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This study introduces a fully automated and cost effective approach to quantify
ascorbic acid levels in camu-camu (Myrciaria dubia), a tropical super fruit
renowned for its exceptionally high vitamin C content. Conventional analytical
techniques depend on specialized laboratory equipment, limiting their
applicability in field settings and among small-scale producers. To address this
issue, we developed an integrated pipeline that combines a real-time Detection
Transformer (RT-DETR) for precise fruit detection with a Vision Transformer (ViT)
to classify fruits across four ripening stages. Building on these outputs, we
designed an image-based estimation model that predicts ascorbic acid
concentration using fruit size and ripening stage as key indicators. The RT-
DETR achieved excellent detection performance, with a precision of 0.970 and a
recall of 0.976, outperforming YOLOvV8 (0.946 and 0.913, respectively). Likewise,
the ViT classifier reached a precision of 0.970, surpassing VGG16, which achieved
0.946. The proposed estimation model yielded a very low prediction error,
confirming its reliability. Overall, this work offers a practical, scalable, and
accurate solution for estimating ascorbic acid directly from images, delivering
significant benefits to producers and advancing the application of computer
vision in the pharmaceutical industry.

KEYWORDS
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1 Introduction

Camu-camu (Myrciaria dubia) is a tropical super fruit widely valued for its
extraordinary ascorbic acid content, reaching up to 2780 mg per 100g of fresh fruit. This
exceptionally high vitamin C concentration drives its commercial value, as prices are
closely tied to ascorbic acid levels in harvested fruit. For farmers, accurate quantification of
this compound is essential, as it directly influences income and market competitiveness.
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However, current field assessment remains challenging because
available techniques rely on laboratory-based physicochemical
analyses, which are expensive, time-consuming, and inaccessible
for most small-scale producers.

In Peru, the National Institute of Quality (INACAL) established
the technical standard NTP-NA 0085:2011 (revised in 2021), which
outlines classification criteria and minimum quality requirements
for the commercialization of fresh camu-camu (INACAL, 2017).
While this standard provides a regulatory framework, it does not
eliminate the dependence on laboratory testing, leaving producers
without a practical, on-site solution for quality evaluation.

To overcome this limitation, this study proposes an automated
approach for estimating ascorbic acid levels directly from images
using advanced computer vision techniques. The proposed pipeline
integrates a real-time Detection Transformer (RT-DETR) for
accurate fruit localization with a Vision Transformer (ViT) to
classify fruits into four ripening stages. By leveraging visual
attributes specifically size and ripening stage to estimate ascorbic
acid concentration, the system delivers accurate predictions without
the need for specialized equipment. This method reduces costs,
improves assessment efficiency, and makes quality evaluation
accessible to producers.

Traditional methods for ascorbic acid measurement, such as
iodometric titration and colorimetric assays, typically require
specialized laboratory equipment, including high-precision
analytical balances, spectrophotometers (e.g., UV-Vis
Spectrophotometer), burettes, and colorimeters. These
instruments, while precise, are labor-intensive, expensive, and
impractical for rapid field analyses. Recent advances in computer
vision have enabled automated approaches for ascorbic acid
estimation. However, traditional methods remain the gold
standard due to their high accuracy, despite being time-
consuming and resource-intensive.

The remainder of this article is organized as follows. Section 2
reviews related literature; Section 3 describes the proposed
methodology for fruit detection and ripening stage classification;
Section 4 presents the experimental results; and Section 5 discusses
the conclusions and outlines potential directions for future work.

2 Literature review

Deep learning has been widely explored for classifying fruits
based on ripeness and quality. For instance (Al Haque et al., 2021),
developed a convolutional neural network (CNN) that achieved
93.4% precision in identifying banana ripeness. Similarly (Li et al.,
2021), combined a five-layer CNN with Random Forest and K-
Nearest Neighbors (KNN) to classify various fruits including
bananas, apples, strawberries, oranges, and mangoes with
high accuracy.

