function of both
broad regional influences and localized site-specific factors. By
integrating random effects at both the regional and sample plot
levels, The general form of the two-level nonlinear mixed-effects
model is presented in Equation 2.

DBHj;. = fi(Dy (LHjs Cis Oye)s i Vi) + i

u; = (U, thyjs ;)" ~ N(O, yy),

vy = (g o zg) " ~ N(O, ), 2
g ~ N(0,07),

i=1,..,9j=1,...130.

where DBHjj represents the diameter at breast height (DBH) of
the k-th tree in the j-th sample plot of the i-th region.; f;; is DBH
model that includes two-level random effects; Dy (LHjj, Cijer 5,-jk) is
the model with LHy; and Cjy as variables and with & as the
parameter to be estimated. u; and v;; are random effects vectors
indicating the level of sample plots in the region and within the
region, respectively. £ denotes the random error in k-th tree
diameter at breast height for j-th sample plots in i-th region, y;
and vy, refer to the corresponding random-effects variance-
covariance matrixes, and o2 refers to the random error variance.
The random effects assumption and the error term assumption are
independent of each other and each follows a normal distribution.

Mixed-effects model was fitted by the nlme package in R 4.2.3.
Model parameters were estimated using the restricted maximum
likelihood (REML) method (Corbeil and Searle, 1976), which
provides unbiased estimates of variance components by
accounting for the degrees of freedom consumed in estimating
fixed effects. After fitting the model, we used the AIC and the
likelihood ratio test(LRT) to evaluate model performance and select
the best-fitting model (Fang and Bailey, 2001). AIC was used to
compare model fit by balancing model complexity and goodness of
fit, while LRT assessed the significance of additional model terms.

2.3 Model evaluation

In this study, we used an independent validation approach to
model validation, and we randomly divided the data into two
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datasets, with 70% of the data used for model fitting (18738
observations) and the other 30% for model validation (8030
observations). The model evaluation metrics were AIC (Akaike
Information Criterion), R? (Coefficient of Determination), RMSE
(Root Mean Squared Error) and TRE (Total Relative Error).

AIC = —2Inl+2p 3)

(4)
(5)
S(D; - D)’
TRE=2L (6)
2

where [ is the maximum likelihood of the model; n is the
number of observations;p is the number of parameters in the model;
D;is the i-th observed value of the DBH; 15,- is the i-th predicted
value of the DBH; D is the mean value of the DBH.

3 Results

3.1 Selected variables and their correlations
with DBH

After VIF testing, the final retained variables were CW and S.
The results of the VIF values are shown in Table 3. Pearson
correlation analysis revealed that LiDAR-derived tree height
exhibited the highest correlation with ground-measured DBH,
indicating its strong predictive power. Both stand density and
CW also showed correlations with DBH, consistent with their
biological roles in tree growth — CW representing the proportion
of stand growth and stand density reflecting competition intensity
within the stand. In contrast, canopy area and canopy volume
exhibited weaker correlations with DBH, suggesting that they
contribute less to explaining diameter variability. To enhance
model generalizability and reduce overfitting, we ultimately
selected tree height, canopy width, and stand density as covariates
in the DBH model. The correlation heatmap between DBH and the
various variables is shown in Figure 3.

TABLE 3 VIF values for each variable.

Variable LH LCD )

VIF 1.799 1.200 1.600
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FIGURE 3

The correlation heatmap between diameter at breast height and various variables is provided. DBH represents the ground truth diameter at breast
height (DBH), LH denotes tree height, and LCD, LCA, and LCV represent canopy width derived from LiDAR data. S refers to stand density.

3.2 Generalized OLS model

As shown in Table 4, Model M7 was selected as the optimal base
model due to its highest R* and lowest RMSE and AIC values,
indicating that the most appropriate relationship between
individual tree DBH and tree height follows an intercept plus
power function. To account for the effects of multiple variables
on DBH estimation, variables were gradually added to M7 using a

TABLE 4 Fit indicators of the base models.

