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Sphaeropleales is a diverse group with over one thousand species described,

which are found in a wide range of habitats showed strong environmental

adaptability. This study presented comprehensive genomic analyses of seven

newly sequenced Sphaeropleales strains with BUSCO completeness exceeding

90%, alongside comparative assessments with previously sequenced genomes.

The genome sizes of Sphaeropleales species ranged from 39.8 Mb to 151.9 Mb,

with most having a GC content around 56%. Orthologous analysis revealed

unique gene families in each strain, comprising 2 to 3.5% of all genes.

Comparative functional analysis indicated that transporters, genes encoding

pyrroline-5-carboxylate reductase and antioxidant enzymes played a crucial

role in adaptation to environmental stressors like salinity, cold, heavy metals

and varying nutrient conditions. Additionally, Sphaeropleales species were found

to be B12 auxotrophy, acquiring this vitamin or its precursors through a symbiotic

relationship with bacteria. Phylogenetic studies based on 18S rDNA and the low

copy othologues confirmed species identification and the relationships inside

core Chlorophyta and between prasinophytes. Evolutionary analyses

demonstrated all the species exhibited a large count of gene family expansions

and contraction, with rapidly evolving and positive selected genes identified in

terrestrial Bracteacoccus species, which contributed to their adaptation to

terrestr ial habitat. These findings enriched the genomic data for

Sphaeropleales, particularly the genus Bracteacoccus, which can help in

understanding the ecological adaptations, evolutionary relationships, and

biotechnological applications of this group of algae.
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1 Introduction

The Chlorophyta are a diverse group of green algae, which,

together with the Streptophyta and Prasinodermophyta, belong to

the Viridiplantae, an ancient lineage that diverged from a proposed

‘ancestral green flagellate’ (Fang et al., 2017; Leliaert et al., 2012; Li

et al., 2020). Within the Chlorophyta, there are two major

subdivisions: the core Chlorophyta and the paraphyletic

prasinophytes. The monophyletic core Chlorophyta currently

comprises five classes : Chlorophyceae , Ulvophyceae ,

Trebouxiophyceae, Pedinophyceae, and Chlorodendrophyceae

(Fucikova et al., 2014; Sun et al., 2016; Turmel et al., 2016, 2017).

The order Sphaeropleales belongs to the CS clade (which includes

Chlamydomonadales and Sphaeropleales) of Chlorophyceae, a

group containing 18 taxonomically recognized families. Over a

thousand species have been described in this order, which are

found in a wide range of habitats, demonstrating strong

environmental adaptability and exhibiting diverse cellular

organizations (Krienitz et al., 2011; Wolf et al., 2002).

Members of Sphaeropleales have been explored for bioassays

and biofuel production, due to their potential for producing a range

of biomolecules such as pigments, lipids, starch, and cellulose

(Breuer et al., 2014, 2015, 2012, 2015; Chisti, 2007; De Jaeger

et al., 2014; Rawat et al., 2013) Additionally, their rapid growth

and strong resistance to environmental stress make them promising

candidates for bioproduction. Some species are also valuable in

ecological research and applications due to their heightened

sensitivity to various substances compared to other algae (Nagai

et al., 2016). For instance, species like Raphidocelis subcapitata and

Desmodesmus subspicatus are recommended for ecotoxicological

bioassays by the Organization for Economic Cooperation and

Development (OECD) (TG201, http://www.oecd.org/) (Suzuki

et al., 2018).

The rapid advancements in genome sequencing over the past

two decades have made comparative genomics a key approach in

biological research, which is instrumental in uncovering the origin

and function of genes and gene families, as well as understanding

the mechanisms that drive complexity and diversification during

evolution (Goodwin et al., 2016). And comparative genomics has

increasingly been applied to the study of eukaryotic algae, including

Chlamydomonas (Chlorophyta) (Craig et al., 2021), Cladosiphon

okamuranus (a brown alga) (Nishitsuji et al., 2020), diatoms (Jeong

and Lee, 2024), red algae (Ho, 2020).

To date, 28 Sphaeropleales genomes have been sequenced and

are available in public databases. Of these, 20 strains belong to four

genera within the Scenedesmaceae, six strains are from three genera

within the Selenastraceae, and additional genomes are available

from Mychonastaceae and Scenedesmaceae. Most of these genomes

have been assembled to the contig or scaffold level, with genome

sizes ranging from 24 Mb to 208 Mb and contig N50 values ranging

from 2.8 Kb to 6125 Kb. Among these 28 genomes, only eight have

been annotated, including those of Monoraphidium neglectum,

Monoraphidium minutum, Raphidocelis subcapitata, Scenedesmus

sp. NREL 46B-D3, and two Tetradesmus obliquus strains (Bogen

et al., 2013; Carreres et al., 2017; Dasgupta et al., 2018; Demirbas,
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2011; Suzuki et al., 2018). The predicted gene counts for these

species range from 7,092 to 17,867 genes. These sequenced

Sphaeropleales genomes provide valuable insights into the

biosynthesis of lipids and pigments, including triacylglycerol

(TAG) and carotenoids, making these species suitable for

biotechnological applications and production. Comparative

genomics analyses have also revealed mechanisms underlying

environmental adaptation, such as the capacity for both

heterotrophic and mixotrophic lifestyles, as well as tolerance to

salinity and low metal concentrations.

