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This study introduces a fully automated and cost effective approach to quantify

ascorbic acid levels in camu-camu (Myrciaria dubia), a tropical super fruit

renowned for its exceptionally high vitamin C content. Conventional analytical

techniques depend on specialized laboratory equipment, limiting their

applicability in field settings and among small-scale producers. To address this

issue, we developed an integrated pipeline that combines a real-time Detection

Transformer (RT-DETR) for precise fruit detection with a Vision Transformer (ViT)

to classify fruits across four ripening stages. Building on these outputs, we

designed an image-based estimation model that predicts ascorbic acid

concentration using fruit size and ripening stage as key indicators. The RT-

DETR achieved excellent detection performance, with a precision of 0.970 and a

recall of 0.976, outperforming YOLOv8 (0.946 and 0.913, respectively). Likewise,

the ViT classifier reached a precision of 0.970, surpassing VGG16, which achieved

0.946. The proposed estimation model yielded a very low prediction error,

confirming its reliability. Overall, this work offers a practical, scalable, and

accurate solution for estimating ascorbic acid directly from images, delivering

significant benefits to producers and advancing the application of computer

vision in the pharmaceutical industry.
KEYWORDS

ascorbic acid, fruit detection, RT-DETR, Vision Transformer, camu-camu
1 Introduction

Camu-camu (Myrciaria dubia) is a tropical super fruit widely valued for its

extraordinary ascorbic acid content, reaching up to 2780 mg per 100g of fresh fruit. This

exceptionally high vitamin C concentration drives its commercial value, as prices are

closely tied to ascorbic acid levels in harvested fruit. For farmers, accurate quantification of

this compound is essential, as it directly influences income and market competitiveness.
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However, current field assessment remains challenging because

available techniques rely on laboratory-based physicochemical

analyses, which are expensive, time-consuming, and inaccessible

for most small-scale producers.

In Peru, the National Institute of Quality (INACAL) established

the technical standard NTP-NA 0085:2011 (revised in 2021), which

outlines classification criteria and minimum quality requirements

for the commercialization of fresh camu-camu (INACAL, 2017).

While this standard provides a regulatory framework, it does not

eliminate the dependence on laboratory testing, leaving producers

without a practical, on-site solution for quality evaluation.

To overcome this limitation, this study proposes an automated

approach for estimating ascorbic acid levels directly from images

using advanced computer vision techniques. The proposed pipeline

integrates a real-time Detection Transformer (RT-DETR) for

accurate fruit localization with a Vision Transformer (ViT) to

classify fruits into four ripening stages. By leveraging visual

attributes specifically size and ripening stage to estimate ascorbic

acid concentration, the system delivers accurate predictions without

the need for specialized equipment. This method reduces costs,

improves assessment efficiency, and makes quality evaluation

accessible to producers.

Traditional methods for ascorbic acid measurement, such as

iodometric titration and colorimetric assays, typically require

specialized laboratory equipment, including high-precision

analytical balances, spectrophotometers (e.g. , UV-Vis

Spectrophotometer), burettes, and colorimeters. These

instruments, while precise, are labor-intensive, expensive, and

impractical for rapid field analyses. Recent advances in computer

vision have enabled automated approaches for ascorbic acid

estimation. However, traditional methods remain the gold

standard due to their high accuracy, despite being time-

consuming and resource-intensive.

The remainder of this article is organized as follows. Section 2

reviews related literature; Section 3 describes the proposed

methodology for fruit detection and ripening stage classification;

Section 4 presents the experimental results; and Section 5 discusses

the conclusions and outlines potential directions for future work.
2 Literature review

Deep learning has been widely explored for classifying fruits

based on ripeness and quality. For instance (Al Haque et al., 2021),

developed a convolutional neural network (CNN) that achieved

93.4% precision in identifying banana ripeness. Similarly (Li et al.,

2021), combined a five-layer CNN with Random Forest and K-

Nearest Neighbors (KNN) to classify various fruits including

bananas, apples, strawberries, oranges, and mangoes with

high accuracy.

In related work (Iqbal and Hakim, 2022), evaluated eight mango

varieties using VGG16, ResNet152, and Inception v3, with

Inception v3 achieving 99.2% precision. For strawberries (Ni

et al., 2021), reported 95.75% accuracy by applying AlexNet with

data augmentation techniques on images collected both in
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laboratory and field conditions. Low-cost solutions have also been

proposed for tomatoes (Das et al., 2021): achieved 100% accuracy in

classifying ripeness, while (Hsieh et al., 2021) used an RCNN to

identify ripe tomatoes with accuracy exceeding 95%.

