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Sphaeropleales is a diverse group with over one thousand species described,
which are found in a wide range of habitats showed strong environmental
adaptability. This study presented comprehensive genomic analyses of seven
newly sequenced Sphaeropleales strains with BUSCO completeness exceeding
90%, alongside comparative assessments with previously sequenced genomes.
The genome sizes of Sphaeropleales species ranged from 39.8 Mb to 151.9 Mb,
with most having a GC content around 56%. Orthologous analysis revealed
unique gene families in each strain, comprising 2 to 3.5% of all genes.
Comparative functional analysis indicated that transporters, genes encoding
pyrroline-5-carboxylate reductase and antioxidant enzymes played a crucial
role in adaptation to environmental stressors like salinity, cold, heavy metals
and varying nutrient conditions. Additionally, Sphaeropleales species were found
to be By, auxotrophy, acquiring this vitamin or its precursors through a symbiotic
relationship with bacteria. Phylogenetic studies based on 18S rDNA and the low
copy othologues confirmed species identification and the relationships inside
core Chlorophyta and between prasinophytes. Evolutionary analyses
demonstrated all the species exhibited a large count of gene family expansions
and contraction, with rapidly evolving and positive selected genes identified in
terrestrial Bracteacoccus species, which contributed to their adaptation to
terrestrial habitat. These findings enriched the genomic data for
Sphaeropleales, particularly the genus Bracteacoccus, which can help in
understanding the ecological adaptations, evolutionary relationships, and
biotechnological applications of this group of algae.
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1 Introduction

The Chlorophyta are a diverse group of green algae, which,
together with the Streptophyta and Prasinodermophyta, belong to
the Viridiplantae, an ancient lineage that diverged from a proposed
‘ancestral green flagellate’ (Fang et al.,, 2017; Leliaert et al., 2012; Li
et al, 2020). Within the Chlorophyta, there are two major
subdivisions: the core Chlorophyta and the paraphyletic
prasinophytes. The monophyletic core Chlorophyta currently
comprises five classes: Chlorophyceae, Ulvophyceae,
Trebouxiophyceae, Pedinophyceae, and Chlorodendrophyceae
(Fucikova et al., 2014; Sun et al., 2016; Turmel et al., 2016, 2017).
The order Sphaeropleales belongs to the CS clade (which includes
Chlamydomonadales and Sphaeropleales) of Chlorophyceae, a
group containing 18 taxonomically recognized families. Over a
thousand species have been described in this order, which are
found in a wide range of habitats, demonstrating strong
environmental adaptability and exhibiting diverse cellular
organizations (Krienitz et al., 2011; Wolf et al., 2002).

Members of Sphaeropleales have been explored for bioassays
and biofuel production, due to their potential for producing a range
of biomolecules such as pigments, lipids, starch, and cellulose
(Breuer et al, 2014, 2015, 2012, 2015; Chisti, 2007; De Jaeger
et al,, 2014; Rawat et al., 2013) Additionally, their rapid growth
and strong resistance to environmental stress make them promising
candidates for bioproduction. Some species are also valuable in
ecological research and applications due to their heightened
sensitivity to various substances compared to other algae (Nagai
et al,, 2016). For instance, species like Raphidocelis subcapitata and
Desmodesmus subspicatus are recommended for ecotoxicological
bioassays by the Organization for Economic Cooperation and
Development (OECD) (TG201, http://www.oecd.org/) (Suzuki
et al., 2018).

The rapid advancements in genome sequencing over the past
two decades have made comparative genomics a key approach in
biological research, which is instrumental in uncovering the origin
and function of genes and gene families, as well as understanding
the mechanisms that drive complexity and diversification during
evolution (Goodwin et al,, 2016). And comparative genomics has
increasingly been applied to the study of eukaryotic algae, including
Chlamydomonas (Chlorophyta) (Craig et al., 2021), Cladosiphon
okamuranus (a brown alga) (Nishitsuji et al., 2020), diatoms (Jeong
and Lee, 2024), red algae (Ho, 2020).