Nucleotide substitution rates are often used as the criterion to

reflect selection pressure. While nonsynonymous substitution rates

(dN) can cause amino acid change, synonymous substitution rates

(dS) do not cause amino acid change. The dN/dS ratio is the

measure of natural selection acting on the protein. According to

Yang (Yang, 2007), dN/dS < 1 denotes negative purifying selection,

dN/dS = 1 signifies neutral evolution, and dN/dS > 1 indicates

positive selection (Xiong et al., 2021). As most of the plastid

protein-coding genes undergo negative or purifying selection to

maintain their function, they are conserved and have a low dN/dS

ratio. However, some genes might undergo positive selection in

response to environmental changes, consequently presenting

relatively high dN/dS ratio (Henriquez et al., 2020; Iram et al.,

2019; Smith, 2015).

In this study, we sequenced the genomes of seven

Sphaeropleales strains, including the first two terrestrial

Bracteacoccus species, and performed an in-depth analysis of

these genomes together with the seven previously reported high-

quality Sphaeropleales genomes. Functional annotation-based

comparative genomic analysis revealed key insights into the

environmental adaptations of this group. Phylogenetic and

evolutionary analyses, based on gene families and low-copy

orthologues, showed extensive gene family expansions and

contractions across all species. Rapidly evolving and positively

selected genes were identified in the terrestrial Bracteacoccus

species, which contributed to the adaption to the terrestrial

habitat. The findings of this study provide valuable information

for understanding the environmental adaptations and evolutionary

relationships within Sphaeropleales.
2 Materials and methods

2.1 Sampling, culture conditions, DNA
extraction, library preparation, sequencing,
genome assembly, and cleaning of the
reads

We obtained seven Sphaeropleales strains from National

Aquatic Biological Resource Center, Institute of Hydrobiology,

Chinese Academy of Sciences. The lists were Bracteacoccus aerius

(FACHB-895), Bracteacoccus engadinensis (FACHB-1300), four

Tetradesmus obliquus strains (FACHB-14, FACHB-276, FACHB-

417 and FACHB-1235), Monoraphidium contortum (FACHB-

3677). Bracteacoccus aerius and Bracteacoccus engadinensis were
frontiersin.org
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terrestrial, and others were collected from freshwater. All these

strains were grown at 25 °C in liquid BG11 medium under a 12/12-h

light/dark cycle.

DNA was extracted using a Universal DNA Isolation Kit (Axygen,

Suzhou, China). A NEB Next Ultra DNA Library Prep Kit for Illumina

(New England Biolabs, Ipswich, Massachusetts, USA) was used for

preparing sequencing libraries which were sequenced on an DNBSEQ

platform. The quality of the raw reads was initially assessed using

FastQC v0.11.6 (http://www.bioinformatics.babraham.ac.uk/projects/

fastqc/ accessed on 24 June 2021). Data were trimmed using

SOAPnuke software (Chen et al., 2017) and were then assembled

by megahit v 1.0.3 (Li et al., 2015) with defaulted parameters. Anvio

7.0 (Eren et al., 2015) was used to remove prokaryotic sequences

from the assembled genomes with defaulted parameters. Firstly,

Bowtie2 (Langmead and Salzberg, 2012) was used to align the

assembled genomes to the fq files, generating BAM files. Then, the

‘anvi-gen-contigs-database’ was employed to generate a contig

database, followed by the use of ‘anvi-run-hmms’ to identify

single-copy genes in the contig database. The ‘anvi-profile’ was

used to import sample information into the database. Next, ‘anvi-

interactive’ was used to visualize the results. Finally, ‘anvi-export-

collection’ was used to export the eukaryotic bins, and ‘anvi-export-

contigs’ was used to extract the sequences of the aimed bins,

resulting in the final assembled genomes. The genomes of the

seven Sphaeropleales trains were deposited in CNCB with

accession numbers SAMC4339295 - SAMC4339301, respectively.
2.2 Gene prediction, genome annotation
and evaluation