Although the use of transformers in computer vision remains

relatively new, these models have shown remarkable improvements

over traditional CNNs, particularly in capturing complex feature

relationships. For example (Chen et al., 2022), applied YOLOv5 to

detect citrus fruits and ResNet34 to classify ripeness, achieving

95.07% accuracy. Similarly (Qiu et al., 2022), enhanced YOLOv4

with SM-YOLOv4, obtaining an average accuracy of 93.52% for

mango ripeness detection. Likewise (Zhang et al., 2022), proposed

an improved YOLOv5 incorporating GhostNet and CBAM to

detect the ripeness of Hemerocallis citrina Baroni, reaching an

accuracy of 84.9%.

In the case of camu-camu, however, research on automated

determination of ascorbic acid remains scarce. Most existing studies

have focused on laboratory-based assessments of ripeness and

vitamin C content. For example (Icumina, 2005), reported that

the highest ascorbic acid levels occur at the ripe pinton stage, while

(Pablo et al., 2020) used ultrasound to examine how ripening affects

bioactive components. Although valuable, these studies do not

address automation or the use of machine vision techniques,

leaving a clear research gap that our work aims to fill.

Recent advances in computer vision have demonstrated the

superior ability of transformer-based architectures, such as RT-

DETR and Vision Transformer (ViT), to capture complex spatial

relationships and detailed visual features, surpassing traditional

CNN-based models like YOLO or Faster R-CNN. These models

excel in challenging scenarios, including densely packed and

overlapping objects, which are common in Camu-Camu fruit

images. Furthermore, advanced image enhancement techniques,

such as super-resolution with GANs (Cun et al., 2019), and

highlight removal with Attentive GANs (Ledig et al., 2017), have

significantly improved the clarity and reliability of image-based

analyses. Meta-learning approaches, as described in ()?, offer

additional improvements in image resolution and analysis accuracy.

Recent advances in image-based nutrient assessment also

warrant attention. Wang et al. (2021) and Zhang et al. (2023)

demonstrated the effectiveness of multispectral and hyperspectral

imaging for estimating nutrient content through analysis of fruit

spectral and dimensional features. These methods provide non-

destructive, high through put alternatives to traditional techniques.

Similarly, Martinez et al. (2022) explored the use of 3D imaging to

evaluate fruit quality attributes, including vitamin C levels,

highlighting the potential of combining dimensional and spectral

data to enhance prediction accuracy.

Building on these developments, our research introduces the

application of transformers for camu-camu detection and

classification while also presenting an innovative approach that

visually correlates fruit size and ripeness with ascorbic acid levels.

This method achieves an average estimation error of only 7% and

represents a significant contribution to the use of machine vision

in agriculture, improving both accuracy and accessibility

for producers.
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Furthermore, combining laboratory analyses with computer

vision techniques opens the door to a promising hybrid approach.

Laboratory methods remain essential for accurately measuring

compounds such as ascorbic acid, while vision-based tools allow

for rapid, non-invasive, and scalable evaluations directly in the field.

Together, these approaches complement each other, offering a

practical pathway to improve accuracy, expand applicability, and

foster the adoption of these technologies in real agricultural settings.
3 Materials and methods

Figure 1 illustrates the post-harvest image analysis pipeline

designed for camu-camu fruits. High-resolution images were

captured using an iPhone 13 Pro camera. These images were first

processed by the RT-DETR model, which excels at detecting and

isolating individual camu-camu fruits in each frame. RT-DETR,

built on an enhanced version of the DEtection TRansformer

(DETR), employs attention mechanisms to accurately locate and

segment fruits within the images. Once detected, the segmented

fruits were classified using a Vision Transformer (ViT) model. The

ViT leverages transformer-based architectures to recognize

complex visual patterns, assigning each fruit to one of four

maturity stages as defined by the Peruvian technical standard:

Green, Pinton Green, Ripe Pinton, and Ripe. This two-step

approach detection followed by classification forms the

foundation of our automated pipeline.

The reason using RT-DETR and Vision Transformer (ViT)

models were specifically chosen due to their superior ability to

capture complex spatial relationships and detailed visual features
Frontiers in Plant Science 03
compared to conventional CNN-based methods like YOLO or

Faster R-CNN. RT-DETR integrates transformer architectures

directly into object detection, improving performance on densely

packed and overlapping fruits common in Camu-Camu images.