To date, 28 Sphaeropleales genomes have been sequenced and
are available in public databases. Of these, 20 strains belong to four
genera within the Scenedesmaceae, six strains are from three genera
within the Selenastraceae, and additional genomes are available
from Mychonastaceae and Scenedesmaceae. Most of these genomes
have been assembled to the contig or scaffold level, with genome
sizes ranging from 24 Mb to 208 Mb and contig N50 values ranging
from 2.8 Kb to 6125 Kb. Among these 28 genomes, only eight have
been annotated, including those of Monoraphidium neglectum,
Monoraphidium minutum, Raphidocelis subcapitata, Scenedesmus
sp. NREL 46B-D3, and two Tetradesmus obliquus strains (Bogen
et al,, 2013; Carreres et al., 2017; Dasgupta et al., 2018; Demirbas,
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2011; Suzuki et al., 2018). The predicted gene counts for these
species range from 7,092 to 17,867 genes. These sequenced
Sphaeropleales genomes provide valuable insights into the
biosynthesis of lipids and pigments, including triacylglycerol
(TAG) and carotenoids, making these species suitable for
biotechnological applications and production. Comparative
genomics analyses have also revealed mechanisms underlying
environmental adaptation, such as the capacity for both
heterotrophic and mixotrophic lifestyles, as well as tolerance to
salinity and low metal concentrations.

Nucleotide substitution rates are often used as the criterion to
reflect selection pressure. While nonsynonymous substitution rates
(dN) can cause amino acid change, synonymous substitution rates
(dS) do not cause amino acid change. The dN/dS ratio is the
measure of natural selection acting on the protein. According to
Yang (Yang, 2007), dN/dS < 1 denotes negative purifying selection,
dN/dS=1 signifies neutral evolution, and dN/dS>1 indicates
positive selection (Xiong et al, 2021). As most of the plastid
protein-coding genes undergo negative or purifying selection to
maintain their function, they are conserved and have a low dN/dS
ratio. However, some genes might undergo positive selection in
response to environmental changes, consequently presenting
relatively high dN/dS ratio (Henriquez et al., 2020; Iram et al,
2019; Smith, 2015).

In this study, we sequenced the genomes of seven
Sphaeropleales strains, including the first two terrestrial
Bracteacoccus species, and performed an in-depth analysis of
these genomes together with the seven previously reported high-
quality Sphaeropleales genomes. Functional annotation-based
comparative genomic analysis revealed key insights into the
environmental adaptations of this group. Phylogenetic and
evolutionary analyses, based on gene families and low-copy
orthologues, showed extensive gene family expansions and
contractions across all species. Rapidly evolving and positively
selected genes were identified in the terrestrial Bracteacoccus
species, which contributed to the adaption to the terrestrial
habitat. The findings of this study provide valuable information
for understanding the environmental adaptations and evolutionary
relationships within Sphaeropleales.

2 Materials and methods

2.1 Sampling, culture conditions, DNA
extraction, library preparation, sequencing,
genome assembly, and cleaning of the
reads

We obtained seven Sphaeropleales strains from National
Aquatic Biological Resource Center, Institute of Hydrobiology,
Chinese Academy of Sciences. The lists were Bracteacoccus aerius
(FACHB-895), Bracteacoccus engadinensis (FACHB-1300), four
Tetradesmus obliquus strains (FACHB-14, FACHB-276, FACHB-
417 and FACHB-1235), Monoraphidium contortum (FACHB-
3677). Bracteacoccus aerius and Bracteacoccus engadinensis were
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terrestrial, and others were collected from freshwater. All these
strains were grown at 25 °C in liquid BG11 medium under a 12/12-h
light/dark cycle.

DNA was extracted using a Universal DNA Isolation Kit (Axygen,
Suzhou, China). A NEB Next Ultra DNA Library Prep Kit for Illumina
(New England Biolabs, Ipswich, Massachusetts, USA) was used for
preparing sequencing libraries which were sequenced on an DNBSEQ
platform. The quality of the raw reads was initially assessed using
FastQC v0.11.6 (http://www.bioinformatics.babraham.ac.uk/projects/
fastqc/ accessed on 24 June 2021). Data were trimmed using
SOAPnuke software (Chen et al,, 2017) and were then assembled
by megahit v 1.0.3 (Li et al., 2015) with defaulted parameters. Anvio
7.0 (Eren et al,, 2015) was used to remove prokaryotic sequences
from the assembled genomes with defaulted parameters. Firstly,
Bowtie2 (Langmead and Salzberg, 2012) was used to align the
assembled genomes to the fq files, generating BAM files. Then, the
‘anvi-gen-contigs-database’ was employed to generate a contig
database, followed by the use of ‘anvi-run-hmms’ to identify
single-copy genes in the contig database. The ‘anvi-profile’ was
used to import sample information into the database. Next, ‘anvi-
interactive’ was used to visualize the results. Finally, ‘anvi-export-
collection’ was used to export the eukaryotic bins, and ‘anvi-export-
contigs’ was used to extract the sequences of the aimed bins,
resulting in the final assembled genomes. The genomes of the
seven Sphaeropleales trains were deposited in CNCB with
accession numbers SAMC4339295 - SAMC4339301, respectively.

