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Ziyang Liu1†, Dongbo Xie1†, Zheyuan Wu1, Linyan Feng1,
Xingyong Liao2, Yongjun Wang2, Wendong Zhu2,
Ram P. Sharma3 and Liyong Fu1*

1Research Institute of Forest Resource Information Techniques, Chinese Academy of Forestry,
Beijing, China, 2Chengdu Academy of Agriculture and Forestry Sciences, Chengdu, China, 3Institute of
Forestry, Tribhuvan University, Kathmandu, Nepal
Large-scale prediction of tree diameter at breast height (DBH) using airborne

LiDAR remains constrained by models that inadequately address differences in

tree growth stages and regional ecological variation. Existing approaches often

overlook non-linear growth patterns and hierarchical spatial effects, thereby

limiting predictive accuracy and scalability. In this study, we developed a DBH

estimation model tailored for Cunninghamia lanceolata forests by integrating

field-measured DBH with corresponding airborne LiDAR data collected from

26,768 trees across 130 plots in Guangdong Province, China. To capture growth-

stage variability, a dummy variable approach was implemented to enable stage-

specific adjustments within the model. Moreover, a two-level linear mixed-

effects model was employed to account for nested spatial heterogeneity at

both regional and stand levels. Competing model structures were rigorously

evaluated using Akaike Information Criterion (AIC) andmultiple error metrics, and

the final model performance was validated with an independent dataset. Our

results demonstrate that incorporating growth-stage differentiation and

multilevel random effects significantly enhances model accuracy, with

additional improvements observed upon including stand density and crown

width indicators. The final model outperformed traditional approaches,

effectively capturing spatial and ontogenetic variability. This study provides a

methodological foundation for improving DBH estimation of Cunninghamia

lanceolata using airborne LiDAR data. While further validation is needed, the

modeling framework may also offer a potential basis for future applications using

UAV-borne LiDAR platforms in similar forest environments.
KEYWORDS

Cunninghamia lanceolata, airborne LiDAR, diameter at breast height modeling, growth
stage, nonlinear mixed-effects model
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1 Introduction

Forests play a crucial role in carbon sequestration and climate

regulation, making accurate forest inventory data essential for

sustainable forest management (Bonan, 2008). Diameter at breast

height (DBH) is a key metric for forest management, providing

essential information for estimating tree stock, biomass, and carbon

storage (Fischer and Traub, 2019). Traditional DBH measurement

using manual tools such as calipers is accurate but inefficient,

making it unsuitable for large-scale forest resource assessments

(Popescu and Wynne, 2004).

The advancement of remote sensing technologies has

significantly improved forest inventory efficiency and scalability

(Gonzalez-Benecke et al., 2014). LiDAR excels at capturing forest

structure, providing valuable insights into forest metrics and stand

characteristics (Faridhouseini et al., 2011). Previous studies have

demonstrated the utility of LiDAR in estimating stand-level metrics

(Falkowski et al., 2006; González-Ferreiro et al., 2012) and individual

tree attributes (Aubry-Kientz et al., 2019; Wang et al., 2020; Yuwei

et al., 2021). However, airborne LiDAR cannot directly measure DBH

(Liu et al., 2018), and while handheld or backpack LiDAR improves

efficiency, it is limited by understory complexity and small-scale

applicability (Bu and Wang, 2016; Hui et al., 2024). Furthermore,

existing DBH models primarily focus on stand-level metrics and

often fail to capture individual tree-level variability, particularly

across different growth stages and environmental conditions (Piao

et al., 2018; Zhang et al., 2023). This underscores the need for more

refined models that can integrate multiple influencing factors,

including site-specific differences and within-stand competition, to

improve predictive performance and generalizability.