In related work (Igbal and Hakim, 2022), evaluated eight mango
varieties using VGG16, ResNetl52, and Inception v3, with
Inception v3 achieving 99.2% precision. For strawberries (Ni
et al., 2021), reported 95.75% accuracy by applying AlexNet with
data augmentation techniques on images collected both in
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laboratory and field conditions. Low-cost solutions have also been
proposed for tomatoes (Das et al., 2021): achieved 100% accuracy in
classifying ripeness, while (Hsieh et al., 2021) used an RCNN to
identify ripe tomatoes with accuracy exceeding 95%.

Although the use of transformers in computer vision remains
relatively new, these models have shown remarkable improvements
over traditional CNNs, particularly in capturing complex feature
relationships. For example (Chen et al., 2022), applied YOLOVS5 to
detect citrus fruits and ResNet34 to classify ripeness, achieving
95.07% accuracy. Similarly (Qiu et al., 2022), enhanced YOLOv4
with SM-YOLOV4, obtaining an average accuracy of 93.52% for
mango ripeness detection. Likewise (Zhang et al., 2022), proposed
an improved YOLOVS5 incorporating GhostNet and CBAM to
detect the ripeness of Hemerocallis citrina Baroni, reaching an
accuracy of 84.9%.

In the case of camu-camu, however, research on automated
determination of ascorbic acid remains scarce. Most existing studies
have focused on laboratory-based assessments of ripeness and
vitamin C content. For example (Icumina, 2005), reported that
the highest ascorbic acid levels occur at the ripe pinton stage, while
(Pablo et al., 2020) used ultrasound to examine how ripening affects
bioactive components. Although valuable, these studies do not
address automation or the use of machine vision techniques,
leaving a clear research gap that our work aims to fill.

Recent advances in computer vision have demonstrated the
superior ability of transformer-based architectures, such as RT-
DETR and Vision Transformer (ViT), to capture complex spatial
relationships and detailed visual features, surpassing traditional
CNN-based models like YOLO or Faster R-CNN. These models
excel in challenging scenarios, including densely packed and
overlapping objects, which are common in Camu-Camu fruit
images. Furthermore, advanced image enhancement techniques,
such as super-resolution with GANs (Cun et al, 2019), and
highlight removal with Attentive GANs (Ledig et al., 2017), have
significantly improved the clarity and reliability of image-based
analyses. Meta-learning approaches, as described in ()?, offer
additional improvements in image resolution and analysis accuracy.

Recent advances in image-based nutrient assessment also
warrant attention. Wang et al. (2021) and Zhang et al. (2023)
demonstrated the effectiveness of multispectral and hyperspectral
imaging for estimating nutrient content through analysis of fruit
spectral and dimensional features. These methods provide non-
destructive, high through put alternatives to traditional techniques.
Similarly, Martinez et al. (2022) explored the use of 3D imaging to
evaluate fruit quality attributes, including vitamin C levels,
highlighting the potential of combining dimensional and spectral
data to enhance prediction accuracy.

Building on these developments, our research introduces the
application of transformers for camu-camu detection and
classification while also presenting an innovative approach that
visually correlates fruit size and ripeness with ascorbic acid levels.
This method achieves an average estimation error of only 7% and
represents a significant contribution to the use of machine vision
in agriculture, improving both accuracy and accessibility
for producers.
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Furthermore, combining laboratory analyses with computer
vision techniques opens the door to a promising hybrid approach.
Laboratory methods remain essential for accurately measuring
compounds such as ascorbic acid, while vision-based tools allow
for rapid, non-invasive, and scalable evaluations directly in the field.
Together, these approaches complement each other, offering a
practical pathway to improve accuracy, expand applicability, and
foster the adoption of these technologies in real agricultural settings.