The ViT model provides robust classification through its self-

attention mechanisms, excelling in recognizing subtle visual

differences linked to varying ripeness stages, surpassing

traditional convolution-based models.

To enhance the clarity and precision of Camu-Camu fruit

images, we propose leveraging advanced super-resolution

techniques. For instance, methods demonstrated by Scientific

Reports, such as retinal fundus image super-resolution using

generative adversarial networks (GANs), Figure 2.

High-resolution images of Camu-Camu fruits were first

enhanced using Real-ESRGAN, a GAN-based super-resolution

algorithm, to improve image clarity. Object detection was

performed using RT-DETR, while fruit classification was

conducted using a Vision Transformer (ViT) model. To reduce

glare and reflections, we applied an Attentive GAN-based highlight

removal method prior to analysis.
3.1 Hardware requirements

The experiments were conducted on a workstation equipped

with an NVIDIA RTX 5060 GPU (24 GB VRAM), an Intel i9

processor, and 32 GB RAM. in the Figure 3 This configuration

allowed real-time fruit detection, classification, and ascorbic acid

estimation. The system is scalable to less powerful hardware with

longer processing times.
FIGURE 1

Pipeline of the proposed framework.
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3.2 Creation of the camu-camu image
database

The image database was developed as part of a research project

at the University of Ucayali. Fieldwork involved collecting camu-

camu fruits at different ripening stages directly from plantations.

Images were captured under controlled conditions with an

iPhone 13 Pro (12 MP), producing photographs at 3024 × 3024

pixels. Uniform lighting was ensured using a 5000K white light

source, and images were taken between 10:00 AM and 3:00 PM to

maximize natural light. Fruits were placed on a neutral-colored

background to enhance contrast and simplify detection.

A total of 1592 images were collected, each containing

approximately 15 fruits at varying ripeness stages (Green, Pinton

Green, Ripe Pinton, and Ripe). The camera was positioned 30 cm

above the samples at a fixed angle of 90°, ensuring consistency across all

captures. Images were split into training (60%), validation (20%), and

test (20%) sets. Figure 4 shows an example of an image from the dataset.
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3.3 Fruit detection using a transformer

Images for detection are captured directly through a dedicated

mobile application, which serves as the primary user interface for

data acquisition in real-world scenarios. Once an image is taken by

the user, it is automatically transmitted to a remote server running a

Flask-based backend. All subsequent processing—including fruit

detection using RT-DETR, classification, and ascorbic acid

est imation— i s performed server-s ide , leveraging the

computational power of the cloud infrastructure. This client-

server architecture enables real-time analysis and results delivery,

ensuring a seamless and scalable workflow suitable for both field

and laboratory environments.

RT-DETR combines the strengths of Vision Transformers with

a hybrid encoder that efficiently processes multi-scale features by

separating intra-scale interactions and merging information across

scales. This design enhances both accuracy and real-time detection

capabilities while reducing computational costs.
FIGURE 3

Hardware – server.
FIGURE 2

Comparison of image resolution and detection. (A) Original image. (B) Super-resolved image using GANs, showing enhanced clarity and detail for
Camu-Camu fruits.
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YOLOv8, although a strong baseline, demonstrated lower

accuracy in detecting camu-camu. Various model sizes (n, s, m, l, x)

were tested, with the medium-sized version providing the best balance

between speed and accuracy. Larger versions offered no significant

performance gain and were computationally more demanding.

Figure 5 shows detection examples in both controlled and farm

environments, illustrating RT-DETR’s robustness across different

conditions. Table 1 details the dataset split for detection.

The model was pre trained on COCO (Lin et al., 2015) and used

ResNet-50 for feature extraction. Training employed AdamW
Frontiers in Plant Science 05
optimization with an initial learning rate of 2×10−4, weight decay

of 0.1, batch size of 16, and 100 epochs. Data augmentation

techniques random flips, cropping, and scaling were applied to

improve generalization.
3.4 Classification according to maturity
stage

For fruit classification, a Vision Transformer (ViT) architecture

was implemented to discriminate between the four ripening stages

of camu-camu. The dataset was partitioned into training (60%),

validation (20%), and test (20%) subsets. Ripeness labels were

assigned and cross-validated by four expert farmers with

extensive experience in camu-camu production, ensuring

compliance with the Peruvian classification standard.