DBH can be categorized into stand-level and individual tree-

level metrics, with individual tree DBH being critical for detailed

forest management and improved precision in forest operations

(Sparks and Smith, 2022). While tree height and crown width have

been widely used as DBH model predictors (Filipescu et al., 2012;

Sharma et al., 2019; Nigul et al., 2021; Iizuka et al., 2022; Tinkham

et al., 2022; Lele et al., 2023), Growth rates differ across age classes

(Mu et al., 2017; Liu et al., 2020a), and models incorporating growth

stage effects tend to improve predictive accuracy (Mu et al., 2017;

Xiao et al., 2022). Similarly, competition within stands alters growth

strategies, with intense competition favoring height over diameter

growth (Kunstler et al., 2011; Wertz et al., 2020). addition to growth

stage and competition, regional differences such as climate, soil

type, and topography also significantly affect tree growth patterns

(Canham et al., 2018; Luo et al., 2024). Therefore, developing a

modeling framework that incorporates multi-scale variability and

site-specific influences is essential for improving DBH estimation at

both the stand and individual tree levels.

Chinese fir is a commercially and ecologically important species

native to southern China. Accurate large-scale DBH estimation for

Chinese fir can improve forest resource management and ecological

monitoring. This study aims to: (1) develop a two-level nonlinear

mixed-effects model, using blocks and plots as random effects, to

enhance the accuracy of individual tree DBH estimation for Chinese

fir. improve individual tree DBH estimation accuracy; (2) evaluate
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the influence of growth stage and competition intensity on DBH

estimation; and (3) propose a scalable DBH estimation method

using airborne LiDAR data to support large-scale forest

management and resource assessment.
2 Materials and methods

2.1 Data description

The study area is located in five forested regions in Guangdong

Province, China (20°09′~25°31′N and 109°45′~117°20′E)
(Figure 1). The study area is predominantly situated in the

northwestern part of Guangdong, characterized by a landscape of

mountains and low hills. Slopes within the region range from 10° to

40°, with generally high relief in the north and lower relief in the

south. Precipitation in this region is concentrated from April to

September, with an average annual rainfall of 1,777 mm. The

highest recorded average annual rainfall can reach 2,321 mm. The

region has an average annual temperature of 21.8°C, with warm

temperatures throughout the year and abundant rainfall. The soil in

the study area is primarily red and yellow loam. This area is an

important part of the middle subtropical zone in China and one of

the key distribution areas for Chinese fir.

In March 2024, we selected representative Chinese fir

(Cunninghamia lanceolata) plantation forests and established 130

sample plots containing a total of 26,768 trees, each covering an area

of 666.67 m2. The basic site conditions of the sample plots were

recorded, and for each tree within the plots (with a DBH > 5 cm),

we measured the tree height(H), diameter at breast hight(DBH),

height crown base, and crown width(CW) in four perpendicular

directions. The exact location of each tree within the plot was

also recorded.

In June 2024, we collected data from all the plots using airborne

LiDAR. The equipment used to collect the data was the AS-1300HL

LiDAR system, which is equipped with the Rigel VUX-1LR laser

scanner. This system operates at a wavelength of 1550 nm, with a

pulse duration of 3.5 ns and a laser beam divergence of 0.5 m rad.

The pulse repetition frequency is set at 50 kHz, the maximum scan

angle is 30°, and the scanning frequency is 49 Hz. A grid-pattern

flight path was used, with a 50% side overlap of the point clouds.

The average flight speed was 10 m/s, and the average point cloud

density was 200 points per square meter.

The independent validation method is one of the most

commonly used methods to test the generalization ability and

fitting effectiveness of a model, we used 70% of the data as

modeling data and 30% as independent validation dataset,

Collected UAV LiDAR data were preprocessed using LiDAR 360

software. Noise filtering of the point cloud was performed using a

neighborhood-based approach with a threshold set at three times

the standard deviation. Ground points were identified using an

improved progressive triangulated irregular network (TIN)

densification fi ltering algorithm, enabling point cloud

normalization. Individual tree segmentation was conducted using

a distance-based single tree segmentation algorithm.
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In cases of high stand density, where the point clouds might

become densely packed, we performed an additional manual

segmentation step to ensure accurate delineation of individual

trees. This secondary segmentation ensured that overlapping or

closely spaced trees were properly separated, maintaining the

quality and accuracy of the segmentation process. The correlation

between the LiDAR-derived tree height (H) and the field-measured

values reached 0.79, and the overall correlation coefficient between

canopy width and measured values was 0.63. Stand density

indicators were the number of plants per hectare based on sample

plot surveys, and the growth stage of fir trees was determined by the

age group. A detailed summary of the data is given in Table 1. Box

plots of the distribution of breast diameter with age groups are

shown in Figure 2.
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2.2 Modeling Methods