3 Materials and methods

Figure 1 illustrates the post-harvest image analysis pipeline
designed for camu-camu fruits. High-resolution images were
captured using an iPhone 13 Pro camera. These images were first
processed by the RT-DETR model, which excels at detecting and
isolating individual camu-camu fruits in each frame. RT-DETR,
built on an enhanced version of the DEtection TRansformer
(DETR), employs attention mechanisms to accurately locate and
segment fruits within the images. Once detected, the segmented
fruits were classified using a Vision Transformer (ViT) model. The
ViT leverages transformer-based architectures to recognize
complex visual patterns, assigning each fruit to one of four
maturity stages as defined by the Peruvian technical standard:
Green, Pinton Green, Ripe Pinton, and Ripe. This two-step
approach detection followed by classification forms the
foundation of our automated pipeline.

The reason using RT-DETR and Vision Transformer (ViT)
models were specifically chosen due to their superior ability to
capture complex spatial relationships and detailed visual features

Camu

Camu RT-
Data DETR
Base

Ascorbic acid level

FIGURE 1
Pipeline of the proposed framework.
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compared to conventional CNN-based methods like YOLO or
Faster R-CNN. RT-DETR integrates transformer architectures
directly into object detection, improving performance on densely
packed and overlapping fruits common in Camu-Camu images.
The ViT model provides robust classification through its self-
attention mechanisms, excelling in recognizing subtle visual
differences linked to varying ripeness stages, surpassing
traditional convolution-based models.

To enhance the clarity and precision of Camu-Camu fruit
images, we propose leveraging advanced super-resolution
techniques. For instance, methods demonstrated by Scientific
Reports, such as retinal fundus image super-resolution using
generative adversarial networks (GANSs), Figure 2.

High-resolution images of Camu-Camu fruits were first
enhanced using Real-ESRGAN, a GAN-based super-resolution
algorithm, to improve image clarity. Object detection was
performed using RT-DETR, while fruit classification was
conducted using a Vision Transformer (ViT) model. To reduce
glare and reflections, we applied an Attentive GAN-based highlight
removal method prior to analysis.

3.1 Hardware requirements

The experiments were conducted on a workstation equipped
with an NVIDIA RTX 5060 GPU (24 GB VRAM), an Intel i9
processor, and 32 GB RAM. in the Figure 3 This configuration
allowed real-time fruit detection, classification, and ascorbic acid
estimation. The system is scalable to less powerful hardware with
longer processing times.

ViT

¥

Green
Determine
Pinton Green
the level of
ascorbic Ripe Pinton
acid Ripe
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FIGURE 2

Comparison of image resolution and detection. (A) Original image. (B) Super-resolved image using GANs, showing enhanced clarity and detail for

Camu-Camu fruits.

3.2 Creation of the camu-camu image
database

The image database was developed as part of a research project
at the University of Ucayali. Fieldwork involved collecting camu-
camu fruits at different ripening stages directly from plantations.

Images were captured under controlled conditions with an
iPhone 13 Pro (12 MP), producing photographs at 3024 x 3024
pixels. Uniform lighting was ensured using a 5000K white light
source, and images were taken between 10:00 AM and 3:00 PM to
maximize natural light. Fruits were placed on a neutral-colored
background to enhance contrast and simplify detection.

A total of 1592 images were collected, each containing
approximately 15 fruits at varying ripeness stages (Green, Pinton
Green, Ripe Pinton, and Ripe). The camera was positioned 30 cm
above the samples at a fixed angle of 90°, ensuring consistency across all
captures. Images were split into training (60%), validation (20%), and
test (20%) sets. Figure 4 shows an example of an image from the dataset.

FIGURE 3
Hardware — server.
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3.3 Fruit detection using a transformer

Images for detection are captured directly through a dedicated
mobile application, which serves as the primary user interface for
data acquisition in real-world scenarios. Once an image is taken by
the user, it is automatically transmitted to a remote server running a
Flask-based backend. All subsequent processing—including fruit
detection using RT-DETR, classification, and ascorbic acid
estimation—is performed server-side, leveraging the
computational power of the cloud infrastructure. This client-
server architecture enables real-time analysis and results delivery,
ensuring a seamless and scalable workflow suitable for both field
and laboratory environments.