2.2 Gene prediction, genome annotation
and evaluation

Ab initio gene prediction was performed by AUGUSTUS version
3.2.1 (Stanke et al., 2006) with four three-trained organism models:
volvox, chlamy2011, and chlorella. GeMoMa-1.9 (Keilwagen et al,
2018) was employed for homolog-based gene prediction and
integration of gene prediction results, with genomes and protein of
Volvox carteri f. nagariensis (GCA_000143455.1), Gonium pectorale
(GCA_001584585.1), Haematococcus lacustris (GCA_030144725.1),
and Tetradesmus obliquus (GCA_030272155.1) from GenBank as the
references. Functional annotation of predicted proteins was performed
by InterProScan (Jones et al., 2014) and EggNOG-mapper (Huerta-
Cepas et al., 2017) for GO term mapping and KEGG pathway analyses
respectively. To assess the completeness of the genome assembly and
annotation, BUSCO (Simao et al, 2015) (Benchmarking Universal
Single-Copy Orthologs) was used, utilizing the chlorophyta_odb10
database for a quantitative evaluation.

2.3 Orthologous gene estimation,
transporters identification and repeat
composition

Orthologous gene groups for the Sphaeropleales samples

(including those newly added in this study and those available in the
public database with annotation completeness greater than 80%) were
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estimated using Orthofinder (Emms and Kelly, 2015) with default
parameters to identify single-copy or low-copy orthologues.
Additionally, V. carteri f. nagariensis (GCA_000143455.1) and D.
salina (GCA_002284615.2) were included as outgroups to estimate
shared orthologues for subsequent divergence time estimation and
gene family evolution analysis. Transporters were identified using
BLASTp, with the Transporter Classification Database (TCDB) as a
query, with an e-value cut-off of <1E>. Further, repeat content for each
genome was determined by RepeatModeler and RepeatMasker with
default parameters. A library of repeats was first created for each
assembly using RepeatModeler (Version 2.0.1) and all repeats were
masked using RepeatMasker (Version 4.1.0).

2.4 Phylogenomic analyses

The predicted protein sequences (PEP) sequences of each
single-copy or low-copy orthologue were aligned using MAFFT
v7.394 (Katoh and Standley, 2013) with the parameters -maxiterate
1000 and -globalpair. Regions with poor alignment were trimmed
using TrimAl v1.2 (Capella-Gutierrez et al., 2009) with the
-automatedl option. The resulting trimmed alignments of
orthologous groups were then used for subsequent phylogenomic
analysis. Coalescent-based analyses were employed to construct the
phylogenetic tree. For these analyses, RAXML (Stamatakis, 2014)
was used to perform maximum likelihood (ML) analysis of each
single-copy orthologue, applying the PROTGAMMA GTR model.
Additionally, ASTRAL (Zhang et al., 2018) was used to infer the
coalescent-based species tree (ST) phylogeny.

The 18S rDNA sequences were aligned using MAFFT v7.0 (Katoh
and Standley, 2013), and ambiguous regions were manually adjusted
and refined using MEGA7 (Kumar et al., 2016). To locate the positions
of 18S rDNA sequences within the sequenced genomes, nhmmer
(Wheeler and Eddy, 2013) was used to align the final assembled
genomes to the rDNA database, based on rDNA sequences
downloaded from NCBI. Subsequently, SSU sequences were
extracted using Perl scripts. To understand the phylogenetic
relationships of the strains in this study, additional Sphaeropleales
18S rDNA sequences were downloaded from the public database. The
18S rDNA sequences were analyzed using jModelTest2 (Darriba et al,
2012) to select the best-fit model, which was found to be GTR + I + G.
Bayesian inference (BI) method was applied to infer the phylogeny.

2.5 Gene family expansion and contraction
estimation

PhyloSuite (Zhang et al., 2020) was used to concatenate all the
shared single-copy orthologous groups from the Sphaeropleales and
the outgroup, resulting in a concatenated sequence of 35,684 amino
acids. This concatenated alignment, along with the species tree
constructed by ASTRAL (Zhang et al., 2018), was used for Bayesian
divergence time estimation using the approximate likelihood
method described by dos Reis & Yang, implemented in
MCMCltree v. 4.9 (Yang, 2007).
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The number of gene copies per family, as determined by
Orthofinder (Emms and Kelly, 2015), and the timetree estimated
earlier by MCMCtree (Yang, 2007). were used to analyze gene
family expansion and contraction using CAFE v. 5.1 (Mendes et al.,
2020). Expanded and contracted genes were then extracted for Gene
Ontology (GO) functional and KEGG pathway enrichment
analyses. For GO enrichment, all PEP sequences were imported
into InterProScan (Jones et al., 2014) for GO term mapping. The
analysis was carried out using the clusterProfiler (Yu et al,, 2012)
package, with a significance cutoff of p < 0.05, and the false
discovery rate (FDR) method was applied to adjust for multiple
testing (Benjamini and Hochberg, 1995).