2.2.1 Basic models
Tree H and DBH are highly correlated (Hao et al., 2016), and

airborne LiDAR excels at providing accurate height data. To model

the relationship between DBH and LiDAR-derived height, five

candidate models were selected to describe the curvilinear

relationship between DBH and H: linear, Weibull, logistic,

Wykoff, and Gompertz models (Xue-hua et al., 2013).These

models have been widely applied in forestry for capturing tree

growth patterns and height-diameter relationships. Since DBH is

also frequently used to estimate tree height, we reversed the

equations of several established H-DBH models (Filipescu et al.,

2012) to generate additional candidate models for DBH estimation.
TABLE 1 Summary statistics of data acquired by both methods (UAV LiDAR and ground measurement).

Training data Testing data

DBH LH LCD S A DBH LH LCD S A

Max. 51.20 32.58 12.29 5311 40 44.10 29.76 16.47 5311 40

Mean 14.69 13.14 2.32 2878 18.24 14.71 13.13 2.33 2866 18.28

Min. 5.00 3.82 0.04 433 6 5.00 3.51 0.046 433 6

Stand error 5.02 3.90 1.40 916 9.82 5.01 3.91 1.42 919 9.70
DBH, stem outside bark diameter at 1.3 m height (cm); LH, tree height by lidar (m); LCD, Crown width by lidar (m); S, number of living trees per hectare (ha); A: the age of an individual
tree (years).
FIGURE 1

Plot of site location.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1546055
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Liu et al. 10.3389/fpls.2025.1546055
Ultimately, a total of ten candidate base models were identified. The

mathematical expressions of these models are presented in Table 2.

2.2.2 Variable selection
LiDAR-derived metrics were classified into two primary

categories: height-related metrics (e.g., tree height) and canopy-

related metrics (e.g., crown width, canopy area, and canopy

volume). These metrics are widely used in forestry due to their

strong ecological interpretation and demonstrated correlations with

DBH (Brolly et al., 2012). To account for competition effects, stand

density was extracted by counting individual trees identified

through LiDAR point cloud segmentation within each sample

plot. Studies have shown that LiDAR-derived metrics often

exhibit multicollinearity (Silva et al., 2016; Stitt et al., 2022). To

mitigate this issue, we first conducted a Variance Inflation Factor

(VIF) test and retained only those variables with VIF< 5 (Peereman

et al., 2021). Subsequently, a Pearson correlation analysis was

performed on the selected variables to identify the optimal set for

model development. Once the base model (Table 2) was established,

additional variables were gradually introduced through the

reparameterization or other statistical methods to optimize the

models’ evaluation metrics (Equations 3-6).

2.2.3 Dummy variable modeling
Dummy variables allow for the inclusion of categorical variables

into the model, i.e., growth stages or age groups can be included in the

form of dummy variables to influence the model. Tree growth patterns

can vary across different growth stages, as observed in species, such as

Picea abies (Konopka et al., 1987), Calocedrus formosana (Chiu et al.,

2015), and Larix (Orzeł, 2007). Chinese fir is a typical fast-growing

species, and according to age, we categorized fir into five growth stages:

young (1–10 years), middle-aged (11–20 years), near mature (21–25

years), mature (26–36 years), and overmature (>36 years), and we used

this to characterize the effect of growth stage on the model of DBH.

Therefore the DBH model was developed by incorporating the tree

growth stage as a dummy variable. The dummy variable model is

formulated as shown in Equation 1.
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DBH =o
n

i=1
(Giai)g(LH,C, ci)) + e (1)

Where:ai are model parameters and Gi is the dummy variable

which can be 0 or 1. i =1,2,3,4,5. When G1 = 1,G2,G3,G4 and G5 are

0, and so on, G1 refers to young fir forests and G5 refers to over-

mature fir forests, g(LH, C, ci) represents a DBHmodel with LH and

C as variables and ci as parameter, HL and C are independent

variables in the model, and e represents the error term.