RT-DETR combines the strengths of Vision Transformers with
a hybrid encoder that efficiently processes multi-scale features by
separating intra-scale interactions and merging information across
scales. This design enhances both accuracy and real-time detection
capabilities while reducing computational costs.

CAUTION
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FIGURE 4
Example of a camu-camu image from the database.

YOLOVS, although a strong baseline, demonstrated lower
accuracy in detecting camu-camu. Various model sizes (n, s, m, 1, x)
were tested, with the medium-sized version providing the best balance
between speed and accuracy. Larger versions offered no significant
performance gain and were computationally more demanding.

Figure 5 shows detection examples in both controlled and farm
environments, illustrating RT-DETR’s robustness across different
conditions. Table 1 details the dataset split for detection.

The model was pre trained on COCO (Lin et al., 2015) and used
ResNet-50 for feature extraction. Training employed AdamW

10.3389/fpls.2025.1540535

optimization with an initial learning rate of 2x10™*, weight decay
of 0.1, batch size of 16, and 100 epochs. Data augmentation
techniques random flips, cropping, and scaling were applied to
improve generalization.

3.4 Classification according to maturity
stage

For fruit classification, a Vision Transformer (ViT) architecture
was implemented to discriminate between the four ripening stages
of camu-camu. The dataset was partitioned into training (60%),
validation (20%), and test (20%) subsets. Ripeness labels were
assigned and cross-validated by four expert farmers with
extensive experience in camu-camu production, ensuring
compliance with the Peruvian classification standard.

Table 2 presents the detailed distribution of images across the
training, validation, and test sets, including the number of samples
per ripening stage.

Examples of the four ripening stages green, Pinton Green, Ripe
Pinton, and ripe are shown in Figure 6. These samples illustrate the
visual differences used as the basis for classification.

The ViT model processed images resized to 72 x 72 pixels and
divided them into 6 x 6 patches. The architecture consisted of eight
transformer blocks, each with four multi-head attention heads, and
a final classification layer producing four output classes. Training
was performed using the AdamW optimizer (learning rate 0.001,
weight decay 0.0001), sparse categorical cross entropy loss, a batch
size of 256, and 100 epochs. Checkpointing was applied to retain the
best performing model based on validation accuracy.

Data augmentation techniques including resizing, random flips,
rotations, zooming, and normalization—were employed to increase
dataset variability. These transformations effectively tripled the
number of training samples processed per epoch, enhancing the
model’s generalization capacity.

FIGURE 5
Detection results under various backgrounds.
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TABLE 1 Details of the detection dataset.

Detection dataset

10.3389/fpls.2025.1540535

TABLE 2 Distribution of images in the classification dataset.

Classification dataset

Set type Number of images Set type Number of images
Training 956 (60%) Training set 3827 (60%)
Validation 318 (20%) Green 723
Test 318 (20%) Pinton Green 766
Ripe Pinton 715
3.5 Determination of ascorbic acid levels Ripe 1623

Each detected and classified fruit was first normalized by its

Validation set

1275 (20%)

pixel area (143.79px/cm) and converted to a physical area (cm?). Green 255
Assuming an average pulp thickness of 8mm and a density of 1g/ Pinton Green 241
cm?, that area was converted into pulp volume and then into mass

. . . . Ripe Pinton 238
(mypyp). Unripe (green) fruits—reserved for subsequent ripening—
were excluded from the final analysis. Ripe 541

For ground-truth measurements, 100 g of camu camu fruits Test set 1277 (20%)

were weighed for each ripening stage, corresponding to
approximately 10 fruits per sample. The pulp was carefully Green 29
separated from the seeds and skin, then diluted with 100 mL of Pinton Green 241
distilled water to obtain homogenized solutions. From each stage, Ripe Pinton 239
ten independent aliquots were prepared, allowing replicate Ripe o

titrations to calculate the mean concentration and associated

-!