Training data Testing data

RMSE R? RMSE
(cm) (cm)
M1 0.6028 3.160 0.6027 3.1535 69655
M2 0.6024 3.165 0.6023 3.1589 69701
M3 0.5989 3.1790 0.5971 3.1797 69821
M4 0.4131 3.8456 0.4143 3.8337 74979
M5 0.6041 3.1730 0.6004 3.1667 69770
M6 0.2265 9.5978 0.2101 9.6921 99772
M7 0.6053 3.1530 0.6049 3.1489 69604
M8 0.5916 3.2078 0.5919 3.1999 70066
M9 0.5635 3.3163 0.5624 3.3137 70967
M10 0.5635 3.3163 0.5624 3.3137 70967

Frontiers in Plant Science

stepwise reparameterization procedure based on the continuous
product of power functions. A total of ten reconstructed model
forms were compared, and the extended version of the base model,
known as a generalized OLS model (Equation 7), demonstrated
superior predictive performance over the best base model (M7)
(Table 5). An F-test comparing Equation 7 and M7 indicated that
the generalized model improved predictive ability and statistical
significance (F = 470, p< 0.001). Although the improvement in
predictive accuracy was modest, the new model enhanced
interpretability and increased robustness under varying
site conditions.
The expression for this model is as follows:

DBH = 2.520 + 3.842LH*®*LCD"**§701* 7)

3.3 Dummy variable model

Dummy variables were introduced to represent different age
groups, allowing the model to account for growth stage-specific
variations. To avoid overfitting and excessive model complexity, we
incorporated dummy variables for only one parameter to balance
model performance and simplicity. Through a systematic
evaluation procedure, the model that applied dummy variables to
parameter b demonstrated the best fit, as indicated by the lowest
AIC. Parameter b reflects the growth rate adjustment across
different age groups, suggesting that growth stage variations
primarily influence the scaling factor rather than the base growth
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TABLE 5 Fit indicators of base model (M7) and Equation 7.

Dataset Indicators M7
RMSE (cm) 3.153 3.049
Train set TRE (%) 4.302 4.012
IS 0.6053 0.6301
RMSE (cm) 3.151 3.059
Test set TRE (%) 4.290 4.051
R 0.6052 0.6261
Evaluation AIC 69604 68698
F (M7 VS Equation 7) 470
p-value <0.001***

function. The model specification is as follows:
DBH = 1.592 + (3.901G, + 3.946G, + 4.052G; + 4.092G,

+ 4.177G5)LH0‘8567LCD0'0539G_0‘1356 (8)

where: G;, G,, G3, G, and G5 are dummy variables representing the
different age classes of Chinese fir: young forest, middle-aged forest,
near-mature forest, mature forest, and over-mature forest, respectively.

3.4 Mixed-effects model

Figure 4 presents the distribution of DBH across different forest
regions. It is evident that DBH varies significantly among regions,
with some regions (e.g., T1, Sx) exhibiting greater DBH variability and
higher median values compared to others (e.g., Hp, Dt). These
differences highlight the necessity of incorporating regional random
effects in the model. Based on Equation 8, we developed a two-level
random effects model incorporating region-level and plot-level
variability. Various model structures were tested and evaluated

10.3389/fpls.2025.1546055

based on optimal model selection criteria. model achieved the best
performance when regional random effects were applied to all
parameters, while plot-level random effects were applied only to
parameter a. This model had the highest log-likelihood (-33,466) and
the lowest AIC (66973). To further quantify the contribution of
random effects and assess the impact of incorporating mixed effects,
we conducted a LRT. Compared to the baseline model, introducing
regional random effects significantly improved model performance
(LRT = 1600, p< 0.001), confirming the importance of capturing
broad-scale site variation. Furthermore, when comparing the single-
level regional random effects model to the two-level random effects
model, the model was further optimized (LRT = 404, p< 0.001),
confirming the effectiveness of the two-level structure. The evaluation
indicators of the model are shown in Table 6. Therefore, the two-level
mixed-effects model of the DBH expression is:

DBHjj = 4.462 + ujy + vy + (0.1906G; + uy, +0.2008G, + ujs
+0.2035G3 + Uy + 0.2138G, + uys + 0.2307G5 + uye)
L1461 +ui) [ o (0-0429+11i5) 6(0.0072+145)

(©)

TABLE 6 Fit indicators of Equations 8, 9.

Dataset Indicators

RMSE (cm) 3.032 2.794
Train set TRE (%) 3.965 3.348
R’ 0.6651 0.7002
RMSE (cm) 3.048 2.822
Test set TRE (%) 4.002 3.408
R’ 0.6497 0.7025
AIC 68553 66973

Evaluation
Loglik -34266 -33466

DBH
3

20

10

Forest Region

FIGURE 4

Distribution of DBH across different forest regions. Abbreviations represent the corresponding locations: Dt, Datang Industrial Zone; Hp, Heping
County; Lc, Lechang County; Ls, Lianshan County; Lm, Longmen County; Sx, Shixing County; Td, Tongle Forest Farm; Yd, Yingde Forest Farm; and