2.6 Evolutionary analysis

The CODEML program of PAML v4.9 (Yang, 2007) was used to
estimate positive selection and rapidly evolving genes based on common
orthologues were described as Xiong et al (Xiong et al., 2022, 2021). The
branch model was employed in the calculation of dN/dS ratios for
terrestrial Sphaeropleales species and aquatic ones with the two
Bracteacoccus species labeled as foreground branches. A null model
(model = 0), where one dN/dS ratio was fixed across all strains, was
compared with an alternative model (model = 2), where Bracteacoccus
species were allowed to have a different dN/dS ratio. Likelihood ratio
tests were performed to examine model fit, a chi-squared test was used
to analyze p values, and multiple testing was corrected using false
discovery rate (FDR) in R. The genes were considered putative rapidly
evolving genes if they had an FDR-adjusted p value < 0.05 and a higher
dN/dS ratio in the foreground branch than in the background branches.

Branch-site model was utilized to find genes that possibly
underwent positive selection. The improved branch-site model
(model = 2, Nsites = 0) was used to detect signatures of positive
selection on individual amino acids in a specific branch. The two
Bracteacoccus species were set as the foreground branch. The null
model assumed that no positive selection occurred on the
foreground branch (fix_omega = 1, omega = 1), and the
alternative model assumed that sites on the foreground branch
were under positive selection (fix_omega = 0, omega = 1.5). LRT
were used to test model fit and Chi-square test was applied for
examining the P values in R. A correction was performed for
multiple testing using an FDR criterion, and BEB method was
employed to statistically identify sites under positive selection.
Genes with an FDR-adjusted P < 0.05 were considered as
putatively selected. For the genes belonging to both under
positive selection and putative rapidly evolving were performed
for gene ontology (GO) functional enrichment analyses as above.

3 Results and discussion
3.1 Phylogenetic analyses

The seven newly added Sphaeropleales strains were collected
prior to 2000 and were deposited in National Aquatic Biological
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Resource Center, Institute of Hydrobiology, Chinese Academy of
Sciences. Phylogenetic analysis based on 18S rDNA sequences
extracted from the genomes was performed, and the results are
shown in Supplementary Figure S1. The phylogenetic tree with high
support values at the basal nodes confirmed species identification.
We also performed a phylogenetic analysis using low-copy
orthologues across the entire Chlorophyta, including core
Chlorophyta and prasinophytes by Astral (Figure 1), which
enables highly accurate phylogenomic estimation, even in the
presence of high levels of gene tree conflict because of incomplete
lineage sorting (Mirarab et al., 2014) or horizontal gene transfer
(Davidson et al., 2015). The results were almost identical with the
previous studies, supporting the phylogenetic relationships within
core Chlorophyta and between prasinophytes. Notably, our analysis
confirmed that P. coloniale (CCMP 1413) was distinct from both
core Chlorophyta and prasinophytes, suggesting it belongs to a
newly identified phylum, Prasinodermophyta (Li et al., 2020).

3.2 Genome sequencing and
characteristics

Using Illumina platforms, we sequenced and assembled draft
genomes for B. aerius, B. engadinensis, M. contortum, S. obliquus,
and three T. obliquus strains. These genomes, along with seven
previously sequenced Sphaeropleales genomes, were summarized in
Table 1. The contig N50 values of the seven newly sequenced
genomes were nearly identical, ranging from 20.5 to 22.34 kb. The
BUSCO completeness for all genomes exceeded 90%, indicating
that the genome assemblies were sufficiently complete for
comparative analyses of genomic and gene constituents. The
genome sizes of the seven sequenced species ranged from 45.62
Mb to 109.8 Mb, with the GC content varied from 55.72% to
57.63%. Gene counts varied significantly among species, ranging
from 6,874 to 13,568. The repeat composition covered 3.06% to
18,88% of the genome.