GREEN PINTON GREEN

‘r
I

RIPE PINTON RIPE

FIGURE 6
Representative images of the four ripening stages: Green, Pinton Green, Ripe Pinton, and Ripe.
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TABLE 3 Comparison between laboratory measurements and system

estimates.

Comparative results

Pinton Green

Level (mg/100g)

System 1576.42
Laboratory 1790.37
Ripe Pinton Level (mg/1009)
System 2110.55
Laboratory 2033.32
Ripe Level (mg/100g)
System 2309.21
Laboratory 2187.50

experimental error. These solutions were analyzed using the 2,6-
dichlorophenolindophenol (DCPIP) titration method following
standardized laboratory protocols.

The ascorbic acid concentration (mgAA/g of pulp) obtained via
DCPIP titration was multiplied by my,y, to yield the total ascorbate
content per fruit. Mean values and standard errors were computed
from the ten replicates.

Certified reference analyses were carried out by Natura
Analitica S.A.C. (an accredited testing laboratory), yielding
ascorbic acid concentrations of 1539.40mgAA/100g (Green),
1790.37mgAA/100g (Turn-Green), 2033.32mgAA/100g (Turn-

loss
class
3.602

3

2

1
0.205

0 300 600 900 1200 1500 1800 2100

Epochs

FIGURE 7
Training curves for loss and precision in the detection stage.

10.3389/fpls.2025.1540535

Ripe), and 2187.50mgAA/100g (Ripe). These certified values were
used to validate our automated estimates, as summarized in Table 3.

4 Results

The results are presented in two parts, focusing on fruit
detection and classification. For each processed image, the system
automatically estimates the ascorbic acid content based on the
criteria described in the previous section.

4.1 Detection process

We compared the detection performance of RT-DETR,
YOLOV8, and YOLOX. Across all tests, RT-DETR consistently
achieved superior results. YOLOX, although competitive,
performed slightly below RT-DETR in accurately detecting and
isolating camu-camu fruits.

The RT-DETR model was fine-tuned from weights pre-trained
on the COCO dataset (Lin et al., 2015), which contains over 30,000
images. The primary hyperparameters included a base learning rate
of 0.0002, backbone 200 learning rate of 0.00002, weight decay of
0.001, gradient clipping of 0.2, 2500 warm-up steps, and EMA decay
of 0.9999.

Figure 7 shows the loss and precision curves during training,
where convergence was observed around epoch 900.

Table 4 summarizes the detection performance. RT-DETR
achieved a precision of 0.970 and a recall of 0.976, outperforming

mAP
1
0.8
0.6
0.4
0.2
0 300 600 900 1200 1500 1800 2100
Epochs

TABLE 4 Detection performance and inference speed for different models (measured on NVIDIA RTX 5080, batch size = 128).

Detection results

Model Precision Recall mAP@50-95 F1-score Speed (ms/img)
RT-DETR 0.970 0.976 0.973 0.931 20
YOLOVS 0.946 0913 0.929 0.912 13
YOLOX 0.924 0.942 0.933 0.893 15

Frontiers in Plant Science
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FIGURE 8
Training and validation curves classification.
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FIGURE 9
Confusion matrices for ViT and VGG16.

YOLOVS8 (0.946 and 0.913, respectively) and YOLOX (0.924 and
0.942). These results demonstrate RT-DETR’s superior ability to
detect camu-camu fruits across various conditions.

Although processing speed was not the main focus of this study,
RT-DETR achieved 0.41 FLOPs, confirming its efficiency in terms
of computational resources.

4.2 Classification process

For classification, the detected fruit images were processed
using the ViT model. Hyperparameters included a learning rate
of 0.002, weight decay of 0.0002, batch size of 128, 16 transformer
layers, and an MLP head with 2048 and 4 units.

Figure 8 shows the loss and accuracy curves, indicating convergence
after approximately 20 epochs. Figure 9 presents the confusion matrices
comparing the ViT and VGG16 models. Although VGG16 achieved
solid results, ViT consistently outperformed it.