The established dummy variable model not only incorporates

the individual tree variables and competition variables but also

accounts for the impact on the changes in DBH. The optimal form
FIGURE 2

The box plots of the distribution of breast diameter with age groups.
TABLE 2 Basic DBH - height models evaluated.

Model Equation Name

Two-parameter models

M1 D = a + bH Linear

M2 D = aHb Allometric growth model

M3 D = aebH Exponential functions

M4 D = a lnH + b Logarithmic functions

M5 D = eb ln ((H−1:3)=a) Tuan et al., 2019

M6 D =
b

lnH − a
− 1 Wykoff et al, 1982

Three-parameter models

M7 D = a + bHc Allometric model
with intercepts

M8 D = ln
H
a−1
1
b

� �h i1
c Yang et al., 1978

M9
D =

ln 1 − H
a

� �1
c

h i
−b

Clarke and Haines, 1995

M10 D =
b

ln (H − 1:3) − a
− c Exponential
D, diameter at breast height; H, tree height; a, b, and c are parameters to be estimated.
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of the model and its fitting performance are determined and

selected based on model evaluation metrics (Equations 3-6).

2.2.4 Mixed-effects modeling
A combination of factors, such as regional climatic conditions,

significantly influences DBH growth (Liu et al., 2020b). Even within the

same region, subtle environmental and competitive differences between

sample sites can lead to variations in DBH growth. Therefore, it is

essential to consider both inter-regional and intra-regional differences

when modeling DBH growth. To better account for these hierarchical

influences, we implemented a two-level nonlinear mixed-effects model

that captures both broad regional variability and localized site-specific

effects. This approach enhances the accuracy of DBH growth

estimation by incorporating nested random effects, providing a more

refined representation of the underlying biological and environmental

processes. In this model, tree growth is expressed as a function of both

broad regional influences and localized site-specific factors. By

integrating random effects at both the regional and sample plot

levels, The general form of the two-level nonlinear mixed-effects

model is presented in Equation 2.

DBHijk = filk(D1(LHijk,Cijk, dijk), uijk, vijk) + eijk
ui = (u1i, u2i, u3i)

0 ∼ N(0,y1),

vij = (u1ij, u2ij, u3ij)
0 ∼ N(0,y2),

eijk ∼ N(0,s2),

i = 1,…, 9, j = 1,…130:

8>>>>>>>><
>>>>>>>>:

(2)

where DBHijk represents the diameter at breast height (DBH) of

the k-th tree in the j-th sample plot of the i-th region.; fijk is DBH

model that includes two-level random effects; D1(LHijk,Cijk, dijk) is
the model with LHijk and Cijk as variables and with dijk as the

parameter to be estimated. ui and vij are random effects vectors

indicating the level of sample plots in the region and within the

region, respectively. eijk denotes the random error in k-th tree

diameter at breast height for j-th sample plots in i-th region, y1

and y2 refer to the corresponding random-effects variance-

covariance matrixes, and s 2 refers to the random error variance.

The random effects assumption and the error term assumption are

independent of each other and each follows a normal distribution.

Mixed-effects model was fitted by the nlme package in R 4.2.3.

Model parameters were estimated using the restricted maximum

likelihood (REML) method (Corbeil and Searle, 1976), which

provides unbiased estimates of variance components by

accounting for the degrees of freedom consumed in estimating

fixed effects. After fitting the model, we used the AIC and the

likelihood ratio test(LRT) to evaluate model performance and select

the best-fitting model (Fang and Bailey, 2001). AIC was used to

compare model fit by balancing model complexity and goodness of

fit, while LRT assessed the significance of additional model terms.
2.3 Model evaluation

In this study, we used an independent validation approach to

model validation, and we randomly divided the data into two
Frontiers in Plant Science 05
datasets, with 70% of the data used for model fitting (18738

observations) and the other 30% for model validation (8030

observations). The model evaluation metrics were AIC (Akaike

Information Criterion), R2 (Coefficient of Determination), RMSE

(Root Mean Squared Error) and TRE (Total Relative Error).