Yn, Yunan Forest Farm.
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where
[ ] 0 5.7316 —8.7969 x 10712 —3.3661 x 107'° -1.9716 x 10°°  —0.0166  -3.7131 x 107" 0.0001 7.4378 x 107° 14204 x 1077
Uity 0 —8.7970 x 1072 1.9669 x 10722 7.2328 x 102! 4.1066 x 10777 3.4126 x 107 7.4771 x 107" -1.0297 x 107"° -3.0543 x 107"° -6.2927 x 107"
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Vie = Vi ~ N(0,1.9409)&5 ~ N(0,7.8822G)°TI;G}*)where
DBHjj. refers to the diameter at breast height of the k-th tree in the
j-th sample plot in the i-th region. G;~G5 denote dummy variables
for the five growth stages of fir from juvenile to overstory. LH, LCD,
and S denote the H of an individual tree corresponding to the
diameter at breast height, the crown width, and the density of the
stand in the sample plot, respectively.

According Figure 5, addition of the relevant variables improved
the fit of the DBH model and reduced the error index, The model
was gradually optimized by incorporating growth stages, regional
effects, and plot-level variability. the final model R2 improving by
16.04% compared to the base model, indicating a substantial
improvement in model accuracy and explanatory power.
Furthermore, as the model was refined, the alignment between
the predicted and observed values in the point plot improved
noticeably. The points increasingly converged along the reference
line x=y, suggesting that the model’s predictive performance
became more accurate and reliable as additional hierarchical
effects were incorporated.
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4 Discussion

While traditional methods have provided valuable insights into
DBH estimation, the need for large-scale, efficient assessment
methods remains unmet (Liu et al., 2021). Existing LiDAR-based
methods have shown promise in large-scale monitoring but face
limitations in capturing individual tree metrics accurately,
particularly under varying site conditions. To overcome these
challenges, this study developed a general model for estimating
the DBH of individual trees using terrestrial and airborne LiDAR
data, enabling the rapid acquisition of a large number of Chinese fir
DBH measurements through airborne LIDAR. The proposed model
integrates allometric growth relationships and incorporates the
effects of growth stage and regional variations, demonstrating
both strong interpretability and high predictive accuracy. With
the continuous advancement of smart forestry, this model provides
reliable technical support for the rapid measurement of Chinese
fir DBH.
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FIGURE 5

Predictive map (a—d) for M7, Equations 7-9 respectively, the reference line with a diagonal line of y=x.
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UAV remote sensing offers high efficiency and large-scale
coverage (Yan, 2020), but existing LIDAR-based methods still face
limitations in individual tree-level DBH estimation (Lo and Lin,
2013). Previous studies on DBH estimation using LiDAR have
focused primarily on stand-level mean DBH (Muhamad-Afizzul
etal, 2019; Ozkan et al., 2022; Zhang et al., 2023).The challenge lies
in the unstable relationship between LiDAR-derived metrics and
individual tree DBH, making it difficult to identify consistent
patterns and predictive variables. Interestingly, this study found a
weak correlation between LiDAR-derived canopy width and DBH,
which contrasts with the findings of some researchers (Kalliovirta
and Tokola, 2005; Raptis et al., 2018), This discrepancy may stem
from LiDAR’s superior ability to capture vertical forest structure
while being less effective at representing horizontal structure
(Bouvier et al., 2015; Coomes et al., 2017; Moran et al., 2018).

Tree growth strategies are influenced by both intrinsic factors
(e.g., growth stage) and extrinsic factors (e.g., competition), which
jointly determine resource allocation and growth efficiency
(Vanninen, 2004). For a long time, the allometric growth
relationships of trees have been a key focus in forest management
and afforestation research, as these relationships are shaped by a
complex interaction between genetic potential and environmental
pressures (Matsushita et al., 2015; Sharma et al.,, 2019). Liu et al.
(2020a)demonstrated that including age as a variable significantly
improved DBH model performance for Larix species. Similarly, this
study introduced growth stage as a dummy variable, yielding
comparable improvements in predictive performance. However, the
improvement was relatively modest, likely due to species differences
or variations in model variables (Cao et al., 2024; Taye and Kelil,
2024). Competition also plays a critical role in tree growth strategies.
Under high stand density, trees tend to prioritize height growth over
radial growth, leading to suppressed DBH under competitive
conditions (Boyden et al,, 2009; Zhang et al., 2024). Incorporating
plot density as a competition-related variable improved model fitting
performance, highlighting the importance of accounting for stand
competition in DBH models.