Table 5 shows the classification results. ViT achieved a precision
of 0.970, surpassing VGG16, which reached 0.946. These results
confirm the advantage of transformer-based architectures over
traditional CNNis for this task.

Frontiers in Plant Science
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4.3 Manual depulping calibration

To establish the relationship between fruit surface area and pulp
yield, a manual depulping procedure was performed on 100
samples, each consisting of approximately 10 camu camu fruits,
covering all ripening stages. Unlike approaches that rely on
predefined estimation models, this study directly measured the
pulp content for each 100 g batch, following standardized
laboratory practices previously described in the literature review.

For each sample, the projected fruit area was recorded, and the
pulp was manually separated and weighed. This manual calibration
approach enabled the derivation of an empirical relationship
between the measured area and the corresponding pulp yield,
avoiding reliance on computational estimation models (Table 6).

From these measurements, an average pulp yield was computed
for each area class:

P =0.084 A*—0.252 A +6.292 + 0.63 M

where:

* P is the estimated pulp content (g).
* A is the projected fruit area (cm?).
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TABLE 5 Classification performance by ripeness stage for ViT and
VGG16 models.

Classification results

10.3389/fpls.2025.1540535

TABLE 6 Pulp yield results from manual depulping across area ranges
and ripening stages.

Result pulp content

Model Accuracy ‘ Precision Recall Fl-score Stage Pulp (g) Weight (g) Area (cm?)
ViT 0.970 0.972 ‘ 0.971 0.971 Ripe 12.30 100 more than 8
VGG16 0.946 0.950 ‘ 0.945 0.947 Ripe 8.15 100 between 5 and 8
Ripe 6.10 100 less than 5
e M is the maturity factor (0, 1, or 2).
Pinton Ripe 14.12 100 more than 8
This calibration forms the cornerstone of the estimation Pinton Ripe 9.18 100 between 5 and 8
pipeline, ensuring that the model accurately reflects the real- Pinton Ripe 7.20 100 less than 5
world biological relationship between fruit area, ripening stage,
. . . . . X Pinton Green 10.21 100 more than 8
and pulp yield. Figure 10 illustrates the integration of this
calibration into the detection and estimation workflow. Pinton Green 733 100 between 5 and 8
Pinton Green 5.26 100 less than 5
4.4 Final ascorbic acid estimation N
where:

The final stage of the pipeline integrates detection and
classification to estimate ascorbic acid content for each fruit in
the image. Figure 11 illustrates this process, where fruits are labeled
by ripeness stage: Ripe, Ripe Pinton, Pinton Green, and Green. The
system estimates total ascorbic acid by combining detected fruit
area, estimated pulp mass, and ripeness-specific vitamin C levels.

For each fruit, the system outputs measurements such as
physical size, ripeness stage, and estimated pulp volume. Ascorbic
acid content (R,) is estimated by relating laboratory values (R,;) and
reference mass (b;) to the mass calculated for each fruit (b,), using:

* R, is the ascorbic acid content estimated by the proposed
system (mg/100 g).

* R, is the ascorbic acid concentration determined through
laboratory titration (mg/100 g).

e b, is the mass of the reference sample processed in the
laboratory (g).

e b, is the mass of the fruit calculated by the proposed
system (g).

This proportional approach enables automated quantification

R R, x b, of ascorbic acid without exhaustive laboratory analysis, maintaining
2Ty, accuracy while increasing throughput. A reference area interval of
Quadratic Unified Model for Pulp Content by Ripening Stage
14} Pinton Green (M=0) X
=+ Pinton Ripe (M=1)
— Ripe (M=2)
Experimental Data
12r
K,
@ 101
©
=
o
E
a
8 -
6 k-
X
4 5 6 7 8 9 10

Projected Area (cm?)

FIGURE 10
Unified quadratic model.

Frontiers in Plant Science

frontiersin.org


https://doi.org/10.3389/fpls.2025.1540535
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Gutiérrez Caceres et al.

10.3389/fpls.2025.1540535

FIGURE 11

Example of detection, classification, and ascorbic acid estimation in field images.