Among all the Sphaeropleales species, the genomes size of
Scenedesmus species exhibited significant variation, ranging from
39.8 Mb to 151.90 Mb, representing both the smallest and largest
genomes within this group. In contrast, Monoraphidium,
Raphidocelis, and Bracteacoccus displayed moderate genome sizes,
ranging from 46.6 Mb to 69.5 Mb. And Tetradesmus species
possessed relatively larger genomes that exceed 100 Mb. Most
species have a GC content around 56%, exception for
Monoraphidium and Scenedesmus sp. PABB004 greater than 70%.
The repeat content varied considerably among all genomes
examined, Scenedesmus sp. PABB004 and R. subcapitata showed
the lowest repeat content about 1.3%, and T. obliquus
(SAMC4339298) displayed the highest at 18.8%. Bracteacoccus
and Monoraphidium have moderate repeat content, ranging from
3% to 4%, whereas Tetradesmus and most Scenedesmus species
exhibit higher ranging 6.78% to 18.88%. minutum,

It is generally accepted that there is some degree of correlation
between the genome size, the proportion of repetitive sequence, and
the number of genes (Feng et al., 2017; Hou and Lin, 2009;
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Phylogenetic tree of the Chlorophyta based on the low-copy orthologues to by ASTRAL. Numbers on branches represent support values of ASTRAL.
Branch lengths are proportional to genetic distances, which are indicated by the scale bar. The species in bold indicates the newly added

Sphaeropleales strains in this study.

Nishitsuji et al,, 2020; Wang et al, 2021). These observations
support the idea that larger genomes generally having more gene
count, fewer repeats and lower GC content. While, it seemed larger
genomes exhibited more gene count at the genus level of
Sphaeropleales, the relationship the genomes size among the GC
and repeat content showed no obvious pattern, more high-quality

genomes will contribute to explore the relationships.

3.3 Analysis of orthologous gene families
and comparative analysis of predicted gene
function

We conducted orthologous gene family analysis based on the
newly sequenced seven Sphaeropleales strains along with seven
high-quality previously sequenced genomes at different taxonomic
levels (Figure 2). The orthologous analysis revealed that 3,761 gene
families were shared or conserved across all fifteen genomes
(Figure 2A). Additionally, each strain contained unique gene
families, comprising 2-3.5% of the total gene count: 2,009 families
were unique to T. obliquus, 554 to S. obliquus, 411 to B. aerius, 257
to Scenedesmus sp. NREL 46B-D3, 247 to B. engadinensis, 151 to M.
minutum, 144 to R. subcapitata, and 138 to M. contortum. At the
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genus level (Figure 2B), 6,733 gene families were shared or
conserved across the five genera. Furthermore, 5,587 gene families
were unique to Tetradesmus, 2,391 to Bracteacoccus, 1,432 to
Monoraphidium, and 720 to Scenedesmus. At the family level
(Figure 2C), 7,304 gene families were shared or conserved among
the three families. Additionally, 10,656 gene families were unique to
Scenedesmaceae, 3,149 to Selenastraceae, and 2,667 to
Bracteacoccaceae. In whole, the Tetradesmus species, in particular,
had the most unique gene families (5,587), likely due to their
larger genomes.

To further investigate gene functions within the Sphaeropleales,
we classified all annotated proteins from 14 genomes into functional
categories using the Gene Ontology (GO) database (Supplementary
Figure S2). The predicted proteins were categorized into three
primary GO domains: molecular function (MF), cellular
component (CC), and biological process (BP). We compared the
contents of each category and their corresponding percentages.
Among the 11 strains, unique GO domains were identified, with T.
obliqguus FACHB-276 exhibiting the highest diversity, containing
278 distinct domains across the three GO categories. For the top ten
functional categories at the CC and MF levels, most species shared
nearly identical terms. We also calculated the PFAM domain

categories and their percentages (Supplementary Figure S3) and
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TABLE 1 Comparison of draft genome assemblies of seven species of Sphaeropleales algae.

] Genome .
Species Assembled Number of  N50 contig Number of N50 scaffold complete Number of Repeated Accession
P genome size (Mb) contigs length (kp) scaffolds length (kb) BUSgOs genes (%) number
Bracteacoccus
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in the vertical axis. (B) Venn diagram showing the numbers of gene families shared among the Sphaeropleales algae at the level of genus. (C) Venn
diagram showing the numbers of gene families shared among the Sphaeropleales algae at the level of family.

KEGG pathway categories (Supplementary Figure S4) for all
species, which showed that all the species shared similar top-ten
categories and associated percentages.