Table 2 presents the detailed distribution of images across the

training, validation, and test sets, including the number of samples

per ripening stage.

Examples of the four ripening stages green, Pinton Green, Ripe

Pinton, and ripe are shown in Figure 6. These samples illustrate the

visual differences used as the basis for classification.

The ViT model processed images resized to 72 × 72 pixels and

divided them into 6 × 6 patches. The architecture consisted of eight

transformer blocks, each with four multi-head attention heads, and

a final classification layer producing four output classes. Training

was performed using the AdamW optimizer (learning rate 0.001,

weight decay 0.0001), sparse categorical cross entropy loss, a batch

size of 256, and 100 epochs. Checkpointing was applied to retain the

best performing model based on validation accuracy.

Data augmentation techniques including resizing, random flips,

rotations, zooming, and normalization—were employed to increase

dataset variability. These transformations effectively tripled the

number of training samples processed per epoch, enhancing the

model’s generalization capacity.
FIGURE 4

Example of a camu-camu image from the database.
FIGURE 5

Detection results under various backgrounds.
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3.5 Determination of ascorbic acid levels

Each detected and classified fruit was first normalized by its

pixel area (143.79px/cm) and converted to a physical area (cm2).

Assuming an average pulp thickness of 8mm and a density of 1g/

cm3, that area was converted into pulp volume and then into mass

(mpulp). Unripe (green) fruits—reserved for subsequent ripening—

were excluded from the final analysis.

For ground-truth measurements, 100 g of camu camu fruits

were weighed for each ripening stage, corresponding to

approximately 10 fruits per sample. The pulp was carefully

separated from the seeds and skin, then diluted with 100 mL of

distilled water to obtain homogenized solutions. From each stage,

ten independent aliquots were prepared, allowing replicate

titrations to calculate the mean concentration and associated
FIGURE 6

Representative images of the four ripening stages: Green, Pinton Green, Ripe Pinton, and Ripe.
Frontiers in Plant Science 06
TABLE 2 Distribution of images in the classification dataset.

Classification dataset

Set type Number of images

Training set 3827 (60%)

Green 723

Pinton Green 766

Ripe Pinton 715

Ripe 1623

Validation set 1275 (20%)

Green 255

Pinton Green 241

Ripe Pinton 238

Ripe 541

Test set 1277 (20%)

Green 255

Pinton Green 241

Ripe Pinton 239

Ripe 542
TABLE 1 Details of the detection dataset.

Detection dataset

Set type Number of images

Training 956 (60%)

Validation 318 (20%)

Test 318 (20%)
frontiersin.org

https://doi.org/10.3389/fpls.2025.1540535
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
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experimental error. These solutions were analyzed using the 2,6-

dichlorophenolindophenol (DCPIP) titration method following

standardized laboratory protocols.

The ascorbic acid concentration (mgAA/g of pulp) obtained via

DCPIP titration was multiplied by mpulp to yield the total ascorbate

content per fruit. Mean values and standard errors were computed

from the ten replicates.

Certified reference analyses were carried out by Natura

Analı ́tica S.A.C. (an accredited testing laboratory), yielding

ascorbic acid concentrations of 1539.40mgAA/100g (Green),

1790.37mgAA/100g (Turn–Green), 2033.32mgAA/100g (Turn–
Frontiers in Plant Science 07
Ripe), and 2187.50mgAA/100g (Ripe). These certified values were

used to validate our automated estimates, as summarized in Table 3.
4 Results

The results are presented in two parts, focusing on fruit

detection and classification. For each processed image, the system

automatically estimates the ascorbic acid content based on the

criteria described in the previous section.
4.1 Detection process

We compared the detection performance of RT-DETR,

YOLOv8, and YOLOX. Across all tests, RT-DETR consistently

achieved superior results. YOLOX, although competitive,

performed slightly below RT-DETR in accurately detecting and

isolating camu-camu fruits.

The RT-DETR model was fine-tuned from weights pre-trained

on the COCO dataset (Lin et al., 2015), which contains over 30,000

images. The primary hyperparameters included a base learning rate

of 0.0002, backbone 200 learning rate of 0.00002, weight decay of

0.001, gradient clipping of 0.2, 2500 warm-up steps, and EMA decay

of 0.9999.

Figure 7 shows the loss and precision curves during training,

where convergence was observed around epoch 900.