Ab initio gene prediction was performed by AUGUSTUS version

3.2.1 (Stanke et al., 2006) with four three-trained organism models:

volvox, chlamy2011, and chlorella. GeMoMa-1.9 (Keilwagen et al.,

2018) was employed for homolog-based gene prediction and

integration of gene prediction results, with genomes and protein of

Volvox carteri f. nagariensis (GCA_000143455.1), Gonium pectorale

(GCA_001584585.1), Haematococcus lacustris (GCA_030144725.1),

and Tetradesmus obliquus (GCA_030272155.1) from GenBank as the

references. Functional annotation of predicted proteins was performed

by InterProScan (Jones et al., 2014) and EggNOG-mapper (Huerta-

Cepas et al., 2017) for GO term mapping and KEGG pathway analyses

respectively. To assess the completeness of the genome assembly and

annotation, BUSCO (Simao et al., 2015) (Benchmarking Universal

Single-Copy Orthologs) was used, utilizing the chlorophyta_odb10

database for a quantitative evaluation.
2.3 Orthologous gene estimation,
transporters identification and repeat
composition

Orthologous gene groups for the Sphaeropleales samples

(including those newly added in this study and those available in the

public database with annotation completeness greater than 80%) were
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parameters to identify single-copy or low-copy orthologues.

Additionally, V. carteri f. nagariensis (GCA_000143455.1) and D.

salina (GCA_002284615.2) were included as outgroups to estimate

shared orthologues for subsequent divergence time estimation and

gene family evolution analysis. Transporters were identified using

BLASTp, with the Transporter Classification Database (TCDB) as a

query, with an e-value cut-off of <1E−5. Further, repeat content for each

genome was determined by RepeatModeler and RepeatMasker with

default parameters. A library of repeats was first created for each

assembly using RepeatModeler (Version 2.0.1) and all repeats were

masked using RepeatMasker (Version 4.1.0).
2.4 Phylogenomic analyses

The predicted protein sequences (PEP) sequences of each

single-copy or low-copy orthologue were aligned using MAFFT

v7.394 (Katoh and Standley, 2013) with the parameters -maxiterate

1000 and -globalpair. Regions with poor alignment were trimmed

using TrimAl v1.2 (Capella-Gutierrez et al., 2009) with the

-automated1 option. The resulting trimmed alignments of

orthologous groups were then used for subsequent phylogenomic

analysis. Coalescent-based analyses were employed to construct the

phylogenetic tree. For these analyses, RAxML (Stamatakis, 2014)

was used to perform maximum likelihood (ML) analysis of each

single-copy orthologue, applying the PROTGAMMA GTR model.

Additionally, ASTRAL (Zhang et al., 2018) was used to infer the

coalescent-based species tree (ST) phylogeny.

The 18S rDNA sequences were aligned using MAFFT v7.0 (Katoh

and Standley, 2013), and ambiguous regions were manually adjusted

and refined using MEGA7 (Kumar et al., 2016). To locate the positions

of 18S rDNA sequences within the sequenced genomes, nhmmer

(Wheeler and Eddy, 2013) was used to align the final assembled

genomes to the rDNA database, based on rDNA sequences

downloaded from NCBI. Subsequently, SSU sequences were

extracted using Perl scripts. To understand the phylogenetic

relationships of the strains in this study, additional Sphaeropleales

18S rDNA sequences were downloaded from the public database. The

18S rDNA sequences were analyzed using jModelTest2 (Darriba et al.,

2012) to select the best-fit model, which was found to be GTR + I + G.

Bayesian inference (BI) method was applied to infer the phylogeny.
2.5 Gene family expansion and contraction
estimation

PhyloSuite (Zhang et al., 2020) was used to concatenate all the

shared single-copy orthologous groups from the Sphaeropleales and

the outgroup, resulting in a concatenated sequence of 35,684 amino

acids. This concatenated alignment, along with the species tree

constructed by ASTRAL (Zhang et al., 2018), was used for Bayesian

divergence time estimation using the approximate likelihood

method described by dos Reis & Yang, implemented in

MCMCtree v. 4.9 (Yang, 2007).
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The number of gene copies per family, as determined by

Orthofinder (Emms and Kelly, 2015), and the timetree estimated

earlier by MCMCtree (Yang, 2007). were used to analyze gene

family expansion and contraction using CAFE v. 5.1 (Mendes et al.,

2020). Expanded and contracted genes were then extracted for Gene

Ontology (GO) functional and KEGG pathway enrichment

analyses. For GO enrichment, all PEP sequences were imported

into InterProScan (Jones et al., 2014) for GO term mapping. The

analysis was carried out using the clusterProfiler (Yu et al., 2012)

package, with a significance cutoff of p < 0.05, and the false

discovery rate (FDR) method was applied to adjust for multiple

testing (Benjamini and Hochberg, 1995).
2.6 Evolutionary analysis

The CODEML program of PAML v4.9 (Yang, 2007) was used to

estimate positive selection and rapidly evolving genes based on common

orthologues were described as Xiong et al (Xiong et al., 2022, 2021). The

branch model was employed in the calculation of dN/dS ratios for

terrestrial Sphaeropleales species and aquatic ones with the two

Bracteacoccus species labeled as foreground branches. A null model

(model = 0), where one dN/dS ratio was fixed across all strains, was

compared with an alternative model (model = 2), where Bracteacoccus

species were allowed to have a different dN/dS ratio. Likelihood ratio

tests were performed to examine model fit, a chi-squared test was used

to analyze p values, and multiple testing was corrected using false

discovery rate (FDR) in R. The genes were considered putative rapidly

evolving genes if they had an FDR-adjusted p value < 0.05 and a higher

dN/dS ratio in the foreground branch than in the background branches.