2.5 cm® was established experimentally from ten laboratory trials,
providing a baseline for pulp yield estimation.

Unlike traditional methods, this system allows rapid field
analysis via a mobile app that sends images to a Flask server for
automated processing and reporting (Figure 12).

The system summarizes results per image, reporting total fruit
area, ascorbic acid content, and fruit count, as well as per-fruit size,
area, estimated pulp, and ripeness. This enables precise, real-time
quality assessment for producers, and supports future machine
learning integration show result in Table 3.

4.5 Limitations and future work

While the proposed system demonstrates high precision for
camu-camu, further research is required to validate its

transferability to other crops and to improve pulp volume
estimation. Future integration of additional sensors (such as NIR
or hyperspectral imaging) and advanced artificial intelligence
models is expected to enhance the accuracy of biochemical
quantification and pulp yield estimation.

4.5.1 Impact of camera distance

A key limiting factor in the accuracy of the system is the
camera-to-fruit distance during image capture. Since the
estimation of real-world area and subsequent ascorbic acid
content relies on a fixed pixel-to-centimeter conversion, any
deviation from the recommended 30-cm distance introduces
proportional scaling errors. Field tests confirmed that even small
changes in distance can result in noticeable errors in area
estimation, which directly impact pulp volume and vitamin
C quantification.
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Server response to mobile app: automated fruit analysis and ascorbic acid estimation.
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TABLE 7 MAPE values for different ripeness stages.

Comparative errors

Ripeness stage MAPE
Pinton Green 11.95%
Ripe Pinton 3.8%
Ripe 5.56%
MAPE 7.1%

The bold values indicate the MAPE (Mean Absolute Percentage Error) calculated according to
Equation (1).

To minimize this source of error, all images in this study were
acquired at a controlled distance using a reference guide. Future
work will address automated distance calibration or depth sensing
to improve flexibility and robustness under diverse field conditions.

5 Discussion

To assess the final precision of the system, Table 3 compares the
levels of ascorbic acid measured in the laboratory with those
estimated by our proposed method.

The Mean Absolute Percentage Error (MAPE) Equation (1) was
calculated to quantify the difference between the system predictions
and laboratory results:

1.
MAPE = -

nis

Yi—Ji

Ji

x 100, (1)

where y; are the results by laboratory values, ; are the predicted
values, and 7 is the total number of observations. Since green fruits
are not used in practical commercialization, they were excluded
from the error analysis. Table 7 summarizes the MAPE values for
the remaining ripeness stages. The errors were slightly higher for
the Pinton Green stage due to its color variability, while lower errors

10.3389/fpls.2025.1540535

were achieved for Ripe and Ripe Pinton stages, making the system
highly suitable for practical applications.

The average estimation error (mean MAPE) across all evaluated
ripeness stages was 7.1%, confirming the accuracy and practical
viability of the proposed approach for ascorbic acid quantification.
Figure 13 illustrates the strong correlation between measured and
predicted values (R* = 0.93), further validating the system’s
predictive reliability.

Error Analysis and Sources of Uncertainty: Several factors may
explain the observed error. Variations in lighting during image
capture, minor inconsistencies in fruit segmentation, and natural
variability in fruit morphology not fully captured by the regression
model all contribute to uncertainty. Experimental variability in
laboratory titration and occasional mislabeling of ripening stages
may also have affected accuracy.

The exclusion of green-stage fruits from error analysis follows
commercial practices, since these fruits are not typically harvested
or traded due to low pulp content. Nevertheless, the system is
technically capable of processing green samples, which could be
relevant in physiological studies or breeding programs. Future
datasets may incorporate these stages to broaden applicability
beyond commercial contexts.

Compared to prior works applying CNNs or hyperspectral
imaging for nutrient estimation in fruits—where typical errors
range from 8-12% (Wang et al, 2021; Zhang et al., 2023)—our
approach achieves a lower mean error (7.1%) using only RGB
imaging. This highlights the effectiveness of combining
transformer-based architectures with regression calibration for
vitamin C estimation, while relying on simpler, cost-effective
imaging setups.