AIC = −2 ln l + 2p (3)

R2 = 1 −
o
n

i=1
(Di − bDi)

2

o
n

i=1
(Di − D)2

 (
n − 1
n − p

) (4)

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o
n

i=1
(Di − D̂ i)

2

n − p

vuuut
(5)

TRE =
o
n

i=1
(Di − bDi)

2

o
n

i=1
D2
i

(6)

where l is the maximum likelihood of the model; n is the

number of observations;p is the number of parameters in the model;

Diis the i-th observed value of the DBH; D̂ i is the i-th predicted

value of the DBH; �D is the mean value of the DBH.
3 Results

3.1 Selected variables and their correlations
with DBH

After VIF testing, the final retained variables were CW and S.

The results of the VIF values are shown in Table 3. Pearson

correlation analysis revealed that LiDAR-derived tree height

exhibited the highest correlation with ground-measured DBH,

indicating its strong predictive power. Both stand density and

CW also showed correlations with DBH, consistent with their

biological roles in tree growth — CW representing the proportion

of stand growth and stand density reflecting competition intensity

within the stand. In contrast, canopy area and canopy volume

exhibited weaker correlations with DBH, suggesting that they

contribute less to explaining diameter variability. To enhance

model generalizability and reduce overfitting, we ultimately

selected tree height, canopy width, and stand density as covariates

in the DBH model. The correlation heatmap between DBH and the

various variables is shown in Figure 3.
TABLE 3 VIF values for each variable.

Variable LH LCD S

VIF 1.799 1.200 1.600
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3.2 Generalized OLS model

As shown in Table 4, Model M7 was selected as the optimal base

model due to its highest R² and lowest RMSE and AIC values,

indicating that the most appropriate relationship between

individual tree DBH and tree height follows an intercept plus

power function. To account for the effects of multiple variables

on DBH estimation, variables were gradually added to M7 using a
Frontiers in Plant Science 06
stepwise reparameterization procedure based on the continuous

product of power functions. A total of ten reconstructed model

forms were compared, and the extended version of the base model,

known as a generalized OLS model (Equation 7), demonstrated

superior predictive performance over the best base model (M7)

(Table 5). An F-test comparing Equation 7 and M7 indicated that

the generalized model improved predictive ability and statistical

significance (F = 470, p< 0.001). Although the improvement in

predictive accuracy was modest, the new model enhanced

interpretability and increased robustness under varying

site conditions.

The expression for this model is as follows:

DBH = 2:520 + 3:842LH0:894LCD0:062S−0:152 (7)
3.3 Dummy variable model

Dummy variables were introduced to represent different age

groups, allowing the model to account for growth stage-specific

variations. To avoid overfitting and excessive model complexity, we

incorporated dummy variables for only one parameter to balance

model performance and simplicity. Through a systematic

evaluation procedure, the model that applied dummy variables to

parameter b demonstrated the best fit, as indicated by the lowest

AIC. Parameter b reflects the growth rate adjustment across

different age groups, suggesting that growth stage variations

primarily influence the scaling factor rather than the base growth
FIGURE 3

The correlation heatmap between diameter at breast height and various variables is provided. DBH represents the ground truth diameter at breast
height (DBH), LH denotes tree height, and LCD, LCA, and LCV represent canopy width derived from LiDAR data. S refers to stand density.
TABLE 4 Fit indicators of the base models.