Branch-site model was utilized to find genes that possibly

underwent positive selection. The improved branch-site model

(model = 2, Nsites = 0) was used to detect signatures of positive

selection on individual amino acids in a specific branch. The two

Bracteacoccus species were set as the foreground branch. The null

model assumed that no positive selection occurred on the

foreground branch (fix_omega = 1, omega = 1), and the

alternative model assumed that sites on the foreground branch

were under positive selection (fix_omega = 0, omega = 1.5). LRT

were used to test model fit and Chi-square test was applied for

examining the P values in R. A correction was performed for

multiple testing using an FDR criterion, and BEB method was

employed to statistically identify sites under positive selection.

Genes with an FDR-adjusted P < 0.05 were considered as

putatively selected. For the genes belonging to both under

positive selection and putative rapidly evolving were performed

for gene ontology (GO) functional enrichment analyses as above.
3 Results and discussion

3.1 Phylogenetic analyses

The seven newly added Sphaeropleales strains were collected

prior to 2000 and were deposited in National Aquatic Biological
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Sciences. Phylogenetic analysis based on 18S rDNA sequences

extracted from the genomes was performed, and the results are

shown in Supplementary Figure S1. The phylogenetic tree with high

support values at the basal nodes confirmed species identification.

We also performed a phylogenetic analysis using low-copy

orthologues across the entire Chlorophyta, including core

Chlorophyta and prasinophytes by Astral (Figure 1), which

enables highly accurate phylogenomic estimation, even in the

presence of high levels of gene tree conflict because of incomplete

lineage sorting (Mirarab et al., 2014) or horizontal gene transfer

(Davidson et al., 2015). The results were almost identical with the

previous studies, supporting the phylogenetic relationships within

core Chlorophyta and between prasinophytes. Notably, our analysis

confirmed that P. coloniale (CCMP 1413) was distinct from both

core Chlorophyta and prasinophytes, suggesting it belongs to a

newly identified phylum, Prasinodermophyta (Li et al., 2020).
3.2 Genome sequencing and
characteristics

Using Illumina platforms, we sequenced and assembled draft

genomes for B. aerius, B. engadinensis, M. contortum, S. obliquus,

and three T. obliquus strains. These genomes, along with seven

previously sequenced Sphaeropleales genomes, were summarized in

Table 1. The contig N50 values of the seven newly sequenced

genomes were nearly identical, ranging from 20.5 to 22.34 kb. The

BUSCO completeness for all genomes exceeded 90%, indicating

that the genome assemblies were sufficiently complete for

comparative analyses of genomic and gene constituents. The

genome sizes of the seven sequenced species ranged from 45.62

Mb to 109.8 Mb, with the GC content varied from 55.72% to

57.63%. Gene counts varied significantly among species, ranging

from 6,874 to 13,568. The repeat composition covered 3.06% to

18,88% of the genome.

Among all the Sphaeropleales species, the genomes size of

Scenedesmus species exhibited significant variation, ranging from

39.8 Mb to 151.90 Mb, representing both the smallest and largest

genomes within this group. In contrast, Monoraphidium,

Raphidocelis, and Bracteacoccus displayed moderate genome sizes,

ranging from 46.6 Mb to 69.5 Mb. And Tetradesmus species

possessed relatively larger genomes that exceed 100 Mb. Most

species have a GC content around 56%, exception for

Monoraphidium and Scenedesmus sp. PABB004 greater than 70%.

The repeat content varied considerably among all genomes

examined, Scenedesmus sp. PABB004 and R. subcapitata showed

the lowest repeat content about 1.3%, and T. obliquus

(SAMC4339298) displayed the highest at 18.8%. Bracteacoccus

and Monoraphidium have moderate repeat content, ranging from

3% to 4%, whereas Tetradesmus and most Scenedesmus species

exhibit higher ranging 6.78% to 18.88%. minutum,

It is generally accepted that there is some degree of correlation

between the genome size, the proportion of repetitive sequence, and

the number of genes (Feng et al., 2017; Hou and Lin, 2009;
frontiersin.org

https://doi.org/10.3389/fpls.2025.1534646
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Xiong et al. 10.3389/fpls.2025.1534646
Nishitsuji et al., 2020; Wang et al., 2021). These observations

support the idea that larger genomes generally having more gene

count, fewer repeats and lower GC content. While, it seemed larger

genomes exhibited more gene count at the genus level of

Sphaeropleales, the relationship the genomes size among the GC

and repeat content showed no obvious pattern, more high-quality

genomes will contribute to explore the relationships.
3.3 Analysis of orthologous gene families
and comparative analysis of predicted gene
function