Inference Speed: To support the claim of real-time processing, we
measured the inference speed of both detection models on an NVIDIA
RTX 5080 GPU (batch size = 128). RT-DETR achieved an average
inference time of 20 ms per image, while YOLOv8 and YOLOX
processed images in 13 ms on average. Although YOLOVS exhibited
slightly faster processing speed, RT-DETR delivered superior detection
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FIGURE 13

Scatter plot of laboratory vs. predicted ascorbic acid values across ripening stages. The regression line indicates strong correlation (R? = 0.93).
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accuracy and recall, which justifies its integration into our pipeline. Both
models are suitable for near-real-time field deployment.

Field Validation and Practical Relevance: Our approach
demonstrated robust performance not only under controlled
conditions but also in field environments. Figure 14 illustrates the
system’s application during real harvest conditions, where images were

10.3389/fpls.2025.1540535

captured using a mobile phone and uploaded to a server for processing.
The method remained effective as long as the camera-to-fruit distance
was maintained at 30 cm. This reliance on mobile phones—technology
already familiar to most farmers—positions the system as a scalable tool
for smallholder agriculture, where access to laboratory facilities is limited
but smartphone penetration is high.
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FIGURE 14
Field implementation of the automated ascorbic acid detection system.

Frontiers in Plant Science 12 frontiersin.org


https://doi.org/10.3389/fpls.2025.1540535
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Gutiérrez Caceres et al.

On Model Generalization and Distance Constraints: To ensure
practicality and ease of use, we avoided training separate models for
different camera distances or devices. Instead, we standardized
acquisition with a fixed 30 cm distance, maintained through a simple
physical reference. This ensures consistent scale conversion and avoids
the need for additional calibration or specialized hardware. While
training separate models for variable distances could increase
flexibility, it would also add complexity and limit accessibility for
non-specialists. As future work, we propose integrating automated
distance estimation using visual markers, depth cameras, or machine
learning, enabling greater robustness without requiring multiple models.

Original Contribution: To our knowledge, this is the first study to
apply transformer-based models to estimate ascorbic acid levels in
camu-camu directly from RGB images. By bridging the gap between
laboratory precision and field-ready automation, our work contributes a
novel, accessible, and cost-effective approach to precision agriculture,
with potential for large-scale adoption in fruit quality assessment.

6 Conclusions

This study introduces an automated approach to measure ascorbic
acid levels in camu-camu fruits using computer vision. By combining
high-resolution imaging with advanced models—RT-DETR for
detection and Vision Transformer (ViT) for classification—our
method provides a practical alternative to laboratory based techniques.

The RT-DETR achieved superior detection performance (precision
0.970, recall 0.976) compared to YOLOVS (precision 0.946, recall 0.913).
Likewise, ViT accurately classified fruits into ripening stages with an
accuracy of 0.970, outperforming VGG16 (accuracy 0.946). This
confirms the strength of transformer based architectures for
agricultural applications.

The proposed system achieved an overall MAPE of 7.1%,
demonstrating reliable accuracy for estimating ascorbic acid levels
from fruit images. The exclusion of green-stage fruits—due to their
minimal pulp content—ensures the estimates are consistent with
commercial practices. The creation of a curated image database and
the integration of cutting-edge machine learning models represent
significant contributions to precision agriculture.

Despite the strong performance, variations in lighting, fruit
orientation, or image quality might affect the model’s consistency.
Future work could include adaptive lighting normalization methods,
expanded training datasets, and exploration of real-time super-
resolution techniques to enhance image clarity and analysis
precision further.

In conclusion, this method offers an accessible, cost-effective, and
scalable solution for assessing camu-camu quality. Beyond its
immediate application, it has the potential to transform quality
control practices in the fruit industry, bridging the gap between
laboratory analysis and field-ready tools. Future work will focus on
embedding the system into mobile platforms to further enhance
usability and reach.
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