Model

Training data Testing data

AIC
R2 RMSE

(cm)
R2 RMSE

(cm)

M1 0.6028 3.160 0.6027 3.1535 69655

M2 0.6024 3.165 0.6023 3.1589 69701

M3 0.5989 3.1790 0.5971 3.1797 69821

M4 0.4131 3.8456 0.4143 3.8337 74979

M5 0.6041 3.1730 0.6004 3.1667 69770

M6 0.2265 9.5978 0.2101 9.6921 99772

M7 0.6053 3.1530 0.6049 3.1489 69604

M8 0.5916 3.2078 0.5919 3.1999 70066

M9 0.5635 3.3163 0.5624 3.3137 70967

M10 0.5635 3.3163 0.5624 3.3137 70967
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function. The model specification is as follows:

DBH = 1:592 + (3:901G1 + 3:946G2 + 4:052G3 + 4:092G4

+ 4:177G5)LH
0:8567LCD0:0539G−0:1356 (8)

where:G1, G2, G3, G4 andG5 are dummy variables representing the

different age classes of Chinese fir: young forest, middle-aged forest,

near-mature forest, mature forest, and over-mature forest, respectively.
3.4 Mixed-effects model

Figure 4 presents the distribution of DBH across different forest

regions. It is evident that DBH varies significantly among regions,

with some regions (e.g., Tl, Sx) exhibiting greater DBH variability and

higher median values compared to others (e.g., Hp, Dt). These

differences highlight the necessity of incorporating regional random

effects in the model. Based on Equation 8, we developed a two-level

random effects model incorporating region-level and plot-level

variability. Various model structures were tested and evaluated
Frontiers in Plant Science 07
based on optimal model selection criteria. model achieved the best

performance when regional random effects were applied to all

parameters, while plot-level random effects were applied only to

parameter a. This model had the highest log-likelihood (-33,466) and

the lowest AIC (66973). To further quantify the contribution of

random effects and assess the impact of incorporating mixed effects,

we conducted a LRT. Compared to the baseline model, introducing

regional random effects significantly improved model performance

(LRT = 1600, p< 0.001), confirming the importance of capturing

broad-scale site variation. Furthermore, when comparing the single-

level regional random effects model to the two-level random effects

model, the model was further optimized (LRT = 404, p< 0.001),

confirming the effectiveness of the two-level structure. The evaluation

indicators of the model are shown in Table 6. Therefore, the two-level

mixed-effects model of the DBH expression is:

DBHijk = 4:462 + uik1 + vijk + (0:1906G1 + uik2 + 0:2008G2 + uik3

+ 0:2035G3 + uik4 + 0:2138G4 + uik5 + 0:2307G5 + uik6)

LH(1:461+uik7)LCD(0:0429+uik8)S(0:0072+uik9)

(9)
TABLE 5 Fit indicators of base model (M7) and Equation 7.

Dataset Indicators M7 Equation 7

Train set

RMSE (cm) 3.153 3.049

TRE (%) 4.302 4.012

R2 0.6053 0.6301

Test set

RMSE (cm) 3.151 3.059

TRE (%) 4.290 4.051

R2 0.6052 0.6261

Evaluation AIC 69604 68698

F (M7 VS Equation 7) 470

p-value <0.001***
FIGURE 4

Distribution of DBH across different forest regions. Abbreviations represent the corresponding locations: Dt, Datang Industrial Zone; Hp, Heping
County; Lc, Lechang County; Ls, Lianshan County; Lm, Longmen County; Sx, Shixing County; Td, Tongle Forest Farm; Yd, Yingde Forest Farm; and
Yn, Yunan Forest Farm.
TABLE 6 Fit indicators of Equations 8, 9.

Dataset Indicators Equation 8 Equation 9

Train set

RMSE (cm) 3.032 2.794

TRE (%) 3.965 3.348

R2 0.6651 0.7002

Test set

RMSE (cm) 3.048 2.822

TRE (%) 4.002 3.408

R2 0.6497 0.7025

Evaluation
AIC 68553 66973

Loglik -34266 -33466
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DBHijk refers to the diameter at breast height of the k-th tree in the

j-th sample plot in the i-th region. G1~G5 denote dummy variables

for the five growth stages of fir from juvenile to overstory. LH, LCD,

and S denote the H of an individual tree corresponding to the

diameter at breast height, the crown width, and the density of the

stand in the sample plot, respectively.

According Figure 5, addition of the relevant variables improved

the fit of the DBH model and reduced the error index, The model

was gradually optimized by incorporating growth stages, regional

effects, and plot-level variability. the final model R2 improving by

16.04% compared to the base model, indicating a substantial

improvement in model accuracy and explanatory power.