We conducted orthologous gene family analysis based on the

newly sequenced seven Sphaeropleales strains along with seven

high-quality previously sequenced genomes at different taxonomic

levels (Figure 2). The orthologous analysis revealed that 3,761 gene

families were shared or conserved across all fifteen genomes

(Figure 2A). Additionally, each strain contained unique gene

families, comprising 2-3.5% of the total gene count: 2,009 families

were unique to T. obliquus, 554 to S. obliquus, 411 to B. aerius, 257

to Scenedesmus sp. NREL 46B-D3, 247 to B. engadinensis, 151 toM.

minutum, 144 to R. subcapitata, and 138 to M. contortum. At the
Frontiers in Plant Science 05
genus level (Figure 2B), 6,733 gene families were shared or

conserved across the five genera. Furthermore, 5,587 gene families

were unique to Tetradesmus, 2,391 to Bracteacoccus, 1,432 to

Monoraphidium, and 720 to Scenedesmus. At the family level

(Figure 2C), 7,304 gene families were shared or conserved among

the three families. Additionally, 10,656 gene families were unique to

Scenedesmaceae, 3,149 to Selenastraceae, and 2,667 to

Bracteacoccaceae. In whole, the Tetradesmus species, in particular,

had the most unique gene families (5,587), likely due to their

larger genomes.

To further investigate gene functions within the Sphaeropleales,

we classified all annotated proteins from 14 genomes into functional

categories using the Gene Ontology (GO) database (Supplementary

Figure S2). The predicted proteins were categorized into three

primary GO domains: molecular function (MF), cellular

component (CC), and biological process (BP). We compared the

contents of each category and their corresponding percentages.

Among the 11 strains, unique GO domains were identified, with T.

obliquus FACHB-276 exhibiting the highest diversity, containing

278 distinct domains across the three GO categories. For the top ten

functional categories at the CC and MF levels, most species shared

nearly identical terms. We also calculated the PFAM domain

categories and their percentages (Supplementary Figure S3) and
FIGURE 1

Phylogenetic tree of the Chlorophyta based on the low-copy orthologues to by ASTRAL. Numbers on branches represent support values of ASTRAL.
Branch lengths are proportional to genetic distances, which are indicated by the scale bar. The species in bold indicates the newly added
Sphaeropleales strains in this study.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1534646
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


TABLE 1 Comparison of draft genome assemblies of seven species of Sphaeropleales algae.

Genome
complete
BUSCOs

Number of
genes

GC
(%)

Repeated
(%)

Accession
number

90.80% 7612 56.68 3.27 SAMC4339295

92.50% 7697 55.72 3.06 SAMC4339296

91.30% 12827 56.99 10.95 SAMC4339297

93.70% 13568 56.85 18.88 SAMC4339298

92.50% 13152 57.01 11.56 SAMC4339299

90.30% 11717 56.15 6.78 SAMC4339300

91.60% 6.874 57.63 3.75 SAMC4339301

95.6% 15464 72.00 73.72 GCA_025201885.1

90.9% 16,807 65.00 4.26 GCA_000611645.1

94.6% 13,429 71.50 1.38 GCA_003203535.1

94.9% 17,867 57.50 7.67 GCA_014080715.1

96% 7,092 78.50 1.31 GCA_014905635.1

94.1% 14,673 57.00 11.8 GCA_030272055.1

95.7% 15224 56.50 10.03 GCA_030272155.1
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Species
Assembled
genome size (Mb)

Number of
contigs

N50 contig
length (kp)

Number of
scaffolds

N50 scaffold
length (kb)

Bracteacoccus
aerius

69.48 5602 22.164 5602 22.164

Bracteacoccus
engadinensis

62.94 3570 21.575 3570 21.575

Scenedesmus
obliquus

96.20 5611 22.336 5611 22.336

Tetradesmus
obliquus

101.41 5722 22.183 5722 22.183

Tetradesmus
obliquus

95.24 5163 22.128 5163 22.128

Tetradesmus
obliquus

109.80 11643 20.503 11643 20.503

Monoraphidium
contortum

45.62 2569 22.204 2569 22.204

Monoraphidium
minutum

68.2 512 259.4 511 259.4

Monoraphidium
neglectum

69.50 12074 9.1 6718 15.6

Raphidocelis
subcapitata

51.20 1,620 91.8 300 341.8

Scenedesmus sp.
NREL 46B-D3

151.90 2,661 204.9 – –

Scenedesmus sp.
PABB004

39.8 77 1300 77 1300

Tetradesmus
obliquus

100.30 17 600 17 600

Tetradesmus
obliquus

104.70 17 6100 17 6100
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KEGG pathway categories (Supplementary Figure S4) for all

species, which showed that all the species shared similar top-ten

categories and associated percentages.
3.4 Comparative analysis of predicted gene
function

Based on the Transporter Classification Database, we analyzed

the transporters in the Sphaeropleales genomes. A total of 320

transporters were identified, as shown in Supplementary Table S1.