Table 4 summarizes the detection performance. RT-DETR

achieved a precision of 0.970 and a recall of 0.976, outperforming
TABLE 3 Comparison between laboratory measurements and system
estimates.

Comparative results

Pinton Green Level (mg/100g)

System 1576.42

Laboratory 1790.37

Ripe Pinton Level (mg/100g)

System 2110.55

Laboratory 2033.32

Ripe Level (mg/100g)

System 2309.21

Laboratory 2187.50
TABLE 4 Detection performance and inference speed for different models (measured on NVIDIA RTX 5080, batch size = 128).

Detection results

Model Precision Recall mAP@50-95 F1-score Speed (ms/img)

RT-DETR 0.970 0.976 0.973 0.931 20

YOLOv8 0.946 0.913 0.929 0.912 13

YOLOX 0.924 0.942 0.933 0.893 15
FIGURE 7

Training curves for loss and precision in the detection stage.
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YOLOv8 (0.946 and 0.913, respectively) and YOLOX (0.924 and

0.942). These results demonstrate RT-DETR’s superior ability to

detect camu-camu fruits across various conditions.

Although processing speed was not the main focus of this study,

RT-DETR achieved 0.41 FLOPs, confirming its efficiency in terms

of computational resources.
4.2 Classification process

For classification, the detected fruit images were processed

using the ViT model. Hyperparameters included a learning rate

of 0.002, weight decay of 0.0002, batch size of 128, 16 transformer

layers, and an MLP head with 2048 and 4 units.

Figure 8 shows the loss and accuracy curves, indicating convergence

after approximately 20 epochs. Figure 9 presents the confusion matrices

comparing the ViT and VGG16 models. Although VGG16 achieved

solid results, ViT consistently outperformed it.

Table 5 shows the classification results. ViT achieved a precision

of 0.970, surpassing VGG16, which reached 0.946. These results

confirm the advantage of transformer-based architectures over

traditional CNNs for this task.
Frontiers in Plant Science 08
4.3 Manual depulping calibration

To establish the relationship between fruit surface area and pulp

yield, a manual depulping procedure was performed on 100

samples, each consisting of approximately 10 camu camu fruits,

covering all ripening stages. Unlike approaches that rely on

predefined estimation models, this study directly measured the

pulp content for each 100 g batch, following standardized

laboratory practices previously described in the literature review.

For each sample, the projected fruit area was recorded, and the

pulp was manually separated and weighed. This manual calibration

approach enabled the derivation of an empirical relationship

between the measured area and the corresponding pulp yield,

avoiding reliance on computational estimation models (Table 6).

From these measurements, an average pulp yield was computed

for each area class:

P = 0:084 A2 − 0:252 A + 6:292 + 0:63 M

where:
• P is the estimated pulp content (g).

• A is the projected fruit area (cm2).
FIGURE 8

Training and validation curves classification.
FIGURE 9

Confusion matrices for ViT and VGG16.
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Fron
• M is the maturity factor (0, 1, or 2).
This calibration forms the cornerstone of the estimation

pipeline, ensuring that the model accurately reflects the real-

world biological relationship between fruit area, ripening stage,

and pulp yield. Figure 10 illustrates the integration of this

calibration into the detection and estimation workflow.
4.4 Final ascorbic acid estimation

The final stage of the pipeline integrates detection and

classification to estimate ascorbic acid content for each fruit in

the image. Figure 11 illustrates this process, where fruits are labeled

by ripeness stage: Ripe, Ripe Pinton, Pinton Green, and Green. The

system estimates total ascorbic acid by combining detected fruit

area, estimated pulp mass, and ripeness-specific vitamin C levels.

For each fruit, the system outputs measurements such as

physical size, ripeness stage, and estimated pulp volume. Ascorbic

acid content (R2) is estimated by relating laboratory values (R1) and

reference mass (b1) to the mass calculated for each fruit (b2), using:

R2 =
R1 � b2

b1
tiers in Plant Science 09
where:
• R2 is the ascorbic acid content estimated by the proposed

system (mg/100 g).

• R1 is the ascorbic acid concentration determined through

laboratory titration (mg/100 g).

• b1 is the mass of the reference sample processed in the

laboratory (g).

• b2 is the mass of the fruit calculated by the proposed

system (g).
This proportional approach enables automated quantification

of ascorbic acid without exhaustive laboratory analysis, maintaining

accuracy while increasing throughput. A reference area interval of
TABLE 5 Classification performance by ripeness stage for ViT and
VGG16 models.