3.4 Comparative analysis of predicted gene
function

Based on the Transporter Classification Database, we analyzed
the transporters in the Sphaeropleales genomes. A total of 320
transporters were identified, as shown in Supplementary Table S1.
The transporters across the Sphaeropleales species exhibited similar
patterns in terms of the top ten transporter categories and their
respective numbers. As additional species were included in the
analysis, the results were consistent with previous studies (Suzuki
et al., 2018), which showed that Sphaeropleales species possess
notably higher numbers of genes encoding for H+/hexose
transporters (2.A.1.1, TCAD ID), amino acid permeases
(2.A.18.2), peptide transporters (2.A.17.3), aquaporins (1.A.8.8),
and metal-nicotianamine transporters (2.A.67.2) compared to
Chlamydomonas reinhardtii (Table 2). The Sphaeropleales are a
dominant group of freshwater algae, well-adapted to diverse
environmental conditions (Baldisserotto et al., 2012; Fawley et al,,
2004). These species also exhibit high sensitivity to exogenous
substances (Nagai et al., 2016). Previous studies have suggested
that Sphaeropleales have the ability to adapt to various
environmental conditions for possessing a significantly greater
number of genes related to H+/hexose transporters, amino acid
permeases, peptide transporters, aquaporins, and metal-
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nicotianamine transporters comparing to C. reinhardtii (Suzuki
et al, 2018). Aquaporins help algae adapt to high salt stress by
facilitating the transport of small polar molecules, such as water,
across cell membranes, thereby regulating intracellular osmotic
pressure (Anderberg et al, 2011). Additionally, the presence of
multiple metal-nicotianamine transporters, ABC transporters, and
genes involved in heavy metal ion and xenobiotic transport
(Supplementary Table S2) suggested that Sphaeropleales may
have a high sensitivity to metals, positioning them as potential
phytoremediation organisms for removing heavy metal pollution
from aquatic environments (Benderliev and Ivanova, 1994, 1996;
Murata et al., 20065 Schaaf et al., 2004). Genes related to H+/hexose
cotransport, amino acid/peptide transporters, and nitrate/nitrite
transporters are likely key to their rapid growth under varying
nutrient conditions (Cho et al., 1981; Sauer et al., 1983).
Furthermore, Sphaeropleales species possessed a gene encoding
pyrroline-5-carboxylate reductase, which synthesizes proline to
alleviate osmotic stress under cold conditions (Liu et al., 2020).
And pyrroline-5-carboxylate reductase is also associated with
halotolerance (Arora et al., 2019; Kishor et al., 1995; Perez-
Arellano et al,, 2010). Previous study indicated that copies of the
pyrroline-5-carboxylate reductase gene of the halotolerant
microalga Scenedesmus sp. NREL 46B-D3 were upregulated
(Calhoun et al,, 2021) in the cold stress, and pyrroline 5-
carboxylate reductase was upregulated under the salt stress in the
cold tolerant M. minutum 26B-AM and S. obliquus UTEX393
(Calhoun et al,, 2022). They also exhibited genes encoding
antioxidant enzymes (e.g., catalase, ascorbate peroxidase) and
antioxidant biosynthesis pathways (e.g., glutamate, B-carotene)
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TABLE 2 The number of genes for several transporters.
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: . Hexose Peptide Amino acid Metal-nicotianamine
Annotation Aquaporin
transporter transporter permease transporter
TCAD ID 1A8.8 2A11 2A173 2.A18.2 2.A.67.2
R. subcapitata 0 13 8 6
M. neglectum 3 14 7 4
T. obliquus 8 12 11 5
C. zofingiensis 4 12 4 4
C. reinhardtii 1 3 0 0
T. obliquus
4 17 8 6
(SAMC4339297)
T. obliquus
8 20 11 5
(SAMC4339299)
T. obliquus 6 21 13 .
(SAMC4339298)
T. obliquus 5 21 13 5
(SAMC4339300)
B. aerius (SAMC4339295) 3 5 2 1
B. engadinensis 1 6 4 .
(SAMC4339296)
M. contortum 4 15 3 5
(SAMC4339301)

The data of R. subcapitata, M. neglectum, T. obliquus, Chromochloris zofingiensis and C. reinhardtii was cited from the study of Suzuki et al., 2018.

(Supplementary Table S3), which helped mitigate oxidative stress
from excess reactive oxygen species (O, and H,0,) under cold
stress (Fryer et al, 1998; Liu et al., 2020; Prasad, 1997; Van
Breusegem et al., 1999). The findings from this study, based on a
larger set of sequenced Sphaeropleales genomes, supported with
adaptation for different environmental condition.