The transporters across the Sphaeropleales species exhibited similar

patterns in terms of the top ten transporter categories and their

respective numbers. As additional species were included in the

analysis, the results were consistent with previous studies (Suzuki

et al., 2018), which showed that Sphaeropleales species possess

notably higher numbers of genes encoding for H+/hexose

transporters (2.A.1.1, TCAD ID), amino acid permeases

(2.A.18.2), peptide transporters (2.A.17.3), aquaporins (1.A.8.8),

and metal-nicotianamine transporters (2.A.67.2) compared to

Chlamydomonas reinhardtii (Table 2). The Sphaeropleales are a

dominant group of freshwater algae, well-adapted to diverse

environmental conditions (Baldisserotto et al., 2012; Fawley et al.,

2004). These species also exhibit high sensitivity to exogenous

substances (Nagai et al., 2016). Previous studies have suggested

that Sphaeropleales have the ability to adapt to various

environmental conditions for possessing a significantly greater

number of genes related to H+/hexose transporters, amino acid

permeases, peptide transporters, aquaporins, and metal-
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nicotianamine transporters comparing to C. reinhardtii (Suzuki

et al., 2018). Aquaporins help algae adapt to high salt stress by

facilitating the transport of small polar molecules, such as water,

across cell membranes, thereby regulating intracellular osmotic

pressure (Anderberg et al., 2011). Additionally, the presence of

multiple metal-nicotianamine transporters, ABC transporters, and

genes involved in heavy metal ion and xenobiotic transport

(Supplementary Table S2) suggested that Sphaeropleales may

have a high sensitivity to metals, positioning them as potential

phytoremediation organisms for removing heavy metal pollution

from aquatic environments (Benderliev and Ivanova, 1994, 1996;

Murata et al., 2006; Schaaf et al., 2004). Genes related to H+/hexose

cotransport, amino acid/peptide transporters, and nitrate/nitrite

transporters are likely key to their rapid growth under varying

nutrient conditions (Cho et al., 1981; Sauer et al., 1983).

Furthermore, Sphaeropleales species possessed a gene encoding

pyrroline-5-carboxylate reductase, which synthesizes proline to

alleviate osmotic stress under cold conditions (Liu et al., 2020).

And pyrroline-5-carboxylate reductase is also associated with

halotolerance (Arora et al., 2019; Kishor et al., 1995; Pérez-

Arellano et al., 2010). Previous study indicated that copies of the

pyrroline-5-carboxylate reductase gene of the halotolerant

microalga Scenedesmus sp. NREL 46B-D3 were upregulated

(Calhoun et al., 2021) in the cold stress, and pyrroline 5-

carboxylate reductase was upregulated under the salt stress in the

cold tolerant M. minutum 26B-AM and S. obliquus UTEX393

(Calhoun et al., 2022). They also exhibited genes encoding

antioxidant enzymes (e.g., catalase, ascorbate peroxidase) and

antioxidant biosynthesis pathways (e.g., glutamate, b-carotene)
FIGURE 2

Orthologous gene analysis in genomes of the Sphaeropleales algae. (A) Shared families are shown on the horizontal axis and the number of patterns
in the vertical axis. (B) Venn diagram showing the numbers of gene families shared among the Sphaeropleales algae at the level of genus. (C) Venn
diagram showing the numbers of gene families shared among the Sphaeropleales algae at the level of family.
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(Supplementary Table S3), which helped mitigate oxidative stress

from excess reactive oxygen species (O2 and H2O2) under cold

stress (Fryer et al., 1998; Liu et al., 2020; Prasad, 1997; Van

Breusegem et al., 1999). The findings from this study, based on a

larger set of sequenced Sphaeropleales genomes, supported with

adaptation for different environmental condition.

All Sphaeropleales species showed the presence of genes involved

in vitamin B biosynthetic pathways, including the vitamin B6

biosynthetic process, thiamine (vitamin B1) biosynthesis and

metabolism, biotin (vitamin B7) synthase activity, and biotin

biosynthesis (Supplementary Table S4), indicating the ability to

synthesize these vitamins de novo, similar to C. reinhardtii,

Cyanidioschyzon merolae, and Thalassiosira pseudonana (Croft

et al., 2006). A previous study on the marine diatom Skeletonema

costatum has shown that a mixture of vitamin B compounds plays a

crucial role in mitigating the harmful effects of hypersalinity (Gede

et al., 2017). Furthermore, the possession of a complete pathway for

thiamine biosynthesis contributes to enhanced biotic and stress

resistance (Almutairi et al., 2021). The biosynthesis of the essential

amino acid methionine can occur via both B12-dependent and B12-

independent isoforms of methionine synthase (MetH and MetE,

respectively) (Croft et al., 2005, 2006; Helliwell et al., 2011). In this

study, all the Sphaeropleales species showed no genes about

cobalamin (vitamin B12) biosynthesis, while exhibited genes about

cobalamin (vitamin B12) metabolic process, and cobalamin binding

(Supplementary Table S4), indicating that methionine synthesis

occurred solely via the VB12-independent pathway, namely MetE
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isoform in Sphaeropleales. A previous survey of 306 species aimed to