Classification results

Model Accuracy Precision Recall F1-score

ViT 0.970 0.972 0.971 0.971

VGG16 0.946 0.950 0.945 0.947
TABLE 6 Pulp yield results from manual depulping across area ranges
and ripening stages.

Result pulp content

Stage Pulp (g) Weight (g) Area (cm2)

Ripe 12.30 100 more than 8

Ripe 8.15 100 between 5 and 8

Ripe 6.10 100 less than 5

Pinton Ripe 14.12 100 more than 8

Pinton Ripe 9.18 100 between 5 and 8

Pinton Ripe 7.20 100 less than 5

Pinton Green 10.21 100 more than 8

Pinton Green 7.33 100 between 5 and 8

Pinton Green 5.26 100 less than 5
FIGURE 10

Unified quadratic model.
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2.5 cm2 was established experimentally from ten laboratory trials,

providing a baseline for pulp yield estimation.

Unlike traditional methods, this system allows rapid field

analysis via a mobile app that sends images to a Flask server for

automated processing and reporting (Figure 12).

The system summarizes results per image, reporting total fruit

area, ascorbic acid content, and fruit count, as well as per-fruit size,

area, estimated pulp, and ripeness. This enables precise, real-time

quality assessment for producers, and supports future machine

learning integration show result in Table 3.
4.5 Limitations and future work

While the proposed system demonstrates high precision for

camu-camu, further research is required to validate its
Frontiers in Plant Science 10
transferability to other crops and to improve pulp volume

estimation. Future integration of additional sensors (such as NIR

or hyperspectral imaging) and advanced artificial intelligence

models is expected to enhance the accuracy of biochemical

quantification and pulp yield estimation.

4.5.1 Impact of camera distance
A key limiting factor in the accuracy of the system is the

camera-to-fruit distance during image capture. Since the

estimation of real-world area and subsequent ascorbic acid

content relies on a fixed pixel-to-centimeter conversion, any

deviation from the recommended 30-cm distance introduces

proportional scaling errors. Field tests confirmed that even small

changes in distance can result in noticeable errors in area

estimation, which directly impact pulp volume and vitamin

C quantification.
FIGURE 11

Example of detection, classification, and ascorbic acid estimation in field images.
FIGURE 12

Server response to mobile app: automated fruit analysis and ascorbic acid estimation.
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To minimize this source of error, all images in this study were

acquired at a controlled distance using a reference guide. Future

work will address automated distance calibration or depth sensing

to improve flexibility and robustness under diverse field conditions.
5 Discussion

To assess the final precision of the system, Table 3 compares the

levels of ascorbic acid measured in the laboratory with those

estimated by our proposed method.

The Mean Absolute Percentage Error (MAPE) Equation (1) was

calculated to quantify the difference between the system predictions

and laboratory results:

MAPE =
1
no

n

i=1

yi − ŷ i

yi

�
�
�
�

�
�
�
�
� 100, (1)

where yi are the results by laboratory values, ŷ i are the predicted

values, and n is the total number of observations. Since green fruits

are not used in practical commercialization, they were excluded

from the error analysis. Table 7 summarizes the MAPE values for

the remaining ripeness stages. The errors were slightly higher for

the Pinton Green stage due to its color variability, while lower errors
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were achieved for Ripe and Ripe Pinton stages, making the system

highly suitable for practical applications.

The average estimation error (mean MAPE) across all evaluated

ripeness stages was 7.1%, confirming the accuracy and practical

viability of the proposed approach for ascorbic acid quantification.

Figure 13 illustrates the strong correlation between measured and

predicted values (R2 = 0.93), further validating the system’s

predictive reliability.

Error Analysis and Sources of Uncertainty: Several factors may

explain the observed error. Variations in lighting during image

capture, minor inconsistencies in fruit segmentation, and natural

variability in fruit morphology not fully captured by the regression

model all contribute to uncertainty. Experimental variability in

laboratory titration and occasional mislabeling of ripening stages

may also have affected accuracy.

The exclusion of green-stage fruits from error analysis follows

commercial practices, since these fruits are not typically harvested

or traded due to low pulp content. Nevertheless, the system is

technically capable of processing green samples, which could be

relevant in physiological studies or breeding programs. Future

datasets may incorporate these stages to broaden applicability

beyond commercial contexts.