All Sphaeropleales species showed the presence of genes involved
in vitamin B biosynthetic pathways, including the vitamin B6
biosynthetic process, thiamine (vitamin B1) biosynthesis and
metabolism, biotin (vitamin B7) synthase activity, and biotin
biosynthesis (Supplementary Table S4), indicating the ability to
synthesize these vitamins de novo, similar to C. reinhardtii,
Cyanidioschyzon merolae, and Thalassiosira pseudonana (Croft
et al,, 2006). A previous study on the marine diatom Skeletonema
costatum has shown that a mixture of vitamin B compounds plays a
crucial role in mitigating the harmful effects of hypersalinity (Gede
et al,, 2017). Furthermore, the possession of a complete pathway for
thiamine biosynthesis contributes to enhanced biotic and stress
resistance (Almutairi et al.,, 2021). The biosynthesis of the essential
amino acid methionine can occur via both B12-dependent and B12-
independent isoforms of methionine synthase (MetH and MetE,
respectively) (Croft et al., 2005, 2006; Helliwell et al., 2011). In this
study, all the Sphaeropleales species showed no genes about
cobalamin (vitamin B12) biosynthesis, while exhibited genes about
cobalamin (vitamin B12) metabolic process, and cobalamin binding
(Supplementary Table S4), indicating that methionine synthesis
occurred solely via the VBI12-independent pathway, namely MetE
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isoform in Sphaeropleales. A previous survey of 306 species aimed to
determine whether these algae require vitamin B12 (Croft et al,
2006). The results indicated that none of the Sphaeropleales species
showed a requirement for cobalamin, which acts as a cofactor for
enzymes involved in rearrangement-reduction reactions and methyl
transfer reactions. Vitamin B12 (VB12) can only be produced by
bacteria (both eubacteria and archaea) in nature, and its
concentration in the natural environment is typically lower than
required in culture (Croft et al, 2006). Therefore, these species
acquire VBI12 or its precursors through a symbiotic relationship
with bacteria. Such symbiotic interactions between bacteria and algae
are widespread, as many algae species are capable of acquiring
vitamin B12 from their bacterial partners (Croft et al., 2006;
Daisley, 1969).

All species contained genes involved in the assembly,
movement, and organization of cilia (Supplementary Table S5), as
well as genes associated with meiosis (Supplementary Table S6). In
the Sphaeropleales cell cycle, the stage with motility flagellates/) or
meiosis are either not dominant or not well understood (Trainor
and Burg, 1965; Yamagishi et al., 2017). Suzuki et al. proposed that
immobility may force cells to adapt to different environmental
conditions aided by their numerous transporters (Suzuki et al,
2018). Another possibility that a cryptic sexual cycle or previously
unobserved motile life cycle stage with flagella may exist in these
organisms, or these genes are nonfunctional in Sphaeropleales. This
phenomenon has been reported in C. zofingiensi (Blanc et al., 2010;
Roth et al., 2017).
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3.5 Gene family expansion and contraction
estimation and evolution analysis

To gain a comprehensive understanding of the orthogroups
differences between species, particularly those with assignable
functions, we performed gene family expansion and contraction
analyses using CAFE, based on 29,073 gene families. As shown in
Figure 3, all species and most ancestral nodes exhibited a substantial
number of gene family expansions, with contractions being more
prevalent. Specifically, B. engadinensis and B. aerius exhibited the
highest number of contracted gene families, with 17,786 and 17,499
respectively, surpassing all other nodes, while T. obliqguus (FACHB-
276) displayed the most expanded gene families, with 2,142. In
terms of ancestral nodes, the common ancestor of the
Selenastraceae family had the largest number of expansions and
contractions, with 10,832 contracted gene families and 471
expanded gene families. In contrast, the common ancestor of the
Bracteacoccaceae family showed the smallest number, with only 11
expanded gene families and no contractions. The number of
expanded or contracted gene families can be influenced by
various factors, including gene duplication, de novo gene creation,
gene loss, the functional roles of gene families, and environmental
changes (Albalat and Canestro, 2016; Guo, 2013; Prachumwat and
Li, 2008). Consequently, the observed differences in gene family
expansions and contractions in Sphaeropleales are likely due to
multiple causes. A previous study suggested that gene family
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contraction could contribute to genome reduction (Qiu et al,
2015). This may help explain why Scenedesmus sp.
PABBOO4exhibited the largest number of gene family
contractions, while simultaneously having the smallest genome
size within the Scenedesmaceae, and the Bracteacoccus species
showed relatively small genome size and almost the fewest
gene count.

To investigate whether gene family evolution correlates with
habitat adaptation, we performed Gene Ontology (GO) enrichment
analysis based on the expansions and contractions in the common
ancestor of Bracteacoccaceae. The GO enrichment analysis revealed
that the expanded families were enriched in six GO terms
(Figure 4A), primarily related to methionine biosynthetic,
cobalamin binding, tRNA Modification, pentosyltransferase
activity, and metal ion binding.