determine whether these algae require vitamin B12 (Croft et al.,

2006). The results indicated that none of the Sphaeropleales species

showed a requirement for cobalamin, which acts as a cofactor for

enzymes involved in rearrangement-reduction reactions and methyl

transfer reactions. Vitamin B12 (VB12) can only be produced by

bacteria (both eubacteria and archaea) in nature, and its

concentration in the natural environment is typically lower than

required in culture (Croft et al., 2006). Therefore, these species

acquire VB12 or its precursors through a symbiotic relationship

with bacteria. Such symbiotic interactions between bacteria and algae

are widespread, as many algae species are capable of acquiring

vitamin B12 from their bacterial partners (Croft et al., 2006;

Daisley, 1969).

All species contained genes involved in the assembly,

movement, and organization of cilia (Supplementary Table S5), as

well as genes associated with meiosis (Supplementary Table S6). In

the Sphaeropleales cell cycle, the stage with motility flagellates/) or

meiosis are either not dominant or not well understood (Trainor

and Burg, 1965; Yamagishi et al., 2017). Suzuki et al. proposed that

immobility may force cells to adapt to different environmental

conditions aided by their numerous transporters (Suzuki et al.,

2018). Another possibility that a cryptic sexual cycle or previously

unobserved motile life cycle stage with flagella may exist in these

organisms, or these genes are nonfunctional in Sphaeropleales. This

phenomenon has been reported in C. zofingiensi (Blanc et al., 2010;

Roth et al., 2017).
TABLE 2 The number of genes for several transporters.

Annotation Aquaporin
Hexose

transporter
Peptide

transporter
Amino acid
permease

Metal-nicotianamine
transporter

TCAD ID 1.A.8.8 2.A.1.1 2.A.17.3 2.A.18.2 2.A.67.2

R. subcapitata 0 13 5 8 6

M. neglectum 3 14 8 7 4

T. obliquus 8 12 3 11 5

C. zofingiensis 4 12 3 4 4

C. reinhardtii 1 3 1 0 0

T. obliquus
(SAMC4339297)

4 17 3 8 6

T. obliquus
(SAMC4339299)

8 20 2 11 5

T. obliquus
(SAMC4339298)

6 21 3 13 7

T. obliquus
(SAMC4339300)

2 21 1 13 9

B. aerius (SAMC4339295) 3 5 2 2 1

B. engadinensis
(SAMC4339296)

1 6 1 4 1

M. contortum
(SAMC4339301)

4 15 2 8 5
The data of R. subcapitata, M. neglectum, T. obliquus, Chromochloris zofingiensis and C. reinhardtii was cited from the study of Suzuki et al., 2018.
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3.5 Gene family expansion and contraction
estimation and evolution analysis

To gain a comprehensive understanding of the orthogroups

differences between species, particularly those with assignable

functions, we performed gene family expansion and contraction

analyses using CAFÉ, based on 29,073 gene families. As shown in

Figure 3, all species and most ancestral nodes exhibited a substantial

number of gene family expansions, with contractions being more

prevalent. Specifically, B. engadinensis and B. aerius exhibited the

highest number of contracted gene families, with 17,786 and 17,499

respectively, surpassing all other nodes, while T. obliquus (FACHB-

276) displayed the most expanded gene families, with 2,142. In

terms of ancestral nodes, the common ancestor of the

Selenastraceae family had the largest number of expansions and

contractions, with 10,832 contracted gene families and 471

expanded gene families. In contrast, the common ancestor of the

Bracteacoccaceae family showed the smallest number, with only 11

expanded gene families and no contractions. The number of

expanded or contracted gene families can be influenced by

various factors, including gene duplication, de novo gene creation,

gene loss, the functional roles of gene families, and environmental

changes (Albalat and Canestro, 2016; Guo, 2013; Prachumwat and

Li, 2008). Consequently, the observed differences in gene family

expansions and contractions in Sphaeropleales are likely due to

multiple causes. A previous study suggested that gene family
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contraction could contribute to genome reduction (Qiu et al.,

2015) . This may help expla in why Scenedesmus sp .

PABB004exhibited the largest number of gene family

contractions, while simultaneously having the smallest genome

size within the Scenedesmaceae, and the Bracteacoccus species

showed relatively small genome size and almost the fewest

gene count.