The two-level random effects introduced in this study include
block-level and plot-level variations. The block-level effect accounts
for broad-scale regional differences caused by factors such as
climate, topography, and soil type, which influence tree growth
patterns at a macro scale (Canham et al., 2018; Wang and Ibanez,
2022; Luo et al., 2024). In contrast, the plot-level effect captures fine-
scale environmental heterogeneity within blocks, such as
microclimate and local competition intensity (Prior and Bowman,
20145 Latifi et al., 2015). To evaluate the contribution of the two-
level effects, we compared the model’s performance with and
without these random effects. When excluding the two-level
effects, the model exhibited a substantial increase in the AIC the
model exhibited a substantial increase in the AIC by 1580 and a
reduction in the R* by 0.0528, indicating poorer model fit and
predictive accuracy. (Table 6). This suggests that ignoring regional
and plot-level variations results in increased model bias and
reduced generalization ability. For instance, similar findings have
been reported in other forest growth models. Fortin et al. (2016)
demonstrated that accounting for hierarchical site variability
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improved the accuracy of tree growth predictions, particularly
under varying environmental conditions. Therefore, the inclusion
of two-level effects in this study reflects an essential methodological
improvement that enhances both the interpretability and predictive
power of the DBH model. Lo and Lin (2013) developed a DBH
model incorporating competition and regional differences, showing
strong interpretability, can also attest to this. Their model achieved
higher overall accuracy, which may be attributed to differences in
predictor variables and sample size. Lo et al. introduced a novel
competition-related variable (LCI) to account for neighboring
competitors, whereas our study incorporated plot density to
reflect competition intensity. Additionally, our model
encompassed all growth stages of Chinese fir, whereas Lo et al.’s
model focused solely on mature and overmature stands.
Interestingly, the explanatory power of the density variable
weakened after introducing random effects into the model
(Tables 7, 8). This may be due to the fixed effect of stand density

TABLE 7 Parameter estimations for the dummy variable model
(Equation 8).

Model Estimation Std  tvalue plr<t)
parameters Values
a 4203706 0487757 = 8.618 < 2e-16 ***
a 3.971733 0466937 = 8.506 < 2e-16"*
a; 3.926678 0460988 8518 < 2e-16"*
a 407862 0477705 = 8538 < 2e-16"*
as 4119038 0479186 = 8.596 < 2e-160*
a 1.591742 0469297 | 3392 0.000696**
b 0.026961 0.001668 = 16159 < 2e-16***
¢ 0.856735 0033305 | 25724 < 2e-16***
d -0.135598 000758 | -17.888 < 2e-16***

“** indicates significance at the p < 0.001 level.

TABLE 8 Parameter estimations for the mixed-effects model
(fixed effects).

Model Estimation Std.e  tvalue
parameters Values

a 4461787 09142237 | 4.88041  <0.0001%*
a 0.230677 0056861 = 4.05686  0.0001***
as 0.203524 0.0506867 | 4.015322 | 0.0001%**
ay 0.190579 0.0475194 | 4.010551 | 0.0001%**
as 0.200793 0.0507849 | 3.953799 | <0.0001***
a 0.213843 0.0525322 | 4.070705 | 0.0001%**
b 1.461044 0.0502492 = 29.075945 = <0.0001***
c 0.007194 0.0258796 0277977 0.781

d 0.042946 0.0041594 | 10.324873 | <0.0001%**

Sk

indicates significance at the p < 0.001 level.
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being partially absorbed by block-level random effects, or it may
reflect environmental variations in the influence of stand density on
DBH growth (Jordan and Philips, 2023).

4 Conclusion

A DBH estimation model was developed using airborne LIDAR
to estimate individual tree DBH in large-scale Chinese fir
plantations. This model integrates dummy variables and a two-
level mixed-effects approach, which accounts for regional
heterogeneity and the influence of tree age on the allometric
growth relationship of Chinese fir. With a coefficient of
determination of 0.7025, the model demonstrates strong
interpretability and performs well in validation, highlighting its
robust generalization ability. These findings support the potential
application of airborne LiDAR in plantation inventory.

In summary, we have developed a tailored single-tree DBH
model for Chinese fir plantations in southern China. The model is
characterized by its simplicity, strong interpretability, and
effectiveness, offering a valuable tool for improving DBH
assessments in plantation inventory practices.

4.1 Suggestion

Establishing DBH models using airborne LiDAR and other
remote sensing techniques significantly enhances the efficiency and
scalability of DBH estimation. As future advancements integrate
multiple remote sensing methods and improve LiDAR-derived
stand structure characterization, DBH models are expected to
achieve higher accuracy and progressively replace traditional
field-based surveys. The Chinese fir DBH model developed in this
study provides an effective approach for large-scale DBH
assessment in southern China. Future research could focus on
improving the representation of horizontal canopy structure in
LiDAR data and integrating multi-source remote sensing data to
enhance model robustness and predictive accuracy
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