The branch model of PAML was used to compare dN/dS ratios
between terrestrial and aquatic Sphaeropleales species based on
3757 common orthologues. Among these, 3032 orthogroups
showed significantly higher dN/dS ratios in the two terrestrial
Bracteacoccaceae species, indicating the occurrence of rapid
evolution (Supplementary Table S7). Positive selection analysis
was performed based on branch-site model, and the null and
alternative models were compared. The null model considered
that the foreground branch only has dN/dS=1, and the
alternative model assumed that sites on the foreground branch
have dN/dS>1 (positive selection). When the two terrestrial
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Dot plot showing the enrichment of the special orthologues about evolution. The dot sizes represent the numbers of genes, circle colors indicate
different p values. (A) Dot plot showing the enrichment of the expanded orthologues in the common ancestor of Bracteacoccaceae. (B) Dot plot
showing the enrichment of the orthologues experienced fast-evolving and positively selected.

Bracteacoccaceae species were labelled as the foreground branch, 13
orthogroups showed the FDR-adjusted P value less than 0.05, which
indicated that these 13 orthogroups may possibly under positive
selection (Supplementary Table S8), and they also under rapid
evolution based on the result of Branch model. GO enrichment
analysis showed these orthogroups were enriched in 87 GO terms
(Figure 4B), among which 55 GO terms belonged to biological
process category, 22 belonged to cellular component category and
10 belonged to molecular function category. Among all the three
categories, there were some common functions such as oxidation-
reduction process, the function of mitochondrial, the biosynthetic
and metabolism of starch, polysaccharide and other
organics (Figure 4B).

Bracteacoccaceae included only one genus Bracteacoccus, which
are coccoid green algae that occurs in a wide range of soil types
worldwide, spanning climates from polar to tropical and not
avoiding even heavily polluted localities (Patova and Dorokhova,
2008; Ronquist et al., 2012; Stibal et al., 2006). Gene Ontology (GO)
enrichment analysis, based on the expansions and contractions in
the ancestral lineage of Bracteacoccaceae, revealed that the enriched
GO terms were primarily associated with methionine biosynthesis,
cobalamin binding, tRNA modification, pentosyltransferase
activity, and metal ion binding. A previous study about C.
reinhardtii indicated that methionine biosynthesis is an essential
cellular mechanism for adaptation to thermal stress (Xie et al.,
2013). Additionally, Zeng et al. identified key pathways in
regulating natural variations in phenylpropanoid content,
including flavone C-pentosyltransferase proteins, which are
involved in UVB protection in Qingke (Tibetan hulless barley)
(Zeng et al, 2020). It has also been reported that tRNA
modifications is correlated with cold temperatures, drought,
increased soil salinity, and developmental stages in vascular plants
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(Mmbando, 2024). Furthermore, the evolutionary analysis based on
PAML showed the two species of Bracteacoccus exhibited genes
experienced both rapidly evolution and positively selected. Among
these, common functional categories included oxidation-reduction
processes, mitochondrial functions, and the biosynthesis and
metabolism of starch, polysaccharides, and other organic
compounds. We considered these expanded gene families, rapidly
evolution and positively selected were likely related to the adaption
to the terrestrial habitat for Bracteacoccaceae.

4 Conclusions

The comprehensive genomic analysis of Sphaeropleales strains
provides valuable insights into their evolutionary adaptations and
genomic constituents. The phylogenetic analyses confirmed the
distinctiveness of species and their relationships within the
Chlorophyta. The genome sizes of Sphaeropleales species ranged
from 39.8 to 151.9 Mb, with most having a GC content around 56%.
Comparative analysis of orthologous gene families revealed
conserved and unique gene families across species, with
substantial expansions and contractions in all species and
ancestral nodes. Functional annotation and analysis of transporter
genes explained the importance of specific gene families in
environmental adaptation. The gene family expansion and
contraction analyses, along with positive selection studies,
identified key functional categories associated with terrestrial
adaptation in Bracteacoccaceae.

The work enriched the genomic data for Sphaeropleales,
particularly the genus Bracteacoccus, enhancing our understanding of
the ecological adaptations, evolutionary relationships, and
biotechnological applications of this group of algae.
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Phylogenetic tree of Sphaeropleales based on 18S rDNA sequences by
Mrbayes. Numbers on branches represent support values of Bayesian
posterior probabilities. Branch lengths are proportional to genetic
distances, which are indicated by the scale bar. The species in bold
indicates the newly added Sphaeropleales strains in this study.
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The top ten functional categories of the 14 Sphaeropleales based on Gene
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(BP), cellular component (CC), and molecular function (MF) respectively.
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