To investigate whether gene family evolution correlates with

habitat adaptation, we performed Gene Ontology (GO) enrichment

analysis based on the expansions and contractions in the common

ancestor of Bracteacoccaceae. The GO enrichment analysis revealed

that the expanded families were enriched in six GO terms

(Figure 4A), primarily related to methionine biosynthetic,

cobalamin binding, tRNA Modification, pentosyltransferase

activity, and metal ion binding.

The branch model of PAML was used to compare dN/dS ratios

between terrestrial and aquatic Sphaeropleales species based on

3757 common orthologues. Among these, 3032 orthogroups

showed significantly higher dN/dS ratios in the two terrestrial

Bracteacoccaceae species, indicating the occurrence of rapid

evolution (Supplementary Table S7). Positive selection analysis

was performed based on branch-site model, and the null and

alternative models were compared. The null model considered

that the foreground branch only has dN/dS = 1, and the

alternative model assumed that sites on the foreground branch

have dN/dS > 1 (positive selection). When the two terrestrial
FIGURE 3

Gene family expansion or contraction in Sphaeropleales algae. Branch numbers indicate the number of gene families that have expanded (+) and
contracted (−) since the split from the common ancestor.
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Bracteacoccaceae species were labelled as the foreground branch, 13

orthogroups showed the FDR-adjusted P value less than 0.05, which

indicated that these 13 orthogroups may possibly under positive

selection (Supplementary Table S8), and they also under rapid

evolution based on the result of Branch model. GO enrichment

analysis showed these orthogroups were enriched in 87 GO terms

(Figure 4B), among which 55 GO terms belonged to biological

process category, 22 belonged to cellular component category and

10 belonged to molecular function category. Among all the three

categories, there were some common functions such as oxidation-

reduction process, the function of mitochondrial, the biosynthetic

and metabol ism of starch, polysaccharide and other

organics (Figure 4B).

Bracteacoccaceae included only one genus Bracteacoccus, which

are coccoid green algae that occurs in a wide range of soil types

worldwide, spanning climates from polar to tropical and not

avoiding even heavily polluted localities (Patova and Dorokhova,

2008; Ronquist et al., 2012; Stibal et al., 2006). Gene Ontology (GO)

enrichment analysis, based on the expansions and contractions in

the ancestral lineage of Bracteacoccaceae, revealed that the enriched

GO terms were primarily associated with methionine biosynthesis,

cobalamin binding, tRNA modification, pentosyltransferase

activity, and metal ion binding. A previous study about C.

reinhardtii indicated that methionine biosynthesis is an essential

cellular mechanism for adaptation to thermal stress (Xie et al.,

2013). Additionally, Zeng et al. identified key pathways in

regulating natural variations in phenylpropanoid content,

including flavone C-pentosyltransferase proteins, which are

involved in UVB protection in Qingke (Tibetan hulless barley)

(Zeng et al., 2020). It has also been reported that tRNA

modifications is correlated with cold temperatures, drought,

increased soil salinity, and developmental stages in vascular plants
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(Mmbando, 2024). Furthermore, the evolutionary analysis based on

PAML showed the two species of Bracteacoccus exhibited genes

experienced both rapidly evolution and positively selected. Among

these, common functional categories included oxidation-reduction

processes, mitochondrial functions, and the biosynthesis and

metabolism of starch, polysaccharides, and other organic

compounds. We considered these expanded gene families, rapidly

evolution and positively selected were likely related to the adaption

to the terrestrial habitat for Bracteacoccaceae.
4 Conclusions

The comprehensive genomic analysis of Sphaeropleales strains

provides valuable insights into their evolutionary adaptations and

genomic constituents. The phylogenetic analyses confirmed the

distinctiveness of species and their relationships within the

Chlorophyta. The genome sizes of Sphaeropleales species ranged

from 39.8 to 151.9 Mb, with most having a GC content around 56%.

Comparative analysis of orthologous gene families revealed

conserved and unique gene families across species, with

substantial expansions and contractions in all species and

ancestral nodes. Functional annotation and analysis of transporter

genes explained the importance of specific gene families in

environmental adaptation. The gene family expansion and

contraction analyses, along with positive selection studies,

identified key functional categories associated with terrestrial

adaptation in Bracteacoccaceae.

The work enriched the genomic data for Sphaeropleales,

particularly the genus Bracteacoccus, enhancing our understanding of

the ecological adaptations, evolutionary relationships, and

biotechnological applications of this group of algae.
FIGURE 4

Dot plot showing the enrichment of the special orthologues about evolution. The dot sizes represent the numbers of genes, circle colors indicate
different p values. (A) Dot plot showing the enrichment of the expanded orthologues in the common ancestor of Bracteacoccaceae. (B) Dot plot
showing the enrichment of the orthologues experienced fast-evolving and positively selected.
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