Furthermore, as the model was refined, the alignment between

the predicted and observed values in the point plot improved

noticeably. The points increasingly converged along the reference

line x=y, suggesting that the model’s predictive performance

became more accurate and reliable as additional hierarchical

effects were incorporated.
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4 Discussion
While traditional methods have provided valuable insights into

DBH estimation, the need for large-scale, efficient assessment

methods remains unmet (Liu et al., 2021). Existing LiDAR-based

methods have shown promise in large-scale monitoring but face

limitations in capturing individual tree metrics accurately,

particularly under varying site conditions. To overcome these

challenges, this study developed a general model for estimating

the DBH of individual trees using terrestrial and airborne LiDAR

data, enabling the rapid acquisition of a large number of Chinese fir

DBHmeasurements through airborne LiDAR. The proposed model

integrates allometric growth relationships and incorporates the

effects of growth stage and regional variations, demonstrating

both strong interpretability and high predictive accuracy. With

the continuous advancement of smart forestry, this model provides

reliable technical support for the rapid measurement of Chinese

fir DBH.
FIGURE 5

Predictive map (a–d) for M7, Equations 7–9 respectively, the reference line with a diagonal line of y=x.
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UAV remote sensing offers high efficiency and large-scale

coverage (Yan, 2020), but existing LiDAR-based methods still face

limitations in individual tree-level DBH estimation (Lo and Lin,

2013). Previous studies on DBH estimation using LiDAR have

focused primarily on stand-level mean DBH (Muhamad-Afizzul

et al., 2019; Ozkan et al., 2022; Zhang et al., 2023).The challenge lies

in the unstable relationship between LiDAR-derived metrics and

individual tree DBH, making it difficult to identify consistent

patterns and predictive variables. Interestingly, this study found a

weak correlation between LiDAR-derived canopy width and DBH,

which contrasts with the findings of some researchers (Kalliovirta

and Tokola, 2005; Raptis et al., 2018), This discrepancy may stem

from LiDAR’s superior ability to capture vertical forest structure

while being less effective at representing horizontal structure

(Bouvier et al., 2015; Coomes et al., 2017; Moran et al., 2018).

Tree growth strategies are influenced by both intrinsic factors

(e.g., growth stage) and extrinsic factors (e.g., competition), which

jointly determine resource allocation and growth efficiency

(Vanninen, 2004). For a long time, the allometric growth

relationships of trees have been a key focus in forest management

and afforestation research, as these relationships are shaped by a

complex interaction between genetic potential and environmental

pressures (Matsushita et al., 2015; Sharma et al., 2019). Liu et al.

(2020a)demonstrated that including age as a variable significantly

improved DBH model performance for Larix species. Similarly, this

study introduced growth stage as a dummy variable, yielding

comparable improvements in predictive performance. However, the

improvement was relatively modest, likely due to species differences

or variations in model variables (Cao et al., 2024; Taye and Kelil,

2024). Competition also plays a critical role in tree growth strategies.

Under high stand density, trees tend to prioritize height growth over

radial growth, leading to suppressed DBH under competitive

conditions (Boyden et al., 2009; Zhang et al., 2024). Incorporating

plot density as a competition-related variable improved model fitting

performance, highlighting the importance of accounting for stand

competition in DBH models.

The two-level random effects introduced in this study include

block-level and plot-level variations. The block-level effect accounts

for broad-scale regional differences caused by factors such as

climate, topography, and soil type, which influence tree growth

patterns at a macro scale (Canham et al., 2018; Wang and Ibáñez,

2022; Luo et al., 2024). In contrast, the plot-level effect captures fine-

scale environmental heterogeneity within blocks, such as

microclimate and local competition intensity (Prior and Bowman,

2014; Latifi et al., 2015). To evaluate the contribution of the two-

level effects, we compared the model’s performance with and

without these random effects. When excluding the two-level

effects, the model exhibited a substantial increase in the AIC the

model exhibited a substantial increase in the AIC by 1580 and a

reduction in the R² by 0.0528, indicating poorer model fit and

predictive accuracy. (Table 6). This suggests that ignoring regional

and plot-level variations results in increased model bias and

reduced generalization ability. For instance, similar findings have

been reported in other forest growth models. Fortin et al. (2016)