Compared to prior works applying CNNs or hyperspectral

imaging for nutrient estimation in fruits—where typical errors

range from 8–12% (Wang et al., 2021; Zhang et al., 2023)—our

approach achieves a lower mean error (7.1%) using only RGB

imaging. This highlights the effectiveness of combining

transformer-based architectures with regression calibration for

vitamin C estimation, while relying on simpler, cost-effective

imaging setups.

Inference Speed: To support the claim of real-time processing, we

measured the inference speed of both detection models on an NVIDIA

RTX 5080 GPU (batch size = 128). RT-DETR achieved an average

inference time of 20 ms per image, while YOLOv8 and YOLOX

processed images in 13 ms on average. Although YOLOv8 exhibited

slightly faster processing speed, RT-DETR delivered superior detection
TABLE 7 MAPE values for different ripeness stages.

Comparative errors

Ripeness stage MAPE

Pinton Green 11.95%

Ripe Pinton 3.8%

Ripe 5.56%

MAPE 7.1%
The bold values indicate the MAPE (Mean Absolute Percentage Error) calculated according to
Equation (1).
FIGURE 13

Scatter plot of laboratory vs. predicted ascorbic acid values across ripening stages. The regression line indicates strong correlation (R2 = 0.93).
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accuracy and recall, which justifies its integration into our pipeline. Both

models are suitable for near-real-time field deployment.

Field Validation and Practical Relevance: Our approach

demonstrated robust performance not only under controlled

conditions but also in field environments. Figure 14 illustrates the

system’s application during real harvest conditions, where images were
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captured using a mobile phone and uploaded to a server for processing.

The method remained effective as long as the camera-to-fruit distance

was maintained at 30 cm. This reliance on mobile phones—technology

already familiar to most farmers—positions the system as a scalable tool

for smallholder agriculture, where access to laboratory facilities is limited

but smartphone penetration is high.
FIGURE 14

Field implementation of the automated ascorbic acid detection system.
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On Model Generalization and Distance Constraints: To ensure

practicality and ease of use, we avoided training separate models for

different camera distances or devices. Instead, we standardized

acquisition with a fixed 30 cm distance, maintained through a simple

physical reference. This ensures consistent scale conversion and avoids

the need for additional calibration or specialized hardware. While

training separate models for variable distances could increase

flexibility, it would also add complexity and limit accessibility for

non-specialists. As future work, we propose integrating automated

distance estimation using visual markers, depth cameras, or machine

learning, enabling greater robustness without requiringmultiplemodels.

Original Contribution: To our knowledge, this is the first study to

apply transformer-based models to estimate ascorbic acid levels in

camu-camu directly from RGB images. By bridging the gap between

laboratory precision and field-ready automation, our work contributes a

novel, accessible, and cost-effective approach to precision agriculture,

with potential for large-scale adoption in fruit quality assessment.
6 Conclusions

This study introduces an automated approach to measure ascorbic

acid levels in camu-camu fruits using computer vision. By combining

high-resolution imaging with advanced models—RT-DETR for

detection and Vision Transformer (ViT) for classification—our

method provides a practical alternative to laboratory based techniques.

The RT-DETR achieved superior detection performance (precision

0.970, recall 0.976) compared to YOLOv8 (precision 0.946, recall 0.913).

Likewise, ViT accurately classified fruits into ripening stages with an

accuracy of 0.970, outperforming VGG16 (accuracy 0.946). This

confirms the strength of transformer based architectures for

agricultural applications.

The proposed system achieved an overall MAPE of 7.1%,

demonstrating reliable accuracy for estimating ascorbic acid levels

from fruit images. The exclusion of green-stage fruits—due to their

minimal pulp content—ensures the estimates are consistent with

commercial practices. The creation of a curated image database and

the integration of cutting-edge machine learning models represent

significant contributions to precision agriculture.

Despite the strong performance, variations in lighting, fruit

orientation, or image quality might affect the model’s consistency.

Future work could include adaptive lighting normalization methods,

expanded training datasets, and exploration of real-time super-

resolution techniques to enhance image clarity and analysis

precision further.

In conclusion, this method offers an accessible, cost-effective, and

scalable solution for assessing camu-camu quality. Beyond its

immediate application, it has the potential to transform quality

control practices in the fruit industry, bridging the gap between

laboratory analysis and field-ready tools. Future work will focus on

embedding the system into mobile platforms to further enhance

usability and reach.
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