demonstrated that accounting for hierarchical site variability
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improved the accuracy of tree growth predictions, particularly

under varying environmental conditions. Therefore, the inclusion

of two-level effects in this study reflects an essential methodological

improvement that enhances both the interpretability and predictive

power of the DBH model. Lo and Lin (2013) developed a DBH

model incorporating competition and regional differences, showing

strong interpretability, can also attest to this. Their model achieved

higher overall accuracy, which may be attributed to differences in

predictor variables and sample size. Lo et al. introduced a novel

competition-related variable (LCI) to account for neighboring

competitors, whereas our study incorporated plot density to

reflect competition intensity. Additionally, our model

encompassed all growth stages of Chinese fir, whereas Lo et al.’s

model focused solely on mature and overmature stands.

Interestingly, the explanatory power of the density variable

weakened after introducing random effects into the model

(Tables 7, 8). This may be due to the fixed effect of stand density
TABLE 7 Parameter estimations for the dummy variable model
(Equation 8).

Model
parameters

Estimation
Values

Std t value p(r<t)

a1 4.203706 0.487757 8.618 < 2e-16 ***

a2 3.971733 0.466937 8.506 < 2e-16***

a3 3.926678 0.460988 8.518 < 2e-16***

a4 4.07862 0.477705 8.538 < 2e-16***

a5 4.119038 0.479186 8.596 < 2e-16***

a 1.591742 0.469297 3.392 0.000696***

b 0.026961 0.001668 16.159 < 2e-16***

c 0.856735 0.033305 25.724 < 2e-16***

d -0.135598 0.00758 -17.888 < 2e-16***
fr
‘***’ indicates significance at the p < 0.001 level.
TABLE 8 Parameter estimations for the mixed-effects model
(fixed effects).

Model
parameters

Estimation
Values

Std.e t value p

a1 4.461787 0.9142237 4.88041 <0.0001***

a2 0.230677 0.056861 4.05686 0.0001***

a3 0.203524 0.0506867 4.015322 0.0001***

a4 0.190579 0.0475194 4.010551 0.0001***

a5 0.200793 0.0507849 3.953799 <0.0001***

a 0.213843 0.0525322 4.070705 0.0001***

b 1.461044 0.0502492 29.075945 <0.0001***

c 0.007194 0.0258796 0.277977 0.781

d 0.042946 0.0041594 10.324873 <0.0001***
o

‘***’ indicates significance at the p < 0.001 level.
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being partially absorbed by block-level random effects, or it may

reflect environmental variations in the influence of stand density on

DBH growth (Jordan and Philips, 2023).
4 Conclusion

A DBH estimation model was developed using airborne LiDAR

to estimate individual tree DBH in large-scale Chinese fir

plantations. This model integrates dummy variables and a two-

level mixed-effects approach, which accounts for regional

heterogeneity and the influence of tree age on the allometric

growth relationship of Chinese fir. With a coefficient of

determination of 0.7025, the model demonstrates strong

interpretability and performs well in validation, highlighting its

robust generalization ability. These findings support the potential

application of airborne LiDAR in plantation inventory.

In summary, we have developed a tailored single-tree DBH

model for Chinese fir plantations in southern China. The model is

characterized by its simplicity, strong interpretability, and

effectiveness, offering a valuable tool for improving DBH

assessments in plantation inventory practices.
4.1 Suggestion

Establishing DBH models using airborne LiDAR and other

remote sensing techniques significantly enhances the efficiency and

scalability of DBH estimation. As future advancements integrate

multiple remote sensing methods and improve LiDAR-derived

stand structure characterization, DBH models are expected to

achieve higher accuracy and progressively replace traditional

field-based surveys. The Chinese fir DBH model developed in this

study provides an effective approach for large-scale DBH

assessment in southern China. Future research could focus on

improving the representation of horizontal canopy structure in

LiDAR data and integrating multi-source remote sensing data to

enhance model robustness and predictive accuracy
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